Consensus on State and Time: Decentralized Regression with Asynchronous Sampling

Scaglione, A., Wai, H.
Citation:

IEEE Transactions on Signal Processing, March 25, 2015.

Visit Publisher Online Entry:
Abstract:

An implicit assumption made in several studies on sensor systems is that the time and frequency at which sensor measurements are taken is consistent across all the distributed sensing sites. In reality, the times of measurement often lack consistency and integrity, and this is an intrinsic vulnerability of wide area sensor system. Data logs coming from different Analog to Digital Converters (ADCs) are not in phase and may differ also in the sampling rate, in some cases because heterogeneity in the sensors and in others because the data are simply not refreshed in the data historians with the same frequency. Lack of good synchronization in sensing may be the result of a malfunction or also due to intentional delay attacks.

This premise motivates our work, where we advance the area of decentralized signal processing and consider explicitly timing errors and non-homogenous sampling rates in least square estimation problems with distributed sensing. For linear observations models, we provide a necessary and sufficient condition for identifiability of the time offsets. We propose an algorithm for the joint regression on the state vector and time offsets. The algorithm also exploits the asynchrony and redundancy in the spatial sampling to attain sub-Nyquist sampling resolution of the slow sensor feeds. Importantly, this also leads to the development of a novel decentralized algorithm. The efficacies of the proposed decentralized algorithm are shown by both convergence analysis and numerical simulations.

Publication Status:
Published
Publication Type:
Journal Article
Publication Date:
03/25/2015
Copyright Notice:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

  1. The following copyright notice applies to all of the above items that appear in IEEE publications: "Personal use of this material is permitted. However, permission to reprint/publish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE."

  2. The following copyright notice applies to all of the above items that appear in ACM publications: "© ACM, effective the year of publication shown in the bibliographic information. This file is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the journal or proceedings indicated in the bibliographic data for each item."

  3. The following copyright notice applies to all of the above items that appear in IFAC publications: "Document is being reproduced under permission of the Copyright Holder. Use or reproduction of the Document is for informational or personal use only."