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Abstract

How does one block an anonymous user hiding be-
hind an anonymous routing network? In this paper,
we outline a security protocol that uses resource-
constrained trusted hardware to facilitate anony-
mous IP-address blocking in anonymizing networks
such as Tor. Tor allows users to access Internet ser-
vices privately by using a series of Tor routers to
obfuscate the route from the client to the server,
thereby hiding the client’s IP address from the
server. The success of Tor, however, has been
limited because of malicious users who misuse the
network. For example, anonymous users can de-
face websites or create malicious entries on websites
such as Wikipedia.1 Administrators of these web-
sites routinely rely on IP-address blocking for dis-
abling misbehaving users’ accesses. The IP-address
anonymity provided by Tor, however, makes it diffi-
cult for administrators to deny access to such offend-
ers. As a result, administrators resort to blocking
all Tor exit nodes, effectively denying anonymous
access for all Tor’s users. Our solution makes use
of trusted hardware and allows services like Tor to
provide anonymous blocking of IP addresses while
requiring only a modest amount of storage at the
trusted node.

∗This research was supported in part by the NSF, under
grant CNS-0524695, and the Bureau of Justice Assistance,
under grant 2005-DD-BX-1091. The views and conclusions
do not necessarily reflect the views of the sponsors.

1Wikipedia. http://www.wikipedia.com

1 Introduction

Anonymizing networks such as Crowds [8] and
Tor [3] re-route a user’s traffic between several nodes
in different domains. Since these nodes are operated
independently, users are able to trust the anonymiz-
ing network to provide anonymity. Real-world de-
ployments of anonymizing networks, however, have
had limited success because of their misuse. Admin-
istrators of websites are unable to blacklist malicious
users’ IP addresses because of their anonymity. Left
with no other choice, these administrators opt to
blacklist the entire anonymizing network. This ap-
proach eliminates malicious activity through such
networks, but at the cost of the anonymity of hon-
est users. In other words, a few “bad apples” can
spoil the fun for everybody else using the anonymiz-
ing network. (In fact, this has happened repeatedly
with Tor.2)

To solve this problem, we present a secure proto-
col based on trusted hardware that allows servers to
block anonymous users without knowledge of their
actual IP addresses. Although this work applies to
anonymizing networks in general, we consider Tor
for purposes of exhibition. Building and prototyp-
ing a system based on our proposed solution is on-
going work. In this paper we present our proposed
solution and protocol.

At a high level, our system provides users with an
ordered collection of pseudonyms for each website.
Each pseudonym is valid for a small time period, and
a user’s anonymity is maintained between these time
periods. Without a trapdoor, the pseudonyms look
unrelated to the website, and users enjoy anonymity

2The Abuse FAQ for Tor Server Operators lists several
such examples at http://tor.eff.org/faq-abuse.html.en.
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Figure 1: The life cycle of a misbehaving user in our system

through the use of these unlinkable pseudonyms.
Websites can, however, interact with a trusted node
in the Tor network and obtain a trapdoor for a given
connection, allowing the website to link a misbe-
having user’s future accesses. Our system thus pro-
vides “on-demand forward linkability” of a user’s
pseudonyms. Since users can verify whether they
are on the website’s “blacklist” before connecting to
a website, blacklisted users can decide not to con-
nect if they will be linked. The anonymity of users
not on the blacklist remains unaffected. Since users
need to be assured that they are checking the most
recent version of the website’s blacklist, the trusted
node maintains the current version numbers of each
website’s blacklist. This requires only a moderate
amount of storage at the trusted node, which is lin-
ear in the number of websites requesting the anony-
mous IP-blocking service.

Our solution makes use of trusted hardware as a
Trusted Third Party (TTP). The TTP needs to be
able to store its data and carry out computations
without an external adversary—even the operator
of the machine—being able to observe or manip-
ulate it (except for destroying it altogether). To
achieve this, we plan on using trusted hardware
with the ability to provide a secure execution en-
vironment bound to private keys. In our proto-
type work, we are using an IBM 4758 [9] and plan
to use an IBM 4764; however, we anticipate that
similar environments will be enabled, perhaps with
a lower degree of tamper protection, by architec-
tures based on TPMs or newer CPU models such as
XOM [6], AEGIS [10], or LT [4], or even a new type
of TPM [1].

Our system has the following properties: (1) A
user can check whether his or her future connec-
tions to a website will be linked. (2) A user who
misbehaved at one website still enjoys anonymity
with respect to other websites that have not com-
plained about that user. (3) Connections made by
a misbehaving user before the website complains re-

main unlinkable even though future connections can
then be linked. (4) There is a period of time called
the linkability window after which the misbehavior
of users will be forgiven, effectively meaning that
the users enjoy anonymity again.

Many in the community worry that trusted com-
puting will be a vehicle for suppressing individual
rights. We note that this project moves in the other
direction, by using it to preserve privacy, and by us-
ing it to increase mainstream acceptance of privacy-
enhancing technology such as Tor.

2 Our Solution

In our system, time is divided into linkability win-
dows of duration L, each of which is split into m
smaller time periods of duration T , as illustrated in
Figure 1. We will refer to time periods and linkabil-
ity windows chronologically as T1, T2, . . . and L1,
L2, . . . respectively. While a user’s access within a
time period is tied to a single pseudonym, the use
of different pseudonyms across time periods grants
the user anonymity between time periods. There-
fore, smaller time periods provide users with enough
pseudonyms to simulate anonymous access. For ex-
ample, T can be set to 5 minutes, and L to 1 day.
If a user misbehaves, then the website may link any
future connection from this user within the same
day (the current linkability window). Consider Fig-
ure 1 as an example: A user misbehaves in a con-
nection to a website during time period Ti within
linkability window L2. The website complains in
time period Tj about that connection within the
same linkability window. The website is then able
to link future connections by the user in time pe-
riods Tj+1, Tj+2, . . . , T2m. Therefore, users cannot
misbehave again for the rest of the day (the link-
ability window) once the website has detected the
malicious behavior.

Users need to acquire a token from the TTP to
connect to a website. The token contains the user’s
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pseudonym for a particular time period and a trap-
door encrypted under the TTP’s public key. When a
website complains about a connection by presenting
the token to the TTP, the TTP recovers the trap-
door from the token and returns it to the website.
Given the trapdoor, the website can generate all
the pseudonyms for future time periods within the
current linkability window and maintain a blacklist
with these pseudonyms. Users may query websites
for their blacklists so that they know if they are
being linked before they decide to establish connec-
tions to those websites. The authenticity, integrity
and freshness of these blacklists are important to
the security of our system. The TTP plays a role
here by maintaining a bulletin of blacklist version
numbers for public access. The version number for
a website is updated every time a trapdoor is issued
to that website.

Figure 2 illustrates how trapdoors and
pseudonyms are generated. The process uses
a novel hash-chain-like primitive first proposed
by Ohkubo et al. [7] for securing RFID tags by
ensuring both indistinguishability and forward
security of the tags. We note that although the
primitive we use in this paper shares similarities
with that in [7], it possesses different security
requirements that must be satisfied to secure our
system as a whole. Trapdoors “evolve” throughout
a linkability window through a trapdoor-evolution
function H1. Specifically, the trapdoor for the next
time period can be computed by applying H1 to the
trapdoor for the current time period. A pseudonym
is evaluated by applying the pseudonym-evaluation
function H2 to its corresponding trapdoor.

seed trpdr1
H1 trpdr2 trpdr3 trpdrm· · ·

nym1

H2 H2

nym2

H2

nym3 · · · nymm

H2

H1 H1

Figure 2: Evolution of trapdoors and pseudonyms

The TTP seeds the sequence of trapdoors (and
hence the pseudonyms) with its secret, the source
and destination IP addresses and the linkability win-
dow of the requested connection. Seeds are therefore
specific to source-destination-window combinations.
As a consequence, a trapdoor is useful only for a
particular website to link a particular user during a
particular linkability window. Since H1 and H2 are
public knowledge, given trpdri, a website can com-
pute nymi, nymi+1, . . . , nymm.

We assume the use of a secure (encrypted and
authenticated) communication channel between the
TTP and other entities including the users and the

websites. This can be realized by deploying Public
Key Infrastructure (PKI) such as X509 at the TTP.
SSL/TLS over HTTP is a natural candidate in the
case of providing anonymous IP-address Blocking in
Tor.

2.1 Security Requirements

Due to page limitation, we only highlight the se-
curity requirements of our system at an intuitive
level instead of providing a rigorous security analy-
sis, which we plan to do in our next paper.

1. (Indistinguishability.) No coalition of websites
can link a user’s connections within a particular
linkability window unless at least one website in
the coalition complains about that user within
the linkability window.

2. (Forward Linkability.) A website can always
link future connections made by a user within
the same linkability window upon complaining
about that user.

3. (Backward Unlinkability.) No coalition of web-
sites can link a user’s connections prior to com-
plaining about that user.

4. (Knowledgeability.) A user can always tell cor-
rectly if a website has complained about him or
her.

2.2 The System

We now present the algorithms and protocols exe-
cuted by various entities in our system.

Setting up the System The TTP sets up the
system by initializing itself with choices of various
parameters such as which cryptographic algorithms
to use, as well as generating all the necessary keys.
In particular, the TTP generates the master secret
key msk, a private-key and public-key pair (x, y) for
a secure digital signature scheme S and a secret key
k for a secure symmetric encryption scheme E . It
picks two distinct cryptographic hash functions H1

and H2. It also decides the duration L of a linka-
bility window and the duration T of a time period
such that L = mT for some integer m.

Finally, the TTP publishes to the pub-
lic the list of system parameters including
(S, E , y,H1,H2, L, T, m) and keeps to itself all se-
cret information including (msk, x, k). The time is
t = T1 when the system starts.
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Obtaining a Token User Alice (with IP address
IPU ) requests a token that can be used to connect
to website W (with IP address IPW ) during time
period t. The TTP grants a request only if it is el-
igible,3 in which case the TTP proceeds as follows.
It first computes the seed, the trapdoor and the
pseudonym for the source-destination-window tuple
using key msk as follows:

seed ← H1(msk||IPU ||IPW ||bt/mc),
trpdr ← H

(t mod m)
1 (seed),

nym ← H2(trpdr).

It then encrypts trpdr using E under key k, re-
sulting in ciphertext ctxt, and signs the tuple
(t, ctxt, nym, IPW ) using S under key x, resulting
in signature σ. Finally the TTP sends back to Al-
ice both the token tok = (t, ctxt, nym, IPW , σ) and
the seed. Since the seed remains the same through-
out the linkability window, Alice saves it securely
only if it is the first time she obtains a token for a
linkability window to a destination.

We note that allowing users to obtain tokens for
future time periods in addition to the current time
period has the following advantages: (1) the latency
to establish a connection can be reduced by getting
tokens prior to when they are needed. (2) The time
of getting a token and that of using it are much
less correlated, which makes some potential timing
attacks a lot more difficult.4

Establishing a Connection Before establishing
a connection to a website through Tor, a user first
contacts the TTP for a token. As hinted earlier,
this token contains encrypted information for later
potential use by the TTP if the website complains
about the user. This token can also be used by
the website to link the connection being established
to previous connections made by the same user if
the website has complained against the user and
obtained the necessary trapdoor. Therefore, before
presenting this token to the website, the user must
discern whether he or she will be linked with a pre-
vious connection. We now highlight the procedure
for user Alice to establish a connection to website
W .

1. (Picking a Tor circuit.) User Alice establishes
a standard Tor connection to website W , using

3For instance, t is no earlier than the current time period
of the system and IPU is indeed the IP address of U .

4As an example, the collusion of a corrupt system admin-
istrator of the TTP and exit nodes cannot directly correlate
traffic of token requests at the TTP and the traffic of con-
nection requests at the exit nodes to infer the identity of the
connecting user.

an entry node E, a middle node M , and an exit
node X.

2. (Getting the blacklist.) Alice requests W ’s
blacklist5 from W through X. She also requests
the current version number v of W ’s blacklist
from the TTP through X. Before proceeding
any further, Alice checks the freshness and in-
tegrity of the blacklist by verifying the TTP’s
signatures on the blacklist and makes sure the
number of entries in the blacklist equals v.

Now she checks if she is being linked by W
by checking whether she is on the blacklist,
which is indicated by the existence of an en-
try 〈ti, nymi, σi〉 in the blacklist such that
H2(H

(ti mod m)
1 (seed)) ?= nymi. Alice continues

to the next step if she is not being linked (or if
she does not mind being linked).

3. (Presenting the token.) When Alice presents
her token tok = (t, ctxt, nym, IPW , σ), website
W checks if the token is a good one by veri-
fying σ and the correctness of t and IPW . It
then checks whether nym is in its blacklist, in
which case W knows the connecting user is one
of whom it complained against and may thus
choose to decline the connection request. If W
grants the request, it saves tok for a later po-
tential complaint against the connection being
established.

Complaining A website may complain about a
connection during which the connecting user mis-
behaved, thereby enabling itself to link and thus
block future connections made by the same user.
In practice, there are scenarios when websites can-
not decide quickly if a user misbehaved, e.g., before
the connection is over, because the decision may
involve relatively slow computation or human de-
tection. Fortunately in our system, a website may
complain about a connection at any time within the
linkability window as long as the associated token is
still present.

To complain about a connection, website W
presents the TTP with the associated token tok =
(t, ctxtt, nymt, IPW , σt). Assume the time now is
t′(≥ t). The TTP verifies signature σt, makes sure
the IP address of W matches IPW and t′+1 mod m
is not zero6 before it proceeds, in which case it does
the following.

5The first three columns in Figure 3.
6If t′+1 mod m = 0, the system is at the last time period

of the current linkability window and thus misbehaving users
will be forgiven from the next time period anyway.
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Figure 3: The blacklist of a website. The first three
columns are open for public query. The last two are
secretly kept for the purpose of linking.
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Figure 4: The blacklist version-number bulletin

1. It decrypts the ciphertext ctxtt to recover the
trapdoor trpdrt for time period t.

2. It computes the trapdoor trpdrt′+1 for time

period t′ + 1 as H
(t′−t+1)
1 (trpdrt) and then

the corresponding pseudonym nymt′+1 as
H2(trpdrt′+1).

3. It signs the pair (t′ +1, nymt′+1) using S under
key x, resulting in signature σt′+1.

4. It sends the tuple (t′ + 1, nymt′+1, σt′+1,
trpdrt′+1, nymt′+1) back to the website, after
which the website adds the tuple as an entry to
its blacklist.

Figure 3 shows the blacklist of a website.
At the same time, the TTP updates the blacklist

version-number bulletin, which is a publicly read-
able database that holds the blacklist version num-
bers of all websites. A website’s blacklist version
number starts with 0 at the beginning of each linka-
bility window and is equal to the number of entries
in the website’s blacklist. Therefore, every time a
website W is given a new trapdoor, the TTP up-
dates W ’s entry in the bulletin by incrementing the
W ’s version number and re-timestamping the entry.
See Figure 4 for an illustration of the bulletin.

Refreshing the Blacklist Different pseudonyms
and thus trapdoors are required to link connections
made by a misbehaving user at different time peri-
ods. In our system websites are capable of “evolv-
ing” trapdoors for a particular time period to those
for any future time period within the same linkabil-
ity window. In this way, websites need not ask the
TTP for trapdoors to link a misbehaving user for
every single time period.

At the beginning of every time period, websites
refresh their blacklists to get themselves ready to
link connections from misbehaved users. A website
evolves the current trapdoors in the list by apply-
ing H1 on them, i.e. trpdrt+1 ← H1(trpdrt), and
then computes the new current nyms from the newly
evolved trapdoors, i.e. nymt+1 ← H2(trpdrt+1). See
the last two columns of Figure 3.

Entering the Next Linkability Window Mis-
behavior is forgiven every time the system enters
a new linkability window. Users who misbehaved
previously can then connect to websites anony-
mously until they misbehave and are complained
against again. Therefore, the tokens, trapdoors and
pseudonyms which are specific to one linkability
window become useless when the system enters a
new window. Consequently, websites throw away
tokens and empty their blacklists while the TTP re-
sets all version numbers to zero at the end of every
linkability window.

The duration m of the linkability window serves
at least three useful purposes: 1) (dynamism) since
IP addresses can get reassigned to different well-
behaved users, it is undesirable to blacklist an IP
address indefinitely, 2) (efficiency) the TTP must
perform O(m) hash operations to compute the trap-
door for each token request from a user; it is thus
desirable to keep m bounded, and 3) (forgiveness)
users can be forgiven for their misbehavior after a
certain period of time.

3 Discussion and Future Work

We plan on prototyping our proposed system on an
IBM 4758/4764 cryptographic coprocessor and eval-
uating its performance. In particular, we plan to
evaluate how many connections the TTP can han-
dle since it will be a central bottleneck for access to
websites that require users to obtain tokens. As part
of our ongoing work, we are continuing to revise the
protocol and revisit design options and trade-offs.
For example, is it possible to hide the IP addresses
from the TTP when getting a token from it? Is it
possible to reuse the token for multiple connections
while preserving on-demand forward linkability? Is
it useful to maintain different linkability windows
for different websites? We now discuss the issues of
trust and efficiency in our system.

Trust assumptions Properly configured, trusted
computing platforms can provide a high degree of
assurance that the sensitive information about a
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user’s connection is visible only to the TTP. In our
system, token generation and complaint handling
by the TTP involves sensitive information such as
source and destination IP addresses and various se-
cret keys that must be secured.7

We posit that while users would be hesitant to
trust a third-party machine administered by a fal-
lible human operator with such information, they
would be willing to be more trustful of a trusted
third party machine running trusted hardware since
sensitive data is insulated from the human opera-
tor. Any trusted hardware realizing the TTP in our
system must therefore be capable of providing a se-
cure execution environment that prevents sensitive
information from leaking or being tampered with
during computations. The TTP must also store its
secret keys securely. Secure storage must therefore
also be provided by the trusted hardware. In case
a user Alice wants to be assured that the trusted
hardware is still in a secure state before putting her
trust on the TTP, the trusted hardware will need
to be able to prove it. For example, IBM 4758 and
4764 have outbound authentication [9] while TCG
TPMs can do remote attestation [1]. To reduce the
amount of trust a user needs to place in the TTP,
we are currently looking at ways to distribute this
trust between several TTPs.

Securing the TTP’s answer to blacklist version
numbers can possibly be simplified by storing the
information on a relatively less trusted database.
This is possible because the information is publicly
readable and thus requires no confidentiality, which
makes protecting it with full-blown secure storage
techniques unnecessary. We do, however, need to
guarantee the authenticity, integrity and freshness
of the version numbers. We are currently explor-
ing techniques to reduce the storage requirements
within trusted hardware.

Efficiency The high security assurance provided
by trusted hardware makes it possible for us to pro-
vide anonymous IP-address blocking. A single TTP,
however, limits the scalability of the system.8 In our
system, the computation by the TTP is linear in the
number of connections made within the system. We
plan to measure the amount of load a single IBM
4758/4764 coprocessor can handle. This will give

7Two examples: (1) compromising the master secret key
allows an adversary to produce unlinkable tokens; (2) a ma-
licious system administrator monitoring the computation of
the TTP knows the source and destination information of all
connections.

8For instance, the IBM 4758 secure coprocessor is only
as powerful as an Intel 486 machine with 4MB of RAM and
2MB of Flash.

us an idea of how many TTPs are needed in prac-
tice. We also plan on exploring the use of TPMs.
For example, even though TPMs are more resource
constrained and have lower assurance than tamper-
resistant hardware such as the IBM 4758/4764, one
can use current techniques such as thresholding [2],
remote attestation [1], and private information re-
trieval [5] to reduce the amount of trusted informa-
tion within the TPM.

For each user, the website needs to verify the au-
thenticity of the user’s token and check the user’s
pseudonym against its blacklist, which is a simple
comparison. Refreshing the blacklist for the next
time period is also efficient because it takes two
hash operations per entry. Since a user needs to
check whether its pseudonym is blacklisted, the user
needs to download the website’s blacklist. The size
of the blacklist is linear in the number of blacklisted
IP addresses within the linkability window, but we
expect that the size of these blacklists will be negli-
gible compared to the number of valid IP addresses.

4 Conclusion

We present a system based on trusted computing
that provides anonymous IP-address blocking in
anonymizing networks such as Tor. Users connect to
websites using an ordered collection of seemingly un-
related pseudonyms. Websites can obtain trapdoors
for a connection associated with a misbehaving user
and link all the future pseudonyms for that user.
Websites can therefore maintain blacklists to deny
access to misbehaving users without knowing their
IP addresses. By leveraging trusted hardware, we
aim to provide a useful service to (behaving) users
— our solution will enhance the acceptability of net-
works such as Tor to websites that are common tar-
gets of vandalism, thereby punishing misbehaving
users while providing anonymity to the remaining
users.
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