
DYNAMIC AND COMPOSABLE TRUST FOR INDIRECT INTERACTIONS

By

IOANNA DIONYSIOU

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2006

c© Copyright by IOANNA DIONYSIOU, 2006
All rights reserved

c© Copyright by IOANNA DIONYSIOU, 2006
All rights reserved

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of IOANNA DIONYS-
IOU find it satisfactory and recommend that it be accepted.

Chair

ii

ACKNOWLEDGEMENT

What a journey this has been! First, I would like to thank my advisor, Dave Bakken, for

his guidance and support throughout my years in WSU. This work would not have been possible

without the confidence and enthusiasm provided by him. I’m particularly grateful that he allowed

me to name my research Eστια to honor my Greek-Cypriot heritage. I would also like to thank

Carl Hauser for our discussions. I am also grateful that Deb Frincke accepted the invitation to serve

as one of my committee members and provided valuable feedback. I was also lucky and honored

to have Anjan Bose in my committee. Last, but not least, I extend my gratitude to John Shovic for

giving me the opportunity to start my PhD studies as his research assistant.

Other faculty and staff at WSU have also been of great help to me. Ruby Young offered her

assistance to me over the last 10 years. Shira Broschat not only supported me from the very

beginning of my studies but she also trusted me with a teaching fellowship. Jack Hagemeister

deserves a kind word of thanks as well.

I was lucky to meet and interact with great students while at WSU. A special thanks goes to all

of them for making my stay in Pullman enjoyable.

I would also like to thank the organizations that have funded me throughout my studies. My

research has been supported in part by the US Department of Commerce, National Institute of

Standards and Technology Grant 60NANB1D0016 (Critical Infrastructure Protection Program), in

a subcontract to Schweitzer Engineering Labs Inc, and by the National Science Foundation under

Grant CCR-0326006 and Grant NSF CNS 05-24695 (CT-CS: Trustworthy Cyber Infrastructure for

the Power Grid). In addition, I received teaching assistantships as well as a teaching fellowship

from the the School of Electrical Engineering and Computer Science at WSU.

Finally, this accomplishment would not have been a success if it wasn’t for my wonderful

parents, Omiros and Chryso, my lovely sister Marilena, and my dear husband Harald. I thank you

from the bottom of my heart.

iii

ATTRIBUTION

Portions of this dissertation were published in the following conferences or workshops.

• Carl H. Hauser, David E. Bakken, Ioanna Dionysiou, K. Harald Gjermundrød, Venkata S.

Irava, Joel Helkey, and Anjan Bose, Security, trust and QoS in next-generation control and

communication for large power systems, International Journal of Critical Infrastructures,

Inderscience, to appear, 2007.

• Carl H. Hauser, David E. Bakken, Ioanna Dionysiou, K. Harald Gjermundrød, Venkata S.

Irava and Anjan Bose, Security, trust, and QoS in next-generation control and

communication for large power systems, in Proceedings of the Workshop on Complex

Network and Infrastructure Protection (CNIP06), Rome 28-29 March, 2006.

• Drugan, O., Dionysiou, I., Bakken, D., Plagemann, T., Hauser, C., and Frincke, D., On the

Importance of Composability of Ad Hoc Mobile Middleware and Trust Management,

Lecture Notes in Computer Science 3694, Springer, 2005.

• Dave E. Bakken, Ovidiu-Valentin Drugan, Ioanna Dionysiou, Thomas Plagemann, Deborah

Frincke, and Carl Hauser, Composability of Ad Hoc Mobile Middleware and Trust

Management for Critical Infrastructures, Service Availability, Second International Service

Availability Symposium, ISAS 2005, Berlin, Germany, April 25-26, 2005.

• Harald Gjermundrød, Ioanna Dionysiou, David Bakken, and Carl Hauser, Fault Tolerance

Mechanisms in Status Dissemination Middleware, in Supplement of the International

Conference on Dependable Systems and Networks (DSN-2002), IEEE/IFIP, San Francisco,

CA, June 2003, B-56–57.

• D. Bakken, A. Bose, C. Hauser, I. Dionysiou, H. Gjermundrød, L. Xu, and S. Bhowmik,

Towards More Extensible and Resilient Real-Time Information Dissemination for the

iv

Electric Power Grid, in Proceedings of Power Systems and Communications Systems for the

Future, International Institute for Critical Infrastructures, Beijing, China September 2002.

• I. Dionysiou, H. Gjermundrød, and D. Bakken, Fault Tolerance Issues in Publish-Subscribe

Status Dissemination Middleware for the Electric Power Grid, in Supplement of the

International Conference on Dependable Systems and Networks (DSN-2002), IEEE/IFIP,

Washington, DC, June 23–26, 2002, B-62–63.

• D. Bakken, A. Bose, C. Dyreson, S. Bhowmik, I. Dionysiou, H. Gjermundrød, and Lin Xu,

Impediments to Survivability of the Electric Power Grid and Some Collaborative EE-CS

Research Issues to Solve Them, in Proceedings of the fourth Information Survivability

Workshop (ISW-2001/2002), Impediments to Achieving Survivable Systems, Vancouver, BC,

Canada, March 2002.

Submitted for Journal Publication

• Ioanna Dionysiou, Deborah Frincke, Carl H. Hauser, and David E. Bakken, Dynamic and

Composable Trust for Indirect Interactions, submitted for publication at Elsevier Science.

v

DYNAMIC AND COMPOSABLE TRUST FOR INDIRECT INTERACTIONS

Abstract

by Ioanna Dionysiou, Ph.D.
Washington State University

August 2006

Chair: David E. Bakken

The diversity of the kinds of interactions between principals in distributed computing systems

has expanded rapidly in recent years. However, the state of the art in trust management is not

yet sufficient to support this diversity of interactions. This dissertation presents a rationale and

design for much richer trust management than it is possible today. To do so, it presents a set of re-

quirements for more generalized trust management, an analysis of why they are needed, and how

the state of the art in trust management to date does not meet them. It then presents the design

of Hestia, our trust management framework. Hestia supports dynamic trust, which enables the

specification and management of trust relationships which can be re-evaluated over the lifetime of

a relationship. Hestia also supports the composition of trust relationships, which supports indi-

rect interactions between principals as is the case with publish-subscribe systems. Finally, Hestia

handles trust for both access control purposes and for reasoning about the quality of (possibly

aggregated) data provided by a set of principals. This dissertation also presents formalisms for

dynamic and composable trust.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

ATTRIBUTIONS . v

ABSTRACT . vi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Security Services and Mechanisms . 2

1.2 Trust Management Systems . 3

1.3 Thesis Statement . 5

1.4 Dissertation Organization . 7

2. CRITICAL INFRASTRUCTURES AND TRUST MANAGEMENT 8

2.1 PMU Data Aggregation . 11

2.2 Power Grid Alert Aggregation and Early-Warning System 12

2.3 Trust in Next Internet Technology . 13

3. TRUST MANAGEMENT SYSTEM (TMS) OBJECTIVES AND REQUIREMENTS 14

3.1 New Trust Approach . 14

3.2 TMS Requirement List . 19

vii

3.3 Supporting New Paradigms . 23

3.3.1 Temporal and Knowledge Awareness . 23

3.3.2 Trust Re-evaluation Triggers . 24

3.3.3 Expectation Satisfaction . 24

3.3.4 Trust Composition . 26

3.3.5 Predefined Compound Trust Relationships 27

4. HESTIA TRUST MODEL DESIGN . 29

4.1 Hestia Context Diagram . 29

4.2 Architectural Design Choices . 30

4.2.1 Architectural Design Choice 1: Trust Service Transparency 30

4.2.2 Architectural Design Choice 2: Limit the Scope of the Trust Service . . . 31

4.3 Hestia Components and Databases . 33

4.3.1 Evidence Collection Component . 34

4.3.2 Evidence Distribution Component . 36

4.3.3 Evidence Processing Component . 37

4.3.4 Trust Engine Component . 39

4.3.5 Decision Engine Component . 41

4.3.6 Trust Relation and MetaData Information Database 42

4.3.7 Historical and Configuration Information Database 44

4.4 Hestia Operational Examples . 45

4.4.1 Scenario 1: Arrival of Evidence . 45

4.4.2 Scenario 2: Self-triggered Re-evaluation 46

4.4.3 Scenario 3: End-to-end Trust Composition 48

5. HESTIA POLICIES . 52

5.1 Hestia Components and Sample Policies . 52

viii

5.2 Space of Hestia Policies . 55

5.3 Hestia Policy Specification . 58

5.3.1 Expectation Specification Policy . 58

5.3.2 Expectation Covering Technique Policy 59

5.3.3 Trust Relationship Violation Handling Policy 60

5.3.4 Evidence Mapped to Expectation Policy 63

5.3.5 Triggering Rules Policy . 64

6. TRUST FORMALISM . 66

6.1 Trust Ontology . 66

6.1.1 Trustors and Trustees . 67

6.1.2 Context . 69

6.1.3 Trust Levels . 72

6.1.4 Time . 75

6.1.5 Expectations . 80

6.1.6 Interaction id . 91

6.1.7 Status . 91

6.2 Formal Definition of Trust Relation . 91

6.3 Representation of Trust Relation . 92

6.4 Trust Relation Visualizations . 92

6.5 Trust Relation Properties . 95

6.6 Trust Relation Operations . 99

6.6.1 Expiration of Valid Time . 100

6.6.2 Arrival of New Evidence . 100

6.6.3 Violation of Expectations . 101

6.6.4 Initialization of Trust Relationship . 101

ix

6.6.5 End-to-End Trust Assessment and Aggregation of Data 102

6.7 Trust Relation Observations . 103

6.8 Trust Relation Theorems . 106

6.9 Other Operations . 106

6.9.1 Trust Level Specification . 107

6.9.2 Trust Level Satisfaction and Classification 108

7. RELATED WORK . 110

7.1 State of the Art in Trust Management . 110

7.1.1 Identity Trust: PUBLIC KEY CERTIFICATES 111

7.1.2 Resource Access Trust: POLICYMAKER 115

7.1.3 Resource Access Trust: KEYNOTE . 117

7.1.4 Resource Access Trust: REFEREE . 118

7.1.5 Identity and Resource Access Trust: IBM TRUST ESTABLISHMENT . . 119

7.1.6 Identity and Resource Access Trust: TRUSTBUILDER 122

7.1.7 CONTENT TRUST: PICS . 123

7.1.8 Content Trust: POBLANO . 125

7.1.9 Behavior Trust: TRUST-AWARE MULTICAST (TAM) 129

7.1.10 Behavior Trust: TCPA . 131

7.1.11 General Trust: SULTAN . 131

7.2 Analysis of How TMS Requirements are Met by Current TMSs 134

7.2.1 R1.1 – Heterogeneous Forms of Evidence 136

7.2.2 R1.2 – Selective Collection and Distribution of Evidence 136

7.2.3 R1.3 – Dynamic Management of Evidence Streams 136

7.2.4 R2.1 – Time-Aware Trust Relationships 136

7.2.5 R2.2 – Composable Trust Constructs . 137

x

7.2.6 R3.1 – Evidence Aggregation . 137

7.2.7 R3.2 – Evidence-to-Expectation Mapping Functions 137

7.2.8 R3.3 – Expectation Satisfaction . 137

7.2.9 R4.1 – Trust Re-evaluation . 138

7.2.10 R4.2 – Imputed Trust Mode Support . 138

7.2.11 R5.1 – Secure Collection and Distribution of Evidence 138

8. CONCLUSIONS AND FUTURE WORK . 139

8.1 Contributions . 139

8.2 Generalized Trust and I3P . 141

8.3 Future Directions . 143

APPENDIX

A. TRUST TERMINOLOGY . 146

B. TRUST RELATIONSHIPS BASED ON THE INFORMATION LIFECYCLE CON-

CEPT . 148

B.1 Information Trust Classification . 148

B.2 Information Trust In Peer-to-Peer (P2P) Information Systems 151

B.3 Information Trust in Publish-Subscribe Information Systems 154

C. SECURITY REQUIREMENTS FOR STATUS DISSEMINATION MIDDLEWARE . 157

C.1 Related Work . 157

C.2 Initial Security Approach for GridStat . 162

C.2.1 Classification of security services . 163

C.2.2 Entities that need protection and security services that can be provided . . . 163

C.2.3 Security Placement and Requirements . 168

xi

BIBLIOGRAPHY . 171

xii

LIST OF TABLES

Page

4.1 Aggregation Algorithms for Single Evidence Type 39

6.1 Interval Relationships . 76

6.2 Valid Expectations and Violations . 82

6.3 Expectation Combinations . 84

6.4 Tabular Representation of Trust Relation of Figure 6.1 93

7.1 TMSs and Generalized Trust Requirements . 135

C.1 Security Requirements for GridStat . 170

xiii

LIST OF FIGURES

Page

2.1 Power Grid Applications . 9

3.1 Data Trust: Security, Behavioral and QoS Assessments 16

4.1 Hestia Context Diagram . 30

4.2 Interactions between application module and trust module 32

4.3 Hestia Components and Databases . 33

4.4 Hestia Evidence Collection Component . 34

4.5 Hestia Trust facets, Properties, and Raw Evidence 35

4.6 Hestia Evidence Distribution Component . 36

4.7 Hestia Evidence Processing Component . 38

4.8 Hestia Trust Engine Component . 40

4.9 Hestia TRMI DataBase . 44

4.10 Hestia TRMI Database for Scenarios 1 and 2 . 45

4.11 Hestia Arrival of Evidence . 47

4.12 Hestia Self-triggered Re-evaluation . 49

4.13 Hestia TRMI Database for Scenario 3 . 49

4.14 Hestia End-to-end Trust Composition . 50

5.1 Hestia Trust Policy Space . 56

5.2 Hestia Trust Policy Space Example 1 . 57

5.3 Hestia Trust Policy Space Example 2 . 57

5.4 XML Schema for Hestia Expectation Specification Policy 59

5.5 Hestia Expectation Specification Policy . 60

xiv

5.6 XML Schema for Hestia Expectation Covering Technique Policy 61

5.7 Hestia Expectation Covering Technique Policy 61

5.8 XML Schema for Hestia Trust Relationship Violation Handling Policy 62

5.9 Hestia Trust Relationship Violation Handling Policy 62

5.10 XML Schema for Hestia Evidence Mapped to Expectation Policy 63

5.11 Hestia Evidence Mapped to Expectation Policy 64

5.12 XML Schema for Hestia Triggering Rules Policy 65

5.13 Hestia Triggering Rules Policy . 65

6.1 Trust Relationships Timeline . 66

6.2 Trust Formalism Overview . 68

6.3 Posets For Context Set C . 70

6.4 Trust Classification Systems . 74

6.5 Interval Relationships Diagrammatically . 77

6.6 Trust Relation Visualization in Cartesian Coordinate System at selected time points 94

6.7 Trust Relation Graph . 94

6.8 Trust Graph for Example Network Topology . 95

6.9 Network Topology for Figure 6.8 . 96

6.10 Trustor Trustfulness and Trustee Trustworthiness 107

6.11 Trustee Level Classification in n-dimensional Space 109

B.1 Trust Relationships without and with Information Lifecycle 149

B.2 Trustee Certification and IPT . 150

B.3 Information Trust in Peer-to-Peer . 152

B.4 Information Trust in Publish-Subscribe . 155

C.1 Status Dissemination and Publish Subscribe Relation 158

xv

C.2 Access Modes . 162

C.3 TCP/IP model . 168

xvi

Dedication

This thesis is dedicated to Oµηρoς , Xρυσω, and Mαριλενα.

xvii

CHAPTER 1

INTRODUCTION

In the last decade or two distributed computing systems have gone from being largely laboratory

curiosities with few wide-area deployment to becoming almost ubiquitous in scope. They are

now being used in many ways by a wide spectrum of society in a diverse range of topologies,

computations, and services. Indeed, many individuals routinely use dozens of such applications,

and virtually all corporations and governments use and provide a multitude of such applications

in their supply chain, business-to-business, online government, etc. Similarly, individuals use

distributed services for a variety of entertainment, social, financial, and logistical purposes.

Ubiquitous use of distributed applications provides increased convenience, safety, and enjoy-

ment for society. However, such applications and their users are vulnerable with respect to both the

diversity of the principals providing these services or data and the interactions between them. In

particular, they have no systematic and comprehensive way to reason about the following issues:

1. How to specify and adapt the degree of trust that they place in an entity

2. How much trust to place in data they receive that comes through nontrivial chains of pro-

cessing or services

3. How to decide how much access to their services to provide other principals.

We call this the generalized trust problem, and it is almost completely untouched to date, as

detailed in Chapter 7. This problem is hard for general wide-area distributed systems but even

harder for critical infrastructures, such as the electric power grid, due to their scale and the threats

to which they are subjected.

This dissertation presents a configurable trust management system for dynamic and compos-

able trust for indirect interactions, which are chains of processing of data that goes through multiple

1

principals. This novel system defines and provides an initial set of solutions for the first two issues

of the generalized trust problem, as listed earlier. In order to understand the context of the new

approach, a discussion of why the current state of the art in computer security alone can not solve

the generalized trust problem is presented first. Other mechanisms must be used to reason about

generalized trust and these mechanisms are the focus of the next subsection. To be more specific,

a brief overview of the current state of the art in trust management systems is presented and an

example illustrates the lack of existing trust management systems to provide comprehensive so-

lutions for indirect interactions. This chapter concludes with the thesis and contributions of the

dissertation work, followed by an outline of the remaining chapters.

1.1 Security Services and Mechanisms

Internet security consists of measures to deter, prevent, detect, and correct security violations that

involve the transmission of information. Security violations, also known as security attacks, in-

clude interruption, interception, modification, and fabrication of an information flow [41]. Security

services such as confidentiality, integrity, and authentication enhance the security of the transmitted

information by safeguarding the data against these security attacks. Various security mechanisms

exist that provide these services, including encryption, digital signatures, authentication protocols,

just to name a few. The difference between security services and security mechanisms is in essence

a difference between “what” versus “how”.

However, cryptographic algorithms and access control schemes cannot be used to reason about

and manage the more general concept of data quality. Consider the case where a recipient of a

message would like to evaluate whether or not the enclosed information is authentic (authentic is

defined as having a genuine origin, in opposition to that which is false, fictitious, and counterfeit.)

and credible, knowing the following three facts: First, a cryptographic checksum was computed

over the message content, second, it was signed by the sender’s private key and attached to the orig-

inal message, and third, the entire message was encrypted with the receiver’s public key. Integrity

2

techniques, such as checksums, can verify that message contents are not altered during transmis-

sion but can not guarantee the sender’s ability to generate correct and reliable data. Authentication

protocols verify the sender’s identity, however this is not adequate to reason about the data qual-

ity. Finally, confidentiality schemes allow only legitimate users to view the message contents, but

provide no other assurances regarding the content itself.

As a result, security services are not adequate to solve the generalized trust problem without be

enhanced or complemented by other mechanisms and techniques.

1.2 Trust Management Systems

Related to the above classical security services is the notion of trust. Trust is an abstraction of

individual beliefs that an entity has for specific situations and interactions. Creating a universally

acceptable set of rules and mechanisms to specify trust is a difficult process because of the variety

in trust definitions. In recent years, researchers have investigated various definitions of trust for

many perspectives, with the result that trust definitions overlap or contradict each other [3].

Trust is useful only if it is managed in an appropriate and systematic manner. An entity’s beliefs

are not static but they change as time progresses and new information is processed into knowledge.

Trust must evolve in a consistent manner so that it still abstracts the entity’s beliefs accurately. In

this way, an entity continuously makes informed decisions based on its current beliefs.

Trust management concerns itself with four primary tasks that are involved in updating and

maintaining trust relationships: collecting evidence to make a trust decision, analyzing existing

trust relationships to infer new ones, evaluating criteria related to trust relationships, and monitor-

ing as well as re-evaluating trust relationships. There are numerous models of trust management

[45, 39, 47, 30, 28, 27, 12, 34, 15, 42, 11, 49], although no rigorous classification of either trust or

its models has been developed yet. For example, there are trust management systems that focus on

representing specific aspects of trust, such as authentication, reputation, and cooperation whereas

there are others that manage more general trust relationships.

3

Trust management systems (TMSs) to date support characterization of the quality of data or

services coming from external sources. However, such research does not yet support the full spec-

trum of trust requirements for highly interdependent applications, as we demonstrate in Chapter 2.

For example, trust management systems either lack automatic dynamic re-evaluation of the level

of trust an entity has in the data or services or provide limited re-evaluation of trust relationships.

As a result, the trust levels are established once even if changing conditions merit increasing or

decreasing the trust one places in a given application or data element.

Additionally, trust management systems focus on specification and evaluation of data or ser-

vices that are directly received by another principal. They do not allow the specification and evalu-

ation of trust involving indirect interactions. In other words, TMSs do not support the property we

call trust composition. Because of this, existing TMSs cannot directly deal with topologies such as

publish-subscribe (where multiple principals may forward or filter data) or with data aggregation

involving data from multiple principals or chains of processing of data passing through several

principals.

In order to illustrate the requirement of trust composition, consider a data stream that originates

at entity A, traverses intermediary entities B, C and reaches destination entity D. Current state-of-

the-art trust management mechanisms allow peer D to reason about the quality of the received data

by establishing a trust relationship with entity A, something that is inadequate to handle the case

of malicious or malfunctioning intermediary entities such as B and C that affect that data as well.

End-to-end trust assessment is needed to characterize the data quality by deriving trust assessments

for all interacting parties that collaboratively execute the task of data transfers. We note that the

reasoning behind the need for trust composition in publish-subscribe topologies also applies to

aggregated data that is derived by multiple principals.

In summary, trust management today largely provides for static, pairwise relationships involv-

ing two principals. However, it is a basis for providing more generalized form of trust. Indeed, the

U.S has founded in September 2001 the Institute for Information Infrastructure Protection (I3P), a

4

consortium of academic research centers, government laboratories and non-profit organizations, to

identify and address critical research problems in information infrastructure protection [2]. Gener-

alized trust is important to several aspects of the I3P research agenda [32], including “Trust Among

Distributed Autonomous Parties” (TADAP) and “Enterprise Security Management” (ESM). Fur-

thermore, generalized trust is important for critical infrastructures, such as the power grid. For

example, GridStat [38, 25, 48, 43, 29], a data dissemination middleware which is developed to

provide better communications services for the electric power grid, must provide guarantees to the

thousands of grid participants that the information is trustworthy.

1.3 Thesis Statement

As of today, there is no comprehensive definition that covers the semantics of end-to-end trust in

indirect interaction communication models. Furthermore, trust management is not flexible enough

in a number of ways to meet the trust needs of indirect interactions. A trust management framework

for indirect interactions must cover a broader scope of trust. It must enable the specification and

management of trust relationships to change over the operational lifecycle of the system as relevant

conditions that affect trust change. It must also identify and compose trust relationships in a way

that allows an entity to reason about end-to-end trust.

It is the thesis of this research that trust management techniques can be extended to meet the

trust needs of architectures such as publish-subscribe that support indirect interactions between

principals. The primary contribution of this research is a flexible and broad trust management

framework allowing diverse trust requirements, including security requirements, to be reasoned

about, specified, and managed. The four components of a generalized trust management system

must be supported for any such trust management framework that is designed to meet the security

and related non-functional requirements of indirect interactions.

5

Thesis: Trust management techniques can be extended to meet the trust needs of architectures

such as publish-subscribe that support indirect interactions between principals.

An over-arching contribution of this research is to define issues, concepts, paradigms, and mecha-

nisms that provide this extended trust management framework, and then to present an initial set of

solutions to these issues. In particular, this dissertation presents the following research contribu-

tions:

• An analysis of why dynamic and composable trust are both needed in many distributed

application programs today which span multiple principals, particularly ones involving data

aggregation or indirect interactions, such as publish-subscribe applications

• A set of requirements which must be met by any trust management system in order to solve

the generalized trust problem

• New trust paradigms which support the implementation of these requirements

• Hestia1, a trust management system which supports dynamic and composable trust for col-

laborative environments through configurable trust policies. It provides for:

– dynamic trust management, including time-aware trust relationships

– trust composition, in order to support indirect interactions and data aggregation

– evaluation of both access trust, generalized policies for access control, and data trust,

systematic reasoning about the quality of (possibly aggregated) data provided by a set

of principals

• Trust formalisms, including trust ontology, properties, and operations.

1Hestia (Eστια) is the name of a Greek goddess who was the estate manager for Zeus and was trusted with the
keys to the family home on Mount Olympus. Her virtues included being secure and stable and remaining above the
fray rather than taking part in the struggles of men or gods.

6

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 describes three motivating

examples: a set of application suites for the electric power grid that the electricity industry uses

today or has plans to do so. These applications have a diverse set of trust requirements but all

suffer from the generalized trust problem and could greatly benefit from dynamic and composable

trust. In addition, trust-modulated transparency is presented, which is one of the future internet

technologies. Chapter 3 describes the requirements for any trust management system which intends

to solve the generalized trust problem. Chapter 4 presents the Hestia trust management system and

its operation. Chapter 5 discusses the Hestia policy space. Chapter 6 presents trust formalisms,

including its ontology, properties and operations. Chapter 7 overviews related trust management

research and compares other trust management systems against the requirements from Chapter 3.

Chapter 8 concludes and discusses future research directions for Hestia.

7

CHAPTER 2

CRITICAL INFRASTRUCTURES AND TRUST MANAGEMENT

The protection of critical infrastructures is an essential element of ensuring a nation’s security [4].

In order to do that, private, public and federal entities must collaborate in a way that valuable

information is shared without compromising it. This collaborative environment is very difficult to

establish and operate because, given the state of art in trust management as well as current security

mechanisms, its participants do not have the necessary knowledge and tools to assess the quality

of the received data and the risk of compromising that data.

Consider the North American electric power grid, for instance, with nearly 3500 utility orga-

nizations [23]. These individually owned utility systems have been connected together to form

interconnected power grids, which must be operated in a coordinated manner. There are many

points of interactions among a variety of participants and a local change can have immediate im-

pact everywhere. In order to detect disturbances that could escalate into cascading outages and take

corrective actions, real-time information about the grid dynamics must be obtained to enhance the

wide-area system observability, efficiency, and reliability. For example, the Electric Power Re-

search Institute (EPRI), a consortium of academic and industrial experts that work collaboratively

on approaches to electric power challenges, created the IntelliGrid conceptual architecture that en-

visions a next generation power system that consists of automated transmission and distribution

systems that support efficient and reliable supply and delivery of power [21]. IntelliGrid assumes,

but does not provide, an appropriate QoS managed middleware (for example, like GridStat) that

is used to support the framework’s mechanisms for data retrieval from field equipment and issue

control commands to power system equipment, among field devices, between field devices and

systems located in substations, and between field devices and various systems including SCADA,

utility control centers, engineering, and planning centers. Data can be real-time data, statistical

8

data, or other calculated data and informational data from the power system to systems and appli-

cations that use the data.

Trust Management
System

Utility
1

Utility
2

Utility
M

PMU
Aggregation

Alert
Correlation

PMU Data

PMU Data

Triggered Alerts

Triggered Alerts

PM
U

Da
ta

State Estimation

State Estimation

Probabilistic
Early Warning

.

.

.

User 1
(U1)

User 2
(U2)

User N
(UN)

.

.

.

State Estimation

User 3
(U3)

Probabilistic
Early Warning

Trust
Recommendation

Network

evidence

Trust Management
System

User 4
(U4)

evidence

ev
id

en
ce

.

.

.

evidence

.

.

.

Figure 2.1: Power Grid Applications

Unfortunately, as of today, power utilities are reluctant to disclose information in order to

protect themselves financially and legally. Sharing of data might jeopardize their business due to

their inability to quantify the risk regarding interactions with other grid participants. For example,

unrestricted access to a utility’s data that are market-sensitive indicators could give a competitor

9

an unfair advantage in adjusting its own contracts and prices. Similarly, a utility could distribute

inaccurate data to mislead the other market participants. This trend is not only observed in the

power industry but it rather concerns other markets as well; according to the recent CSI/FBI report

[18], companies are reluctant to report security incidents because of the potential loss of revenue.

The “no sharing” policy could be relaxed under normal operating conditions if the risk of

sharing were systematically contained, and could be relaxed much more if needed to help avert a

looming crisis. Trust management is a service that, when used properly, has the potential to enable

the entities that have knowledge about critical infrastructures to share confidential, proprietary, and

business sensitive information with reliable partners.

In order to illustrate how trust management is related to the dissemination of data, two power

grid application suites are considered (Figure 2.1). We target the power grid because it is more

complex and harder than the other infrastructures, mainly due to its geographical scale and real-

time requirements. The application domain setting involves M utility organizations that generate

data and N end users that receive computation results on that data. Both applications span a

number of regional utility districts with different administrative policies and ownership. The Pha-

sor Measurement Unit (PMU) Aggregation application involves the dissemination and aggregation

of PMU data, and the Alert Correlation application provides (probabilistic and imperfect) early

warning of an impending power crisis. In addition to the power grid application families, we also

discuss a family of applications from current network research which uses trust assessment at the

packet level.

We now overview these three application suites, but prior the discussion we note a couple of

simplifications made in the two power grid application suites. First, without loss of generality, the

trust management system is placed at the end users U3, U4. However, user-customized aggregation

or correlation policies that conform to the user’s trust policies, could also be loaded at the entity that

performs the operation (e.g. PMU Aggregation entity, Alert Correlation entity). Second, the two

applications disseminate the results of their processing to entities other than the original sources

10

of data. In an actual deployment, feedback could (and likely would) be provided to the original

utilities as well.

2.1 PMU Data Aggregation

The first application suite deals with a type of real-time electric power data, which is PMU data.

PMUs are instruments that take measurements of voltages and currents and time-stamp these mea-

surements with high precision. They are able to measure phase difference at different substations

and have been implemented as a source of information to detect faults on transmission lines. These

measurements are collected and aggregated at a central place in order to derive system state estima-

tions. In order to preserve correlation of these readings, it is important to temporally synchronize

the PMU measurements during aggregation [37, 33]. These estimations are disseminated to inter-

ested end users Ui, including entities that monitor or control the grid, such as Independent System

Operators (ISOs), Regional Transmission Operators (RTOs) and, in the future, the Department of

Homeland Security (DHS.) Currently, the Eastern Interconnection Phasor Project (EIPP) is de-

ploying PMUs on the eastern U.S. grid [1].

A collaborative environment like the above gives rise to new challenges involving the data

quality of the aggregated state estimation that is disseminated to network participants. Suppose

that the aggregated function f(d1, d2, · · · , dM) takes as inputs PMU data di from utilities Utilityi

and outputs state estimations. Assume that a faulty sensor at Utility2 produces out-of-range PMU

measurements. Including these d2 readings in f gives an inaccurate view of the current state of

the power grid. Users Ui, · · · , UN are not able to detect the source of the inaccurate readings since

they only receive the aggregated result.

Trust management can help in providing information about uncertainty in situations such as

this. In order to manage the risk of using incorrect data, users U3, U4 join a network of trust that

allows them to exchange evidence with other trustworthy entities regarding the behavioral trends

11

of utilities. Fault detectors could be used as evidence acquisition mechanisms that detect faulty op-

eration of sensors. Once the faulty sensor at Utility2 is detected by a member of the trust network,

users such as U3, U4 are informed about it and take the appropriate course of action depending on

their policies, including ignoring the state estimations or informing the PMU aggregation entity

about the faulty sensor, which in turn will exclude the particular PMU readings from any calcula-

tions until the sensor is replaced or reconfigured.

2.2 Power Grid Alert Aggregation and Early-Warning System

The second application family involves better sharing of current information beyond the scope

of a single electric utility in order to help increase robustness of the power grid. Today there

are two fundamental challenges in sharing more operational information between electric utilities.

Better communication for the power grid, such as provided by GridStat, can provide mechanisms

to help alleviate these two problems that are explained shortly. However, these mechanisms must

be controllable by trust management systems or the greater communications and sharing flexibility

can make the problems worse, not better.

The first challenge is that when problems start happening in a part of the power grid, many

alerts can fire in a short period of time, and utilities can get buried in the (largely redundant)

barrage of such alerts. Alert aggregation allows for transformations of a series of lower-level

alerts into higher-level alerts which have a much lower false alarm rate and much richer semantics,

and are thus a much more useful indicator of trouble. Such transformations should be based on

taxonomies of power grid devices, and be policy-programmable, since different configurations of

a given device will have different thresholds for operational reasons. However, alert aggregation

must be complemented by similar data quality assessment techniques as the one described in the

earlier example. There are cases where incorrect data may suggest a catastrophic situation that does

not occur. For example, Utility2’s faulty sensor incorrectly triggers alerts about device failures.

In this case, user UN will be flooded with faulty alarms whereas user U4 will be more cautious

12

because it has already been made aware about Utility2 problems with faulty sensors.

The second challenge is that some data are market sensitive, meaning if a competitor has the

reading of some key data (for example, the output of a utility’s generators) it can, over time, deduce

the company’s production and pricing strategies. As an example of this problem, instead of sharing

market sensitive data directly, derived values such as the instantaneous rate of change (or moving

averages thereof) can be shared. Thresholds for particular kinds of devices can be monitored, and

alerts generated if they exceed a certain threshold. Since there are currently no means to quantify

the risk of sharing sensitive data or derived indicators, the next best alternative is to restrict their

access to non-competitors. More generalized trust management allows utilities to reason about the

behavior of their peers for different situations. Based on observed behavioral trends, a utility can

decide whether or not access to sensitive data should be granted or denied.

2.3 Trust in Next Internet Technology

The National Science Foundation has launched the Future Internet Design (FIND) initiative that

focuses on how to best equip the internet infrastructure to meet the needs of the future. One of the

proposals that have emerged is trust-modulated transparency [5, 16]. The idea behind this, is to

perform packet-forwarding decisions based on the trustworthiness of the packets, which in turn is

determined by the level of trust between the sender and the receiver.

Trust-modulated transparency, or packet trustworthiness, complements trust assessments for

data flows. Starting with an initial trust level between a sender and a receiver, the quality of the

packet information could affect the trust relationship between the two entities. In addition, on the

absence of any trust between two collaborators, monitoring the quality of the packet information

could establish an initial trust level. Therefore, the packet itself could serve as evidence to trust

management system that operates on the receiver. Trust management systems could also be oper-

ational at critical internet points, such as ISP and routers, to do filtering of data based on the end

user’s preferences.

13

CHAPTER 3

TRUST MANAGEMENT SYSTEM (TMS) OBJECTIVES AND

REQUIREMENTS

In order to address trust in indirect interactions, such as power grid interactions described ear-

lier, a trust management system (TMS) framework must be designed to meet two objectives that

are related to the characteristics of these interactions: dynamic trust that deals with the evolving

relationships between participants and composable trust that handles the association of multiple

participants for joint operations. In order to further enhance trust assessment, a TMS should also

strive for two additional objectives: broad trust scope and support of collaborative environment.

This chapter presents the trust approach that a TMS is built on, followed by a detailed discus-

sion of the four TMS objectives. The requirements that the TMS must meet in order to achieve

these objectives are presented next. Finally, a number of paradigms new to trust management are

described.

3.1 New Trust Approach

Trust has been traditionally assumed to be inherent in security services. Consider the confiden-

tiality service, for instance, that uses encryption algorithm E. A correct implementation of the

E encryption algorithm will always conform to its design principles and thus the algorithm will

always perform as expected. Consequently, trust in the E implementation is absolute, and in turn it

is inferred that trust in the service is absolute. However, this inference is invalid because it neglects

the digital keys that are used as inputs to the encryption algorithm. Digital keys are exchanged

directly between two interacting entities as part of the communication protocol or third parties

(out-of-band channels, certificate authorities) provide certified key–owner bindings to the inter-

ested entities. Regardless of the delivery method, the validity of that binding has to be verified as

well. Thus, the confidentiality service requires not only a trusted implementation of an encryption

14

algorithm but a trusted user-key binding too.

Trust encompasses even more than message confidentiality and source authentication, which

have been the traditional trust scopes as shown in the example above. Trust’s broader scope covers

not only security issues but behavioral and QoS issues as well. Consider a data dissemination

system, based on the publish-subscribe paradigm, that operates on the following policy: valid and

non-malicious information (behavioral requirement) is publicly available but must not be tampered

with (security requirement) and must be received in a timely manner (QoS requirement). In order

to enforce this policy the appropriate security, behavioral, and QoS mechanisms must be in place

to implement the policy, as shown in Figure 3.1. Digital signing algorithms can guarantee message

integrity but they offer no assurance about the quality of the message contents; this is the task of

behavioral mechanisms that deduce behavioral patterns and trends for the information producer.

Finally, QoS mechanisms are needed to provide guarantees that the information producer and the

network will meet the QoS properties as contracted. We call behavior, security and QoS the three

general trust facets, which are further refined into more specific facets called properties. Properties

include authentication, competence, and delivery rate. Any trust requirement for a distributed

application can be categorized as security, behavioral, or QoS requirement.

An assessment service quantifies and evaluates each of these requirements. Subsequently, there

are three services: behavioral, security and QoS assessment services. Without loss of generality,

we consider all three services as integrated parts of an entity’s functionality. The entity supports

mechanisms to implement the services. However, it is reasonable to distribute the services to other

entities as well.

A behavioral assessment service provides two evaluations: a competence evaluation and a moti-

vation evaluation. The criteria for each evaluation are used to quantify the evaluator’s expectations

regarding the behavior of a trustee. A trustee’s competence is its ability to carry out an action as

expected. A trustee may be competent with respect to a set of expectations, and incompetent with

15

 SECURITY
ASSESSMENT

 -> authenticity
 -> authorization
 -> availability
 -> confidentiality
 -> integrity

 BEHAVIORAL
ASSESSMENT

 -> competence
 -> motivation

 QUALITY OF SERVICE
ASSESSMENT

 -> rate
 -> latency
 -> fault tolerance

TRUSTWORTHY
DATA?DATA

Figure 3.1: Data Trust: Security, Behavioral and QoS Assessments

respect to another set of expectations, depending on who the trustor is. As a complement to com-

petency, motivation assessment accounts for the trustee’s intentions. Cooperation and competition

bonds are crucial factors in deducing the common interests between a provider and a consumer.

Behavioral assessment is not limited to end entities but it extends to intermediate entities as well.

The second service is the security assessment service. Security services such as authentic-

ity, confidentiality, integrity, availability and authorization enhance the security of the transmitted

information by safeguarding it against attacks [41]. A number of different security mechanisms

exist that provide security services such as encryption, digital signatures and authentication proto-

cols. Entities need the necessary tools to assess a channel’s resistance to security attacks, such as

interruption, interception, modification and fabrication of an information flow.

Finally, quality of service (QoS) plays an important role in trust evaluation. The QoS re-

quirements of an information flow are satisfied when the information producer and the network

resources fulfill their assigned parts of the QoS contract. A QoS violation is a deviation from

the expected behavior by the resources disseminating the information. When latency or rate are

16

unexpectedly poor the information can be out-dated and thus less trustworthy.

While trust is an integral part of decision making in collaborative models, there is no unique

way to determine the right level of trust, or which facets to use. Researchers have defined trust

concepts for many perspectives, with the result that trust definitions overlap or even contradict

each other [3]. The reason is that decisions about how to evaluate each facet lie with the evaluator

and can differ substantially from situation to situation. As of today, there is no comprehensive

definition that covers the semantics of end-to-end trust for interactions in which information is

delivered by intermediaries. End-to-end trust is essential for topologies such as publish-subscribe

where interactions are dynamic and they always involve the collaboration of multiple entities to

disseminate data from its source to its destinations. We propose using a concept we call information

lifecycle to analyze the more complex situation of indirect interactions. We define information

lifecycle as the interval in which information is created and consumed. In the realm of data trust,

the information lifecycle consists of three stages: generation, dissemination, and consumption.

At each stage, the entity responsible for the information is the information producer, information

dissemination medium, and information consumer, respectively. This decomposition into lifecycle

stages allows trust to be examined and evaluated at this finer granularity, namely, each stage in the

information lifecyle. Appendix B investigates in detail the applicability of information lifecycle

trust on peer-to-peer and publich-subscribe systems.

Building a trust management service for indirect interactions requires defining those issues that

are necessary for extending a general trust management system in such a way that dynamic trust

assessments of all entities that handle the information, not just the creator or consumer of the data,

are supported. Therefore, a trust management system for indirect interactions should address the

following objectives:

• TMS Objective 1: Dynamic Trust TMS must allow changes to trust relationships during

the operational lifetime of the system in such a way that they reflect the actual interactions

17

between participants. The interactions within large-scale dissemination systems are dynamic

for a number of reasons. First, new alliances between participants are formed or existing

ones are dissolved, and second, the dynamics of existing coalitions change due to diverse

policies, change of leadership, and experience. The underlying trust relationships among the

participants should reflect the dynamic nature of the interactions that span these different

administration domains. In order to support dynamic trust, current trust for a given entity

must be revised based on experience and other information (from both itself and others) that

becomes available only after the initial relationship is specified.

• TMS Objective 2: Composable Trust Indirect interactions are, by definition, based on the

collaboration between multiple entities that cooperate to carry out the task of disseminating

information from its source to its intended destination. Obtaining a comprehensive assess-

ment of trust for such interactions requires a trustor to reason about trust not only for the

information destination and source, but also for the intermediary entities that act as forward-

ing servers. In order to support composable trust, a number of pairwise relationships must

be identified and synthesized in a way that allows an entity to assess trust for end-to-end

indirect interactions. Additionally, TMS must consider that the overall system, and thus the

pairwise relationships, could span a number of different administrative domains.

• TMS Objective 3: Broad Trust Scope TMS must cover a broad trust scope including the

traditional trust usages such as access trust and identity trust as well as non-traditional ones

such as fault detection and establishment of data quality.

• TMS Objective 4: Collaborative Environment TMS must operate in a collaborative en-

vironment. An entity’s ability to monitor and manage all interactions in a large-scale dis-

tributed system is limited and therefore it needs to rely on other entities’ opinions and expe-

rience. Users must be able to choose their collaborators and update their collaboration list

according to their needs and the specific situation.

18

3.2 TMS Requirement List

The four activities of a generalized trust management system [26] must be supported for any trust

management framework that is designed to meet the trust requirements of indirect interactions. The

first activity is the Trust Evidence Collection, which is the process of collecting evidence required

to make a trust decision. Evidence refers to information that stands as proof of one’s behavior,

attitude, or external attributes. Evidence must not be confused with forensic evidence, which must

adhere to the standards of evidence that is admissible in a court of law. The second activity, Trust

Analysis, is the process of examining trust relationships to identify implicit relationships. Trust

Evaluation is the third activity that evaluates evidence in the context of trust relationships. Finally,

Trust Monitoring is the activity that is responsible for updating trust relationship based on evidence.

Given the four TMS activities and the four TMS objectives, we categorize the requirements

for a trust management system that handles indirect interactions in five groups: each of the first

four categories represents requirements associated with a TMS activity, and the fifth one discusses

requirements on external entities.

R1 Evidence Collection and Distribution

R1.1 Heterogeneous Forms of Evidence

TMS must support multiple types of evidence, including recommendations. Diversity

in evidence types allows for a broader assessment of trust because knowledge is ob-

tained from multiple sources.

For example, role-based access control decisions rely on external recommendations

and profile information for the intended trustee. Not only the trustee’s role must be ver-

ified prior to access, but also reputation information is needed to assure that the trustee

will not abuse the privileges of the role.

R1.2 Selective Collection and Distribution of Evidence

The collection and dissemination of evidence is not mandatory. A TMS user must be

19

able to specify the source and frequency of received evidence. Similarly, a TMS user

must also be able to restrict dissemination of its own evidence to selected users.

For example, a user should be able to prevent disclosure of sensitive information to

business partners that are considered to be competitors.

R1.3 Dynamic Management of Evidence Streams

The evidence streams (both incoming and outgoing) should not be assumed to be static,

but they are changing according to the user’s policies.

For example, a recommender that acquires a reputation for favoritism or a new busi-

ness partner may not be a reliable source of recommendations and thus the use of the

evidence stream originated at those recommenders should be used cautiously.

R2 Trust Analysis

R2.1 Time-Aware Trust Relationships

TMS must model time as a fundamental quantity that allows reasoning about it during

the specification and analysis of trust relationships.

For example, the trust assessment of a path that is composed of three servers can be

derived if the intersection of the valid intervals of the three trust relationships is not

empty.

R2.2 Composable Trust Constructs

TMS must provide the necessary constructs that will allow composable trust relation-

ships.

Systems based on the publish-subscribe paradigm rely on intermediary entities to for-

ward information from its source to the intended target. A trustor must derive trust

assessments for all entities that actively participate in a particular data stream. For ex-

ample, a secure communication link does not provide guarantees about the quality of

the data from an unreliable publisher.

20

R3 Trust Evaluation

R3.1 Evidence Aggregation

TMS must provide a wide range of mechanisms to aggregate evidence of the same or

different type. TMS must support a range of typical voting algorithms but also deal

with incorrect and missing inputs to the aggregation.

For example, the feedback from recommenders is weighted by the level of confidence

attached to it. All recommendations are combined by an aggregation scheme into a

single output. Trustors should be allowed to choose the aggregation scheme that con-

forms to their policies. A weighted average aggregation scheme may be suitable for

one trustor whereas a majority scheme is more appropriate for another.

R3.2 Evidence-to-Expectation Mapping Functions

Expectation is defined as a requirement and its allowed values that a trustor has for

a particular interaction with a trustee; these values are constrained by equality and

inequality operators. The observed value for an expectation is not necessarily derived

directly from a single type of evidence. The TMS must allow a user to express functions

that map evidence to expectations. These functions specify the inputs to aggregation

methods and may vary depending on the imputed trust mode (see R4.2 below).

For example, a trustor may choose to specify the behavior expectation as a function

of reputation and reliability. Behavior is not collected directly from evidence streams,

but on the contrary, recommendations and reliability measurements are manipulated

to derive behavioral values. Aggregated results may be used to evaluate more than

one expectations; for example, recommendations affect a trustee’s reputation and at the

same time they are also used to extract behavioral trends for the particular trustee.

R3.3 Expectation Satisfaction

Expectation satisfaction occurs when the trustee’s observed value for a requirement

21

falls into the range of allowed values for that particular requirement. TMS must provide

a wide range of techniques that target expectation satisfaction.

The reasoning behind this requirement is similar to the one explained for the R3.1

Evidence Aggregation requirement.

R4 Trust Monitoring

R4.1 Trust Re-evaluation

TMS must take into consideration the dynamic nature of the network and the dynamic

behavior of the network participants whenever a trust assessment is made.

There are a number of situations where the dynamic nature of the network and its

participants is observed. For example, new participants join the network and existing

ones depart from it. Participant’s performance and properties change. Legal contracts

may force collaborators to become competitors. Trust relationships should reflect these

social, organizational and network changes.

R4.2 Imputed Trust Mode Support

TMS must provide for different operational modes. Policies will have different inputs

and rules depending on which mode they are in. These modes are similar to the home-

land security alert codes or intrusion detection modes.

For example, during the red alert mode, only predefined trust relationships are active

depending on the severity of the situation.

R5 Requirements on Components External to Model

R5.1 Security Services and Certificate Management Tasks

TMS assumes that there are underlying mechanisms that provide basic security ser-

vices including encryption, digital signing, and certificate management.

As an example, consider certificates as one type of evidence. TMS must have access

22

to certificate information, either directly from the certificate authority or from another

service such as an enhanced directory service that stores certificates as one of the sup-

ported attributes. TMS should not support any certificate management activities such

as managing certificate revocation lists. These tasks are assumed to be provided by

external entities.

3.3 Supporting New Paradigms

In order to meet the TMS requirements, new paradigms are needed. The functionality of the TMS

relies on several concepts such as time, trust re-evaluation triggers, expectation satisfaction, trust

composition techniques and predefined compound trust relationships. These paradigms are not

novel but are new to trust management.

3.3.1 Temporal and Knowledge Awareness

There are two main concepts that are related to dynamic trust: time and knowledge. As time

progresses and new evidence is processed into higher-level knowledge, trust relationships must

evolve. As a result, the TMS must accommodate some notion of time as well as facilitate the

utilization of different kinds of evidence.

Time is paramount for dynamic trust re-evaluation, especially for reasoning about overlapping

intervals where multiple trust relationships are considered to be valid. In addition, time must be

modeled in a way that time awareness can be embedded into the trust relationships specification,

analysis and monitoring mechanisms. Temporal database concepts regarding time are adapted in

order to reason about time-aware trust relationships. To be more specific, Allen’s algebra [8] is

used to reason about relationships between time intervals.

Knowledge awareness is accomplished by identifying evidence types that must be incorporated

into the TMS.

23

3.3.2 Trust Re-evaluation Triggers

Time and knowledge awareness allows multiple states of trust to evolve from the initial state.

While time and knowledge enable a change of trust, specific events and conditions are the ones

that actually cause re-evaluation of relationships. We refer to these as trust re-evaluation triggers.

The first trust re-evaluation trigger is the insertion, deletion or modification of trust relation-

ships. New pairwise trust relationships may lead to the formation of new end-to-end trust rela-

tionships. Similarly, removal or modification of trust relationships may lead to the invalidation of

existing end-to-end trust relationships. The second trust re-evaluation trigger is the expiration of

the trust relationship’s valid time period, where upon expiration of the specified valid period a trust

relationship is re-evaluated. Another trust re-evaluation trigger is the violations of the expectations

for trust relationship(s) that pertain to a specific trustee. Expectation violation occurs when the

trustee does not satisfy its expectations. Violations are detected with the arrival and processing

of local and global evidence. Consequences of violations vary in scope including, but not limited

to, individual scope and group scope. For the former category, only the trust relationships for

the trustee in question are revised whereas the latter category re-evaluates trust relationships for

an extended group of trustees. A last trigger is the upgrading or downgrading of imputed trust

mode. A change in the imputed trust mode may result in using different inputs to the configurable

trust policies. That, in turn, could result in relaxing or restricting requirements, and adjusting the

permissible deviation between observed and expected values.

3.3.3 Expectation Satisfaction

Expectation satisfaction is the process that determines whether or not the trustee observed value

satisfies the allowed values of a given requirement. Covering techniques are methods that provide

expectation satisfaction. Expectation satisfaction concerns itself with two situations. Given a

trustee’s observed values and a covering technique, reach a binary decision on whether or not these

values satisfy the expectations. And, in the case of a negative outcome, examine whether or not

24

deviation from the expected values could be tolerated.

Covering techniques are grouped into three categories: strict satisfaction, relaxed satisfaction,

and user-defined satisfaction. The strict satisfaction category includes techniques that operate on

the premise that the actual values cover the range of allowed values. For instance, consider ex-

pectation e to be (cooperation, >, 5, 4, ev), with an allowed value 4 and an observed value of

cooperation to be 5. The value of 5 satisfies the binary relationship >. On the contrary, relaxed

satisfaction methods allow actual values to deviate from the allowed ones. An actual value of 3, for

example, does not satisfy the binary relationship, however it might be the case that the deviation of

3 from the desired value is permitted. Finally, user-specified techniques are user-defined functions

that test expectation satisfaction according to the user’s criteria. The various covering techniques

are given in more detail below:

• Strict satisfaction

– Covering relation: as defined in SIENNA [14] but customized to expectation semantics.

(note that the covering relation is used by SIENNA to propagate subscriptions and

advertisements as well as to perform notification-subscription matching.)

– Strict covering relation: it is a covering relation with the additional constraint that all

trustee actual values must cover at least one expected value.

– Selective covering: it is possible that not all expectations need to be met by the specific

trustee, but instead only a subset of them is applicable.

– Preferred covering: it is possible that not all expectations carry the same “importance”

weight; some expectations are more important than others. In this case, the expectations

are evaluated based on their importance factor.

• Relaxed satisfaction

– Semantic distance: An expectation set with n requirements (variables) is mapped into

25

an n-dimensional Cartesian system as a single point. In this space, it is possible to

evaluate expectation value deviation using a modified k-nearest algorithm [40] (with

or without weights) that exploits semantic distance as the indicator of the deviation

between any two points (e.g. Euclidean distance). In this case, the equality operator is

the only operator that can be used between the actual and observed values. It is possible

to have multiple points for expectation sets that use the inequality operator, but the

calculation of the points may not always be possible (e.g. > operator for requirements

without upper-bound restrictions).

– Individual deviation: the trustor specifies the range of deviation that can be tolerated

for each requirement in the expectation set.

– Hyperplanes: A hyperplane [31] is a plane that is extended in n dimensions. Similar

to the semantic distance technique, an expectation set is modeled as hyperplanes, one

for each requirement. The intersection of all the appropriate halfspaces is a polytope

(which may be unbounded). Actual values are mapped into the n-dimensional space as

a point and the distance between the point and the polytope is calculated.

• User-defined satisfaction

– Any user-defined function that conforms to the user’s criteria could be used as an ex-

pectation covering method.

3.3.4 Trust Composition

Trust composition is one of the TMS properties that allows for end-to-end trust management of

indirect interactions. Defining and reasoning about trust in such interactions requires the proper

management of a number of direct pairwise trust relationships. Trust constructs make explicit the

stages in the information lifecycle of indirect data delivery.

Trust composition is also required at the data level. There are cases where data is aggregated

26

at a particular place and the result is further disseminated to end entities. In this case, the var-

ious trust relationships that correspond to each datum must be composed in order to derive the

trustworthiness of the aggregation result.

Trust composition is based on the expectation satisfaction covering techniques between an

expectation set and a trustee’s actual values. These techniques are applied on multiple expectation

sets to answer the following questions:

• Given a set of expectation sets E = {e1, e2, · · · , en}, is there an expectation set e that

satisfies all members of set E? We call this the expectation set satisfaction problem.

We use the notion of reducibility to show that this problem is NP-complete. A problem Q

can be reduced to another problem Q’ if any instance of Q can be “easily rephrased” as an

instance of Q’, the solution to which provides a solution to the instance of Q [17]. This

expectation set satisfaction problem is NP-complete, and we can prove that by showing that

the problem belongs to the NP class and then show that the well-known problem CIRCUIT-

SAT <= SAT. That means, any instance of the CIRCUIT-SAT can be reduced in polynomial

time to an instance of the expectation satisfiability problem.

• Given a target expectation set e and a set of expectation sets E = {e1, e2, · · · , en}, does the

target expectation set satisfy all members of set E?

This is a comparison problem between set e and set ei from E and it is solved in polyno-

mial time, given that a hash table is used to store the requirements and their values. This

comparison process is repeated n times to cover all members of E.

3.3.5 Predefined Compound Trust Relationships

Predefined compound trust relationships refer to the grouping of multiple trust relationships that

are automatically activated (become valid) when their prespecified mode of operation (“red alert”,

etc. as evaluated and announced by external mechanisms such as a QuO contract [50]) becomes

the operational mode of the system. The imputed trust mode of the trustor could be used to specify

27

these compound trust relationships. For instance, an operational mode (e.g. red) could be mapped

to a specific imputed trust mode (e.g. distrust). In this case, imputed trust modes are differentiated

by their inputs to the configurable trust policies that include the specification of expectation sets,

the bounds of the acceptable tolerance for value deviations, and the parameters of aggregation

algorithms such as weight.

28

CHAPTER 4

HESTIA TRUST MODEL DESIGN

Chapter 3 identified and documented the TMS requirements that are needed to provide dynamic

and composable trust for indirect interactions. This chapter presents the design of a TMS, called

Hestia, that meets these requirements. The focal point of the Hestia design is modeling the ev-

idence flow within the system and the effect it has on trust relationships. Section 4.1 describes

Hestia at an abstract level, emphasizing the interactions between the system and external entities

outside Hestia. The two architectural design choices are presented in Section 4.2. Section 4.3 dis-

cusses in more detail the functionality of Hestia’s individual components. The operation of Hestia

is demonstrated in Section 4.4.

4.1 Hestia Context Diagram

Figure 4.1 illustrates the abstract model of Hestia, which starts with a context diagram showing

the system as interacting sets of processes connected to external entities outside of the system

boundaries. This process is expanded to more detailed diagrams that divide the system into smaller

parts (see section 4.3).

The external entities that interact with Hestia are the following:

• Application Entity, which can be either a trustor or a trustee. Information producer (pub-

lisher) and information consumer (subscriber) are such entities.

• Network Entity, which refers to the actual information dissemination medium. This is a

network of forwarding servers, usually transparent to the application.

• Network of data flows, which includes application data streams and trust data streams.

• Data Dissemination Management Authority, which controls and manages network resources.

29

Application
Publisher

(trustor and\or
trustee)

Application
Subscriber

(trustor and\or
trustee)

HESTIA

Data
Dissemination

Middleware

HESTIA

Data
Dissemination

Middleware

NETWORK

Data Dissemination Management Authority

Certificate Management Authority

Trust data
streams

Application
data streams

Figure 4.1: Hestia Context Diagram

• Certificate Management Authority, which handles the management of certificate related is-

sues

• Data Dissemination Middleware, which provides an abstraction of a message bus to the

application layer.

4.2 Architectural Design Choices

Two architectural design choices were made at the early stages of the design. These choices were

made in order to provide a reasonable bound on the scope of the entities which would be incor-

porated or designed in detail. We believe that these design choices in no way limit the general

applicability of the architecture, something we hope to demonstrate in research in the near future.

4.2.1 Architectural Design Choice 1: Trust Service Transparency

First, trust management is provided as a middleware service. However, it could be provided at

any level. Hestia can be completely transparent to the application layer, given that the necessary

policies are provided as configuration information during installation. On the other hand, with

30

Hestia, the application can be allowed to customize the policies and be a trust-aware application.

There are 16 possible interactions between the application module (AM) and the trust module

(TM), shown in Table 4.2, including the following:

• Application is trust-aware and the trust module is not transparent to the application. This is

the case for subscribers that are not willing to delegate trust decisions affecting subscription

paths to any other module.

• Application is not trust-aware and the trust module is transparent to the application. This is

the case for publishers that are devices with limited functionality such as sensor devices.

• Application is limited trust-aware, meaning that it is informed of trust module’s decisions

and may influence them. This is the case for the subscriber that delegates authority to the trust

module, but it is informed (notified) whenever an action is taken by trust module, possibly

via callback objects.

4.2.2 Architectural Design Choice 2: Limit the Scope of the Trust Service

The second architectural design choice was to limit the trust service to the data streams as a base-

line. The entire problem space motivated and defined by this research work is too broad to cover

in a single dissertation. We will not examine the interactions, and thus any related issues, between

a trustor and the management authority. For example, a trustor will not make trust assessments

for issues like: authentication, authorization, and confidentiality for subscription and publication

advertisements, behavior of management authority, fault tolerance of this authority, etc. We must

note that Hestia was designed to handle these issues as well.

We will also not going to examine the trustworthiness of the trust service itself. It will be pre-

mature to go beyond this baseline. Exploring this is very important future work, with similarities

to the well-known question “Who guards the guardians?” In our case, the question becomes “Is

the trust management service trustworthy?” The various implementations of the trust model must

31

Figure 4.2: Interactions between application module and trust module

be checked against the TMS requirements. The reason is that these implementations may collabo-

rate (e.g. exchange recommendations) and may affect the functionality of each other. In order to

address the original question of whether or not the trust service is trustworthy, a number of issues

must be considered:

• Is there any sort of guarantee that different implementations of the model will conform to

the design principles?

• Consider the possibility of having implementations tested against the design principles yield-

ing in certified implementations. How do implementations check the certifications of other

implementations?

A technique called “Proof-Carrying Code (PCC)” could be used in some context for safe exe-

cution of untrusted code. In a typical instance of PCC, a code receiver establishes a set of safety

rules that guarantee safe behavior of programs, and the code producer creates a formal safety proof

32

that proves, for the untrusted code, compliance to the safety rules. Then the receiver is able to use

a simple and fast proof validator to check that the proof is valid and hence the untrusted code is

safe to execute. This technique is not applicable in our case because the burden of checking the

code of all collaborators is simply not practical (or feasible). However, the management authority

may take on this responsibility and provide ways for collaborators to check with the management

whether or not implementations are certified.

4.3 Hestia Components and Databases

Alerted Interactions
and violations,

interaction
relationships

Outgoing
Evidence

Evidence
Collection
[Policy 10]

Evidence
Processing

[Policies 5,6,7,8.9]

Trust
Engine

[Policies 1,2,3,4]

Decision Engine

Evidence

Sanitized
Evidence

Incoming
Evidence

Evidence

Update, Query,
Monitor

RelationshipsRelationship,
Notification of

Violation

Recommended
Action

Aggregated
Evidence

Processing
Requirements

Trust Relation
and

MetaData
information

Historical
and

Configuration
Information

data

Update
Distribution

Streams

interaction notification,
retrieve, monitor, update

NETWORK

APPLICATION
OR

MIDDLEWARE

MANAGEMENT OR
APPLICATION Policies

CERTIFICATE
MANAGEMENTData

Evidence
Distribution
[Policy 10]

Update
Collection
Streams

Figure 4.3: Hestia Components and Databases

Hestia is composed of five components: Evidence Collection, Evidence Distribution, Evidence

Processing, Trust Engine, and Decision Engine. There are also two databases: the Trust Relation

and MetaData Information (TRMI) and Historical and Configuration Information (HCI). Figure

33

4.3 illustrates the interactions among the components as well as the interactions between the com-

ponents and the databases. Each component and database is described in more detail in the subse-

quent subsections. Note that the policies that dictate the functionality and operation of the various

components in Figure 4.3 can be found in Section 5.1.

4.3.1 Evidence Collection Component

The Evidence Collection component, illustrated in Figure 4.4, is responsible for collecting evi-

dence such recommendations, QoS values, and complaints from external sources. It also collects

evidence locally, such as locally detected faults.

EVIDENCE COLLECTION

Recommendation

Mechanism

Recommendation
from Network

QoS
Measurements

MechanismQoS values
from Network

Complaint
Mechanism

Failure
Detector

Leakage
Notification

Complaint
from Network

S
u
b
s
c
r
i
b
e
r
/
P
u
b
l
i
s
h
e
r

I
n
t
e
r
f
a
c
e

Value Failure
Detector

Unexpected
Behavior

DECISION
ENGINE

EVIDENCE
PROCESSING

Evidence

Recommendation

QoS value

Complaint

Update Collection Streams

Local Detection

Figure 4.4: Hestia Evidence Collection Component

34

Evidence is closely related to the three trust facets of behavior, security and QoS. Each facet

is refined into more specific ones, called properties, as shown in Figure 4.5 (Note that this is not

the entire space of the facets-properties-raw evidence). Behavior is determined by the proper-

ties of competence and motivation, where competence is further expressed in terms of reliability,

dependability, accuracy, etc. Security properties include authentication mechanisms, encryption

algorithms, and digital signing algorithms. Finally QoS is refined into rate, latency, bandwidth and

redundancy.

Behavior Security QoS

Competence Motivation

Reliability

Authenticated
principal

Recommendations Authentication token

FACET

PROPERTIES

RAW
EVIDENCE

Rate Bandwidth... ...

TRUST

Figure 4.5: Hestia Trust facets, Properties, and Raw Evidence

Each property is evaluated based on the raw evidence that is collected by evidence acquisition

mechanisms that are embedded in the Hestia framework. These mechanisms include recommen-

dation, complaint, QoS instrumentation and fault tolerance mechanisms. The kinds of evidence

that are currently supported are local evidence and global evidence. Local evidence includes ex-

perience, cooperation and competition factors. Global evidence refers to recommendations, com-

plaints (including value omission faults, semantic fault, and leakage notification), legal contracts

and agreements, QoS measurements (server and network performance), profile information, au-

thentication tokens, and connection properties.

The various kinds of evidence may be applicable to more than one property as shown in Figure

35

4.5. An authentication token could be used to prove identity, but it could also be used to predict

the expected level of competence based on group memberships.

4.3.2 Evidence Distribution Component

The Evidence Distribution Component, shown in Figure 4.6, is responsible for distributing evi-

dence (local recommendations, complaints and locally detected faults) to other application entities.

All evidence is distributed via the same evidence acquisition mechanisms that are utilized by the

Evidence Collection component.

EVIDENCE DISTRIBUTION

Recommendation

Mechanism

Recommendation
to Network

QoS
Measurements

Mechanism

Complaint
Mechanism

Failure
Detector

Leakage
Notification

Complaint
to Network

S
u
b
s
c
r
i
b
e
r
/
P
u
b
l
i
s
h
e
r

I
n
t
e
r
f
a
c
e

Value Failure
Detector

Unexpected
Behavior

DECISION
ENGINE

EVIDENCE
PROCESSING

Sanitized
Evidence

Recommendation

Complaint

Update Distribution Streams

Local Detection

Local
Detection
to Network

Figure 4.6: Hestia Evidence Distribution Component

36

4.3.3 Evidence Processing Component

The Evidence Processing component, shown in Figure 4.7, performs two tasks. The first task is

accessing the TRMI database to check where and how the received evidence is to be applied. The

second task is to process evidence that is to be made available to external entities. To be more

specific, the Evidence Processing component is responsible for processing incoming and outgoing

messages. The authenticity of the incoming evidence message is verified before sanitization, a

form of filtering, and the outgoing evidence message is digitally signed prior to its dispatching

into the network. Sanitization occurs for both incoming and outgoing evidence. An example of

sanitizing incoming evidence occurs when at certain operating modes, evidence from particular

recommenders is discarded, which otherwise would be processed. On the other hand, sanitization

of outgoing evidence may occur when the entity has to decide whether or not to share evidence. For

example, an entity might wait before disseminating complaints that involve one of its collaborators.

An entity is under no obligation to share its own trust assessments. On the contrary, it provides

them according to its policies.

Incoming evidence must be evaluated in the context of existing trust relationships. As a result,

this component accesses the processing requirements for trust relationships (triggering rules, ag-

gregation methods) with the intention of assessing the new evidence with respect to the particulars

of the trust relationships. When triggering conditions are activated, the evidence is aggregated.

Aggregating evidence can be seen as a voting mechanism where instances of evidence types are

combined by a voting scheme into a single output. Aggregation algorithms can be triggered either

at predefined intervals or when a number of instances arrive at the evaluator. The aggregated result

is an observed value for an expectation. It is important to note that an observed value is not neces-

sarily related directly to a single evidence type. A user could specify functions that map evidence

types to expectation values.

Hestia supports a spectrum of aggregation algorithms targeting the aggregation of evidence

37

EVIDENCE PROCESSING
Aggregation

Triggering
Rules

Evidence

Single
Evidence

Type

Aggregated
Evidence

Multiple
Evidence

Types

Processing
Requirements

Processing
Requirements

Process
Message

Evidence

Sanitization of
Evidence

Evidence

Sanitized
EvidenceEvidence

Sanitized
Evidence

Sanitized
Evidence

Trust Relation
and

MetaData
Information

EVIDENCE
COLLECTION

TRUST
ENGINE

EVIDENCE
DISTRIBUTION

Figure 4.7: Hestia Evidence Processing Component

from multiple instances of a single evidence type and evidence from different evidence types.

The aggregation algorithms that are supported by the model include average, weighted average,

majority, m-out-of-n, plurality, and any user-defined aggregation. These user-defined mechanisms

can be provided by a virtual machine with a programmable language such as [24, 9]. Consider vj
all

to be the aggregated evidence value for entity j, vj
i to be evidence value by external source i for

entity j, and τi to be the trust relationship between the evaluating trustor k and external entity i.

The aggregation algorithms that trustor k can use are shown in Table 4.1.

38

Table 4.1: Aggregation Algorithms for Single Evidence Type

Average vj
all =

1
n

∑n
i=1(v

j
i), where n is the number of external sources

Weighted Average vj
all =

1
n

∑n
i=1 f(τi, v

j
i), where f is a function

Weighted Average vj
all =

u

x

∑x
i=1 f(τi, v

j
i) +

v

z

∑z
i=1 f(τi, v

j
i), where x + z = n, u + v = 1

Combination

Majority vj
all is the value that more than

n

2
external sources agree on

(allow for a δ deviation)
m-out-of-n vj

all is the value that at least m out of n external sources agree on
Plurality vj

all is the value that most external sources agree on
User-defined Any customized aggregation method such as median value, etc

4.3.4 Trust Engine Component

The Trust Engine component is shown in Figure 4.8 and its functionality includes a number of

tasks. It monitors existing trust relationships and handles trust relationship violations, which in-

volves updating the relationship’s status (see Section 4.3.6, Trust Relation and Metadata Informa-

tion Database) and checking for trust relationship interdependencies in order to update all rela-

tionships affected by the violations. Furthermore, it notifies the decision engine component about

interactions that violations are reported for (and the type of the violation). This component is also

responsible for handling queries for adding, removing, and updating trust relationships as well as

providing trust information about relationships. In addition, it processes interaction notifications,

including identifying the pairwise relationships that correspond to the new interaction. Whenever

new evidence or queries change the state of the trust relationships, the Trust Engine is performing

trust analysis by applying operations such as composition to deduce new relationships. Finally, the

Trust Engine monitors the behavior of entities prior to any interactions; this is something that we

label as passive monitoring.

39

 TRUST ENGINE

Trust Analysis and
Inference

(Properties,
Operations)

Process
Interaction

Relationship
Query

Monitoring

Retrieve
Trust Information

Identified
Relationships

Notification
of

Violation

alerted interactions
and violations

Database Info
Relationships

Monitor,
Update Request

interaction
Establishment

Notification

 Update
relationship

Relationship
Interdepency

Alerted interactions,
violations

Process
Query

Identified
Relationships

Update Trust
Relation

Request

Evidence

EVIDENCE
PROCESSING

DECISION
ENGINE

Historical
and

Configuration
Information

APPLICATION INTERFACE

Trust relation
and

Metadata
Information

Figure 4.8: Hestia Trust Engine Component

40

4.3.5 Decision Engine Component

Currently, the Decision Engine component is responsible for recommending actions including

adding, removing, or updating subscription paths and establishing the recommender network. For

example, in order to limit the risk of information leakage to unauthorized parties, dissemination of

sensitive information is suspended if the authenticity of the receiving entity cannot be verified (e.g.

its certificate is invalid). However, we envision that the decision engine should make decisions that

yield the maximum utility for the trustor.

Consider the case where Hestia is used for authorizing an action. In the case of an information

dissemination system, the action set is restricted to four actions: share information, not share

information, use information and not use information. Regardless of the action, the result of the

authorization must ideally contribute positively in achieving higher-level goals. Thus, trust is a

prerequisite of authorization because even though complete (highest possible) trust exists between

entities for a specific interaction, the action’s authorization still needs to be approved upon a risk-

and-benefit evaluation. This evaluation varies with the current state of the network or system as

well as with other factors. For example, whats the cost of sharing versus the cost of not sharing?

In general, utility theory represents and reasons with preferences. No trust means that new

alternatives must be found. Utility of trust concerns itself with representing and reasoning with

preferences related to trust and an overall goal, and it may be outlined as the series of steps below:

1. Establish the high-level goal.

2. Identify the possible actions that trustor can execute to reach the goal. In this case the four

general actions are extended to cover a finer granularity (ALL, SOME, NONE) of the amount

of information that is involved.

(a) [Share|Use] ALL

(b) [Share|Use] SOME

41

(c) [Share|Use] NONE

(d) [Not Share|Not Use] ALL

(e) [Not Share|Not Use] SOME

(f) [Not Share|Not Use] NONE

Note that actions a,f and c,d are essentially the same. The challenging part is to quantify

SOME.

3. Each action has a possible outcome state. Identify those states and assess how close the

action is to the overall goal.

4. Assign likelihood to each outcome.

5. Estimate the expected utility of action, given the evidence.

6. Choose an action that maximizes the agents expected utility.

4.3.6 Trust Relation and MetaData Information Database

The Trust Relation and Metadata information (TRMI) database is responsible for storing informa-

tion about the current state of an entity’s trust relationships. Information about the current trust

relationships is accessible by any Hestia component. Three sets of information are maintained for

each trust relationship (more details in later chapter):

• Trust relationship parameters

– Context (an action that is performed on the data during its lifecycle)

– Interval (the time duration that the trust relationship is predicted to be valid)

– Expectation values (allowed and observed)

– Trustee trustworthiness

42

– Imputed Trust Mode

• Trust relationship metadata

– Processing requirements for the relationship (aggregation method and triggering rules)

– Monitoring requirements (covering method)

– Temporary storage for unprocessed evidence

– Interaction identifier (unique identifier that is associated with an interaction)

– Status of relationship

∗ OK - valid relationship

∗ ALERT - violation(s) occur(s) in this relationship

∗ WARNING - violation(s) have occurred for this interaction

• Other information about the specific relationship

– Reason for termination

A database, by definition, is a collection of information that is organized in a manner that

it can be easily and efficiently accessed and managed. Even though the database of Figure 4.9

resembles a “flat” file of records, relational database concepts could be used to decompose the

original database into several relation schemas. The definition of a relation does not specify any

ordering of tuples, however there is an ordering of values within a tuple [20]. Furthermore, all

tuples must be distinct, meaning that no two tuples can have the same values for their attributes.

In order to enforce this policy, there is a unique key for each tuple. It’s beyond the scope of this

research work to identify the relation schemas and their respective keys.

Figure 4.9 represents a snapshot of the state of TRMI at a specific time t. The current trustor

has 2 trust relationships with trustee Y. For brevity reasons, only the first relationship is described

in detail. This trust relationship is established for context access data1. As long as trustee Y’s

43

id expectation triggering aggregation temp
evidence

expectation
coverage context interval expectation

actual
expectation

allowed
trust
level

termination
reason

Trustee Trust Relationship MetaData Trust Relationship Parameters Other

Y competence on arrival
average of

competence
(X,Z)

(X, very
good) strict access

data1
cert

valid time
(competence

, good)
(competence

, >=,good)
TL1,
TA1 N\A

Y behavior
10

recommen
ders

myFunction
(reliability,

complaints)

(X r,99%)
(Z, c,10) strict access

data2
cert

valid time
(behavior,

good)
(behavior, ,=,
very good)

TL2,
TA1 N\A

interaction status

interaction
1 OK

interaction
2 ALERT

Figure 4.9: Hestia TRMI DataBase

certificate is valid, and the observed value for competence expectation is set to good, then trustee

Y’s trustworthiness is TL1 for imputed trust mode TA1.

The competence observed value is the result of aggregating recommendations from recom-

menders X and Z. Whenever these recommendations arrive, the aggregation method average will

be applied on the recommender values. At this specific time t, the recommendation from Z hasn’t

arrived yet, and as a result X’s recommendation is temporarily stored until all necessary evidence

arrives. The result of the aggregation will replace the value of the actual field and this will be

compared to the allowed field in order to detect violations. At time t, the actual and allowed

competence values are the same. A violation depends on the allowable deviation for the current

imputed trust mode TA1. If a deviation occurs, the Trust Engine component is notified. For the

specific relationship, the expectation coverage is strict, meaning that no deviation is allowed. The

status field is updated by the Trust Engine component (in particular, the Monitoring module) to

reflect the current status of the relationship.

4.3.7 Historical and Configuration Information Database

The Historical and Configuration Information (HCI) Database is responsible for maintaining

generic information that is used to deduce new trust relationships or update existing ones. More

specifically, the HCI Database stores information about the current and past end-to-end interac-

tions that the entity is involved with. An interaction is associated with multiple trust relationships

44

and thus a trust relationship may be part of multiple interactions. Whenever an interaction is ter-

minated, the trust relationship that is not associated with any other interaction could be considered

as a past experience. Storing terminated interactions allows for tracking the history of the interac-

tions and the reason of their termination. The trust relationships that are also associated with these

interactions are stored as experience.

In addition, HCI stores information regarding legal bindings between actions and expected

behavior of trustees. Information about trustees that could be used to deduce behavior trends for

trustees, such as competition and cooperation factors, are stored here as profile.

4.4 Hestia Operational Examples

This section demonstrates the operation of Hestia in three situations: arrival of new evidence,

self-triggered re-evaluation of trust relationships, and end-to-end trust composition.

4.4.1 Scenario 1: Arrival of Evidence

id expectation triggering aggregation temp
evidence

expectation
coverage context interval expectation

actual
expectation

allowed
trust
level

termination
reason

Trustee Trust Relationship MetaData Trust Relationship Parameters Other

Y competence on arrival
average of

competence
(X,Z)

(X, very
good) strict access

data1
cert

valid time
(competence

, good)
(competence

,>=, good)
TL1,
TA1 N\A

interaction status

interaction
1 OK

Figure 4.10: Hestia TRMI Database for Scenarios 1 and 2

This scenario describes how trust relationships evolve with the arrival of new evidence (Figures

4.10, 4.11). The description is in the form of steps that are executed sequentially as follows:

1. A recommendation data stream for recommender Z has been set up and it is currently active.

2. A recommendation has been received from Z’s data stream. This is collected at the Evidence

Collection component and forwarded to the Evidence Processing component.

45

3. The recommendation message is processed according to the recommendation format seman-

tics. The recommendation is about the competence level of entity Y, which is set to value

very bad.

4. This recommendation evidence is forwarded to the Triggering Rules module, and the TRMI

is searched to locate relationships that this evidence affects. The first relationship in TRMI

is affected by this recommendation. The evaluation of the expectation is triggered on the

arrival of recommendations from X and Z.

5. The recommenadation from X is already stored and as a result the re-evaluation of the rela-

tionship is triggered. The next operation is to lookup how to aggregate the evidence. The

method indicated is average, and the value of competence becomes bad.

6. The monitoring module of the Trust Engine detects that there is a violation of expectations

in the updated relationship. The new actual values do not strictly cover the expected ones.

7. The violation is forwarded to the trust analysis module, which simply forwards the violation

to the Decision Engine component.

8. The action that is recommended is to prohibit access of data1 by trustee Y and discontinue

any recommendation paths associated with trustee Y.

9. Trustee Y’s recommendation path is removed (if any).

10. The application is notified of the removal of trustee Y privileges.

4.4.2 Scenario 2: Self-triggered Re-evaluation

This scenario describes how Hestia, and particularly the monitoring component, is self-triggered to

discover trust changes (Figures 4.10, 4.12). The description is in the form of steps that are executed

sequentially as follows:

46

Alerted Interactions
and violations,

interaction
relationships

Outgoing
Evidence

Evidence
Collection
[Policy 10]

Evidence
Processing

[Policies 5,6,7,8.9]

Trust
Engine

[Policies 1,2,3,4]

Decision Engine

Evidence

Sanitized
Evidence

Incoming
Evidence

Evidence

Update, Query,
Monitor

RelationshipsRelationship,
Notification of

Violation

Recommended
Action

Aggregated
Evidence

Processing
Requirements

Trust Relation
and

MetaData
information

data

Update
Distribution

Streams

interaction notification,
retrieve, monitor, update

NETWORK

APPLICATION
OR

MIDDLEWARE

MANAGEMENT OR
APPLICATION Policies

CERTIFICATE
MANAGEMENTData

Evidence
Distribution
[Policy 10]

Update
Collection
Streams

1 2

3 4 5

6 7

8

9

10

Historical
and

Configuration
Information

Figure 4.11: Hestia Arrival of Evidence

47

1. The monitoring module of the Trust Engine component detects that the certificate of trustee

Y is to expire in 24 hours.

2. The Trust Engine component forwards a potential violation to the Decision Engine compo-

nent.

3. The Decision Engine requests from the application to retrieve a new certificate for trustee Y.

4. The request is forwarded and processed at the application.

5. The application cannot retrieve a certificate for trustee Y (i.e. Y has not renewed its certifi-

cate).

6. The Trust Engine component marks trustee Y as an unauthenticated entity upon expiration

of the certificate. The status of the relationship is set to ALERT.

7. The new evidence is forwarded to the Evidence Processing component in order to be dis-

tributed to the network.

8. The Evidence Processing forwards it to the Evidence Distribution component.

9. The evidence is labeled as a complaint of “not able to authenticate entity Y”.

10. The complaint is distributed to the interested parties.

4.4.3 Scenario 3: End-to-end Trust Composition

The last scenario illustrates how the end-to-end trust for an interaction, which is characterized by

a chain of trust relationships, is handled. Consider interaction interaction1 that allows trustee Y

access to data1, through servers S1 and S2 (Figure 4.13). Suppose that the certificate for S1 gets

invalided (look the scenario for self-triggered re-evaluation above). In this case, the status of the

relationship between the current trustor and the server S1 is set to ALERT. All other relationships

48

Alerted Interactions
and violations,

interaction
relationships

Outgoing
Evidence

Evidence
Collection
[Policy 10]

Evidence
Processing

[Policies 5,6,7,8.9]

Trust
Engine

[Policies 1,2,3,4]

Decision Engine

Evidence

Sanitized
Evidence

Incoming
Evidence

Evidence

Update, Query,
Monitor

RelationshipsRelationship,
Notification of

Violation

Recommended
Action

Aggregated
Evidence

Processing
Requirements

Trust Relation
and

MetaData
information

data

Update
Distribution

Streams

interaction notification,
retrieve, monitor, update

NETWORK

APPLICATION
OR

MIDDLEWARE

MANAGEMENT OR
APPLICATION Policies

CERTIFICATE
MANAGEMENTData

Evidence
Distribution
[Policy 10]

Update
Collection
Streams

10

8 7

1 2

3

9

6

5
4

Historical
and

Configuration
Information

Figure 4.12: Hestia Self-triggered Re-evaluation

id expectation triggering aggregation temp
evidence

expectation
coverage context interval expectation

actual
expectation

allowed
trust
level

termination
reason

Trustee Trust Relationship MetaData Trust Relationship Parameters Other

Y competence on arrival
average of

competence
(X,Z)

(X, very
good) strict access

data1
cert

valid time
(competence

, good)
(competence

,>=, good)
TL1,
TA1 N\A

S1 authenticity on arrival certificate
from CA1 none strict access

data1
cert

valid time
(auth. token,
certificate)

(auth. token,
=, certificate)

TL1,
TA1 N\A

interaction status

interaction
1 OK

interaction
1 OK

S2 authenticity on arrival certificate
from CA1 none strict access

data1
cert

valid time
(auth. token,
certificate)

(auth. token,
=,certificate)

TL1,
TA1 N\Ainteraction

1 OK

Figure 4.13: Hestia TRMI Database for Scenario 3

49

that are associated with that interaction are set to WARNING, a type of indirect alert, because we

don’t want to trigger the invalidation of other interactions that these relationships are involved with.

Assume that the policy dictates that an interaction gets invalided when one or more of its pairwise

relationships get invalided.

Alerted Interactions
and violations,

interaction
relationships

Outgoing
Evidence

Evidence
Collection
[Policy 10]

Evidence
Processing

[Policies 5,6,7,8.9]

Trust
Engine

[Policies 1,2,3,4]

Decision Engine

Evidence

Sanitized
Evidence

Incoming
Evidence

Evidence

Update, Query,
Monitor

RelationshipsRelationship,
Notification of

Violation

Recommended
Action

Aggregated
Evidence

Processing
Requirements

Trust Relation
and

MetaData
information

data

Update
Distribution

Streams

interaction notification,
retrieve, monitor, update

NETWORK

APPLICATION
OR

MIDDLEWARE

MANAGEMENT OR
APPLICATION Policies

CERTIFICATE
MANAGEMENTData

Evidence
Distribution
[Policy 10]

Update
Collection
Streams

8

1 2

3 7

6

5
4

Historical
and

Configuration
Information

Figure 4.14: Hestia End-to-end Trust Composition

The description is in the form of steps, illustrated in Figure 4.14, that are executed sequentially

as follows:

1. The monitoring module of the Trust Engine component detects that the certificate of server

S1 is to expire in 24 hours.

2. The Trust Engine component forwards a potential violation to the Decision Engine compo-

nent.

50

3. The Decision Engine requests from the application to retrieve a new certificate for server S1.

4. The request is forwarded and processed at the application.

5. The application cannot retrieve a certificate for server S1 (S1 did not renew its certificate).

6. The status of the relationship between the current trustor and the server S1 is set to ALERT.

All relationships that are involved in interaction1 are set to WARNING.

7. The Trust Engine forwards the alerted interaction to the Decision Engine, which decides to

remove the access privileges for trustee Y.

8. The decision is forwarded to the application.

51

CHAPTER 5

HESTIA POLICIES

Hestia supports low-level configurable policies that determine component functionality. These

policies are organized in a hierarchical manner for efficiency reasons. This chapter explains the

hierarchical policy space as well as the specification of these low-level policies.

5.1 Hestia Components and Sample Policies

Chapter 4 discussed the Hestia components and the need for configurable policies that determine

the functionality of these components. Below, is the textual description of such policies (note that

the policy number corresponds to the policy number illustrated in Figure 4.3):

Policy 1 Expectation Set Specification

Description Specify expectation sets for trust relationships.

General Policy Accessing non-sensitive data requires authentication.

Specialized Policy Accessing non-senstivive data by INTER domain entities requires au-

thentication and behavior set to “good”.

Policy 2 Expectation Covering Technique

Description Specify the expectation covering technique that is to be applied on an expecta-

tion set.

General Policy Strict satisfaction must be applied on expectation sets for all INTRA do-

main entities.

Specialized Policy Relaxed satisfaction must be applied on all expectation sets for entity Y.

Policy 3 Expectation Violation Handling

52

Description Specify the action that is taken whenever an expectation violation occurs.

General Policy Whenever an expectation violation occurs, re-evaluate the trust relationship

immediately.

Specialized Policy Whenever an expectation violation occurs for non-sensitive data, keep

monitoring for X minutes before re-evaluation.

Policy 4 Trust Relation Operations

Description Specify rules that govern the operations that the trust engine performs on trust

relationships.

General Policy A terminated relationship residing in the Trust relation and MetaData In-

formation Database becomes experience after a predefined interval X.

General Policy A relationship is valid as long as the trustee’s certificate is valid.

Policy 5 Evidence Mapped to Expectation

Description Specify the rules that map evidence to expectation.

General Policy Behavior is a function of reliability and cooperation indicator.

Specialized Policy Behavior for any LAN entity is a function of reliability.

Policy 6 Evidence Aggregation

Description Specify the aggregation method for evidence such as recommendations.

General Policy An entity’s behavior is the result of aggregating feedback from at least 10

INTRA recommenders using the average function.

Specialized Policy A LAN entity’s behavior is the result of aggregating feedback from at

least 10 LAN recommenders using the ma jority function.

Policy 7 Triggering Rules

53

Description Specify the triggering algorithm for the evidence aggregation process.

General Policy The average aggregation algorithm is triggered at predefined interval X.

Specialized Policy The average aggregation algorithm is triggered either at predefined in-

terval X or when at least one sample has been received from all recommenders.

Policy 8 Incoming Evidence Sanitization

Description Discard evidence prior to processing

General Policy Whenever the system operates in attack mode, use only evidence from IN-

TRA recommenders.

Specialized Policy Whenever the system operates under attack mode, discard all evidence

from all recommenders for relationships that involve sensitive data.

Policy 9 Outgoing Evidence Sanitization

Description Filter evidence (generated at the local trust module) that is to be disseminated

to network entities.

General Policy Disseminate recommendations about the behavior of any INTRA entity.

Specialized Policy Do not disseminate recommendations about the behavior of entity Y.

Policy 10 Recommenders Identification

Description Identify the recommenders that provide feedback for trust relationships.

General Policy Any LAN entity may serve as a recommender for any INTRA entity.

Specialized Policy Entity Y may serve as a recommender for any INTRA or INTER entity.

54

5.2 Space of Hestia Policies

Hestia’s provision of configurable trust policies allows entities to set up policies for the function-

ality of Hestia components, such as evidence sanitization and aggregation. These low-level trust

policies are organized in a four-dimensional space, which is bounded by the trustee location di-

mension, the context dimension, the task dimension and lastly the imputed trust mode dimension,

as shown in the Figure 5.1. For illustrational purposes, the 4-D space is mapped to a 3-D space by

keeping imputed trust mode a constant value throughout the entire space.

The location dimension categorizes trustees based on their group memberships in relation to

the trustor. There are three default groups:

• LAN: refers to trustees belonging to the same LAN as the trustor

• INTRA: refers to the entities belonging to the same administrative domain

• INTER: refers to the entities belonging to any other domain.

Entities may further be organized in various groups within a LAN, or an administrative domain.

The degenerated form of a group is, naturally, an individual entity.

The context dimension represents the permissible operations performed on data. These will be

explained in detail in a later chapter.

The task dimension represents various tasks that are necessary for the correct functionality of

Hestia components. These tasks include, but are not limited to expectation specification, expecta-

tion covering technique, expectation violation handling, trust relation operations, evidence mapped

to expectation functions, evidence aggregation technique, triggering rules, incoming evidence san-

itization, outgoing evidence sanitization, and recommenders identification.

Finally, the imputed trust mode dimension represents the various operational modes of the

system.

This trust policy space is populated by high-level policies, which are policies that dictate the

55

proper usage of an organization’s information. High-level policies are essentially translated into

practice via the low-level policies.

Context

Lo
ca

tio
n

Ta
sk

Imputed Trust Mode

Figure 5.1: Hestia Trust Policy Space

Each point in this space represents a policy for the particular dimension values. These are

default policies, which can be overridden to apply to specific groups of trustees, specific contexts

and specific subtasks. As a result, a policy may be expanded to cover more specific points in all

dimensions to reflect restrictions to the more general default policy. The evaluation of the policies

is performed in a bottom-up manner.

Figure 5.2 illustrates how default policies can be overridden so that they are applied to specific

groups of trustees. Consider the policy for the evidence aggregation method that is applicable to

LAN entities that access sensitive data. For any LAN entity that accesses sensitive data, the default

aggregation method is function0. This default policy is overridden for entities that belong to either

workgroup1 or workgroup2, where the aggregation methods are function1 and function2 respec-

tively. These restricted policies are overridden for specific members of workgroup1. As a result,

entities P1 and P2 are subject to aggregation methods functionP1 and functionP2 respectively.

56

Context

Lo
ca

tio
n

Ta
sk

Imputed Trust Mode

LAN

Access
Sensitive

Data

Aggregation
Method

(default,
function0)

(workgroup1,
function1)

(workgroup2,
function2)

(P1,
functionP1)

(P20,
functionP20)

Figure 5.2: Hestia Trust Policy Space Example 1

Context

Lo
ca

tio
n

Ta
sk

Imputed Trust Mode

LAN

Access
Sensitive

Data

Aggregation
Method

(default, default
function0)

(workgroup1,
function1)

(workgroup2,
function2)

(P1,
functionP1)

(P20,
functionP20)

(default,sensitive data1,
function11)

(default,sensitive data2,
function21)

Figure 5.3: Hestia Trust Policy Space Example 2

57

Consider Figure 5.3, which again illustrates the trust policy space for the evidence aggregation

method regarding LAN entities that access sensitive data. In this example, the policies are restricted

not only by varying the trustee group membership, but by considering particular sensitive data as

well. For any LAN entity that accesses any sensitive data, the default aggregation method is

function0. For any LAN entity that accesses sensitive data1, then the aggregation method becomes

function11. The interpretation of the subtree rooted at this point is the same as the one of the

previous example.

5.3 Hestia Policy Specification

In order to have a better understanding of the Hestia trust policies, sample policies are described

in this section. It is assumed that policies are bundled together for a specific imputed trust mode.

First, a textual description summary of the policy is provided, followed by the XML schema that

captures the semantics of the policy and an example XML policy. For clarity reasons, each policy

is specified in its own schema, but with very slight modifications a single policy schema could be

obtained. These policies are provided at the initial phase of initialization of the system but it could

also be possible to support policy adaptability during runtime.

The policy specification is at the initial stages and it is out of the scope of this dissertation work

to verify that there no conflicts between the policies. It is still open research how to define policies

for appropriate use of an organization’s information resources. It is also nontrivial to translate

these policies into practice and provide guarantees that there are no inconsistent policies.

5.3.1 Expectation Specification Policy

The Expectation Specification policy shown in Figure 5.4, as the name implies, specifies expecta-

tion sets for particular operations on data.

A general policy could be:

”Accessing public data requires authentication”

and a specialized policy could be:

58

“Accessing public data by INTER domain entities that belong to the competitors group

requires authentication and a behavior indicator of grater than good”.

The two policies are illustrated in Figure 5.5.

<?xml version="1.0" encoding='us-ascii'?>
<!ELEMENT xml_policy_1 ANY>

<!-- Specifies the name of the policy. This is essentially the task. -->
<!ELEMENT policyname EMPTY>
<!ATTLIST policyname

name CDATA #REQUIRED
trustmode (red | orange | green) #REQUIRED

>

<!-- Information about the requirements. -->
<!ELEMENT requirementList (requirements*) >
<!ELEMENT requirements (requirement+)>
<!ATTLIST requirements

location (lan | inter | intra | any_location) #REQUIRED
 trusteeid CDATA " "

type (sensitive | public | private | evidence | alert | all) #REQUIRED
 operation (use | access | all) #REQUIRED
>

<!ELEMENT requirement EMPTY >
<!ATTLIST requirement

requirementname CDATA #REQUIRED
 operand (lessthan | greaterthan | eq | lessoreq | grateroreq | noteq) #REQUIRED

value CDATA #REQUIRED
>

Figure 5.4: XML Schema for Hestia Expectation Specification Policy

5.3.2 Expectation Covering Technique Policy

The Expectation Covering Technique policy shown in Figure 5.6 specifies the expectation covering

technique that is to be applied on an expectation set.

A general policy could be:

”Strict satisfaction is to be applied on expectation sets for all INTER domain entities that

access sensitive data”

and a specialized policy could be:

“Relaxed satisfaction is applied on all expectation sets for entity Y for accessing all data

types. The permissible deviation is [-2,2] for all requirements in these sets”.

The two policies are illustrated in Figure 5.7.

59

<?xml version="1.0"?>
<xml_policy_1>
<policyname>

<name="expectation specification" trustmode = yellow>
</policyname>

</requirementList>
<requirements>

<location = any_location type = public operation = access >
<requirement>

<requirementname = "authentication" operand = "eq" value = "1">
</requirement>

</requirements>

<requirements>
<location = inter trusteeid = "competitor" type = public operation = access >
<requirement>

<requirementname = "authentication" operand = eq value = "1">
</requirement>
<requirement>

<requirementname = "behavior" operand = greaterthan value ="good">
</requirement>

</requirements>
</requirementList>

</xml_policy_1>

Figure 5.5: Hestia Expectation Specification Policy

5.3.3 Trust Relationship Violation Handling Policy

The Expectation Violation Handling policy shown in Figure 5.8 specifies the action that is taken

whenever there is either time violation or expectation violation for a trust relationship.

A general policy could be:

”Whenever an expectation violation occurs for accessing sensitive data by any entity, re-

evaluate the particular trust relationship immediately”.

and a specialized policy could be:

“Whenever a violation occurs for accessing any data by INTRA entities, keep monitoring

for X minutes”.

The two policies are illustrated in Figure 5.9.

60

<?xml version="1.0" encoding='us-ascii'?>
<!ELEMENT xml_policy_2 ANY>

<!-- Specifies the name of the policy. This is essentially the task. -->
<!ELEMENT policyname EMPTY>
<!ATTLIST policyname

name CDATA #REQUIRED
trustmode (red | orange | green) #REQUIRED

>

<!-- Information about the satisfaction covering technique. -->
<!ELEMENT expectationcovering (covering*) >
<!ELEMENT covering (deviationlist*)>
<!ATTLIST covering

location (lan | inter | intra | any_location) #REQUIRED
 trusteeid CDATA " "

type (sensitive | public | private | evidence | alert | all) #REQUIRED
 operation (use | access) #REQUIRED

technique (covering | strict_covering | selective_covering
 | preferred_covering | relaxed | relaxed_individual) #REQUIRED
>

<!ELEMENT deviationlist EMPTY>
<!ATTLIST deviationlist

requirement CDATA #REQUIRED
 low_bound CDATA #REQUIRED

upper_bound CDATA #REQUIRED
>

Figure 5.6: XML Schema for Hestia Expectation Covering Technique Policy

<?xml version="1.0"?>
<xml_policy_2>
<policyname>

<name="expectation covering technique" trustmode = yellow>
</policyname>

<expecationcovering>
<covering>

<location = inter type = sensitive operation = access technique =strict_covering>
</covering>
<covering>

<location = inter trusteeid = "Y" type = all operation = access technique =
relaxed_covering>

<deviationlist>
< requirement = "all'' low_bound = "-2" upper_bound = "2" >

</deviationlist>
</covering>

</expectationcovering>

</xml_policy_2>

Figure 5.7: Hestia Expectation Covering Technique Policy

61

<?xml version="1.0" encoding='us-ascii'?>
<!ELEMENT xml_policy_3 ANY>

<!-- Specifies the name of the policy. This is essentially the task. -->
<!ELEMENT policyname EMPTY>
<!ATTLIST policyname

name CDATA #REQUIRED
trustmode (red | orange | green) #REQUIRED

>

<!-- Information about the violation handling technique. -->
<!ELEMENT violationhandling (handling*) >
<!ELEMENT handling EMPTY>
<!ATTLIST handling

location (lan | inter | intra | any_location) #REQUIRED
 trusteeid CDATA " "

type (sensitive | public | private | evidence | alert | all) #REQUIRED
 operation (use | access) #REQUIRED

violationtype (interval_expiration | expectation_violation | all) #REQUIRED
action (re_evaluate | monitor | ignore) #REQUIRED

>

Figure 5.8: XML Schema for Hestia Trust Relationship Violation Handling Policy

<?xml version="1.0"?>
<xml_policy_3>
<policyname>

<name="trust relationship violation handling" trustmode = yellow>
</policyname>

<violationhandling>
<handling>

<location = any_location type = sensitive operation = access violationtype = expectation_violation
 action = re_evaluate >

</handling>
<handling>

<location = intra type = all operation = access violationtype = all action =monitor >
</handling>

</violationhandling>

</xml_policy_3>

Figure 5.9: Hestia Trust Relationship Violation Handling Policy

62

5.3.4 Evidence Mapped to Expectation Policy

The Evidence Mapped to Expectation policy shown in Figure 5.10 specifies the rule that dictates

how raw evidence is applied to expectations. Note that trust has properties, but a trustor has

expectations. The collected evidence is not meaningful unless a trustor decides how it could be

applied to its expectations.

A general policy could be:

”For all LAN entities, regardless of data operation and type, behavior is a function of

recommendations only”.

and a specialized policy could be:

“For all INTER entities, regardless of data operation and type, behavior is a function of

recommendations and cooperation indicator ”.

The two policies are illustrated in Figure 5.11.

<?xml version="1.0" encoding='us-ascii'?>
<!ELEMENT xml_policy_4 ANY>

<!-- Specifies the name of the policy. This is essentially the task. -->
<!ELEMENT policyname EMPTY>
<!ATTLIST policyname

name CDATA #REQUIRED
trustmode (red | orange | green) #REQUIRED

>

<!-- Information about the evidence mapped to expectation technique. -->
<!ELEMENT evidencemapping (mapping*) >
<!ELEMENT mapping (evidence+)>
<!ATTLIST mapping

location (lan | inter | intra | any_location) #REQUIRED
 trusteeid CDATA " "

type (sensitive | public | private | evidence | alert | all) #REQUIRED
 operation (use | access | all) #REQUIRED

expectation CDATA #REQUIRED
mapfunction CDATA #REQUIRED

>

<!-- Specifies the name of the policy. This is essentially the task. -->
<!ELEMENT evidence EMPTY>
<!ATTLIST evidence

evidencename CDATA #REQUIRED
>

Figure 5.10: XML Schema for Hestia Evidence Mapped to Expectation Policy

63

<?xml version="1.0"?>
<xml_policy_4>
<policyname>

<name="evidence mapped to expectation" trustmode = yellow>
</policyname>

<evidencemapping>

<mapping>
<location = lan type =all operation = all expectation = "behavior" mapfunction = "function1">
<evidence>

<name = recommendations>
</evidence>

</mapping>
<mapping>

<location = inter type =all operation = all expectation = "behavior" mapfunction = "function2">
<evidence>

<name = "recommendations">
</evidence>
<evidence>

<name = "cooperation_indicator">
</evidence>

</mapping>

</evidencemapping>

</xml_policy_4>

Figure 5.11: Hestia Evidence Mapped to Expectation Policy

5.3.5 Triggering Rules Policy

The Triggering Rules policy shown in Figure 5.12 specifies the event that triggers evidence aggre-

gation.

A general policy could be:

”The aggregation algorithm is triggered at predefined interval X”.

and a specialized policy could be:

“For all INTER entities, the aggregation algorithm is triggered at predefined interval X or

when at least one sample has been received by Y recommenders”.

The two policies are illustrated in Figure 5.13.

64

<?xml version="1.0" encoding='us-ascii'?>
<!ELEMENT xml_policy_5 ANY>

<!-- Specifies the name of the policy. This is essentially the task. -->
<!ELEMENT policyname EMPTY>
<!ATTLIST policyname

name CDATA #REQUIRED
trustmode (red | orange | green) #REQUIRED

>

<!-- Information about the evidence mapped to expectation technique. -->
<!ELEMENT triggeringList (triggering*) >
<!ELEMENT triggering (parameters+)>
<!ATTLIST triggering

location (lan | inter | intra | any_location) #REQUIRED
 trusteeid CDATA " "

type (sensitive | public | private | evidence | alert | all) #REQUIRED
 operation (use | access | all) #REQUIRED
>

<!-- Specifies the name of the policy. This is essentially the task. -->
<!ELEMENT parameters EMPTY>
<!ATTLIST parameters

triggering (predefined | arrival_of_samples) #REQUIRED
intervalORsamples CDATA #REQUIRED

>

Figure 5.12: XML Schema for Hestia Triggering Rules Policy

<?xml version="1.0"?>
<xml_policy_5>
<policyname>

<name="triggering rules" trustmode = yellow>
</policyname>

<triggeringList>

<triggering>
<location = any_location type =all operation = all>
<parameters>

<triggering = predefined intervalORsamples = "X">
</parameters>

</triggering>
<triggering>

<location = inter type =all operation = all>
<parameters>

<triggering = predefined intervalORsamples = "X">
</parameters>
<parameters>

<triggering = arrival_of_samples intervalORsamples = "Y">
</parameters>

</triggering>

</triggeringList>

</xml_policy_5>

Figure 5.13: Hestia Triggering Rules Policy

65

CHAPTER 6

TRUST FORMALISM

This chapter presents the formal specification for trust relationships for indirect interactions using

the theory of sets and relations. Formal specifications use mathematical notation to describe in a

precise manner the properties which a system must have. They describe what the system must do

without saying how it is to be done (without the fine details of data structures and algorithms.) This

approach eliminates the details of programming languages but at the same time it offers enough

precision to describe how the trust tasks are accomplished. Due to the fact that it is independent of

the program code, a formal specification of trust can be completed early in the development.

6.1 Trust Ontology

The theory of sets and relations is used to represent the trust relationships between trustors and

trustees. In particular, this chapter formally defines “trust between trustors and trustees” as a

relation τ and examines the relation’s properties, operations and any other observations. Trust

relation has static aspects, such as properties and attributes (along withe their properties). The

dynamic properties include operations and the changes of state that happen.

τ(γ1, δ2, c1, λ1,ι6, ε1,id1,s1)

t0 t1 t2 t3 t4 t5

τ(γ1,δ1, c1, λ1,ι3,ε2,id2,s1) τ(γ1,δ1, c1, λ2,ι4, ε1,id1,s1)

τ(γ1, δ1, c2, λ1,ι2, ε1,id1,s1)

τ(γ2,δ1, c1, λ1,ι5,ε1,id3,s1)

τ(γ2,δ2,c1,λ1,ι1,ε1,id1,s1)

Figure 6.1: Trust Relationships Timeline

66

The attributes of the trust relation τ are trustor γ, trustee δ, context c, levels λ, time ι, ex-

pectations ε, interaction identifier id, and status s. Figure 6.1 illustrates six trust relationships

which hold true in τ . In order to understand the figure, it is sufficient, for now, to know that

τ (γ, δ, c, λ, ι, ε, id, s) is a trust relationship between two entities and it is interpreted as “trustor γ,

based on the current imputed trust mode, believes that the extent to which trustee δ will act as

expected for context c during time interval ι is λ, and this belief is subject to the satisfaction of

expectation set ε. This relationship is valid for a specific lifecycle stage and interaction id and its

status is indicated by s.” The current imputed trust is included in λ.

The following subsections explain in detail the relation’s attributes. To be more specific, a

formal definition is given for each attribute along with complementary definitions, properties, and

operations related with that attribute. The relation’s properties are described next, followed by

operations that change the state of the relation and observations. Two theorems are presented,

followed by operations that affect the relation indirtectly. Figure 6.2 is an informal overview of the

formalisms presented in this chapter.

6.1.1 Trustors and Trustees

The first two attributes γ, δ of trust relation τ represent the trustor and trustee respectively. These

are entities with unique identifiers. It is assumed that there is a naming and discovery service that

returns unique identifiers for all Hestia entities. Since the trust relation is maintained locally by

each Hestia entity (which is the trustor), the trustor attribute γ might be considered redundant.

However,we chose to include it as a trust parameter for completeness reasons. In addition, there

might be cases where all local trust relations will be merged to a central place in order to obtain a

snapshot of trust relationships at a wide-area level.

67

TRUST RELATION
τ(γ,δ,c,λ,ι,ε,id,s)

Definition of context c
c == (operation, {dataypes})

Intra-poset relations
Dominant/Dominated

Intersecting
Unrelated

Inter-poset relations
Different

Dual

Definition of expectation set ε
ε =={(property,operation,value_observed,
value_allowed,evaluation_parameters)..}

valid expectation

Expectation Sets relations
Strictly Equal

Relaxed Equal
Covered/Covering

Unrelated

Expectation Set Operations
Merging

Semantic Distance

Definition of intervals ι
ι == (ts,te)

Interval Relations
Intersected interval

Disjoint

Definition of levels λ
λ == (imputed trust mode,trustworthiness)

Trustor γ, based on the current imputed trust mode, believes that the extent to which trustee δ will act as expected for context c during interval ι is λ, and this belief is subject
to the satisfaction of expectation set ε. This relationship is valid for a specific lifecycle stage and interaction id. The status of the relationship is s.

OBSERVATIONS ON RELATION
symmetric

non-associative
duality

indirect trust changes

Definition of interaction identifier id
id == unique identifier

Definition of relationship status s
s == {OK,

WARNING,ALERT,TERMINATED_OK,
TERMINATED_NOT_OK}

THEOREMS
multiple relationships for an interaction
A change in trust within an interaction

affects all relationships

PROPERTIES OF TRUST
Non-overlapping for Dominant/Dominated and Intersecting Contexts

Overlapping for Different and Unrelated Contexts
Absence of Trust Level

Universal Agnostic
Trust Reduction

Trustworthiness and Imputed Trust Mode
Trustworthiness and Expectations

OPERATIONS ON RELATION
expiration of valid time

arrival of new time
expectation violation

initialization based on experience
end-to-end assessment

aggregation

OTHER OPERATIONS

trust level specification
trust level satisfaction and classification

Figure 6.2: Trust Formalism Overview

68

6.1.2 Context

The scope of the trust relationship is narrowed to a specific activity or environment called context.

Our model portrays context c as an action or operation performed on data during its lifecycle. Con-

sider A to be the set of operations performed on data and D to be the set of data types. DataTypes

is the power set of D. Context c is defined as follows:

Definition 6.1.1 Context Context c is an ordered pair (operation, datatypes), with operation ∈

A and datatypes ∈ DataTypes. DataTypes ∈ ℘D, with D to be the set of valid data types.

For example, consider the case where A is the set {consume, provide} and D con-

sists elements {normal, alert, recommendation}. Example contexts include the pairs

(provide, {normal}), (provide, {alert}), and (consume, {normal, alert}).

The set of all contexts is denoted by C and it is defined as a subset of the cartesian product

A × DataTypes. Set C is organized in partially ordered sets (posets), one for each operation,

under the relation of set inclusion ⊆ on DataTypes. Figure 6.3 illustrates two posets for C, given

the declarations of A and D above.

We distinguish context relations within a poset (intra-poset) and between different posets (inter-

poset). Contexts belonging to the same poset are associated via dominating, intersecting or unre-

lated relations. On the other hand, contexts from two different posets are related if their respective

actions are considered to be complimentary. For example, produce and consume are complemen-

tary actions because they are associated with two different information lifecycle stages.

Starting with intra-poset relations, two contexts c1 and c2 may be related, by definition, under

⊆. In that case, context c1 is a superset of c2 and c1 is labeled as dominant context. Similarly, c2

is the dominated context. As an example, consider contexts c1 = (provide, {normal, alert}) and

c2 = (provide, {normal}) with the former being the dominant context and the latter being the

dominated one.

69

provide,{normal,alert,recommend}

provide,{normal,alert}

provide,{normal} provide,{alert}

provide,{}

provide,{recommend}

provide,{alert,recommend}provide,{normal,recommend}

consume,{normal,alert,recommend}

consume,{normal,alert}

comsume,{normal} consume,{alert}

consume,{}

consume,{recommend}

consume,{alert,recommend}consume,{normal,recommend}

Figure 6.3: Posets For Context Set C

70

Definition 6.1.2 Dominant/Dominated Contexts Context c1 dominates context c2 if and only if

c2 ⊂ c1 in the same poset. In this case c1 is the dominant context and c2 is the dominated context.

Contexts c1 and c2 may be unrelated in a poset under the ⊆ relation. Take as an example

contexts (provide, {normal, alert}), (provide, {alert, recommendation}). However, the inter-

section of their respective datatypes sets outputs the singleton set {alert}. From this fact, it can be

deduced that unrelated contexts may be related under a secondary relation of intersection
⋂

within

the poset.

Definition 6.1.3 Intersecting Contexts Context c1 intersects with context c2 if and only if c1 ⊂ c2

and c2 ⊂ c1 do not hold in the same poset but c1

⋂
c2 6= ∅.

It is trivial to observe that Dominant/Dominated contexts are also Intersecting contexts but not

vice versa. Finally, there is the case where contexts are simply unrelated in a poset. Any two

singleton contexts fall into this category.

Definition 6.1.4 Singleton Context Context c is a singleton context if and only if its datatype set

is singleton.

Definition 6.1.5 Unrelated Contexts Context c1 and context c2 are unrelated if and only if they

are not related via Dominant/Dominated relation or Intersecting relation.

Inter-poset relations categorize contexts as different or dual. Contexts that are members of

different posets are automatically labeled as different. Contexts (provide, {normal, alert}) and

(consume, {normal}) are two different contexts.

Definition 6.1.6 Different Contexts Different contexts refer to contexts c1 and c2 from different

posets.

71

A specialization of the above inter-poset relation is the case where operations are considered to

be paired. For example, provide and consume constitute a pair. Dual contexts are different contexts

whose actions are paired for the intersection of their datatypes sets.

Definition 6.1.7 Dual Contexts Dual contexts refer to contexts c1 and c2 from different posets

whose first coordinates are paired actions. Duality is valid on the set produced by c1

⋂
c2, provided

that the intersection is not the empty set ∅.

6.1.3 Trust Levels

The next trust relation attribute is the trust levels λ, which is an ordered pair of two levels (λim, λt).

Trust is subjective for a couple of reasons: a trustor’s requirements are not met by trustees at the

same degree and a trustor’s expectations for a trustee differ based on the imputed trust mode. The

current literature provides a number of ways to denote how much an entity is worthy of trust. Trust

values [7], degrees [6] and levels [26] are all used by the trustor to categorize trustees based on

their perceived trustworthiness. Our model adopts the term trust level and it is defined below:

Definition 6.1.8 Level Trust level is a label supported by a trust classification system that is used

for labeling trustworthiness extent and trustfulness extent (imputed trust mode).

Definition 6.1.9 Trust Levels Trust levels λ is an ordered pair (λim, λt) with λim ∈ Λim, λt ∈ Λt,

and its coordinates represent trustfulness extent and trustworthiness extent respectively. Λim is

the set of trust levels values for trustfulness extent whereas Λt is the set of trust levels values for

trustworthiness extent. Sets Λim and Λt could be equal sets.

Current trust level classifications, shown in Figure 6.4(a), resemble a chain with total ordering

under the 6 operator. A chain structure allows a hierarchical ordering of trust levels such that

there is always a dominance relation between any two levels. For example, a partial trust level

dominates a partial distrust level.

72

Our trust level organization does not follow the total ordering scheme. According to Ullmann-

Margalit [44], trust and distrust are mutually exclusive but are not mutually exhaustive as they don’t

complement each other. There is a state of being agnostic in the matter of trusting or distrusting.

The new trust level classification is based on two observations that are derived from the above

claim:

1. The agnositc level is portrayed as the lack of evidence that prohibits the proper classification

of a trust relationship. It is not portrayed as the deliberate decision to ignore a trust rela-

tionship. The former case corresponds to the non-intentional ignorance (agnostic) whereas

the latter deals with the intentional ignoring, or neutral. Neutrality is not a synonym for dis-

trust. It only indicates an entity’s unwillingness to form any type of trust relationships with

a trustee for a number of reasons; i.e there is no gain from the interaction or the other entity

will benefit from the interaction but harmful consequences for members of the community.

2. The second observation is that the agnostic state serves as the starting point of a bi-directional

system leading to either trust or distrust (Figure 6.4(b)).

The new trust classification system of Figure 6.4(c) incorporates the two observations men-

tioned above. It is a partially ordered lattice where not all levels are comparable. A trust relation-

ship between two entities could be initially assigned a trust level of agnostic without making any

unsafe assumptions. From there, there are two directions to follow; the trust or distrust paths with

intermediate levels in between. No matter the direction, the dominant level is neutrality. The main

difference between our trust labeling system and others is that we don’t consider distrust as being

dominated by trust because such an ordering is situation-dependent and based on the evaluator’s

policies. In addition, distrust protects an entity from potential dangers and is not always associated

with a breach of trust.

Trust levels are closely related to two important concepts: trustfulness of the trustor and trust-

worthiness of the trustee [13]. Trustfulness is defined as the extent to which the trustor is willing to

73

Distrust Trust
Trust

Agnosticism

Not to Trust

Not to
Distrust

Full
Trust

Full
Distrust

Partial
Trust

Partial
Distrust

2

-1

1

0

Ignorance

3

(a) Chain Lattice
Trust Classification System

(b) Trust-Distrust Continuum

Neutral

Full
Trust

Full
Distrust

Partial
Trust

Partial
Distrust

Agnostic

(c) Lattice
Trust Classification System

Figure 6.4: Trust Classification Systems

take the risk of trust being abused by the trustee. On the other hand, trustworthiness is the extent to

which the trustee honors trust, if trust is placed. Trustfulness is the trait of trusting whereas trust-

worthiness is the trait of deserving trust. The trusting attitude of the trustor affects its judgment

regarding the trustworthiness of a trustee (and vice versa). The trustfulness of the trustor varies

and it depends on the trustor’s willingness to trust. In this model, the trustfulness of the trustor is a

synonym of imputed trust mode.

A trust level can take either continuous or discrete values. The fine-grained nature of the

continuous labeling makes it difficult to map trust into a value that is uniquely distinguished from

other values. Consider the trust levels of 2.12 and 2.22. The difference of 0.1 translates into infinite

trust levels between the two levels. As a result, the evaluator of the trust relationship might find it

non-trivial to choose a different course of action corresponding to each level. If the same actions

are taken for all levels, then it is pointless to use any levels at all. Grouping of continuous values

74

into discrete sets that are identified by a single label is a course-grained approach that allows clearer

distinction between trust levels.

6.1.4 Time

A trust relation consists of trust relationships that are valid for a period of time. Therefore, the trust

formalism must model the abstract concept of time.

The temporal database interpretation of time is chosen for modeling time. Temporal databases

keep track of past and future database states by attaching a time period to the data. There are two

different notions of time: valid time and transaction time. Valid time is the period which a fact is

true with respect the real world and transaction time is the time when the fact is actually stored in

the database. The two different notions of time allow the distinction of different forms of temporal

databases:

• Valid Time Database: stores data with respect to valid time. A valid time database allows

three types of updates: proactive, retroactive and simultaneous. The categorization depends

on the value of the valid end time with respect the time that the fact becomes effective in the

real world. A proactive update refers to an update that is applied to the database before it

becomes effective in the real world. A retroactive update refers to an update that is applied

to the database after it became effective in the real world. Lastly, an update that is applied

at the dame time when it becomes effective is a simultaneous update. Due to the fact that

updates may be applied retroactively or proactively, there is no record of the actual database

state at any point in time.

• Transaction Time Database: stores data with respect to transaction time. The actual times-

tamp of the transaction that applied the change is recorded. Transaction databases are also

called rollback databases because users can logically roll back to actual database states at

any past point.

75

• Bitemporal Database: stores data with respect to both valid time and transaction time.

In temporal databases, time domain T is considered to be an ordered sequence of points ti in

some application-dependent granularity [20]. An interval is an ordered pair of time points, and

for our purposes it is an anchored time duration with a fixed starting point. In temporal databases,

there is a distinction between interval and period. In a sense, our definition of interval corresponds

to what period means in temporal databases. The reason is because the term interval is commonly

used in trust literature, in contrast with the term period.

Definition 6.1.10 Interval An interval ι is an ordered pair of time points (ts, te) with the first point

appearing before the second point in the timeline. The set of all intervals I is the cartesian product

T × T , with ι representing an element from I .

According to Allen’s algebra [8], there are 13 possible relationships between two intervals ι1

and ι2 as shown in Table 6.1. The relationships between the intervals are illustrated in Figure 6.5.

Table 6.1: Interval Relationships

Relationship Notation Illustration
ι1 before ι2 (and its inverse) (ι1 < ι2) XXX YYY

ι1 equal ι2 (ι1 = ι2) XXX
YYY

ι1 meets ι2 (and its inverse) (ι1 m ι2) XXXYYY
ι1 during ι2 (and its inverse) (ι1 d ι2) XXXX

YYYYYYYYY
ι1 overlaps ι2 (and its inverse) (ι1 o ι2) XXXXXXX

YYYYY
ι1 starts ι2 (and its inverse) (ι1 s ι2) XXX

YYYYYYYY
ι1 finishes ι2 (and its inverse) (ι1 f ι2) XXX

YYYYYY

As it was mentioned earlier, the trust relation is dynamic and changes over time. Transaction

time is the time point when the current state of the relation changes.

76

ι1 ι2

0 1 2 3 4 5 6

ι1

ι2

0 1 2 3 4 5 6

ι1 ι2

0 1 2 3 4 5 6

ι1

ι2

0 1 2 3 4 5 6

ι1
ι2

0 1 2 3 4 5 6
ι1

ι2

0 1 2 3 4 5 6ι1

ι2

0 1 2 3 4 5 6

ι1 before ι2

ι1 equal ι2

ι1 meets ι2

ι1 during ι2

ι1 overlaps ι2

ι1 starts ι2

ι1 finishes ι2

Figure 6.5: Interval Relationships Diagrammatically

77

Definition 6.1.11 Transaction Time A transaction time t is a time point at which the state of the

trust relation changes.

Similar to temporal databases, a trust relation stores observed and anticipated trust relation-

ships. Each trust relationship is timestamped with time intervals. The granularity of time does not

affect the logic of the trust relation if it is consistent throughout the model. There are two types of

intervals: expected interval and actual interval. The expected interval indicates the anchored time

duration in which a trust relationship is predicted to be valid. The actual interval is the one that

the trust relationship was observed to be valid in the real world. Note that the actual trust relation

τ only keeps track of the expected interval, but when a trust relationship is terminated, then the

actual interval is recorded in the experience database.

Definition 6.1.12 Expected Interval An expected interval is the interval that a particular trust

relationship is expected to be valid in the real world.

Definition 6.1.13 Actual Interval An actual interval is the interval that a particular trust rela-

tionship was observed to be valid in the real world.

The reason for differentiating between the expected and actual intervals is twofold. First, the

expected interval is a prediction, an estimation. Hestia estimates expected intervals based on its

current knowledge. As time progresses, additional information generates new knowledge that may

affect the already predicted expected intervals. In a sense, actual intervals represent the history of

trust relationships, which is also known as experiences. Second, it is important to record both the

expected and actual intervals because the deviation between these two provides feedback to the

inference engine. Ideally, the expected and actual intervals should be the same. However, there are

scenarios that don’t correspond to the ideal case. For example, the predicted interval for a server’s

availability is [today,today+4 days]. The email announcement of a scheduled server maintenance

for tomorrow affects the server’s functionality and thus availability. As a result, the trust on that

78

server’s availability changes and possibly gets restored after the maintenance. The assumption is

that a new trust relationship is formed when the expected interval ι = (ts, te) is interrupted at

t > te.

There are some additional restrictions on how to assign intervals for trust relationships:

• The starting time is either the present time or a time point in the future. The transaction

time is not necessarily the same as the starting time. A trust relationship may be created

proactively because the future is not observed but predicted.

• The ending time is a time point in the future.

• A trust relationship with a recorded actual interval cannot be changed retroactively because

it is an observed experience that cannot and must not be changed. Since no retroactive

transactions are allowed, past states of the trust relation knowledge base are known.

In addition to the interval relationships presented earlier, the model must also account for the

intersected time interval ιs between intervals related with the equal, during, overlaps, starts and

finishes relationships.

Definition 6.1.14 Intersected Intervals Intervals ι1 = (ts1, te1) and ι2 = (ts2, te2) are intersected

if and only if (ι1 = ι2) ∨ (ι1 d ι2) ∨ (ι1 s ι2) ∨ (ι1 f ι2) ∨ (ι1 o ι2). The intersected interval ιs is

obtained as follows:

1. If (ι1 = ι2) ∨ (ι1 d ι2) ∨ (ι1 s ι2) ∨ (ι1 f ι2) , then ιs = (ts1, te1)

2. If (ι1 o ι2), then ιs = (ts1, te2)

It is also important to be able to deduce whether two intervals are disjoint or not.

Definition 6.1.15 Disjoint Intervals Intervals ι1 and ι2 are disjoint intervals if and only if (ι1 <

ι2) ∨ (ι1 m ι2).

79

The usefulness of intervals is twofold. First, an interval represents the valid time duration of a

trust relationship. This allows for deducing chronological ordering of trust relationships. For ex-

ample, in Figure 6.1 τ (γ2, δ2, c1, λ1, ι1, ε1, id1, s1) and τ (γ1, δ1, c2, λ1, ι2, ε1, id1, s1) are associated

with intervals ι1 and ι2 respectively. Since ι2 o ι1, it is inferred that τ (γ1, δ1, c2, λ1, ι2, ε1, id1, s1) o

τ (γ2, δ2, c1, λ1, ι1, ε1, id1, s1) . Second, intervals are used to model the lifecycle of an information

flow, which is central to the trust model. Information flow lifecycle consists of three stages; gen-

eration, distribution and consumption. Each stage is associated with an interval that indicates the

time that information resides in that stage. Let’s call the intervals ιg, ιd, ιc. For simplicity reasons,

for a specific information flow, its intervals intersect in time since trust is assessed for a flow rather

than for a packet basis.

6.1.5 Expectations

At it was stated earlier, trust is an abstraction of individual beliefs and requirements that an en-

tity has for specific situations and interactions. An expectation is defined as a requirement, or

trust property, and its allowed values that a trustor has for a particular interaction with a trustee.

The allowed values are constraint by equality and inequality operators. An expectation is a tuple

(π, o, νo, νa, ev) , where π is a trust property, o is a standard equality or inequality operator, νo

is the observed or actual value for the property, νa is the allowed value for that property, and ev

represents the evaluation information for the specific property.

The first expectation attribute is the trust property π. Trust properties are organized in a hier-

archical manner illustrated in Figure 4.5. Properties are grouped in their respective behavioral (β)

(including competence (cp) and motivation (µ)), security (σ), and QoS (φ) categories. Consider

facet κ ∈ {β, σ, φ}. Properties πβ ∈ Πβ , with Πβ to be the set of valid properties for β facet. Prop-

erties πσ ∈ Πσ, with Πσ to be the set of valid properties for σ facet. Similarly, properties πφ ∈ Πφ,

with Πφ to be the set of valid properties for φ facet. Since the three sets Πβ , Πσ, and Πφ are disjoint

sets and their respective properties are unique, facets are not included in the expectation definition.

80

Without loss of generality, trust property π ∈ Π, with Π = Πβ ∪ Πσ ∪ Πφ.

The second expectation attribute is the arithmetic equality or inequality operator o. Operator o

takes values from the set O that includes the arithmetic operators =, <, 6, >, >, and 6=.

The third and fourth attributes are the observed and allowed values respectively. Value ν ∈ V ,

with set V consisting of values that are assigned to properties. Set V is partitioned into subsets

Vi. A partition of a set S is a collection of nonempty disjoint subsets of S whose union equals

S. The subsets making up the partition are formed by grouping together related elements, in this

case values that correspond to a particular property π. The set partitioning is achieved by defining

equivalence relation ρ on V as ν1ρν2 where ν1 belongs to the same property as ν2. Note that

elements of set V must be of the same type. Since the subsets are disjoint, values have to be

unique. There are cases where two properties are mapped to the same values. In this case, the

elements are uniquely distinguished by replacing single value ν with a pair (π, ν). For brevity

reasons, we assume that values are unique. The reason for partitioning set V is for determining the

minimal value related to a property.

In order to reason between expectations the values must be ordered. Orders are special binary

relations, and in our case this relation is the 6. Consider set Vi and the relation 6 on Vi. The 6 is

a total order if it is reflexive, antisymmetric, transitive and total. For example, any set of ordinal

numbers (numbers used to denote the position in an ordered sequence) is a total-ordered set. Given

set Vi = {a, b, c, d}, the total order is defined by assuming a 6 b 6 c 6 d. Without loss of

generality, assume that every element of each subset of V is related to every other element using

the relation 6 on the subsets, yielding a total ordering (chain). Each set has one maximal element

and one minimal element. Furthermore, it is also assumed that operators o ∈ O are already defined

for all ν ∈ V .

Finally, the fifth attribute ev represents the evaluation parameters for the particular property.

An element ev is a tuple (covering, triggering, aggregation) that describes the covering method,

triggering rule and aggregation scheme for property π. The first attribute provides the terms under

81

an expectation is consider valid and the remaining two characterize the “when” and “how” the

actual value is updated. All three attributes conform to the principles of covering techniques,

triggering schemes and aggregation algorithms as explained in Chapter 3. The covering techniques

covered in this chapter are strict and relaxed, where in the former case the observed value satisfies

the allowed value under operation o and in the latter case a deviation is allowed.

An expectation set ε describes the requirements that a trustor has for a trustee. Formally, such

a set is defined in Definition 6.1.16.

Definition 6.1.16 Expectation Set Expectation set ε is subset of the cartesian product Π × O ×

V × V × EV . A member of the expectation set is tuple (π, o, νo, νa, ev) , which is referred to as

expectation. There is a unique tuple (π, o, νo, νa, ev) ∈ ε that corresponds to any given π.

Expectations sets are expressed in a manner that allows comparisons between any two sets of

expectations. Expectation sets are examined to determine relationships between their members.

Expectation Properties

As it was mentioned earlier, the expectation semantics dictate that an expectation is valid if and

only if the relationship between the observed value νo and the actual value νa under operation o

and covering method covering is also valid. Otherwise, a violation occurs. Table 6.2 illustrates

valid expectations and violations.

Table 6.2: Valid Expectations and Violations

Operator o νo νa Covering Valid or Violation
= 3 5 strict violation
= 5 3 d=2 valid
6 6 5 strict violation
6 6 5 d=4 valid

The property of valid expectation is given in Property 6.1.17.

82

Property 6.1.17 Valid Expectation Expectation (π, o, νo, νa, ev) is valid if and only if νo o (νa+d)

for o ∈ {=, <, <=} and νo o (νa − d) for o ∈ {>,>=} is true under the ordering of the values

of set V . Value d is set to 0 for strict covering and set to the permissible deviation for relaxed

covering technique.

Note that according to the semantics of threshold, a lower bound set by the operator > is shifted

down by d whereas the upper bound set by operator < is shifted up by d.

Expectation Set Comparisons

By itself an expectation set is not interesting unless operations are performed on its elements. How-

ever, prior to defining these operations we must first define the primitive comparison relationships

between its elements. The relationships between expectation tuples determine the relationships be-

tween expectation sets. These binary relationships include the standard equality (=) and less than

or equal (6) relationships as well as the redefinition of not equal 6=. In addition, a new relationship

called relaxed equal is defined. Based on the binary relationships, expectation sets when compared

fall in one of the four categories: strictly-equal, relaxed-equal, covered/covering and unrelated.

Starting with the relationships between expectation tuples, the equality relationship is given

in Definition 6.1.18. Two expectation tuples are equal if their respective trust properties π1, π2,

observed values νo1 , νo2 , allowed values νa1 , νa2 , and covering methods covering1, covering2 are

the same. The triggering and aggregation methods do not need to be the same since they don’t

affect the semantics of the expectation tuples. Those attributes merely affect the when and how the

observed value changes.

Definition 6.1.18 Equal Expectations Expectation (π1, o1, νo1 , νa1 , ev1) is equal with expecta-

tion (π2, o2, νo2 , νa2 , ev2) if and only if π1 = π2 and o1 = o2 and νo1 = νo2 and νa1 = νa2 and

covering1 ∈ ev1 = covering2 ∈ ev2.

(π1, o1, νo1 , νa1 , ev1) = (π2, o2, νo2 , νa2 , ev2) ⇔

83

∃ (π1, o1, νo1 , νa1 , ev1) , (π2, o2, νo2 , νa2 , ev2) ∈ ε,

(covering1, triggering1, aggregation1), (covering2, triggering2, aggregation2) ∈ ev•

(π1 = π2) ∧ (o1 = o2) ∧ (νo1 = νo2) ∧ (νa1 = νa2) ∧ (covering1 = covering2)

One has to be careful with the semantics of not equal 6=. Using the definition 6.1.18,

(π1, o1, νo1 , νa1 , ev1) 6= (π2, o2, νo2 , νa2 , ev2) ⇔ ¬ (π1 = π2 ∧o1 = o2 ∧ νo1 = νo2 ∧ νa1 = νa2

∧ covering1 = covering2). However, this definition is incomplete when one takes into account

the semantics of an expectation tuple. There are 27 (7 different expectation attributes) possible

combinations that relate two expectation tuples under the 6= operator. Due to brevity reasons, we

only list a subset of these combinations in Table 6.3

Table 6.3: Expectation Combinations

Name Notation Expression
Equal (π1, o1, νo1 , νa1 , ev1) = (π2, o2, νo2 , νa2 , ev2) π1 = π2 ∧ o1 = o2 ∧ νo1 = νo2∧

νa1 = νa2 ∧ covering1 = covering2

Relaxed
Equal (π1, o1, νo1 , νa1 , ev1) ≈(π2, o2, νo2 , νa2 , ev2) (π1 = π2 ∧ o1 = o2 ∧ νo1 6= νo2∧

νa1 6= νa2 ∧ covering1 = covering2)
∨
(π1 = π2 ∧ o1 = o2 ∧ νo1 = νo2∧
νa1 6= νa2 ∧ covering1 = covering2)

Not
Equal (π1, o1, νo1 , νa1 , ev1) 6=(π2, o2, νo2 , νa2 , ev2) (π1 6= π2 ∧ o1 = o2 ∧ νo1 = νo2∧

νa1 = νa2 ∧ covering1 = covering2)
∨
(π1 6= π2 ∧ o1 6= o2 ∧ νo1 = νo2∧
νa1 = νa2 ∧ covering1 = covering2)
∨ · · ·

The not equal is redefined to cover only the combinations such that π1 6= π2. The reason for

excluding combinations where π1 = π2 ∧ νa1 6= νa2 lies on the semantics of an expectation; these

combinations suggest that both expectation tuples refer to the same requirement but with different

84

values. As a result, the relaxed equal relationship relates two expectations that refer to the same

property mapped to different values.

Definition 6.1.19 Relaxed Equal Expectations An expectation (π1, o1, νo1 , νa1 , ev1) is relaxed

equal with another expectation (π2, o2, νo2 , νa2 , ev2) if and only if π1 = π2 ∧ o1 = o2 ∧ νo1 6=

νo2∧νa1 6= νa2∧covering1 = covering2 or π1 = π2∧o1 = o2∧νo1 = νo2∧νa1 6= νa2∧covering1 =

covering2

(π1, o1, νo1 , νa1 , ev1) ≈ (π2, o2, νo2 , νa2 , ev2) ⇔

∃ (π1, o1, νo1 , νa1 , ev1) , (π2, o2, νo2 , νa2 , ev2) ∈ ε ,

(covering1, triggering1, aggregation1), (covering2, triggering2, aggregation2) ∈ ev•

(π1 = π2 ∧ o1 = o2 ∧ νo1 6= νo2 ∧ νa1 6= νa2 ∧ covering1 = covering2) ∨

(π1 = π2 ∧ o1 = o2 ∧ νo1 = νo2 ∧ νa1 6= νa2 ∧ covering1 = covering2)

Relaxed equal expectations are related by the 6. The following definition combines equality

and relaxed equality:

Definition 6.1.20 Less Than or Equal (6) Expectations Expectation i = (π1, o1, νo1 , νa1 , ev1) is

less than or equal to expectation j=(π2, o2, νo2 , νa2 , ev2) if and only if i ≈ j and νa1 6 νa2 .

(π1, o1, νo1 , νa1 , ev1) 6 (π2, o2, νo2 , νa2 , ev2) ⇔

∃ i ∈ ε1, j ∈ ε2 • i ≈ j ∧ νa1 6 νa2

Definitions 6.1.18 through 6.1.20 are used for determining relationships between any two ex-

pectation sets. Below, are 4 ways that expectation sets are related. Each relationship is illustrated

with an example.

Starting with the equality relationship, two expectation sets are strictly equal if they contain

the same elements. Since equality between members is already defined, the definition of improper

85

set needs not to be redefined. Expectation sets ε1 = {(cooperation, =, 1, 1, ev), (reliability, >

, 0.98, 0.97, ev2)} and ε2 = {(cooperation, =, 1, 1, ev), (reliability, >, 0.98, 0.97, ev2)} are

strictly equal.

Definition 6.1.21 Strictly Equal Expectation Sets Expectation set ε1 is strictly equal to expecta-

tion set ε2 if and only if ε1 is an improper1 set of ε2, under the equality definition 6.1.18.

ε1 = ε2 ⇔ ∀ i ∈ ε1 ∃ j ∈ ε2 • i = j ∧ |ε1| = |ε2|

Consider expectation sets ε1 = {(cooperation, >, 3, 1, ev), (reliability, >, 0.98, 0.97, ev2)}

and ε2 = {(cooperation, >, 2, 1, ev), (reliability, >, 0.98, 0.97, ev2)} These two sets don’t have

the same elements, but they both contain values for the same properties: cooperation and reliability.

These two sets are called relaxed equal. The relaxed equal comparison is a generalization of the

strictly equal comparison.

Definition 6.1.22 Relaxed Equal Expectation Sets Expectation set ε1 is relaxed-equal to ex-

pectation set ε2 if and only if for all tuples i=(π1, o1, νo1 , νa1 , ev1) ∈ ε1 there is tuple j =

(π2, o2, νo2 , νa2 , ev2) ∈ ε2 such as |ε1| = |ε2| and (i ≈ j or i = j).

ε1 ≈ ε2 ⇔ ∀ i ∈ ε1 ∃ j ∈ ε2 • ((i = j) ∨ (i ≈ j)) ∧ |ε1| = |ε2|

An interesting relationship between two expectation sets is the covering relationship. An ex-

pectation set is covered by another one if all its elements are related with an element from another

expectation set under the relations = or 6.

Consider expectation sets ε1 = {(cooperation, >, 3, 1, ev), (reliability, >, 0.98, 0.97, ev2)}

and ε2 = {(cooperation, >, 4, 2, ev), (reliability, >, 0.98, 0.97, ev2),

(authentication, =, 1, 1, ev)} . ε1 is covered by ε2 and this relationship is denoted as ε1 6 ε2.
1The symbol ⊆ admits the possibility that a subset concerned maybe in the fact the whole of the set. The symbol

⊂ rejects the idea. The symbol for improper set is therefore not defined.

86

Definition 6.1.23 Covered/Covering Expectation Sets Expectation set ε1 is covered by ex-

pectation set ε2 if and only if for all tuples i=(π1, o1, νo1 , νa1 , ev1) ∈ ε1 , there is tuple j =

(π2, o2, νo2 , νa2 , ev2) ∈ ε2 such i 6 j. Analogously, expectation set ε2 is covering expectation

set ε1.

ε1 6 ε2 ⇔ ∀ i ∈ ε1 ∃ j ∈ ε2 • (i 6 j)

Finally, there is the case where the elements of an expectation set are not related to the elements

of another set with only one relationship or the elements are simply not equal. Expectation sets

ε1 = {(cooperation, >, 2, 1, ev)} and ε2 = {(reliability, >, 0.98, 0.97, ev2), (authentication, =

, 1, 1, ev)} are unrelated.

Definition 6.1.24 Unrelated Expectation Sets Expectation set ε1 is unrelated with expectation

set ε2 if and only if the two sets are not strictly equal or relaxed equal or associated by the cov-

ered/covering relation.

ε1 6= ε2 ⇔¬ (ε1 = ε2 ∨ ε1 ≈ ε2 ∨ ε1 6 ε2 ∨ ε2 6 ε1)

Recall, that in Section 3.3.4 there was a question that involved expectation set satisfaction. The

question was phrased as “Given a target set ε and a set of expectation sets E = {ε1, ε2, · · · , εn},

does the target expectation set satisfy all members of set E?” The solution to this question is given

below:

ε satisfies E ⇔ ∀εi ∈ E • (ε = εi ∨ εi 6 ε)

Expectation Set Operations

A new set of expectations can be defined from existing expectation sets. There are two operations

that result in the creation of a new set: merging and semantic distance.

Merging is an operation on two expectation sets and its purpose is to provide a unified view of

expectations, which answers queries like “What is the expectation set for a path that starts from X

87

and terminates at Y?” A general way to accomplish merging would be to apply a function fπ on

the values of a property.

Property 6.1.25 Merging of Expectation Sets (General Function) Consider expectation sets

ε1 and ε2. The merging of the two expectation sets results in a new expectation set εmerge that is

constructed as follows:

1. Initialize εmerge = ∅

2. If ε1 = ε2, then εmerge ∪ ε1.

3. if ε1 ≈ ε2, then ∀i:(π1, o1, νo1 , νa1 , ev1) ∈ ε1, ∃ j:(π2, o2, νo2 , νa2 , ev2) ∈ ε2 such that i ≈ j

and εmerge∪ {((π1, o1, νfπ(o2,o1)
, νfπ(a2,a1)

, ev1))}.

4. if ε1 6 ε2, then ∀i:(π1, o1, νo1 , νa1 , ev1) ∈ ε1, ∃ j:(π2, o2, νo2 , νa2 , ev2) ∈ ε2 such that i 6 j and

εmerge∪ {((π1, o1, νfπ(o2,o1)
, νfπ(a2,a1)

, ev1))}. . Furthermore, for all tuples (πd, od, νd, νd, evd)

in ε2 − ε1, εmerge∪ {((πd, od, νfπ(od)
, νfπ(ad)

, evd))}.

5. if ε2 6 ε1, then ∀i:(π2, o2, νo2 , νa2 , ev2) ∈ ε2, ∃ j:(π1, o1, νo1 , νa1 , ev1) ∈ ε1 such that i 6 j and

εmerge∪ {((π2, o2, νfπ(o2,o1)
, νfπ(a2,a1)

, ev2))}. . Furthermore, for all tuples (πd, od, νd, νd, evd)

in ε1 − ε2, εmerge∪ {((πd, od, νfπ(od)
, νfπ(ad)

, evd))}.

6. if ε2 6= ε1, then εmerge ∪ ε1. For all (π2, o2, νo2 , νa2 , ev2) in ε2, if there is tuple

(πm, om, νom , νam , evm) ∈ εmerge 6 (π2, o2, νo2 , νa2 , ev2) ∨ (πm, om, νom , νam , evm) ≈

(π2, o2, νo2 , νa2 , ev2) ∨ (πm, om, νom , νam , evm) = (π2, o2, νo2 , νa2 , ev2) then εmerge∪

{((πm, om, νfπ(o2,om)
, νfπ(a2,am)

, evm))} and ε2− (π2, o2, νo2 , νa2 , ev2) . Afterwards, if |ε2| 6=

0, for all tuples (πd, od, νd, νd, evd) in ε2, εmerge∪ {((πd, od, νfπ(od)
, νfπ(ad)

, evd))}.

Merging expectations based on the weakest link theory in security chains is another way to

unify expectations. A security chain is as strong as its weakest link. Consequently, the aggregation

88

of expectation sets reflects the weakest expectations from both sets, meaning that the lower values

are chosen. This is a pessimistic approach for combining expectations, but nevertheless viewing a

group of entities with diverse expectations as a single entity assumes that a low value dominates a

high value. Viewing a chain as a single link means to find the achilles heel, the most vulnerable

point, its most damaging weakness. A future work on this is to detect the weakest link and devise

ways to toughen that link in the chain. The new set is called the merging of expectation sets ε1 and

ε2.

Property 6.1.26 Merging of Expectation Sets (Weakest expectation) Consider expectation sets

ε1 and ε2. The merging of the two expectation sets results in a new expectation set εmerge that is

constructed as follows:

1. Initialize εmerge = ∅

2. If ε1 = ε2, then εmerge ∪ ε1.

3. if ε1 ≈ ε2, then ∀(π1, o1, νo1 , νa1 , ev1) ∈ ε1, εmerge∪ {(π1, o1, νo1 , νa1 , ev1) } if and only if

(π1, o1, νo1 , νa1 , ev1) 6 (π2, o2, νo2 , νa2 , ev2) ∈ ε2. Otherwise, εmerge∪ { (π2, o2, νo2 , νa2 , ev2)

}.

4. if ε1 6 ε2, then εmerge ∪ ε1. Furthermore, for all tuples (πd, od, νod
, νad

, evd) in ε2 − ε1,

replace νad
and νod

by the minimum value νmin from the value set V , and εmerge∪ {

(πd, od, νomin
, νamin

, evd) }.

5. if ε2 6 ε1, then εmerge ∪ ε2. Furthermore, for all tuples (πd, od, νod
, νad

, evd) in ε1 − ε2,

replace νad
and νod

by the minimum value νmin from the value set V , and εmerge∪ {

(πd, od, νomin
, νamin

, evd) }.

6. if ε2 6= ε1, then εmerge ∪ ε1. For all (π2, o2, νo2 , νa2 , ev2) in ε2, if there is tuple

89

(πm, om, νom , νam , evm) 6 (π2, o2, νo2 , νa2 , ev2) , then ε2− (π2, o2, νo2 , νa2 , ev2) . After-

wards, if |ε2| 6= 0, for all set members replace νa2 and νo2 in (π2, o2, νo2 , νa2 , ev2) by the

minimum value νmin from the value set V and εmerge∪ {(π2, o2, νomin
, νamin

, ev2) }

The second operation is to determine the distance between two expectation sets. Given an

ideal expectation set εideal, expectation set εcurrent meets, under-qualifies or over-qualifies the ideal

set’s requirements. Semantic distance is an indicator of the deviation between a given expectation

set and an ideal one, when operands for all expectation tuples is the equality operand. This is

an alternative method of deciding whether a group of entities undertaking the same task meets

particular expectations. In order to estimate the distance between any two sets, we use a variant of

the k-nearest neighbor algorithm, which classifies new data points based on a similarity measure.

That measure, in our case, is the Euclidean distance. An expectation set with n attributes is mapped

into an n-dimensional cartesian system as a single point. In this n-dimensional space, the distance

between two points (two expectation sets) is calculated as follows:

d(ε1, ε2) =

√√√√ n∑
k=1

(ν1k − ν2k)2 (6.1)

In the above equation all attributes carry the same importance. However, there are cases where

an attribute affects trust more than the remaining attributes; for example, in ecommerce appli-

cations authentication of the server is far more important than the competition factor. Attribute

weights are used to affect the distance metric. In particular, the Euclidean metric is modified by a

set of weights that represent the information content or importance of each requirement as follows:

dw(ε1, ε2) =

√√√√ n∑
k=1

w(k)(ν1k − ν2k)2 (6.2)

Selecting a subset of attributes is a special case of feature weighting where the weights can

only take binary values.

90

Property 6.1.27 Semantic Distance Between Expectation Sets Consider expectation sets εideal

and εcurrent. The semantic distance between the two sets is estimated as follows:

1. Initialize variable sum to 0

2. ∀i:(π1, o1, νo1 , νa1 , ev1) ∈ εideal do one of the following in the order given:

(a) if ∃ j:(π2, o2, νo2 , νa2 , ev2) ∈ εcurrent such that i = j ∨ i ≈ j then add(sum, (νa1−νa2)
2).

(b) if the above is not true, then add(sum, (νa1)
2)

3. if |εideal| < |εcurrent|, then add(sum, (νa2)
2) for all (π2, o2, νo2 , νa2 , ev2) not in εideal

4. d(ε1, ε2) = sqrt(sum)

The weighted semantic distance between sets is similar to operation 6.1.27, with the difference

that weight w is attached to the difference between two values for the same property.

6.1.6 Interaction id

Another trust relation attribute is the interaction identifier id. There is a unique identifier for each

indirect interaction, and there are at least two trust relationships for such interaction.

6.1.7 Status

The last attribute is the status of a trust relationship. Status takes values from the set S =

{OK, WARNING,ALERT, TERMINATED − OK, TERMINATED − NOT − OK}.

The first three elements of S are used when the relationship is valid in τ and the remaining two

are used when the relationship does not belong to τ . In the latter case, the relationship is added as

experience along with the appropriate status element that represents the reason of termination.

6.2 Formal Definition of Trust Relation

Trustors, trustees, contexts, levels, intervals, expectations, interaction identifiers and status are

combined together to represent trust as a relation. Let Γ, ∆, C, Λ, I , E, ID, and S be the sets

91

of trustors, trustees, contexts, intervals, levels, expectations, identifiers and status respectively. A

trust relation between the eight sets is a collection of ordered tuples (γ, δ, c, λ, ι, ε, id, s) such that

γ ∈ Γ, δ ∈ ∆, c ∈ C, λ ∈ Λ, ι ∈ I , ε ∈ E, id ∈ ID and s ∈ S. Let’s call this 8-ary trust relation

τ . The formal definition of trust as a relation has as follows:

Definition 6.2.1 Trust Trust is represented as a trust relation τ and the τ (γ, δ, c, λ, ι, ε, id, s) tuple

valid in τ represents a trust relationship between a trustor γ and a trustee δ. Trustor γ, based on the

current imputed trust mode λim (with λ = (λim, λt), believes that the extent to which trustee δ will

act as expected for context c during time interval ι is λt, and this belief is subject to the satisfaction

of expectation set ε. This relationship is valid for a specific lifecycle stage and interaction id.

Status s represents the current status of the relationship.

6.3 Representation of Trust Relation

A trust relation, being a set of ordered tuples, is represented by listing its members using set

notation or using the more informal form of a table. In the first case, Ω is a subset of Γ × ∆ ×

C × Λ × I × E × ID × S that consists of those ordered tuples (γ, δ, c, λ, ι, ε, id, s) for which

τ (γ, δ, c, λ, ι, ε, id, s) is true. Formally, Ω = { (γ, δ, c, λ, ι, ε, id, s) ; γ ∈ Γ, δ ∈ ∆, c ∈ C, λ ∈

Λ, ι ∈ I, ε ∈ E, id ∈ ID, s ∈ S; τ (γ, δ, c, λ, ι, ε, id, s) }.

The Ω set that corresponds to Figure 6.1 has as follows: Ω = { (γ2, δ2, c1, λ1, ι1, ε1, id1, s1)

, (γ1, δ1, c2, λ1, ι2, ε1, id1, s1) , (γ1, δ2, c1, λ1, ι6, ε1, id1, s1) , (γ1, δ1, c1, λ1, ι3, ε2, id1, s1) ,

(γ1, δ1, c2, λ4, ι1, ε1, id1, s1) , (γ2, δ1, c1, λ1, ι5, ε1, id1, s1) }.

The second method for representing τ is the tabular representation shown in Table 6.4. This

scheme, even though is intuitively satisfying, it consumes a lot of space.

6.4 Trust Relation Visualizations

There are a number of ways to visualize relations graphically and those include using the cartesian

coordinates, mapping diagrams and directed graphs. Starting with the cartesian coordinate system,

92

Table 6.4: Tabular Representation of Trust Relation of Figure 6.1

Trustor Trustee Context Level Interval Expectation Interaction Id Status
γ2 δ2 c1 λ1 ι1 = [t1, t3] ε1 id1 s1

γ1 δ1 c2 λ1 ι2 = [t0, t2] ε1 id1 s1

γ1 δ2 c1 λ1 ι6 = [t3, t5] ε1 id1 s1

γ1 δ1 c1 λ1 ι3 = [t0, t1] ε2 id1 s1

γ1 δ2 c1 λ2 ι4 = [t2, t4] ε1 id1 s1

γ2 δ1 c1 λ1 ι5 = [t0, t3] ε1 id1 s1

the visualization of higher dimensions is not trivial. Since the focus of this paper is not to devise

an 8-dimensional cartesian coordinate system, we are using the 3-dimensional system to capture

a snapshot of the relation at a specific time, trustor, level and status. Figure 6.6 illustrates such a

snapshot for the trust relation of Figure 6.1. The utility of such a representation is the ability to

decompose the universal relation τ into groups with narrower focus. Such decomposition is based

on grouping tuples specific for a trustor, time, level and status. We define such a group as a given

trustor’s trust relation plane for level λ, status s at time t. A trustor has multiple trust relation

planes that change over time (Sliding trust planes).

Definition 6.4.1 Trust Relation Plane Trust Relation Plane is a collection of tuples (γ, δ, c, λ, ι)

belonging to τ for a specific γ, λ and s at a specific time point t. The trust relation plane dynami-

cally changes to reflect the intervals that those tuples are valid in τ .

The second method for relation visualization is a graph. Graphs focus on binary relations where

hypergraphs focus on n-ary relations.. A hypergraph is a graph structure where an edge links more

than 2 vertices. The complexity of hypergraphs led us in tailoring graphs to accommodate the 8-ary

trust relation. A node represents either a trustor or a trustee. Nodes are connected by directed edges

that start at a trustor node and end at a trustee node. Each edge carries the tuple that describes the

relationships between the two connecting nodes. An edge may carry multiple tuples. Figure 6.7 is

a graph for trust relation τ of Figure 6.1.

93

Interaction
ID,

Context C

Trustees
Δ

Expectations
E

δ1
 trust relation

plane

(γ1,δ2, c2, λ1, ι5, ε2, id2, s1)

Trustor γ1, Time Point t1, Levels λ1,
Status s1

(γ1,δ2, c1, λ1, ι1, ε1, id1, s1)

δ2
 trust relation

plane Interaction
ID,

Context C

Trustees
Δ

δ1
 trust relation

plane

Trustor γ1, Time Point t2, Levels λ1,
Status s1

δ2
 trust relation

plane

(γ1,δ2, c1, λ1, ι1, ε1, id1, s1)

(γ1,δ2, c2, λ1, ι5, ε2, id2, s1)

(γ1,δ1, c1, λ1, ι1, ε1, id1, s1)

Expectations
E

Figure 6.6: Trust Relation Visualization in Cartesian Coordinate System at selected time points

γ1

δ2

γ2

δ1

τ(γ2 ,δ2 ,c1 ,λ1 ,ι1 ,ε1 ,id1 ,s1)τ(γ 2
,δ 1,

c 1,
λ 1,
ι 5,
ε 1,
id 1,

s 1)

τ(γ 2
,δ 2,c 1

,λ 1,ι 6
,ε 1,i

d 1,s 1
)

τ(γ1 ,δ1 ,c2 ,λ1 ,ι2 ,ε1 ,id1 ,s1)

τ(γ1 ,δ1 ,c1 ,λ1 ,ι3 ,ε2 ,id1 ,s1)

τ(γ1 ,δ1 ,c1 ,λ2 ,ι4 ,ε1 ,id1 ,s1)

Figure 6.7: Trust Relation Graph

94

6.5 Trust Relation Properties

After formally defining trust, its properties discussion naturally comes next. For all definitions,

operations, and observations that follow, the trust level set Λ is the set {A (agnostic), PT (partial

trust), PD (partial distrust), FT (full trust), FD (full distrust), N (neutral)} whose elements are

ordered as the lattice of Figure 6.4(c). Throughout this discussion, references to Figures 6.8,6.9 as

an example trust relation graph corresponding to a specific network topology will be made. This

will help clarify and demonstrate concepts where needed.

A B
S1

S2

τ(A,B,c1,λ1,ι1,ε1, id1, s)

τ(A,S1,c1,λ1,ι2,ε1, id1, s)
τ(A,S2,c2,λ1,ι1

,ε1,
id1,

s)

C

τ(A,C,c3 ,λ2 ,ι4 ,ε1 , id1 , s)

S3

τ(A,S1,c3,λ1,ι3,ε2, id2, s)

τ(A,S3 ,c6 ,λ2 ,ι1 ,ε1 , id1 , s)

τ(C,S1 ,c4 ,λ3 ,ι1 ,ε4 , id4 , s)

τ(C,A,c4 ,λ1 ,ι1, ,ε1 , id1 , s)

D

τ(A
,D,c 3,

λ 1,
ι 2,
ε 1,

 id 1,
 s)

τ(D,S3,c4,λ1,ι3,ε1, id1, s)

τ(D
,A,c 4,

λ 1,
ι 3,
ε 1,

 id 1,
 s)

Trust Relation Graph

τ(A,C,c5 ,λ1 ,ι3 ,ε1 , id1 , s)

τ(C,B,c7 ,λ1 ,ι3 ,ε1 , id1 , s)

Figure 6.8: Trust Graph for Example Network Topology

The next step in formalizing trust is the definition of its properties. The standard properties

95

Description Index

c1 = (consume,{alert})
c2 = (consume,{alert,normal})
c3 = (provide,{recommendation,normal})
c4 = (consume,{recommendation})
c5 = (provide,{normal})
c6 = (provide,{recommendation})
c7 = (provide,{alert})

ι1 = [0,10]
ι2 = [2,12]
ι3 = [2,10]
ι4 = [12,20]

A,B,C,D,E are peer entities
S1, S2, S3, S4 are servers

A B

D

C
E

S1 S2

S4S3

Network Topology

Figure 6.9: Network Topology for Figure 6.8

of any n-ary relation include the reflexive, irreflexive, symmetric, antisymmetric, transitive, and

equivalence properties. In the literature, there are claims stating that trust is not transitive and not

symmetric. A careful examination of the implications of these statements disproves those claims.

First, let us define what a property is. If condition X is true about a relation R, then we say

that relation R has the X property. The property is either valid or invalid for a specific relation.

Having that said, our position is that the standard properties for trust relations are difficult to prove

due to the non-absolute characteristics of trust relationships and their time dependance. These are

limitations of expressing trust using the formalisms of sets and relations.

In order to support the above claims, we examine whether or not the antisymmetric property

holds for trust relations. An ordered tuple (a,b,c) is also represented as an ordered pair ((a,b),c).

Our claim is that the antisymmetric property is tested on the first coordinate of the ordered pair.

Our assumption is based on the semantics of the property within the trust relation. In this case,

antisymmetric property states that ordered tuple ((b,a),c) does not exist. Antisymmetry is true if

96

and only if for every tuple (γ, δ, c, λ, ι, ε, id, s) the tuple(δ, γ, c, λ, ι, ε, id, s) does not exist in τ . This

condition is time-independent. Consider a simple two-node peer-to-peer network that facilitates

the exchange of data generated by temperature sensors. Suppose γ1 has complete trust in using the

received data from node δ1 for a period of 30 days. The trust relation (γ1, δ1, c1, λ1, ι1, ε1, id1, s1)

is valid for [t, t+30]. At this point of time t = today, the antisymmetric property holds. If node δ1

decides to establish a reciprocal relationship with γ1, then τ will seize to be antisymmetric because

the tuple (δ1, γ1, c1, λ1, ι1, ε1, id1, s1) belongs to the relation.

All standard properties face the same issue described above and as a result we have to seek

other properties unique to trust relations. Trust relation properties are time-dependent and usually

valid on restrictions of trust relations.

At a specific time point and particular imputed trust model, there is only one trustworthiness

level associated with a context for a specific interaction. For example trustor A has set two trust

relationships τ (γA, δC , c3, λ2, ι3, ε1, id1, s1) and τ (γA, δC , c5, λ2, ι4, ε1, id1, s1) with trustee C for

contexts c3 and c5 that fall into the Dominant/Dominating category. In this case, the second re-

lationship is valid only after the first one becomes invalid. On the other hand, trustor A allows

tuples τ (γA, δS1, c1, λ2, ι2, ε1, id1, s1) and τ (γA, δS1, c3, λ1, ι3, ε2, id2, s1) to be valid for an inter-

sected period of time because the two contexts and their associated interactions are different. The

requirement of non-overlapping trust tuples for dominant/dominated or intersecting contexts is set

so that the formalism will be deterministic in assigning a trustworthiness level for a given context

at any time point. Allowing conflicting trust relationships would have required devising ways to

resolve the conflicts.

Property 6.5.1 Non-overlapping for Dominant/Dominated and Intersecting Contexts If there

exist ordered tuples (γ1, δ1, c1, λ1, ι1, ε1, id1, s1) and (γ1, δ1, c2, λ2, ι2, ε2, id1, s1) that satisfy τ

such that c1 and c2 are either Dominant/Dominated or Intersecting contexts, then ι1 < ι2 (or its

inverse) or ι1 m ι2 (or its inverse) must hold.

97

Property 6.5.2 Overlapping for Different and Unrelated contexts If there exist ordered tuples

(γ1, δ1, c1, λ1, ι1, ε1, id1, s1) and (γ1, δ1, c2, λ2, ι2, ε2, id1, s1) that satisfy τ such that c1 and c2

are either Different or Unrelated contexts, then any valid relationship may hold between their

respective intervals ι1 and ι2.

The model’s supported trust level classification entails that absence of trust does not equal

with the presence of distrust. In the contrary, when no information is available to evaluate a trust

relationship, Agnostic is automatically assigned as the trust level of the tuple in question. The

network topology of Figure 6.8 includes entity E whom A has no prior or current trust relationships

with. The lack of experience, recommendations and any other factors that might affect the trust

relation suggests that A may add tuples (γA, δE, c, λagnostic, ι, εagnostic, id, s) for all valid contexts

c.. The valid interval of each tuple is application-specific.

Property 6.5.3 Absence of Trust Level If at time t there is no matching tuple for trustor γ, trustee

δ and context c in relation τ , then it is not implied that τ (γ, δ, c, λFull−distrust, ι, εFull−distrust, id, s)

is true.

Property 6.5.4 Universal Non-agnostic (Closure property) If at time t there is no match-

ing tuple for trustor γ, trustee δ and context c in relation τ , then it is implied that

τ (γA, δE, c, λagnostic, ι, εagnostic, id, s) is true.

Property 6.5.5 Trust Reduction If at time t there are tuples (γ1, δ1, c1, λ1, ι1, ε1, id1, s1) and

(γ1, δ1, c2, λ1, ι1, ε1, id1, s1) in τ with c1 and c2 be intersecting or unrelated contexts may be re-

duced to a single tuple (γ1, δ1, c3, λ1, ι1, ε1, id1, s1) , where c3 is c1

⋃
c2.

Property 6.5.6 Unique Imputed Trust Mode At time t, there is only one active imputed trust

mode λim for all tuples in τ .

Property 6.5.7 Trustworthiness Levels and Imputed Trust Mode For each imputed trust mode

λim, there are m trustworthiness levels λt, where m depends on the level classification system.

98

Property 6.5.8 Trustworthiness Levels and Expectations For each imputed trust mode λim,

there are m expectation sets that are associated with the m trustworthiness levels λt, where m

depends on the level classification system.

6.6 Trust Relation Operations

Relation R may be defined by describing the relation or listing ordered pairs that satisfy R. There

are a number of ways to view a relation:

• Boolean function: A relation ρ on a set A can be viewed as a function of type A → A →

Boolean.

• Set of ordered pairs: A relation ρ on a set A can be viewed as a the set {(a, b) ∈ A × A|

ρ(a, b) is true}.

The statement ρ(a, b) is true can be replaced by either ρ(a, b) or aρb . Once you choose a

particular a, b pair, statement ρ(a, b) is treated as a simple proposition that returns either true or

false. In other words, the ordered pair (a,b) satisfies relation ρ. Relation ρ may be defined by

describing (characteristic property of elements of the relation) the relation or by listing the ordered

pairs that satisfy ρ. As an example, consider the definition of the transitivity property. A relation ρ

on A is transitive if for all a, b, c ∈ A when aρb and bρc, then aρc is implied. Another example is

relation ρ defined on a set A by having ρ = {(1, 1), (2, 1)}. In this case the relation seems to have

no obvious description other than 1ρ1 and 2ρ1 hold.

One of the characteristics of trust relation τ is its dynamic nature; that means a tuple

τ (γ, δ, c, λ, ι, ε, id, s) that is valid in time t1 becomes invalid in t2 with t2 > t1. There are sev-

eral ways that members of τ get added or removed. Trust relation τ is affected by time, arrival of

new evidence, violation of expectations either direct or indirect, initialization of new relationships

and end-to-end assessment for an interaction or multiple interactions.

99

6.6.1 Expiration of Valid Time

A trust relationship (γ, δ, c, λ, ι, ε, id, s) does not hold in relation τ if its valid interval time expires.

A terminated trust relationship is merged with the experience database, Exp, which has the same

attributes as τ with an additional attribute ιactual. This field stores the actual interval that the

relationship was valid.

Operation 6.6.1 Expiration of Valid Time A trust relationship τ (γ, δ, c, λ, ι, ε, id, s) becomes

false if and only if the current time t does not fall within the valid interval ι.

∀ (γ, δ, c, λ, ι, ε, id, s) ∈ τ , (ts, tf) ∈ ι, t ∈ T , Exp ∈ EX • (tf 6 t) ⇒ τ (γ, δ, c, λ, ι, ε, id, s)

= false ∧ {(γ, δ, c, λ, ι, (ts, t), ε, id, TERMINATED)} ∪ EX ∧ (∀ (γ, δi, c, λ, ι, ε, idi, OK) ∈ τ

• (γ, δi, c, λ, ι, ε, id, OK) = false ∧ (id = idi) ∧ {(γ, δ1, c, λ, ι, ε, id, WARNING)} ∪ τ)

6.6.2 Arrival of New Evidence

Suppose that new evidence arrives from a recommender regarding a particular trustee and con-

text. Then, the new value will be applied to the appropriate trust property according to the trustee

evaluation information for the trust property.

Operation 6.6.2 Arrival of New Evidence Suppose that new evidence arrives at trustor γ from

trustee r, which is a recommender for trustee δ regarding context c. The new evidence includes the

trust property πr and the recommended value νr. All i trust relationships (γ, δ, c, λi, ιi, εi, idi, si)

are updated to reflect the application of the new evidence on ν.

∃πr ∈ Π, νr ∈ V, cr ∈ C, δr ∈ ∆ ∃ (γ, δ, c, λ, ι, ε, id, s) ∈ ε1, ε1 • π = πr ∧ δ = δr ∧ c = cr

∧ triggering = true ⇒ ε - { (π, o, νo, νa, ev) } ∧ { (π, o, νaggregated, νa, ev) }∪ ε

100

6.6.3 Violation of Expectations

Whenever new evidence arrives, the observed value changes according to the aggregation scheme

for the specific property. An update in the observed value may lead into expectation violation.

In this case, the respective trust relationship’s status is set to ALERT. The relationship does not

necessarily becomes false in τ ; according to policies it might be the case that a trustor wants

to monitor the relationship before terminating it. However, all other trust relationships that are

associated with the alerted relationship’s interaction identifier have their status set to WARNING.

Operation 6.6.3 Expectation Violation In a case that an expectation (π, o, νo, νa, ev) ∈ ε is not

valid for τ (γ, δ, c, λ, ι, ε, id, s) , the respective relationship’s status s becomes ALERT and all tu-

ples associated with the same interaction identifier id have their status set to WARNING.

∃ (π, o, νo, νa, ev) ∈ ε • (νo o (νa + d)) = false ⇒ τ (γ, δ, c, λ, ι, ε, id, s) = false ∧

{(γ, δ, c, λ, ι, ε, id, ALERT)} ∪ τ ∧ (∀ (γ, δi, c, λ, ι, ε, idi, OK) • (γ, δi, c, λ, ι, ε, id, OK) = false

∧ (id = idi) ∧ {(γ, δ1, c, λ, ι, ε, id, WARNING)} ∪ τ)

However, a relationship’s status is restored whenever the violation gets corrected during the

monitoring interval. In this case, the ALERT gets replaced by OK, and all WARNING are replaced

with OK. Note that if there are multiple violations for a specific interaction, then WARNINGS

remain as they are until all ALERTS become OK.

6.6.4 Initialization of Trust Relationship

Prior establishing any trust relationships, there is the possibility of passive monitoring. What

that means, is that for a designated time period, a trustee’s behavior and properties are monitored

without modifying the trust relation τ . After the passive monitoring terminates, a trust relationship

for a trustee δ is valid in τ as follows:

• Apply Property 6.5.4 : in this case the tuples (γ, δ, ci, λagnostic, ιagnostic, εagnostic, idnull, ss)

are valid in τ , where ci is the context that trustee was monitored for.

101

• Examine Experience Database: If trustee δ was previously involved with the trustor for the

same context and the status is TERMINATED-OK, then add the same trust relationship in τ

with valid interval ι = ιactual, where ιactual is the interval that the relationship was observed

to be valid previously.

• Trustee Level Classification: Apply the operation 6.9.2 and the appropriate classifica-

tion scheme to determine the trustworthiness level λt for context c . If found, then add

(γ, δ, c, λt,im, ιt, εt, idnull, s)

6.6.5 End-to-End Trust Assessment and Aggregation of Data

End-to-end assessment is possible for a specific interaction id, and trust level λ. Our model does

not have the capability to know exactly the duration of ιg, ιd, and ιc and the consequence of

this limitation is that trust relationships have to cover the entire information lifecycle and not the

corresponding lifecycle that their context refers to.

Operation 6.6.4 End-to-End Trust Assessment for An Interaction Consider

tuples (γ1, δ1, c1, λ1, ι1, ε1, id1, s1) and (γ1, δ2, c2, λ1, ι2, ε2, id1, s1) in τ where contexts c1 and

c2 are characterized as Dominant/Dominated or Intersected. Trustor γ1 may synthesize the two

tuples to derive an end-to-end trust assessment for context ci (the intersection of c1 and c2) during

interval ιi (the intersection of ι1 and ι2) by applying Operation 6.1.25 or 6.1.26 or 6.1.27 on the

expectation sets ε1 and ε2 to derive the aggregated expectation set εi. Expectation set εi has to be

checked, according to Operation 6.9.2, against the various level specifications in order to assign

the trustworthiness level for the new tuple λi. The resultant tuple is (γ1, δ1,2, ci, λi, ιi, εi, id1, s1) .

Aggregation of data from multiple Interactions is also possible. First, end-to-end assessment is

performed on each interaction and the resultant tuples are then synthesized to derive the aggregated

result.

102

Operation 6.6.5 End-to-End Trust Assessment for Multiple Interactions Consider tuples

(γ1, δ1,n, c1, λ1, ι1, ε1, id1, s1) and (γ1, δ1,m, c2, λ1, ι2, ε2, id2, s1) to be the resultant tuples after

applying Operation 6.6.5 on the interactions id1, id2 respectively. Trustor γ1 may synthesize the

two resultant tuples to derive an aggregated end-to-end trust assessment for context ci (the in-

tersection of c1 and c2) during interval ιi (the intersection of ι1 and ι2) by applying Operation

6.1.25 or 6.1.26 or 6.1.27 on the expectation sets ε1 and ε2 to derive the aggregated expectation

set εi. Expectation set εi has to be checked, according to Operation 6.9.2, against the various

level specifications in order to assign the trustworthiness level for the new tuple λi. The resultant

tuple is (γ1, δ1,k, ci, λi, ιi, εi, id1,2, s1) , with k to be the total number of trustees involved in both

interactions.

6.7 Trust Relation Observations

There are several observations that can be made from the trust relationships semantics. These are

outlined in this section.

Observation 6.7.1 A trust relationship need not be symmetric for the same context but there may

be two relationships between two entities for contexts that are related in some manner.

Observation 6.7.2 The non-associative nature of trust is observed when causality affects the for-

mulation of trust relationships. Consider trust relationships τ (γ1, δ1, c2, λ1, ι2, ε1, id1, s1) and

τ (γ1, δ2, c1, λ1, ι6, ε1, id1, s1) as illustrated in Figure 6.1. If the establishment of trust between γ1

and δ2 preceded in time the one between γ1 and δ1, then trustor γ1’s trust in trustee δ1 might be

affected (negatively or positively). This scenario is possible if trustee δ2 is a recommender whose

opinions are of high importance to trustor δ1.

Observation 6.7.3 A trust relationship is directed and may be one-to-one-to-one-..., one-to-one-

to-...-to-many, etc. There are strong suggestions that trust relationships should not exhibit any

103

transitivity but some researchers try to relax the transitivity property by allowing partial (or con-

ditional) transitivity.

There are cases where symmetry is observed between two entities that hold dual roles as both

a trustor and a trustee. In the example trust relation graph, trustor A places trust in trustee D for

context c3 with D acting on the placement of trust by forming a reciprocal trust relationship with A

for the dual context of c3. As a result, A and D trust each other for providing and consuming data

of type recommendation. The concept of duality is very important because trust without acting on

it has minimal usability in the overall trust network. Forming reciprocal relationships is the first

step that leads into the final step of authorizing the exchange of information between two entities.

Mutual duality is observed when the dual contexts have the same datatype set. In the previous

example, there is no mutual duality between A and D.

Observation 6.7.4 Duality Consider dual contexts c1, c2. Also, consider that γ1, δ1 refer

to the same entity with the same assumption holding for γ2, δ2 . If there exist tuples

(γ1, δ2, c1, λ1, ι1, ε1, id1, s1) and (γ2, δ1, c2, λ2, ι2, ε2, id2, s2) in τ such that ι1 = ι2 or ι1 o ι2

(or its inverse) or ι1 d ι2 (or its inverse), or ι1 s ι2 (or its inverse), or ι1 f ι2 (or its inverse), then du-

ality is observed between entities γ1 and γ2 regarding contexts c1 and c2 for the intersected interval

ιs between ι1 and ι2.

A follow-up concept of relationship reciprocity is the non-associative nature of trust. Prior

knowledge might change a trust relationship that otherwise could have been established with cer-

tain parameters of context, level and duration. Non-associativity is witnessed within a single trustor

or between trustors. In the first case, recommendations for an entity and the time of arrival of

such recommendations affect trust for a given trustee. At time t = 1, trustor A’s experience in-

cludes (γA, δB, c1, λ1, ι1, ε1, id1, s1) that indicates the establishment of trust with trustee B for

receiving critical information such as alerts. Ar t = 2, A decides to place trust on D for re-

ceiving recommendations and as a result (γA, δD, c3, λ1, ι2, ε1, id1, s1) becomes valid in τ . One

104

of the received recommendations concerns trustee B and its involvement with leaking of con-

fidential information to unauthorized parties. If (γA, δD, c3, λ1, ι2, ε1, id1, s1) preceded in time

(γA, δB, c1, λ1, ι1, ε1, id1, s1) , then A might have chosen not to allow access to any of its informa-

tion by B.

Observation 6.7.5 Non-Associative Trust Scenario 1 If there exist ordered tuples

(γ1, δ1, c1, λ1, ι1, ε1, id1, s1) and (γ1, δ2, c2, λ2, ι2, ε2, id2, s2) that satisfy τ such that ι1 < ι2 or ι1

o ι2 or ι1 m ι2 or ι1 s ι2, then the tuples might not exist for the inverse of the interval relationships.

Trustor γ1 might decide against establishing a trust relationship with δ1 if it had prior knowledge

of δ2’s trust recommendations.

There is another form of non-associativity within a trust relation and it involves two different

trustors and their relationships with the same trustee. At time t = 1, trustor A trusts B with con-

suming confidential alerts (γA, δB, c1, λ1, ι1, ε1, id1, s1) but doesn’t trust trustee C to gain access

to those alerts. At a later time t = 2, C forms a trust relationship with B for receiving alerts

(γC , δB, c7, λ1, ι3, ε1, id2, s1) . Even though trust establishment does not necessarily mean that the

specific action takes place, it is still an indication of intent. In case that B authorizes the propaga-

tion of alerts to C, then this becomes an indirect channel for C to receive indirectly alerts from A.

If the trust bond between C and B occur prior to A’s bond with B, then A might have decided on

another course of action regarding B.

Observation 6.7.6 Non-Associative Trust Scenario 2 If there exist ordered tuples

(γ1, δ1, c1, λ1, ι1, ε1, id1, s1) and (γ2, δ1, c2, λ2, ι2, ε2, id1, s1) that satisfy τ such that ι1 < ι2 or ι1

o ι2 or ι1 m ι2 or ι1 s ι2, then the tuples might not exist for the inverse of the interval relationships.

Trustor γ1 might decide against establishing a trust relationship with δ1 if it had prior knowledge

of the existence of the trust relationship between γ2 and δ1.

105

Observation 6.7.7 Indirect Trust Changes If the trust relationship with a recommender changes,

then a number of relationships may change as well. However, the changes will be observed only

when the relationships are re-evaluated according to their triggering rules.

6.8 Trust Relation Theorems

There are two theorems for the trust relation τ . These theorems are related to the dynamic and

composable features of trust, which are necessary for any indirect interaction.

Theorem 6.8.1 A change in a relationship’s current status affects all relationships for that partic-

ular interaction.

There are only two cases when the status of a relationship changes: when valid time expires

and when an expectation violation occurs. According to Operations 6.6.1 and 6.6.3 timing and

expectation violations affect all relationships that are associated with the interaction identifier of

the terminated of alerted relationship.

Theorem 6.8.2 At least 2 trust relationships are needed for an interaction.

Consider the case where there is only entity that produces and consumes the generated data.

An interaction covers the information lifecycle from the producer to the consumer. In this case, the

producer and consumer are the same entity. However, the contexts are different. Therefore, two

relationships are needed as follows:

(γ1, δ1, c(produce,{normal}), λ1, ι1, ε1, id1, s1) and (γ1, δ1, c(consume,{normal}), λ1, ι1, ε1, id1, s1)

For n entities involved in an interactions, then n relationships are needed, where n < 1.

6.9 Other Operations

There are operations that even though are not operating on the trust relation directly, they change

the state of its attributes. These include the level satisfaction and classification for trustee.

106

6.9.1 Trust Level Specification

Our model uses discrete labeling, where each level is specified by a set of properties, their allowed

values and a threshold value for each property. Since it is very unlikely that a trustee satisfies

completely a level’s specifications, a threshold is set to determine the flexibility allowed around

the level’s expectation set. It might be the case that there are multiple tuples associated with a

property π (unlike an expectation set ε where a property only appears once in the set). Suppose

there is a range for a specific property. In this case, the inequality operators <,> generate two

tuples for the property.

Operation 6.9.1 Level Specification A trust level is specified as a pair (c, p), where c ∈ C and p

is a set of tuples (π, o, νa, νthreshold) , where π ∈ Π, o ∈ O, and νa, νthreshold ∈ V .

Trustfulness Extent 1

Trustor
Trustfulness

Trustworthiness Extent 1

Trustee
?

Trustfulness Extent m

Trustworthiness Extent 1

Trustworthiness Extent n

Trustworthiness Extent n

Figure 6.10: Trustor Trustfulness and Trustee Trustworthiness

This kind of level specification is applicable for defining trustworthiness extent for an operation

on data. The imputed trust mode affects trustworthiness levels. For example, the threshold could

107

decrease when a trustor is in red imputed trust mode and thus narrowing the deviation from the

desired expectations. As a result, distinct level specifications are assigned for trustworthiness

extents that correspond to the same trustfulness extent (see Figure 6.10). In other formal models,

there is no direct reference to trustfulness as a concept. However, our model explicitly represents

trustfulness in order to link expectations to trustees in an adaptive manner. Whenever a trustor’s

trustfulness changes, its expectations change and the trustee’s trustworthiness may change as well.

Without loss of generality, it is assumed that a trustor exhibits the same trustfulness extent for all

trustees at a given time.

6.9.2 Trust Level Satisfaction and Classification

In order to check whether or not a trustee satisfies a level’s requirements, all properties for the level

are tested against the trustee’s observed values. As an example, consider the level specification for

λ1 = {(π1, >, 5, 0), (π2, =, 5, 2)}. Trustee δ1, after X time of monitoring, exhibits the observed

values for these properties {(π1, 6), (π2, 5)}. A simple testing of the observed values against the

allowed ones concludes that trustee δ1 could be assigned trustworthiness level λ1.

Operation 6.9.2 Level Satisfaction A trustee δ meets level’s λ specification for context c if and

only if for all properties πi of λ, the trustee’s observed value νobserved satisfies the νallowed under

operation o and threshold νthreshold.

However, there are cases that level satisfaction does not necessarily lead into a unique level

assignment for a trustee. There are cases where a trustee satisfies more than one trustworthiness

levels for the same imputed trust mode. Continuing the example above, consider the case where

there is one more level specification such as λ2 = {(π1, =, 6, 0), (π2, =, 5, 0)}. The question now

becomes how to choose which level specification matches better the trustee’s observed behavior

up to this point.

A solution to the above problem is to use classification techniques to determine the most appro-

priate level for the trustee. One technique is the use of the Euclidean distance to classify a trustee

108

Partial Trust
Expectation Set

Full Distrust
Expectation Set

Full Trust
Expectation Set

Partial Distrust
Expectation Set

Agnostic or Neutral

Figure 6.11: Trustee Level Classification in n-dimensional Space

to the appropriate level, as shown in Figure 6.11. This scheme can only be used if the operation

for all properties is equality. Using this technique, trustee δ will be assigned trustworthiness level

λ2 since the semantic distance between the observed values and allowed values is 0.

In the case of inequality operators, the valid space for each level is bounded by hyperplanes.

Operations theory could be used to devise membership tests i n this case. These tests are beyond

the scope of this research work.

109

CHAPTER 7

RELATED WORK

There is no trust management research to date, that we are aware of, that has attempted to ad-

dress the problem space outlined in Chapter 3 or define the issues, algorithms and mechanisms

for trust management of indirect interactions. First, we give a brief overview of well-known trust

management systems, and second, their capabilities and limitations are discussed in terms of those

requirements.

7.1 State of the Art in Trust Management

The discussion of each system covers the following topics of interest:

• Description of the system: brief description of the system functionality and its main features

• Trust Scope: trust issue that the system addresses, trust specification, trust properties and

requirements

• Collaborative environment capabilities: support for evidence aggregation and recommenda-

tion schemes

• Dynamic trust feature: trust re-evaluation triggers

• Composable trust constructs: provisions, mechanisms, concepts that could be used to support

composable trust.

The trust management systems examined are organized into categories based on the trust issue

that they address:

• Identity Trust: Public Key Certificates [45, 49]

• Resource Trust: PolicyMaker [12], KeyNote [11], REFEREE [15]

110

• Identity Trust and Resource Trust: Trust Establishment (TE) [30], TrustBuilder [47]

• Content Trust: PICS [39], Poblano [42]

• Behavior Trust: Trust-Aware Multicast (TAM) [34], TCPA [28]

• General Trust: SULTAN [27], Hestia.

The terms trust, trusted, trustworthy that are used to describe the systems below are consistent

with the system’s specific terminology. In most cases, a system’s terminology is not consistent

with ours. Appendix A outlines the trust terminology used in this research work.

7.1.1 Identity Trust: PUBLIC KEY CERTIFICATES

Description of the system

A public key certificate is a data structure that uses a digital signature to bind together a public key

with an identity. Services based on public key certificates rely on a third party to sign a certificate

certifying the identity associated with a public key. Two of the best-known certificate systems

dealing with authentication, and thus identity trust, are Pretty Good Privacy (PGP) and X.509.

Pretty Good Privacy (PGP) was created primarily for encrypting email messages using both

symmetric and asymmetric cryptography to prevent changes during transmission. The intention

was to be a ”cryptographic tool for the masses”, which bypasses the traditional hierarchical trust

architecture by adopting the ”web of trust” approach. As a matter of fact, the first version of

the PGP system is generally known as a web of trust where there is no central trusted authority.

Users sign each other’s public keys and that leads into progressively forming webs of individual

keys interconnected by these signatures. Trust webs are formed within virtual communities and

between communities.

The X.509 authentication framework attempts to solve the same part of the trust management

problem that PGP introducer mechanism attempts to solve, namely the need to find a trustworthy

copy of the public key of someone with whom one wants to communicate. X.509 certificates

111

contain more information than PGP certificates (e.g. time interval that they are valid) but their basic

functionality is still the binding of users to keys. However, X.509 differs from PGP in its level of

centralization of the information. While any entity may act as an introducer in the PGP model, the

X.509 framework requires that all certificates will be acquired from an official certificate authority

(CA). Certificate authorities may be linked in a hierarchical or a mesh manner. Most public key

infrastructure systems rely on certificate chains to establish a users identity, as a certificate may

have been issued by a higher-level certificate authority. A PKI is typically composed of many

certificate authorities linked by trust paths. A trust path links a relying party with one or more

trusted third parties, such that the relying party can have confidence in the validity of the certificate

of the user. Recipients of a signed message who do not have a relationship with the certificate

authority that issued the certificate for the sender of the message can still validate the senders

certificate by finding a path between their certificate authority and the one that issued the senders

certificate.

Trust Scope

A certificate authority (either a user or a CA) issues digital certificates that are used in authenticat-

ing an owner’s identity. This is necessary to establish a resource access or service provision trust

relationship and may implicitly reduce the trustor’s risk in dealing with the trustee. However, the

policy governing what resources or services the trustee is permitted to access is not handled by the

certificate infrastructure, but is left up to the application. The certification authority does not vouch

for the trustworthiness of the owner, but it simply authenticates its identity.

Trust is specified in the form of certificates (or a chain of certificates, trusted path). In PGP,

a public key is considered to be valid, and therefore trusted , if a certificate path exists between

the recipient and a trusted introducer. Multiple paths may exist between the recipient and potential

introducers. In X.509, the trustworthiness of the key is implied if there exists a certification path

between the recipient and a trusted certificate authority. It is the responsibility of each entity to

112

query the system and to acquire keys as needed. In PGP what is more relevant is what makes an

introducer a trusted introducer whereas in X.509 is what makes a CA a trusted CA.

There are two areas where trust is explicit in PGP as follows:

• Trustworthiness of public key certificate: Is a PGP public key certificate reliable or not?

What is the degree of confidence that the binding between the ID and the key itself? There are

three degrees of confidence that are attached to a certificates validity (undefined, marginal,

and complete). The trustworthiness of the key is public.

• Trust to introduce key: How much a public key (indirectly referring to the owner) is trusted

to be a competent signer of another PGP certificate? There are four levels (full, marginal,

untrustworthy and don’t know) that correspond to how much the user thinks the owner of

this public key can be trusted to be introducer to another key. It is important to note that

the actual meaning of these levels is not explicit. How the user decides what level to assign

to an introducer is left up to that user. Each user manually assigns introducer trusts and the

information is secret.

PGP allows users to adjust two parameters COMPLETESNEEDED and MARGINAL-

SNEEDED which define the number of valid signatures needed to make a certificate valid. A

certificate becomes completely valid if either one of these parameters are met. The user makes its

own judgment on how much to trust the public key that is introduced and that is based on how

much it trusts the introducer. When a user places trust in an introducer, implicitly it means that the

user places some degree of confidence in the introducers capability to introduce valid certificates.

For an introduced certificate to be valid, the user must directly trust its introducers. But given two

marginally trusted introducers, there is no mechanism to treat one of them to be trustworthier than

the other.

113

Collaborative environment capabilities

Both certificate systems can be viewed as recommendation systems for valid bindings between

identities and public keys. Introducers, for example, are recommenders, however there is no mech-

anism for propagating introducer trust assessments within the PGP web of trust. We believe that

by keeping the trust level of the introducers private, each user operates in seclusion without getting

feedback from peers.

In PGP, it is possible to adjust two parameters COMPLETESNEEDED and MARGINAL-

SNEEDED to specify criteria about the trustworthiness of keys. For example, a user can specify

that it only completely trusts a key if it is marginally trusted by a meta-introducer and completely

trusted by an introducer. But given two marginally trusted introducers, there is no mechanism

to treat one of them differently than the other. The specification of criteria that assess the trust-

worthiness of keys relies only on introducer recommendations, but there are no mechanisms for

re-evaluating the trustworthiness of registered keys or introducers once a certificate is added to the

certificate ring chain.

In the X.509 model, users usually obtain a certificate from a single CA and not from multiple

ones. Therefore, the application that examines certificates does not have the necessary inputs to

compare multiple certificates for the same public key and owner signed by different CAs.

Dynamic trust features

PGP supports no re-evaluation triggers. Once a key is added to the PGP system, it remains valid

at the user’s discretion. Furthermore, the various trust levels for introducers remain unchanged,

unless the user manually updates the values. As a matter of fact, due to PGP’s lack of official

mechanisms for the creation, acquisition and distribution of certificates it is considered appropriate

only for personal communication.

X.509 maintains a validity period for certificates and there is a number of methods for re-

sponding to a request about the validity of an individual certificate. The most well known method

114

requires the retrieval of a lengthy list of invalid certificates, the Certificate Revocation List (CRL),

to check the validity of a single certificate. The effectiveness as well as the efficiency of CRLs are

still issues open to debate.

Composable trust constructs

Composable trust is not supported by either system, however transitivity is inherent in both models,

without the possibility of opting out of supporting it.

7.1.2 Resource Access Trust: POLICYMAKER

System Description

PolicyMaker is a trust management system, developed at ATT Research Laboratories that inte-

grates the specification of policy with the binding of public keys to the actions that are trusted to

perform. Certificate frameworks such as PGP and X.509 described above do not bind access rights

to the owner of the public key within the certificate framework. If access rights were to be associ-

ated with public keys, then two steps had to be taken. First, a public key is bound to its owner, and

this task occurs within the certificate framework. Second, the identified owner is bound to access

rights, and this task occurs outside the certificate framework. PolicyMaker combines authentica-

tion and authorization into a single system by using certificates to authorize their legitimate owner

to perform specific actions.

The PolicyMaker appears to applications as a query engine. It accepts as inputs a set of lo-

cal policy statements, a collection of credentials, and a string describing an action. PolicyMaker

evaluates proposed actions by interpreting the policy statements and credentials. Depending on

the credentials and the form of query, it can return a yes/no answer or additional restrictions that

would make the action acceptable.

The basic function of PolicyMaker is to process queries. A query is a request to determine

whether a particular key (or sequence of keys) is permitted to perform particular actions according

to a local policy. Queries are of the form:

115

Key1, key2, REQUESTS ActionStrings

ActionStrings are application-specific messages that describe a trusted action requested by

keys. The semantics of action strings are determined by the applications that generate and interpret

them; they are not part of PolicyMaker. PolicyMaker processes queries based on trust information

contained in assertions. An assertion binds a predicate, called a filter, to a sequence of public keys

called an authority structure. Filters accept or reject actions based on what the holders of the keys

are trusted to do. Assertions are of the form:

Source ASSERTS AuthorityStruct WHERE Filter

Source is the source of the assertion and AuthorityStruct contains the public key(s) to which the

assertion is applicable. Finally, Filter is the predicate that action strings must satisfy in order for

the assertion to be valid. In other words, PolicyMaker uses credentials to prove that the requested

action complies with the policy, and this type of checking is known as compliance checking.

Trust Scope

PolicyMaker addresses authorization based on public keys and thus it focuses on establishing re-

source access trust and service provision trust. It is not clear if authentication is still possible

in the absence of the external source with the functionality to perform identity-based certificate

authentication.

Trust is specified as assertions. Each assertion states that the assertion source places trust

in the public key that is contained in the authority structure to be bound to action strings that

satisfy the filter. There are two types of assertions: certificates and policies. A certificate (also

called signed assertion) is a signed message that binds a particular authority structure to a filter. A

policy also binds a particular authority structure to a filter, however, policies are not signed and are

unconditionally trusted.

A local policy may defer to third parties who are trusted to issue credentials for others, and

it may also use filters that limit the extent to which these third parties are trusted. These third

116

parties may defer trust to others as well. Trust is considered to be monotonic in the sense that each

policy or credential can only increase the capabilities granted. There is no revocation of existing

capabilities.

Credentials is one kind of trust input used in PolicyMaker framework. PolicyMaker itself

does not verify signatures on singed certificates. Instead, signatures are verified by some external

program or function (e.g. PGP). The external program guarantees that the signature was valid for

the identified public key. Furthermore, PolicyMaker does not implement certificate distribution or

revocation services.

Collaborative environment capabilities

There is no support for recommendation schemes. However, it is possible to set up a policy that

involves reputation information, but the recommendation semantics are application-specific. There

is no support for feedback aggregation algorithms.

Dynamic trust features

As it was mentioned earlier, trust never decreases but it only increases.

Composable trust constructs

There are no explicit provisions for composable trust.

7.1.3 Resource Access Trust: KEYNOTE

KeyNote, the successor to PolicyMaker, was developed to improve on the weaknesses of Policy-

Maker. It is based on the same design paradigms of assertions and queries with a couple of slight

modifications. First, signature verification is integrated into the trust engine and second there is no

support of multiple assertion languages. KeyNote provides a predefined assertion language.

Despite the additional functionality of signature verification and the elimination of choosing as-

sertion languages, KeyNotes evaluation with respect to trust scope, collaborative features, dynamic

properties and composable constructs is the same as PolicyMakers evaluation presented above.

117

7.1.4 Resource Access Trust: REFEREE

System Description

REFEREE (Rule-controlled Environment For Evaluation of Rules and Everything Else) is a trust

management system for reaching access decisions that are related to Web documents. REFEREE

uses PICS labels in the same theoretical framework as PolicyMaker to interpret trust policies. It

allows both policies and credentials to return answers (which is a tri-value) and statement lists. A

statement list is a collection of assertions, which is the justification for the answer. There are three

possible values for the answer as follows:

• True, meaning that sufficient credentials exist to approve the action

• False, meaning that sufficient credentials exist to deny the action

• Unknown, meaning that the system was unable to find sufficient credentials to approve or

deny the action.

The REFEREE system is a set of software modules, and each module handles a particular pol-

icy decision. All modules accept inputs and return a tri-value and a statement-list. The inputs are an

action name and other arguments that provide information about the action and form the module’s

trust database. During the bootstrap phase, the application supplies REFEREE the unconditionally

trusted assertions and a module database. A module database consists of action names, similar to a

DNS server in that it allows a module to be referred to by an action name. During the query phase,

the application supplies the action and other arguments such as credentials. The latter are passed

onto the appropriate module from the module database. REFEREE runs the module’s interpreter

with the policy and list of arguments, and then returns an answer to the application.

118

Trust Scope

REFEREE provides resource access trust and service provision trust. Trust is specified using the

trust language Profiles-0.92, which is a rule-based policy language designed to work with REF-

EREE. Rules are evaluated top down and the returned value of the last rule is the policy’s returned

value. It combines the theoretical framework of PICS and PolicyMaker in a unified system. A

PICS label is the main trust input.

Collaborative environment capabilities

REFEREE inherits the rating scheme of PICS. REFEREE can process and resolve conflicting

information from multiple sources by indicating whether all labels must agree or the existence of

a single label of the desired type carries the decision.

Dynamic trust features

There is no support of trust re-evaluation. It is not clear if expiration of labels is handled by

REFEREE or by the application.

Composable trust constructs

Composable trust is not supported.

7.1.5 Identity and Resource Access Trust: IBM TRUST ESTABLISHMENT

System Description

IBM has developed a role-based access control model that consists of three major parts: certifi-

cates, a Java-based Trust Establishment module and a Trust Policy Language (TPL). IBM view is

that e-commerce is possible through trust establishment. The basic assumption is that any trust

issues and requirements that are related to an e-business transaction could be solved using certifi-

cates. Certificates can be issued by various certificate authorities.They vouch for an entity’s role.

An example is a certificate stating that entity Y is a business partner.

The IBM trust establishment system is similar to PolicyMaker. The default certificate scheme

119

used is X.509v3, but other certificate formats could be supported. The basic functionalities of the

system is to validate a certificate and map the certificate holder to a role.

Policies are specified in TPL using XML. These policies map permissions to roles. The primi-

tive structure in TPL is a group. For each group, there are rules that define group membership, and

this is done by indicating the certificates to check. An example of a policy is given in [30] :

< POLICY >

< GROUPNAME = “self ′′ >

< /GROUP >

< GROUPNAME = “partners′′ >

< RULE >

< INCLUSIONID = “partner′′TY PE = “partner′′FROM“self ′′ >

< /INCLUSION >

< /RULE >

< /GROUP >

< GROUPNAME = “departments′′ >

< RULE >

< INCLUSIONID = “partner′′TY PE = “partner′′FROM = “partners′′

< /INCLUSION >

< /RULE >

< /GROUP >

< GROUPNAME = “customers′′ >

< RULE >

< INCLUSIONID = “customer′′TY PE = “employee′′FROM = “departments′′ >

< /INCLUSION >

< FUNCTION >

< GT >

120

< FIELDID = “customer′′NAME = “rank′′ >< /FIELD >

< CONST > 3 < /CONST >

< /GT >

< /FUNCTION >

< /RULE >

< /GROUP >

< /POLICY >

Trust Scope

Trust Establishment is a tool for making access control decisions for strangers based on public key

certificates. Trust Establishment extends traditional role-based access control systems by validat-

ing the certificate and then mapping the certificate owner to a role. The system does not make any

access control decisions but it rather determines group membership. The policy provides the rules

that determine how to map entities to roles. X.509 certificate and the rules are the trust inputs.

Collaborative environment capabilities

Policies only define groups that represent specific roles and rules on how to become a member of

each group. There are no external sources of trust information.

Dynamic trust features

The results from the reasoning process are stored in a database. These results include the assign-

ment of the certificate holders to particular groups. The resultant database is static and does not

change considerable over time. Therefore, a role is permanently assigned to a certificate holder.

Composable trust constructs

There are no provisions for composable trust.

121

7.1.6 Identity and Resource Access Trust: TRUSTBUILDER

System Description

Trustbuilder is a trust negotiation framework. Trust negotiation is an emerging approach that ex-

ploits the properties of peer entities as a means for establishing trust. Trustbuilder addresses the

problem of establishing trust relationships between entities, possible strangers, through credential

exchange. A credential is defined as a digitally signed assertion by a credential issuer about a

credential owner, and a sensitive credential is one that includes private information. The Trust-

builder negotiation model assumes that a negotiation is a sequence of credential disclosures, which

alternates between a client and a server.

While a trust negotiation protocol defines the ordering of messages and the type of information

messages will contain, a trust negotiation strategy controls the exact content of the messages, i.e.,

which credentials to disclose, when to disclose them and when to terminate a negotiation. Suppose

during trust negotiation, entity A requests access to entity Bs resources. Entity B returns the access

control policy that describes the credentials that A needs to present in order to access the resource.

Entity A sends its policy to B that describes what credentials are needed from B in order for A to

disclose its credentials. Entity B sends the credentials and then A sends its credentials too.

Trust Scope

The TrustBuilder framework focuses on a protocol for establishing trust in a particular context.

TrustBuilder mostly deals with access control that is based on credentials and policies, with appli-

cability in ecommerce scenarios. Credentials are the central pieces in this protocol.

Trust is specified via a credential expression language that is separated into two parts: property-

based authentication language (PAL) and a role-based authorization language (RAL). A PAL pol-

icy defines one or more roles. A RAL authorization policy consists of a role-constraint expression

and a PAL policy defining each role in the expression.

122

Collaborative environment capabilities

It appears that there are no feedback aggregation algorithms. It is not clear if past experience is

considered during the negotiation phase. It seems that recommendation schemes are not part of the

framework.

Dynamic trust features

It is not clear what happens to the binding of credentials to roles. Is it stored with the intention

to be retrieved for future interactions? Or is it a temporary binding that expires after the specific

interaction is terminated?

Composable trust constructs

There are no provisions for supporting composable trust.

7.1.7 CONTENT TRUST: PICS

System Description

PICS (Platform for Internet Content Selection) was developed to give users control over the Internet

material they receive by facilitating the use of filters between the potential viewer and web contents.

The PICS specification enables labels to be associated with Internet content, where a label (a.ka.

rating, content rating) is a data structure containing information about a given document’s contents.

Rating service is an organization that assigns labels according to some rating system and then

distributes them via label bureaus or on-line from HTTP servers. A rating system is a rating

information method that specifies the dimensions used for labeling, the allowable values on each

dimension and a description of criteria that are used to assign values. Each rating service chooses

its own criteria for rating and the user must choose a rating service whose criteria are close to the

ones the user would make. PICS provides for self-rating as well. Labels may be embedded in the

header of HTML document, transmitted using any protocol that uses RFC 822-style headers or

requested from a label bureau that runs the HTTP protocol.

A PICS-compliant application processes PICS labels and uses the user-defined filtering rules

123

to decide whether to accept or reject a web document. PICSRules is a language for writing fil-

tering rules that allow or block access to URLs based on PICS labels that describe those URLs.

PICSRules can specify one or more rating services to use, one or more label bureaus to query for

labels and criteria about the contents of the labels that would be sufficient to make an accept or a

reject decision. The effectiveness of the PICS framework lies in the expressiveness of the filtering

language and the quality of the rating services.

Trust Scope

PICS addresses content trust because it decides on the appropriateness of received materials. A

PICS-aware application or web browser requires the potential user to make decisions on which

rating service(s) to use, which label bureaus to query, whether or not to use self-rating labels, and

what policy clauses (a.k.a profile) implement the user’s definition or interpretation of “appropriate”

material. All these decisions are based on the user’s perception of the trustworthiness of rating

services and their respective rating systems as well as the trustworthiness of label bureaus. Based

on the rating system that the rating service is using, the user assesses trust in the received material

by specifying a set of policy clauses that determine whether or not a document is to be accepted or

rejected. A trust assessment is a binary value and it depends on the truth of the policy propositions.

The clauses are evaluated in the order given in the rule and evaluation stops at the first clause that

is satisfied and the corresponding action is taken.

The trust inputs used are the label and the rules. Labels are generated by human reviewers,

computer analysis of document contents, or a hybrid between third-party rating and self-rating.

Labels are digitally singed to ensure that they are authorized by the specific rating service. A label

can include a cryptographic checksum on the contents of the document. If the checksum matches

a checksum of the current contents, then the label is valid. If not, then the document has changed

since the label was created.

124

Collaborative environment capabilities

PICS is essentially a recommendation system but without the mechanisms to assess the trustwor-

thiness of the rating services. There are no official guidelines or rules to assess the trustworthiness

of the service or bureau. Furthermore, there is no support for reasoning about multiple labels from

different rating services concerning a specific document. As a result, a user does not have the

capability of choosing the “best” label for a document from a pool of labels regarding that docu-

ment. There are currently no mechanisms to assess the quality of rating services or systems in a

comparative manner. Even though filtering languages allow the usage of labels from multiple ser-

vices, PICS-compliant software vendors may only allow the usage of a single service (for example,

NetNanny).

PICS assumes that each service will distribute public keys in the way it chooses.

Dynamic trust features

PICS assumes that no keys will ever have to be invalided, an assumption that leads to security

risks. A label may provide the date on which the specific rating expires. Depending on the PICS

compliant software filter vendor, there are techniques to keel local copies of labels in order to

reduce the performance delay due to fetching labels from label bureau. However, if the document

changes prior to the expiration day and the label copy from the cache is used, there is the potential

for viewing material that dont correspond to the saved label.

Composable trust constructs

Composable trust is not supported by existing filtering rules.

7.1.8 Content Trust: POBLANO

System Description

Poblano is a trust system by Chen and Yeager of Sun MicroSystems to build a decentralized trust

model based on the JXTA platform. Poblano is based on the following assumptions:

125

• Trust has multiple components and Poblano is looking at a factor of trust which is based on

the groups interests, or group content relevance.

• Users in peer groups can identify the source of the received information and can communi-

cate their opinions on both the information received and its source.

• Opinions can be collected, exchanged and evaluated.

Poblano represents not only trust relationships between peers but also trust relationships be-

tween peers and codats (codat contains information, either data or code that is shared in a JXTA

peer group). Poblano divides trust into three components:

• Trust between different peers (Peer Confidence): this is the peer’s reputation based on both

local knowledge of its codat and on other peers’ evaluation of the peer in question. In

addition to the confidence value, the average of popularity of each codat accessed from the

specific peer for a given keyword is maintained.

• Trust between a peer and a codat (Codat Confidence): an evaluation of the codat of a given

peer in a specific problem domain such as content relevance based on keyword matching

and popularity. Popularity is monotinally increasing and is incremented at the provider each

time the codat is requested.

• The risk factor (Risk): how much risk is associated with this peer? How reliable is it from a

performance viewpoint (accessibility, integrity of codat)?

Poblano addresses the issue of calculating the overall trust based on these factors. It also

suggests methods for processing, propagating, and updating trust relationships. Each peer has two

tables: Peer confidence and codat confidence tables. When a peer does a search on a keyword,

the following steps are taken: First, lookup the keyword in its own Codat Confidence table. If

there is a local codat associated with the keyword, then retrieve local copy. Next, if there is no

126

local codat, lookup the keyword in the peer Confidence table. If there are peers highly associated

with the keyword, forward the request to those peers. Each of those peers will perform the first

two steps using their own tables. If such a peer has a codat related with the keyword, the peer

will inform the requesting peer and terminate the search. The requester peer accesses the codat

from the provider. The provider increases the popularity value of the codat it sends. The requester

calculates its confidence in the received codat and saves the information in its table. The Codat

confidence is calculated and is a function of codat confidence returned by remote peer and peer

confidence of all peers along the path to codat confidence information discovery. New confidence

information is propagated to all contributing peers codat path– (including the provider). All peers

can update their codat confidence tables based on the new information. Note that although the

actual codat is sent directly to the requester, the confidence value for the codat is propagated on

the entire codat path.

Over time, a web of trust is built in the network.

Trust Scope

Poblano was built to perform reputation guided searching based on content relevance. Using the

information stored in the Peer Confidence and Codat Confidence tables, Poblano users calculate

trust values for peers and codats using predefined equations. Peer trust values are in the range

[-1,4], where -1 indicates distrust and 4 indicates complete trust.

A peer computes the codat confidence of a codat path using the following equation:

CodatConfpath = 1
4n

(
∑n

i=1 PeerConf(Pi))× CodatConf

A peer updates his old codat confidence using its own rating and the codat confidence propa-

gated from remote peers as follows:

newCodatConf = F (oldCodatConf, propagatedCodatConf, userRating)

newCodatConf = a×oldCodatConf+b×propagatedCodatConf+c×userRating

A peer updates the peer confidence of the provider. The peer generates his own opinion about

127

the provider, without any external recommendations:

newPeerConf = F (oldPeerConf, setOfCodatConfRelatedToProvider)

newPeerConf = (oldPeerConf + 1
K

∑
a∈K CodatConfprovider)÷ 2

where K = number of keywords related to the provider

In order to make the above trust values meaningful for users, Poblano introduces the coopera-

tion threshold. Peers decide whether to collaborate with one another based on a balance between

trust and risk. If the peer confidence value is greater than the threshold, the peer is considered to be

cooperative. Otherwise, the cooperation is too risky to the user. A user may override the Poblano

recommendation for cooperation.

Codat confidence values are propagated and used for updating trust values for both peers and

codats.

Collaborative environment capabilities

There is limited propagation of recommendations. As a matter of fact, codat confidence values are

distributed only to the peers that are involved in the information discovery process. Peer confidence

values are not propagated.

The equation for calculating codat trust is based on aggregating codat values but it is restrictive.

A weighted average formula is used to derive the trust value of a target peer from a chain of peers.

This is problematic in two ways. First, the formula is based on transitivity for deriving trust, a

property that is still an open trust issue. Second, there exists a richer set of algorithms to aggregate

feedback, including the weighted average technique, which gives the user more flexibility to choose

the aggregation method.

Dynamic trust features

Trust is re-evaluated whenever a peer resides on a codat path. It appears that the peer has no choice

but to update its tables whenever new information arrives. There are no policies or mechanisms to

dictate when and how to update trust.

128

Composable trust constructs

Transitivity is inherent in the system but not composability.

7.1.9 Behavior Trust: TRUST-AWARE MULTICAST (TAM)

System Description

Trust-aware multicast system is a reliable multicast system that, unlike any other multicast proto-

col, deals with uncooperative nodes. Uncooperative nodes can modify, fabricate, replay, block and

delay messages. The goal of TAM is to detect this behavior and adapt the multicast tree in such a

way that more trusted nodes are located closer to the root node.

TAM is a single-source multicast system operating at the application level. A multicast group

consists of one root node, which is the source of information, and many user nodes, which are

functionally equivalent. The root node controls the entire group. TAM messages are constructed in

a way that allows nodes to detect misbehavior of other nodes. For example, modified or fabricated

messages are detected by message signature. TAM has four commands (Join, Leave, Report, and

Relocate). A user node initiates the first three commands whereas the root node executes the last

one. The Report command allows a user node to notify the root of uncooperative behavior and the

Relocate command allows the root node to move a user node to a different location in the tree. A

user node can only report problems about its parent.

According to the behavior of a user node n in the system, the root updates the user nodes

quality, or trustworthiness, attribute q(n). The root also maintains behavior history for each node in

addition to q. TAM computes a level of trust for each node and adapts the multicast tree according

to the trustworthiness of nodes, which leads to provide lower message delay to trustworthy nodes.

Trust Scope

The issue that is addressed is how a system can provide efficient and reliable information dissem-

ination to well-behaved nodes when the messages are relayed via possibly uncooperative nodes.

TAM is designed to disseminate freely available data without any access restrictions.

129

The root node receives reports for suspicious behavior and that’s the major kind of feedback

used in computing the quality attribute. Past behavior is also used. More specifically, trust is

specified by three attributes: quality attribute q(n), behavior of node as sender hs(n) and behavior

of node as a receiver hr(n). When a node joins the system, it is labeled ’trusted’ and each of the

above attributes is set to 0.

Quality attribute q(n) is determined by the number of reports from or against a node; that sug-

gests a node behaves well. Another indication of a positive behavior is the willingness to maintain

other nodes as children. These two signs of positive behavior affect q(n), which is increased by

ac+b, where a,b are system parameters and c is the number of children that node n maintains. Note

here that TAM controls the assignment of children to parent nodes.

The root also maintains hs(n) and hr(n). Lower values of the attributes indicate that a node

behaved better. When n reports against its parent p, the root increases hs(p) by gq(n) + d and hr(n)

by g’q(p) + d’, where g,g’,d’ are system parameters. There are two levels of the system thresholds

for each of hs and hr. If a node’s history exceeds the ’soft’ threshold, the q(n) is multiplicatively

decreased. If it exceeds that ’hard’ threshold, the node is labeled distrusted and its children are

relocated. The thresholds are adjusted based on the runtime system load.

Collaborative environment capabilities

The recommendation scheme is the dissemination of complaints to the root against a parent node.

There is no support of exchanging of information between two different root nodes. It is not clear

how different kinds of suspicious behavior are treated, but we assume that they are treated equally.

Dynamic trust features

Whenever a report arrives at the root node, the appropriate hs, hr are updated. TAM also increases

q(n) periodically.

130

Composable trust constructs

In a sense, TAM provides composable trust by using q(n) for evaluating the trustworthiness of a

constructed multicast tree.

7.1.10 Behavior Trust: TCPA

System Description

TCPA (Trusted Computing Platform Alliance) is a consortium of companies that collaborate to

make the computer platform trustworthy, with the primary goal to help users protect their informa-

tion assets from compromise that can originate from external software attacks. It was originally

formed by Compaq, HP, IBM, Intel and Microsoft, but it was later extended to cover a group of

hardware, software, communications and technology vendors. The primary goal was to develop,

define, and promote open standards for hardware-enabled trusted computing and security tech-

nologies, including hardware building blocks and software interfaces, across multiple platforms,

peripherals, and devices. However, what was evolved was an architecture to ensure that customer

computers are trustworthy by content providers. It seems that there is very little conceptual differ-

ence between the TCPA framework and a PKI. Thus, TCPA suffer sfrom the same problems faced

by PKIs.

7.1.11 General Trust: SULTAN

System Description

SULTAN (Simple Universal Logic-Oriented Trust Analysis Notation) trust management frame-

work (TMF) is designed to facilitate the management of trust relationships. It is a collection of

specification, analysis, and management tools. SULTAN consists of four components:

• Specification Editor: this is a toolkit for creating, storing, retrieving, editing and translating

SULTAN specifications. Trust, distrust, negative and positive recommendations are specified

using the specification notation. A SULTAN-to-Prolog translator is included as well.

131

• Analysis Tool: it incorporates an analysis notation, a query statement builder that makes it

easier to formulate queries and a template of queries common to most situations, e.g. conflict

of interest, separation of duties, implicit (and possibly dangerous) relationships, etc.

• Risk Service: it encapsulates the TMFs risk management strategy. The risk service collects

risk information and performs risk calculations.

• Monitoring Service: The trust monitor keeps the information in the SULTAN TMF up to

date, by gathering information on the outcome of transactions that involve domain users.

The trust consultant is the component that the domain user interacts with. The user may ask

questions that may help in the determination of a trust decision.

The novel aspects of the SULTAN TMF are manyfold. First, the specification is high-level and

the the analysis notation is highly expressive, i.e. a wide range of queries may be constructed.

Second, the TMF includes a component that handles risk. In addition, trust relationships are mon-

itored in order to reevaluate them and experience (and other information) is used to enable better

decision making.

Trust Scope

SULTAN does not perform access control or authentication. It simple returns the trust relation-

ships, and these can be used as a basis for developing access control schemes. SULTAN accom-

modates the specifications of trust relationships and recommendations, in both assertions and rule

formats.

There are two primitive constructs: the trust construct and the recommend construct. Trust and

distrust are specified using the trust construct, while positive and negative recommendations are

specified using the recommend construct.

The trust construct has the following syntactic form:

PolicyName : trust(Tr, Te, As, L) < −Cs;

132

The semantic interpretation of a statement in the form above is given in [27] as follows: Tr

trusts/distrusts Te to perform As at trust/distrust level L if constraint(s) Cs is true. PolicyName

is the unique name for the assertion. Tr, the trustor, is the entity that is trusting. Te, the trustee,

is the entity to be trusted. As, the action set, is a colon-delimited list of actions (function names

which effectively specify the context) or action prohibitions. The first parameter in an action name

specifies the entity the action is performed on (whether on the trustor, or the trustee, or some other

entity that is a component of either the trustor or trustee). L is the level of trust/distrust. L can be

an integer or a label. Labels are converted to integers for analysis and management. For integer

values of L, −100 6 L < 0 represents distrust assertions and 0 < L 6 100 represents trust

assertions. Cs, the constraint set, is a set of delimited constraints that must be satisfied for the trust

relationship to be established. The delimiters are the logical and and logical or. Cs must evaluate

to true or false.

The recommend construct has the following form:

PolicyName : recommend(Rr,Re,As, L) < −Cs;

Semantically (as explained in [27]), the above statement means that Rr recommends/does not

recommend Re at recommendation level L to perform As if constraint(s) Cs is true. PolicyName is

the unique name of the rule being defined. Rr, the recommendor, is the name of the entity making

the recommendation. Re, the recommendee, is the name of the entity that the recommendation is

about. L, the recommendation level, is the level of confidence in the recommendation being issued

by Rr. L can either be a label or an integer. All labels are translated to integers for analysis and

management. L is> −100and < 0 for negative recommendations and L is > 0 and 6 100 for

positive recommendations. It is important to point out that the recommendation level and trust

level are assumed to be independent of each other, unless otherwise specified. As, the recom-

mended action set, is a colon delimited set of actions or action prohibitions that Rr recommends

Re be trusted/distrusted to perform. Each action name stipulates the entity on which the action is

performed.

133

A recommendation may result in a trust specification and vice versa. In addition to these two

constructs, the auxiliary specification library contains two functions: the risk and the experience

function. Experience, recommendations, risk, credentials are the inputs to the trust engine.

Collaborative environment capabilities

Recommend construct is one of the primitive constructs. There is no direct support for feedback

aggregation algorithms other than embedding the desired aggregation scheme in the trust and rec-

ommend constructs as part of the constraints set.

Dynamic trust features

The SULTAN Monitoring system is responsible for updating the state, risk and experience infor-

mation, as well as updating the risk profiles.

Composable trust constructs

There is no provision for reasoning about action and constraint sets of different trust relationships

with the intention of composing them.

7.2 Analysis of How TMS Requirements are Met by Current TMSs

Now, we give more details on how each requirement is met by the systems described above. The

results are shown in Table 7.1. We put “yes” if the system clearly meets the requirement, whereas

“—” means that it does not meet it. If the system implements the feature not completely, the

“some” is used. We have to note here that the evaluation of these systems is based on our interpre-

tation of TMS requirements as described in Chapter 3. Additional capabilities of these systems are

not included in the discussion below.

134

Table 7.1: TMSs and Generalized Trust Requirements
Evidence Trust Trust Trust Other
Collection Analysis Evaluation Monitoring

R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R5.1
PK — — — — — — — — — — yes
Policy — — — — — — some some — some yes
Maker
KeyNote — — — — — — some some — some yes
REFEREE — — — — — some — some — — yes
TE — — — — — some some some — — yes
Trust — — — — — — — some some — yes
Builder
PICS — some — — — — — some — — —
Poblano — — some — — some — — some — —
TAM yes — — yes some some — — yes — —
TCPA — — — — — — — — yes — yes
SULTAN yes — — yes — some — some yes — yes
Hestia yes yes yes yes yes yes yes yes yes yes yes

R1.1 Heterogeneous Forms of Evidence
R1.2 Selective Collection and Distribution of Evidence
R1.3 Dynamic Management of Evidence Streams
R2.1 Time-aware Trust Relationships
R2.2 Composable Trust Constructs
R3.1 Evidence Aggregation
R3.2 Evidence-to-Expectation Mapping Functions
R3.3 Expectation Satisfaction
R4.1 Trust Re-evauation
R4.2 Imputed Trust Mode Support
R5.1 Security Services and Certificate Management Tasks

135

7.2.1 R1.1 – Heterogeneous Forms of Evidence

It appears that almost all TMS use a single evidence type, which in most cases is the certificate.

The only two exceptions are TAM and SULTAN. In TAM, the root node uses reports for sus-

picious behavior and past behavior to compute the quality attribute. SULTAN uses experience,

recommendations, risk and credentials as inputs to its trust engine.

7.2.2 R1.2 – Selective Collection and Distribution of Evidence

The public keys of PGP users are available to all from many PGP key servers. The same holds

for certificate authorities. Key servers and certificate authorities cannot refuse any user to obtain

a public key from their databases. TrustBuilder appears that it accepts credentials but does not

further distribute them. PICS users are able to select the label bureaus that they consider trustwor-

thy. However, some PICS applications do not allow multiple label bureaus to be selected. TAM

supports distribution of evidence but it is limited to the parent node. SULTAN, even though it uses

various types of evidence, does not explicitly specify how evidence is collected and distributed.

7.2.3 R1.3 – Dynamic Management of Evidence Streams

Most of the TMS do not update their collaborator list. For example, in PGP, once a key is added

to the PGP system, it remains valid at the user’s discretion. Poblano peers decide whether to

collaborate with one another based on a balance between trust and risk. If the peer confidence

value is greater than the cooperation threshold, the peer is considered cooperative. TAM also

supports some form of dynamic management of evidence streams that is enforced and it’s not

optional. Whenever the multicast tree rearranges its nodes, nodes may have new parent nodes to

report to. SULTAN does not explicitly mention how this is done.

7.2.4 R2.1 – Time-Aware Trust Relationships

There is no explicit mention of time as an abstract concept in the TMS models, with the excep-

tion of TAM and SULTAN. TAM uses time explicitly when updating the quality attribute and the

136

behavior of nodes, as well as adjusting thresholds based on the runtime system load. SULTAN is

also using time when re-evaluating trust relationships.

7.2.5 R2.2 – Composable Trust Constructs

A very limited form of trust composition construct is provided in TAM by using a specific equation

that evaluates the trustworthiness of a constructed multicast tree.

7.2.6 R3.1 – Evidence Aggregation

REFEREE supports a limited form of evidence aggregation. It can process and resolve conflicting

information from multiple sources by indicating whether or not all labels must agree or a single la-

bel carries the decision. In Trust Establishment, more than one credential may need to be examined

for a specific policy. In Poblano, confidence values are aggregated to derive updated confidence

values for paths and other peers. However, these equations are fixed for all Poblano peers. In

SULTAN, there is no direct support for aggregation algorithms but it might be possible to specify

them as constraints. Finally, in TAM it is not clear how different kinds of suspicious behavior are

treated, but we assume that they are treated equally.

7.2.7 R3.2 – Evidence-to-Expectation Mapping Functions

PolicyMaker and its successor KeyNote map keys to actions. TrustBuilder maps credentials to

roles.

7.2.8 R3.3 – Expectation Satisfaction

Expectation satisfaction is implemented in most systems, but the scope is rather narrow. Starting

with the PolicyMaker and KeyNote systems, expectation satisfaction occurs whenever a key can

be mapped to an action. In REFEREE, expectations take the form of rules, which are evaluated top

down. The return value of the last rule is the policy’s return value. Similarly, PICS expectations are

expressed as rules that apply to labels. In Trust Establishment, expectation refers to the required

fields that must be filled in with the information that is embedded in certificates. In TrustBuilder,

137

expectation satisfaction occurs when the required credentials are presented during negotiations.

SULTAN uses the standard equality and inequality operators to indicate the required value for a

requirement.

7.2.9 R4.1 – Trust Re-evaluation

The majority of the systems do not support dynamic changes to their established trust relationships.

For instance, PolicyMaker considers trust to be monotonic (only increases) because each policy or

credential can only increase the capabilities granted. Similarly, in Trust Establishment the database

that stores the bindings of certificate holders to groups is static and does not change considerably

over time. In REFEREE, it is not clear if expiration of labels is handled by system or the appli-

cation. It is also not clear what happens to the bindings of credentials to roles in TrustBuilder

environment. In Poblano, confidence values are updated only when a peer resides on a codat path.

In this case, the peer has no choice but to update its tables. There are no mechanisms to dictate

when and how to update these values. SULTAN, TAM and TCPA support trust re-evaluation.

7.2.10 R4.2 – Imputed Trust Mode Support

None of the systems support this feature. However, it might be possible in PolicyMaker and

KeyNote to embed modes in the filters.

7.2.11 R5.1 – Secure Collection and Distribution of Evidence

Almost all systems rely on an external certificate authority, with the exception of PICS, Poblano

and TAM.

138

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation concludes by presenting the contributions of the research work, its applicability

and the future directions.

8.1 Contributions

This dissertation begun with a discussion of the generalized trust problem for indirect interac-

tions. It was demonstrated that security research has not kept pace with this challenge because

cryptographic mechanisms and authentication protocols do not provide any characterization of the

data itself. Related to security is the notion of trust, and in particular trust management systems

(TMSs). However, the current state-of-the-art in this research area also lacks the mechanisms to

address end-to-end trust for indirect interactions.

Chapter 2 discussed the importance of trust management in critical infrastructures. Cross-

communication and interaction between and within critical infrastructures, such as electric power

grid, transportation, and intelligence agencies is required and mandated by the Homeland Defense

Department. Information dissemination among the interested parties should accommodate their

diverse trust requirements. In order to emphasize the need for trust in such infrastructures, a set of

application suites for the electric power grid was presented.

Chapter 3 identified and documented the objectives and requirements that a trust management

system must meet in order to provide dynamic and composable trust for indirect interactions. The

requirements were categorized in accordance with the activities of a general trust management

system. Additionally, a number of paradigms, new to trust management, were presented.

The detailed design of Hestia was the focus of Chapter 4. Hestia is a configurable trust man-

agement system that meets the TMS requirements. Its components were discussed, followed by

three scenarios that illustrated the operation of the system.

139

Hestia’s provision of configurable trust policies allows entities to set up policies for the func-

tionality of Hestia components. Chapter 5 discussed the space of Hestia policies and a number of

policies were specified in XML format.

The theory of sets and relations was then used to represent the trust relationships that exist in

Hestia. In particular, trust was formally defined and its ontology, properties, and operations were

studied in Chapter 6.

The current state-of-the-art in trust management was presented in Chapter 7. A brief overview

of well-known trust management systems was given, and their capabilities and limitations were

discussed in terms of the TMS requirements outlined in Chapter 3.

In summary, the key contributions of this research work are the following:

• An analysis of why dynamic and composable trust are both needed in many distributed

application programs today which span multiple principals, particularly ones involving data

aggregation or indirect interactions such as publish-subscribe applications

• A set of requirements which must be met by any trust management system in order to solve

the generalized trust problem

• New trust paradigms which support the implementation of these requirements

• Informal model of Hestia trust management system that supports

– dynamic trust management, including time-aware trust relationships

– trust composition, in order to support indirect interactions and data aggregation

– evaluation of both access trust, generalized policies for access control, and data trust,

systematic reasoning about the quality of (possibly aggregated) data provided by a set

of principals

• Trust formalisms, including trust ontology, properties, and operations.

140

Furthermore, the thesis of the dissertation:

Thesis: Trust management techniques can be extended to meet the trust needs of architectures

such as publish-subscribe that support indirect interactions between principals.

has been demonstrated by the design and formalisms of Hestia.

8.2 Generalized Trust and I3P

As it was mentioned at the very beginning of this dissertation, generalized trust is important to

several aspects of the I3P research agenda. The existing baseline Hestia research already addresses

I3P research goals for “Trust Among Distributed Autonomous Parties” (TADAP) and “Enterprise

Security Management” (ESM). In particular, Hestia meets the following goals:

• One TADAP goal is striving for “dynamic security relationships in P2P settings”. In addition

to P2P, Hestia’s architectural framework supports general formulation of trust relationships

between principals, including publish-subscribe interactions , where intermediate entities act

as forwarding agents that deliver data from its source to its destination. Integrating Hestia

with a publish-subscribe framework allows for a rich experimental environment for explor-

ing trust relationships. We have begun to investigate how the Hestia architecture will be

implemented and integrated into an existing status dissemination middleware, GridStat, to

validate and assess the conceptual framework of trust management for indirect interactions.

GridStat [38, 25, 48, 43, 29] is a data dissemination middleware which is designed for the

needs of the electric power grid and has been involved in a technology trial with a local

electric utility since 2003 [19] and will soon be employed in a national energy lab. It is

developed to provide better communications services for the electric power grid. GridStat

takes advantage of the semantics of the data and supports a hierarchical plane that manages

admission control issues and QoS requirements.

141

• The TADAP area also asks, “What is required to add 1-to-n peers to an existing trust relation-

ship”. Hestia to date supports not only this, but more general graphs involving composing

trust across indirect interactions such as publish-subscribe, as well as supporting both access

trust and data trust. Hestia provides a systematic way to assess an end-to-end trust relation-

ship that involves a chain of n participants. The TADAP area also emphasizes, “ongoing

research remains on authorization rather than on defining and communicating expectations”.

Hestia has explicit notions of expected behavior (expectations) and observed/measured be-

havior as well as a wide range of techniques that reason about allowed and actual behavioral

values. Additionally, Hestia provides for different operational modes (similar to homeland

security alert codes), and this allows for adjusting expectation specification depending on

the current operational mode.

• The TADAP area stresses the need of “technology that does not rely on a previously deter-

mined trusted third party”. One of Hestia’s objectives is to operate in a collaborative environ-

ment. An entity’s ability to monitor and manage all interactions in a large-scale distributed

system is limited, and therefore it needs to rely on external opinions and experiences. A

number of evidence acquisition mechanisms are integrated in Hestia, including recommen-

dation networks, failure detectors, and QoS instrumentations. The wide range of evidence

types allows for broader trust applicability, including “determining the trustworthiness of

readings from a remote sensor” and “monitoring user activity”.

• The EMS area stresses the need to “define policies for secure and appropriate use of its

information resources and translate those policies into practice”. Hestia provides a solid

basis for this. The EMS area also stresses the need for monitoring of user activity and Hestia

supports these goals in many ways, for example, by supporting evidence types involving not

only traditional security/trust evidence but a wide range of more general evidence such as

performance anomalies, power grid anomalies, business relationships, etc.

142

8.3 Future Directions

The future directions for Hestia include the integration of the Hestia architecture into an existing

status dissemination middleware, GridStat, to validate and assess the conceptual framework of

trust management for indirect interactions, including a wide range of traditional trust evidence

mechanisms plus more general ones such as the crash failure detectors, value failure detectors,

intrusion detection systems, and QoS instrumentations. Hestia should not be tailored to the specific

GridStat architecture, but instead it should be a reusable ”plug-in” service. One of the challenges

of developing a reusable Hestia is making the correct and necessary architectural choices that will

allow a stand-alone implementation to be easily integrated and reused by any other system. In

addition to this challenge, it is nontrivial, or feasible, to generate all low-level policies that are

necessary to support a high-level policy for a reusable and configurable Hestia.

Currently, there are no standardized evaluation metrics to assess the performance, effective-

ness, and usefulness of TMSs. The evaluation of Hestia and comparison to other TMS should

focus on devising a set of metrics that evaluate and validate TMSs in various dimensions, includ-

ing performance, usability, and complexity. The diversity in metrics will enable the TMS evaluator

to assess the entire spectrum of the system capabilities and features for given topologies and con-

figurations, while at the same time assessing the complexity of the user-application interface. The

main challenge for this task is to ensure that the proposed set of metrics covers all necessary as-

pects in assessing trust management systems. Currently, TMSs are using their own validation and

assessment methods that are tied to the particular system and within a particular trust scope.

Another future direction is to explore the implications of Hestia in automated trust negotia-

tions (such as the ones provided by TrustBuilder) and how it leverages the capabilities of such

negotiations; this is an area that is gaining increased popularity. Hestia could be used to collect ev-

idence about future collaborators, before the trust negotiation system starts its negotiation of trust.

If evidence is available prior to negotiations, then credential and access control policies could be

143

adapted according to what is already known about the negotiating party.

Another future task could involve developing a suite of Hestia policies for electric power grid

applications and studying their performance, tradeoffs, and applicability. There are two main

challenges of developing such a suite of policies. The first one is the difficulty of defining high-

level policies that conform to the organizations goals. The second challenge is the complexity of

the space of the interoperability between organizations with heterogeneous policies.

As it was mentioned earlier, one of the design assumptions was that the trust service is con-

sidered to be trusted completely. Techniques are needed to assess the degree of trust placed in the

service.

A final future task is the policy suite development. This task includes a policy language to

specify the organization policies with a front-end tool. This tool will compile the policies into a

representation that the policy engine can use. Furthermore, there is a need to devise techniques

responsible for compile and runtime checking for potential policy conflicts.

144

APPENDIX

APPENDIX A

TRUST TERMINOLOGY

Trustor - Entity that makes a trust assessment.

Trustee - Entity about which a trust assessment is made.

Recommender - External source of trust assessments.

(Pairwise) Trust Relationship - This is the relationship between a trustor and a trustee.

End-to-end Trust Relationship - This is the relationship between a trustor and multiple trustees

that are involved in the same interaction.

Pairwise Trust - It is the dynamic belief regarding the extent to which a particular trustee will

act as expected for a specific context during a specific information lifecycle stage. This extent is

subject to the satisfaction of expectations set by the trustor for the specific imputed trust mode.

End-to-end Trust - It is the dynamic belief regarding the extent to which a group of trustees will

act as expected for specific contexts during a specific information lifecycle. This extent is subject

to the satisfaction of expectations set by the trustor for the specific imputed trust mode.

Direct Trust - It refers to the trustors own trust assessments.

Experience - See Direct Trust.

Indirect Trust - It refers to trust assessments from external sources.

Recommendations - See Indirect Trust.

Trustworthiness - This is the extent to which the trustee is observed to honor the trust expecta-

tions. Trustworthiness is an extrinsic property of the trustee.

Imputed Trust Mode (trustfulness)- This is the extent to which the trustor is willing to take the

risk of trust expectations being violated by the trustee.

Trust Level - Trust level quantifies the trustworthiness and the trustfulness of an entity.

Evidence - It refers to information that stands as proof of ones behavior, attitude, or external

146

attributes. Evidence must not be confused with forensic evidence, which must adhere to the stan-

dards of evidence that is admissible in a court of law.

Evidence Acquisition Mechanisms - Mechanisms that collect evidence for different kinds of

trust properties. Recommendation mechanism is a specialized acquisition mechanism for recom-

mendations.

Expectation - It is defined as a requirement and its allowed values that a trustor sets for a partic-

ular trust relationship.

Expectation Satisfaction- It occurs when a trustee’s observed value for a requirement falls into

the range of allowed values as set by the trustor.

Information Lifecycle - It is the interval during which information is created and consumed

within an information dissemination system.

Information Lifecycle Stage- Information lifecyle is decomposed into three stages: generation,

dissemination, and consumption.

147

APPENDIX B

TRUST RELATIONSHIPS BASED ON THE INFORMATION

LIFECYCLE CONCEPT

This appendix focuses on describing the information lifecycle concept and how it could be used to

evaluate end-to-end trust is different topologies. The various trust relationships are explained and

illustrated for the peer-to-peer (P2P) and publish-subscribe systems.

B.1 Information Trust Classification

There are different classifications of trust and these depend on the context that trust is applied for.

Grandison et al. [26] have identified different forms of trust in the literature relating to whether:

• access is being provided to the trustors resources (resource access trust)

• the trustee is providing a service (service access trust)

• trust concerns authentication (trustee certification)

• trust concerns infrastructure (infrastructure trust)

• trust is delegated (delegation).

The authors state that this taxonomy is not exhaustive but it rather provides a useful way of

classifying trust for Internet services. Our trust model supports a different classification that is

related to the role of the entity within the information lifecycle. This classification provides a

different way of viewing different situations that involve trust in indirect interactions. Figure B.1(a)

shows the trust relationship between an information producer entity and an information consumer

entity. Each entity is simultaneously a trustor and a trustee, but with different trust requirements. In

distributed systems such as publish-subscribe systems information is delivered by intermediaries

and their trustworthiness must be assessed too.

148

P C

trustor trustee

trustortrustee

P C

trustor trustee

trustortrustee

I

trustee

trustee

(a) Producer/Consumer Relationships
 without considering Information Lifecycle

(b) Producer/Consumer Relationships
 when considering Information Lifecycle

Figure B.1: Trust Relationships without and with Information Lifecycle

Information lifecycle was defined earlier as the interval during which information is created

and consumed. By decomposition, we can break this three stages: generation, dissemination, and

consumption. The entity responsible for the information at each stage is the information producer

(generation stage), information dissemination medium (dissemination stage) and the information

consumer (consumption stage). After decomposition, trust can be examined and evaluated at this

finer granularity for each stage in the information lifecycle.

Figure B.1(b) illustrates the extended trust framework between an information producer and

information consumer that takes into account the intermediary entity. Both the producer and con-

sumer have a dual role (trustor and trustee) whereas the intermediary only acts as the trustee. There

are two specialized forms of information trust in this setting: Information Provider Trust (IPT) and

Information Consumer Trust (ICT). IPT refers to the subjective and dynamic belief placed by an

information consumer entity (trustor) on an information provider entity (trustee) to provide in-

formation as expected. Similarly, ICT refers to the subjective and dynamic belief placed by an

information provider entity (trustor) on an information consumer entity (trustee) to consume infor-

mation as expected.

We argue that the new classification covers all trust forms mentioned above that are applicable

in an information dissemination infrastructure. It should be possible to represent all five types

of trust using the two specialized forms of trust. For instance, consider trustee certification, that

refers to the certification of the trustworthiness of a trustee by a third party (certificate authority).

149

In our trust model, the information consumer entity will be the entity that receives the certificate

and the information provider entity will be the certificate authority. Thus, the certificate receiver

establishes an IPT between itself and the certificate authority regarding the certificate contents

(Figure B.2).

Recommenders

Certificate Receiver

General
Consumer

Recommendation

C
ertificates

Data

Producer

Network Administration

Da
ta

Figure B.2: Trustee Certification and IPT

The four trust relationships, illustrates in Figure B.1(b), are mapped to lifecycle stages. Con-

sider each stage of the lifecycle in turn:

• In the generation stage, the information provider is the entity that assumes the role of the

trust evaluator. It evaluates two ICT relationships, one for the information consumer and one

for the information dissemination service.

• In the consumption stage, the information consumer assesses the trustworthiness of the infor-

mation provider and the information dissemination medium by formulating the appropriate

IPT relationships.

150

• In the dissemination stage, the dissemination medium has no expectations from either the

provider or the consumer of the information.

We now show that this generic trust model can be applied to peer-to-peer and publish-subscribe

paradigms.

B.2 Information Trust In Peer-to-Peer (P2P) Information Systems

Peer-to-peer file sharing systems allow users to collaborate in a dynamic manner and share infor-

mation in large-scale distributed systems [36]. Information retrieval in P2P consists of two tasks:

information discovery and information downloading. Information discovery includes forwarding

query messages to locate peers that have the desired information and returning a list of those peers

to the user who initiate the query. Information downloading is achieved with a direct connection

with some peer that has the requested information.

There are four major entities in a P2P system: the downloading peer, the information dissem-

ination medium, the uploading peer and the information discovery peer. We narrow the scope of

the information discovery service to a single peer that locates target uploading peers. There are

two information flows: the query request from the downloading peer to the information discovery

service and the information stream from the uploading peer to the downloading peer. Based on

these two information flows, the requirements for P2P require the following:

1. A downloading peer must be able to determine

1.1. which uploading peers provide authentic files the contents of which match their de-

scriptions

1.2. which peers are trustworthy during the information discovery search

1.3. the trustworthiness of the connection that facilitates file downloading

1.4. the trustworthiness of the connection that provides the information discovery list of

target peers

151

2. An uploading peer must be able to determine

2.1. which downloading peers will not further upload without permission

2.2. the trustworthiness of the connection that facilitates file downloading.

Each information flow lifecycle is considered separately in the lifecycle trust model. Therefore,

two sets of the four trust relationships of the generic information sharing system are required, one

set per lifecycle.

P CConnection1

Uploading Peer
Information Provider

 1. ICT(Uploading,Downloading)
2. ICT(Uploading,Connection1)

P P

P

Connection2

Downloading Peer
Information Consumer

3. IPT(Downloading,Uploading)
 4. IPT(Downloading,Connection1)

5. IPT(Downloading,Discovery)
 6. IPT(Downloading,Connection2)

Information Discovery Service Peers
Information Provider

Flow 1: Query Request
Flow 2: Information Downloading

Figure B.3: Information Trust in Peer-to-Peer

The query request flow (Flow1 in Figure B.3) is initiated by the downloading peer and tar-

gets a discovery information service peer that provides a list of uploading peers. In the lifecycle

trust paradigm, the requester peer is the consumer of the information and the discovery peer is its

provider. Following the generic model of the trust relationships, the consumer establishes two IPT1

relationships: one for the provider and another one for the connection (Relationships 5,6 in Figure

B.3). Trust requirements 1.2 and 1.4 are satisfied by these two relationships. In a P2P environment,

the information discovery service does not have any specific expectations from the downloading
1For brevity reasons, the attributes of both IPT and ICT are the trustor and trustee, in this order. We don’t consider

other trust relationships parameters.

152

peer and does not set the ICT relationships as dictated by the model ; the only trust issue would be

to trust the requester peer that it does not abuse the service by launching denial of service attack.

The second information flow is the downloading of the requested file (Flow 2 in Figure B.3)

from the uploading peer to the downloading peer. The uploading peer is the provider entity whereas

the consumer entity is the downloading peer. The generic model is applied for this flow without any

customizations. The provider formulates two ICT relationships to build trust for the downloading

peer and the facilitating connection (Relationships 1,2 in Figure B.3). These two ICT relationships

satisfy trust requirements 2.1 and 2.2. The equivalent IPT relationships (Relationships 3,4 in Figure

B.3) are constructed at the consumer site, covering trust requirements 1.1 and 1.3.

The question that emerges is whether or not these trust relationships are feasible to establish and

evaluate. At this point, we must consider the fundamental principle of anonymity that governs pure

P2P systems. P2P systems did not make any provisions for trust evaluations. This is by no means

a design fault, because P2P was built as an open shared file paradigm. However, malicious peers’

behavior has destructive effects on the operation of the system. In order to defend and protect

themselves, peers rely on reputation systems to obtain opinions about other peers. These schemes

range from simple recommendation systems to more dynamically updated reputation systems that

operate on some form of centralized reputation database. Assuming that a recommendation system

exists for all entities, we believe that IPT and ICT relationships involving provider and consumer

entitys are conceivable.

The focus on peer trustworthiness neglects the connection properties and how they affect the

trustworthiness of the transferred data. A compromised connection is vulnerable to numerous at-

tacks. The lifecycle approach explicitly considers the security (as part of the more general concept

of trust) of the network. Due to the fact that a point-to-point connection (including transport layer

TCP/UDP connections) is a degenerate form of an information dissemination medium, its trust

properties are easy to verify by examining the security features of the direct connection. SSL,

TLS, IPSec provide security services that guarantee authentication, integrity and confidentiality.

153

VPNs are also possible candidates for connecting extranet peers in a secure manner.

Finally, we consider the matter of synthesizing trust relationships. For example, trust relation-

ships 3 and 4 of Figure B.3 assess at consecutive lifecycle stages the trustworthiness of the infor-

mation during its generation (at the uploading peer) and its dissemination (by the connection). In

order to minimize the risk of downloading malicious information, the consumer must decide the

appropriate course of action when the uploading peer is untrustworthy and the connection is trust-

worthy, and vice versa. The contribution of the lifecycle approach is that it provides a model to

enable the synthesis of the various relationships at each stage to reflect the overall trustworthiness

of the information.

B.3 Information Trust in Publish-Subscribe Information Systems

Publish-subscribe is an asynchronous form of messaging that allows decoupling in time, space

and flow[22]. A subscriber registers its interest with an event service and a publisher advertises

its publication to the same event service. A network of event servers facilitates the distribution of

event messages between publishers and subscribers. The dissemination of events is accomplished

through matching algorithms that control the way event messages are delivered to the subscribers.

There are a few papers, such as the work by Wang et. al [46], dealing with security issues

for a type of publish-subscribe system (content-based system) but without any special attention to

trust issues. The major concern is that security mechanisms eliminate, in most cases, the spatial

decoupling feature of the publish-subscribe system. Trust is also challenging in this system because

of the intermediary network of store-and-forward servers between publishers and subscribers.

The main entities in a publish-subscribe system are the publishers, subscribers and the event

servers. The event servers facilitate information dissemination as well as matching between publi-

cations and subscriptions. There are three information flows: message forwarding from publisher

to subscriber, publication advertisement from publisher to event servers, and subscription request

from subscriber to the event servers. The trust requirements for publish-subscribe are:

154

1. A publisher must be able to:

1.1. infer which subscribes are likely to leak information

1.2. rely on the event servers regarding message forwarding

1.3 rely on the event servers for proper handling of its publication notification

2. A subscriber must be able to:

2.1. infer which publishers publish trustworthy data

2.2. rely on the event servers regarding message delivery

2.3. rely on the event servers for proper handling of its subscription request

3. An event server must be able to rely on the other trustworthy servers that receives messages

from or forwards messages to them

C PP CC P C P

Publisher
Information Provider

 1. ICT(Publisher,Subscriber)
 2. ICT(Publisher,Event Service)

 5. ICT(Publisher,Event Service)

Subscriber
Information Consumer/Provider

 3. IPT(Subscriber,Publisher)
 4. IPT(Subscriber,Event Service)

 6. ICT(Subscriber,Event Service)

Event Server n
Information Provider/Consumer

7. IPT(EventServern,EventServern-1)
 8. IPT(EventServern,Connectionn and n-1)

9. ICT(EventServern,EventServern+1)
 10. ICT(EventServern,Connectionn and n+1)

Event Service
Information Provider/Consumer

Flow 1: Message Forwarding
Flow 2: Publication Advertisement
Flow 3: Subscription Advertisement
Flow 4: Communication between servers

Figure B.4: Information Trust in Publish-Subscribe

Figure B.4 illustrates the trust relationships that satisfy the requirements mentioned above.

Similar to P2P, each flow is examined independently in the lifecycle model. Starting from the first

155

flow of message forwarding, the trust relationships of the generic model are applied as they are.

The provider is the publisher, the consumer is the subscriber and the event servers are the infor-

mation dissemination medium. Hence, relationships 1, 2, 3, and 4 of Figure B.4 map to the trust

requirements 1.1, 1.2, 2.1, and 2.2. The next flow is between the publisher and the event servers.

The publisher expects that the event servers will operate correctly with respect to the proper for-

warding and placement of its publication advertisement. We assume that the event servers have

no expectations or demands from the publisher. Due to this simplification, there is only one trust

relationship for this flow, which is the ICT between the publisher and the event servers (relation-

ship 5 of Figure B.4). Trust requirement 1.3 is satisfied by this relationship. The third flow, the

subscription notification request, is similar to the previous one and the same reasoning applies for

this case too. The ICT between the subscriber and the event service (relationship 6 of figure B.4)

maps to trust requirement 2.3.

The difference between the dissemination services of P2P and publish-subscribe is that the

former is a point-to-point connection whereas the latter is a chain comprised of interconnected

servers. Each event server acts as both a provider and consumer of information by forwarding to

and receiving messages from its adjacent servers. Hence, the four trust relationships of the generic

model apply for each pair of interconnected servers. Relationships 7 through 10 of Figure B.4

illustrate the trust establishment for server n, which is positioned as the middle server in the path

chain < n − 1, n, n + 1 >. Both a provider and a consumer entity must synthesize the individual

trust relationships for the servers involved in forwarding/matching operations so as to derive the

trustworthiness of the information dissemination medium as a whole.

156

APPENDIX C

SECURITY REQUIREMENTS FOR STATUS DISSEMINATION

MIDDLEWARE

Like any other distributed system, GridStat needs to provide the appropriate security services that

will satisfy the needs of any application. Even though GridStat is to be deployed for the power

grid, its security framework must be flexible to accomodate a wide range of security policies. A

flexible, broad security framework allowing diverse security requirements within the same publish-

subscribe architecture is needed. As of today, there is no such security framework tailored for the

general publish-subscribe model or its more specialized form of status publish-subscribe model.

C.1 Related Work

In order to define the security framework for GridStat, the security requirements for a status dis-

semination publish-subscribe middleware are investigated. Status dissemination middleware is

considered a specialization of the content-based publish-subscribe model,where the content col-

lapses into a single status event. Furthermore, moving one step further, the content-based pub-

lish/subscribe paradigm itself falls in the category of distributed systems that span over different

administrative domains. The relationships described are illustrated in Figure C.1.

Unfortunately, there is no work done on designing a framework covering the security aspects

of the communication model mentioned above. In [46], the authors present both the security

requirements and the challenges for a content-based publish-subscribe system. Wang et al. divide

the security requirements for a content-based publish-subscribe system into two categories:

• Security requirements for the application, which refer to the security issues between pub-

lishers and subscribers

• Security requirements between the infrastructure and the publishers, subscribers.

157

Distributed Systems spanning over
different administrative domains

Content-Based Publish-Subscribe
Systems

Status Dissemination Publish-Subscribe
Systems

Figure C.1: Status Dissemination and Publish Subscribe Relation

For each category, the main security services of integrity, authenticity, confidentiality and avail-

ability are defined with respect to the category’s domain space. For example, authentication be-

tween publishers and subscribers (category 1) refers to the end-to-end authentication where point-

to-point captures the concept of proof of identity between immediate points of communication

(category 2).

One of the paper’s contributions is the identification of challenges faced in undertaking the

task of implementing a complete security framework for the publish-subscribe model. The authors

warn that enforcing current security mechanisms might lead into converting the publish-subscribe

paradigm into a point-to-point or multicast communication model. The existing challenges are

defined as the ones below:

• It is not trivial to design a security architecture for the publish-subscribe system that will

provide a flexible security framework allowing diverse policies to be implemented within

the same infrastructure.

158

• Service integrity, which refers to the correct operation of the internal publish-subscribe in-

frastructure, is only guaranteed by contacting a comprehensive fault tolerance analysis enu-

merating malicious faults and consequences.

• The requirement of confidentiality of information travelling within the network contradicts

the basic content-based principle.

• Subscription confidentiality proposed methods are impractical and their performance and

efficiency have not been evaluated yet.

• Publication confidentiality (or access control), which refers to the delivery of information to

legitimate subscribers, can be handled by the infrastructure. In order to do this, the publish-

subscribe framework needs to provide an interface for the application to specify their control

policy and a mechanism to support such policies.

Miklos in [35] also emphasizes the serious security problems that are present in publish-

subscribe systems and points out that a uniform solution accommodating all security scenarios

listed in [46] might not be feasible. Instead, the author investigates those attack scenarios that can

be prevented with an access control mechanism tailored for the publish-subscribe communication

model. The main idea is to provide an access control mechanism (covering only positive access

rights) that will control what notifications the subscribers are authorized to receive and what adver-

tisements publishers can publish. His control mechanism for the subscriber is captured as follows:

Step 1 The subscriber sends the subscription together with its credentials to the dispatching net-

work host

Step 2 The access control component on the host checks whether the policy rules and the attached

credentials allow the subscriber to insert the subscription

Step 3 If permission is granted, the subscription is inserted.

159

The mechanism for the publisher is similar to the above. His access control scheme defines

actions for credentials. Policy rules authorize the presenters of the credentials to perform those ac-

tions that are associated with the access control filters for the presented credentials. Access control

filters (upper bound and lower bound) defining control rules for both publishers and subscribers

are defined using the covering relation notation introduced by Carzaniga et al. [14]. For example,

there are two ways to grant access rights to subscribers holding credential C:

• Granting access rights based on upper bound subscribe filters: Suppose that the policy

rules define the upper bound subscribe filter (with credential C) to be (string message new-

product). Then the subscriber is allowed to subscribe to (string message newproduct, integer

10) but not allowed to subscribe to (string weather sunny, integer temperature ≤ 25). In

other words, the upper bound access control filter u covers the subscription as a subscription

filter u @ s.

• Granting access rights based on lower bound subscribe filters: Suppose that the lower

bound subscribe filter is (string message any). Then the subscriber is allowed to subscribe

to (string message newproduct) but not (string message newproduct, price ≤ 100). In other

words, the lower bound access control filter l covers as an advertisement the subscription

l @ s.

The described mechanism only works for a single credential C. Multiple credentials will com-

plicate the procedure. Moreover, the paper does not mention how to compose two access control

filters originating from two different sources. The assumption is that the access control filters are

defined at the edge routers by the local host.

Bertino et al. in [10] also present an access control mechanism for large scale data dissemina-

tion systems. The authors, stressing the fact that existing dissemination systems lack any kind of

access control mechanisms, attempt to design such an access control facility that will accommodate

the following:

160

• Deny access to certain users

• Deliver confidential data only to authorized users

• Selectively disseminate information based on special agreements.

Their access control model is based on two concepts; user profiles and authorization domains.

User profiles capture user interests and credentials where support of authorization domains aims

in grouping together information objects to which the same access control policies apply. An

information object consists, among other things, of a unique identifier, set of concepts and a set of

weights associated with each concept.

As mentioned earlier, the user profile is built based on an interest profile and a set of credentials.

An interest profile can be either explicitly specified by listing the information object identifiers that

are of interest to the user or by dynamically evaluating concept queries in order to get the object

identifiers. On the other hand, credentials are defined to be instances of credential types, where

credential types are described by a unique identifier and a set of attributes of the form attribute

name, attribute domain, value. The user profile contains the following information:

• user identifier

• lifespan of the profile

• update frequency that indicates how often the user wants to be notified of new relevant in-

formation objects

• relevance threshold that indicates the minimum similarity score that an information object

must have against the interest profile in order to be returned to the user

• credentials

• interest profiles

161

Since the proposed access control mechanism is intended for a dissemination system, there

are only two access modes that are supported; namely, notification and propagation (selective and

total) as shown in figure C.2.

ACCESS MODES

Notification
user gets notified that an info

object is available but he does not
receive it

Propagate
user receives the object and its

navigational links

Selective
user receives the

object but not the
links

Total
user receives the

object and the
links

Figure C.2: Access Modes

The final element of the proposed access control mechanism is defining the actual access con-

trol policies. This is accomplished by imposing a set of conditions on user credentials, which are

defined by using credential expressions, authorization domains and access control modes. An ex-

ample of such access control policy is (manager AND managertype = senior, Project Budget, total

propagate), meaning that a user holding a senior manager credential has a total propagation access

right on the information object named Project Budget.

C.2 Initial Security Approach for GridStat

The content-based publish-subscribe model lacks a security framework that will protect it from

malicious attacks. The status dissemination middleware that we are trying to built is a special-

ization of the content-based publish-subscribe, implying that the lack of a security framework is

inherited to this model too. GridStat needs to provide the policies and mechanisms for defining

security properties as desired by a variety of applications with different security needs.

162

In order to define the security framework for the GridStat middleware, the following were

considered:

• What security services are available for large scale status dissemination systems

• What entities need protection and what security services will be provided to them

• Where security will be placed (relative to the TCP/IP mode)

C.2.1 Classification of security services

The following list outlines the security services that network systems may implement:

• Confidentiality (privacy) — usually provided through encryption

• Authentication — usually provided through digital signatures and certificates

• Integrity — usually provided through hash functions (keyless) or digital signatures

• Nonrepudiation — requires a trusted third party

• Access Control — ACL, capabilities, role based, domain access control, access based on

membership

• Availability — protect access to resources in order to avoid denial of service attacks

C.2.2 Entities that need protection and security services that can be provided

GridStat must provide the following services to the various GridStat entities and structures:

• Status items

– Authentication and Integrity of message: unaltered content during transmission

– Authentication of origin: verification of publisher’s identity

– Confidentiality: secrecy might be required during transmission

163

– Availability: status items need to be available to the legitimate subscribers

– NonRepudiation: for audit purposes

• Hierarchy of QoS Brokers

– Authentication: identity verification

– Authorization and access control: QoS brokers will be responsible for delivering com-

mands to lower-level QoS brokers and therefore an authorization scheme must be in

place.

• Status Routers

– Authentication: the intermediate points of communication need to authenticate them-

selves to each other.

• Publishers

– Authentication: this might not be easy (or feasible) in the case of sensor devices be-

cause it depends on the communication protocol used between a substation and the

devices (serial lines and one-to-one connection or any other protocol). The assumption

is that the edge status router is able to authenticate its publishers using a technique that

is beyond the GridStat scope. With the same token, publishers’ identity can be verified

through their edge status router.

– Authorization and access control: this refers to the ability of a publisher to advertise a

status item. In addition to this, publishers should also be able to impose restrictions on

the receivers of their posted status.

• Subscribers

164

– Authentication: this is a critical element because subscriptions will get validated based

on who the subscriber is. Probably a credential service (distributed or hierarchical

one) will be an essential part of the overall framework for distributing credentials to

subscribers.

– Authorization and access control: a subscriber is either allowed to receive an event or

not. A scalable access control scheme must de defined for controlling subscriptions.

• Resources (bandwidth)

– Access Control: this is taken care of by employing an access control scheme for con-

trolling publishing and subscribing.

– Availability: since QoS guarantees are provided, all the information flow is pre-

arranged and any new flow is subject to bandwidth availability. Furthermore, by re-

stricting subscriptions and filtering publications, an attempt is made to prevent denial

of service.

The above entities and their security requirements can be partially represented by the security

requirements guideline presented in [46]. The QoS hierarchy is not depicted in the guideline but

it will be useful to check how the status dissemination middleware as we envision it fits in that

security framework:

• Authentication of end-to-end entities (publishers and subscribers): as mentioned earlier,it is

not known yet how publishers authenticate themselves to their edge status router. Either a

secure connection needs to be established between each sensor device and the edge status

router (and in this way preventing identity theft) or the subscriber will authenticate the edge

status router instead of the publisher. This is feasible due to the hierarchical nature of the

GridStat naming scheme.

165

• Authentication of point-to-point entities: internal server communication can be provided by

employing IPSec or using SSL connections.

• Information Integrity: the integrity of the status item can be guaranteed by IPSec. Edge

status routers can also digitally sign the message using PKI.

• Subscription Integrity: this refers to the protection of the subscription from unauthorized

modifications possibly during runtime. In GridStat environment, this can be restated as

a question of how a subscription can be modified without authorization and be who. Edge

status routers and internal cloud servers might attempt a subscription modification by altering

their own forward/routing tables. Note that each server can only modify the next hop because

this is the only thing they know regarding a subscription. So, if a server redirects a status item

message to another internal server than the intended one, the message will not be expected

and the receiving server will drop it and possibly notify its leaf QoS broker. Furthermore,

the redirection of the status message will result in the loss of the message and therefore the

subscriber will not receive the status item. Missing status items will also result in further

actions (notifying edge status router, leaf QoS broker).

• Service Integrity: this is one of the challenges mentioned in the authors’ paper [46]. GridStat

supports a redundant path mechanism but this is a partial solution. Due to the GridStat

framework, cooperation of a number of faulty or malicious servers need to be present in

order for an unauthorized subscriber to receive a message. In addition to this, integrity

mechanisms will prevent the modification of a message by an internal status router. An

inexpensive security mechanism for verifying a status item that travels through redundant

paths is to let the subscriber wait until N different copies of the status event arrive and then

employ a vote/compare mechanism. Note that we will not have full Byzantine security any

time soon.

166

• Information Confidentiality: Can the infrastructure perform status routing without the pub-

lishers trusting the internal servers with the status value? Currently, information subscription

cannot be supported because the internal status routers forward messages based on the status

identifier, which is composed by the publisher name and status type. It is possible that a

malicious router can collect status item sets and supply them to interested parties that are

not authorized to view the values of those status items. The value of each status item is very

short-lived so maybe there is no real gain in trying to protect their value.

• Subscription Confidentiality: Can the subscribers obtain dynamic status data without reveal-

ing their subscription function to the publisher or the internal server infrastructure? The

status router infrastructure has no knowledge of what subscriptions the publish-subscribe

system supports due to the fact that all subscriptions are validated by the QoS Broker hierar-

chy. A subscriber submits its subscription request to its edge status router and from there it

gets forwarded to the leaf QoS Broker. If the subscription’s QoS requirements are satisfied

and all access control policies are satisfied, then the internal servers are notified for adding

a new entry to their routing table. Therefore, Gridstat’s architectural design supports this

security requirement.

• Can publishers control which subscribers may receive particular publications? An access

control scheme needs to be implemented for controlling the status dissemination. This is

considered to be a nontrivial task.

• Accountability: edge status routers and leaf QoS Brokers may want to charge the recipients

of status information originated from their publishers. Furthermore, the QoS Broker hierar-

chy might want to charge for bandwidth consumption. Since all subscriptions are stored in

the hierarchy, it is feasible to gather information on who is using what and how much.

• Availability (of bandwidth): customized publication control by filtering at the edge status

167

routers as well as controlling the number of subscriptions are techniques for partially pre-

venting denial of service attacks.

C.2.3 Security Placement and Requirements

Suppose that we are using the TCP/IP model. In this case, there are five places where security

mechanisms can be implemented. We do not want to have the same security services implemented

at more that one place. Duplication of services does not add any real value into the overall security

framework and it rather slows down the system performance. Therefore, based on figure C.3, the

services mentioned above could be allocated as follows:

Application
Layer

Middleware
Layer

Transport
Layer

Internet
Layer

Network
Layer

Figure C.3: TCP/IP model

• Application Layer: Above GridStat middleware, a power application runs. It is the re-

sponsibility of this layer to authenticate the users. Note that there is a difference between

authenticating the user and authenticating the message. In the first case, user authentication

can be performed using passwords, biometrics, smart cards, etc. Message authentication

verifies that the received message came from the alleged source and has not been altered.

• Transport Layer: Integrated into the TCP stack is the Transport Layer Security (TLS),

which is the same as SSL (which is placed between the Application and the Transport layers).

We will probably not going to use either of those.

168

• Internet Layer: IPv6 supports extension headers that provide packet (and therefore mes-

sage) integrity, authentication and privacy. By implementing IP level security, the distributed

system does not need to take any further security actions against authenticating source ad-

dress, packet integrity and privacy and key management. CERT reported that the most seri-

ous attacks include IP spoofing and eavesdropping. IPSec, which is mandatory for IPv6 but

optional for IPv4, can encrypt and/or authenticate all traffic at the IP level.

• Network Layer: That’s the layer where hardware encryption is placed. Dedicated line is

needed with no intermediate routing and with the same crypto-box at the other end. There is

also hardware that implements IPSec, and that will speed up cryptographic operations.

• Middleware: So far, authentication and confidentiality can be addressed and covered by

existing mechanisms implemented at the TCP/IP layers. Access control and nonrepudiation

are the services that need to be addressed in the layer.

Even though the categorization of the security requirements outlined in [46] is intended for a

content-based publish-subscribe system, it can also be applied for the specialized case of status

dissemination middleware with some modifications as shown in the previous section. GridStat

also supports a hierarchy of QoS brokers in order to manage QoS. A pure status dissemination

middleware does not need to support a hierarchy because maybe there is no need to support any

QoS properties.

Therefore, the security requirements categories for GridStat include the ones defined in [46]

(for a general status dissemination middleware) as well as the ones below that take into considera-

tion the hierarchy:

• Security requirements between the QoS hierarchy and the publish-subscribe infrastructure

• Security requirements between the QoS hierarchy and the publishers, subscribers.

169

A complete analysis of the security requirements of a status dissemination middleware managed

by a QoS hierarchy can be defined by filling in the table C.1, where applicable. Note that due to

lack of space, we use the following abbreviations:

I:Integrity, C: Confidentiality, A: Authenticity, NR: NonRepudiation, Av: Availability, AC: Ac-

cess Control

Table C.1: Security Requirements for GridStat

I C A NR Av AC
publisher AND subscriber

infrastructure AND (publisher, subscriber)
hierarchy AND infrastructure

hierarchy AND (publisher, subscriber)

170

BIBLIOGRAPHY

[1] Eastern interconnection phasor project. www.phasors.pnl.gov.

[2] Institute for information infrastructure protection. www.thei3p.org.

[3] Trust issues in pervasive environments. Technical report, University of Southampton and

QinetiQ, September 2003.

[4] Protected critical infrastructure information (pcii) program, 2006. www.dhs.gov.

[5] Reinventing the internet. Technology Quarterly, The Economist, May 2006.

[6] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In Proceedings

of the 33th Hawaii International Conference on System Sciences (HICSS), pages 1769–1777,

Maui, Hawaii, January 2000.

[7] Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In Proceedings of the

ACM New Security Paradigms Workshop, pages 48–60, September 1997.

[8] James F. Allen. Maintaining knowledge about temporal intervals. Communications of ACM,

26(11):832–843, November 1983.

[9] D. Bakken, Z. Zhan, C. Jones, and D. Karr. Middleware support for voting and data fusion.

In DSN ’01: Proceedings of the 2001 International Conference on Dependable Systems and

Networks, pages 453–462, Gőteborg, Sweden, 2001. IEEE Computer Society.

[10] E. Bertino, E. Ferrari, and E. Pitoura. An access control mechanism for large scale data dis-

semination systems. In Proceedings of the 11th International Workshop on Research Issues

in Data Engineering, Heidelberg, Germany, 1–2 April 2001. IEEE Computer Society.

171

[11] M. Blaze, J. Feigenbaum, and A. D. Keromytis. Keynote: Trust management for public

key infrastructures. In Proceedings of the 6th International Workshop on Security Protocols,

Cambridge, UK, April 1998.

[12] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In SP ’96:

Proceedings of the 1996 IEEE Symposium on Security and Privacy, page 164, Washington,

DC, USA, 1996. IEEE Computer Society.

[13] Vincent W. Buskens. Social Networks and Trust, volume 30 of Theory and Decision Library.

Series C, Game Theory, Mathematical Programming, and Operations Research. Boston,

London Kluwer Academic Publishers, 2002.

[14] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of

a wide-area event notification service. ACM Transactions on Computer Systems, 19(3):332–

383, August 2001.

[15] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and Martin Strauss. Ref-

eree: trust management for web applications. Comput. Netw. ISDN Syst., 29(8-13):953–964,

1997.

[16] David D. Clark, Karen Sollins, John Wroclawski, and Ted Faber. Addressing reality: an

architectural response to real-world demands on the evolving internet. SIGCOMM Comput.

Commun. Rev., 33(4):247–257, 2003.

[17] Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to Algorithms. MIT

Press, 1989.

[18] CSI/FBI. Computer Crime and Security Survey, 2005.

[19] GridStat Avista Demo. www.gridstat.net/avista.htm. Washington State University, 2006.

172

[20] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems. Addison-

Wesley Longman, Inc., 2000.

[21] EPRI, Palo Alto and Electricity Innovation Institute, Palo Alto. The Integrated energy and

communication systems architecture, 2004. www.epri.com/IntelliGrid.

[22] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Mermarec. The many

faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, July 2003.

[23] U.S. Canada Power System Outage Task Force. Final report on the August 14, 2003

Blackout in the United States and Canada: Causes and Recommendations, March 2004.

https://reports.energy.gov/BlackoutFinal-Web.pdf.

[24] Andy Franz, Radek Mista, David E. Bakken, Curtis E. Dyreson, and Muralidhar Medidi. Mr.

fusion: A programmable data fusion middleware subsystem with a tunable statistical profil-

ing service. In DSN ’02: Proceedings of the 2002 International Conference on Dependable

Systems and Networks, pages 273–278, Washington, DC, USA, 2002. IEEE Computer Soci-

ety.

[25] Kjell Harald Gjermundrød. Flexible qos-managed status dissemination middleware frame-

work for the electric power grid. Technical Report EECS-GS-011, Washington State Univer-

sity, 2006.

[26] Tyrene Grandison and Morris Sloman. A survey of trust in internet applications. IEEE

Communications Surveys and Tutorials, 3(4):2–16, 2000.

[27] Tyrone Grandison. Trust specification and analysis for internet applications. Technical re-

port, Ph.D. Thesis, Imperial College of Science Technology and Medicine, Department of

Computing, London, 2001.

[28] Trusted Computing Group. TCG Specification Architecture Overview. TCG, 2004.

173

[29] Carl H. Hauser, David E. Bakken, and Anjan Bose. A failure to communicate: Next-

generation communication requirements, technologies, and architecture for the electric power

grid. IEEE Power and Energy, 3(2):47–55, March/April 2005.

[30] Amir Herzberg, Yosi Mass, Joris Michaeli, Yiftach Ravid, and Dalit Naor. Access control

meets public key infrastructure, or: Assigning roles to strangers. In SP ’00: Proceedings of

the 2000 IEEE Symposium on Security and Privacy, page 2, Washington, DC, USA, 2000.

IEEE Computer Society.

[31] Frederick S. Hillier and Gerald J. Lieberman. Operations Research. Holden-day Inc., 1974.

[32] Institute for Information Infrastructure Protection. Cyber Security Research And Develop-

ment Agenda, January 2003.

[33] Ryan A. Johnston, Carl Hauser, K. Harald Gjermundrød, and David Bakken. Distributing

time-synchronous phasor measurement data using the gridstat communication infrastruc-

ture. In Proceedings of 39th Annual Hawaii International Conference on System Sciences

(CD/ROM), Kauai, Hawaii, January 2006.

[34] Seung Jun, Mustaque Ahamad, and Jun (Jim) Xu. Robust information dissemination in un-

cooperative environments. In ICDCS ’05: Proceedings of the 25th IEEE International Con-

ference on Distributed Computing Systems (ICDCS’05), pages 293–302, Washington, DC,

USA, 2005. IEEE Computer Society.

[35] Z. Miklos. Towards an access control mechanism for wide-area publish-subscribe systems. In

Proceedings of the 22nd IEEE International Conference on Distributed Computing Systems,

Vienna, Austria, July 2002.

[36] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne, Bruno

174

Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer computing. Technical Report HPL-

2002-57, HP Laboratories Palo Alto, March 2002.

[37] A. G. Phadke. Synchronized phasor measurements in power systems. IEEE Computer Ap-

plications in Power, 6(2):10–15, April 1993.

[38] GridStat Project. www.gridstat.net. Washington State University, 2006.

[39] Platform For Internet Content Selection. http://www.w3.org/PICS/. W3C, 2005.

[40] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-Neighbor Methods in

Learning and Vision: Theory and Practice. The MIT Press, 2006.

[41] William Stallings. Cryptography and Network Security: Principles and Practice (Second

Edition). Pearson Education, 1998.

[42] Sun Microsystems. Poblano: A Distributed Trust Model for Peer-to-Peer Networks, 2000.

[43] Kevin Tomsovic, David E. Bakken, Mani Venkatasubramanian, and Anjan Bose. Design-

ing the next generation of real-time control, communication and computations for large

power systems. Proceedings of the IEEE (Special Issue on Energy Infrastructure Systems),

93(5):965–979, May 2005.

[44] Edna Ullmann-Margalit. Trust, distrust, and in between. In Russell Hardin, editor, Dis-

trust, volume VII of The Russell Sage Foundation Series on Trust, pages 60–82. Russell Sage

Foundation, 2004.

[45] John Vacca. Public Key Infrastructure: Building Trusted Applications and Web Services.

AUERBACH, 2004.

175

[46] Chenxi Wang, Antonio Carzaniga, David Evans, and Alexander Wolf. Security issues and

requirements for internet-scale publish-subscribe systems. In Proceedings of the 35th Hawaii

International Conference on System Sciences (HICSS-35), Big Island, Hawaii, January 2002.

[47] M. Winslett, T. Yu, K.E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith, and L. Yu.

The trustbuilder architecture for trust negotiation. IEEE Internet Computing, 6(6):30 – 37,

November/December 2002.

[48] Felix F. Wu, Khosrow Moslehi, and Anjan Bose. Power system control centers: Past, present,

and future. Proceedings of IEEE, 93(11):1890–1908, 2005.

[49] Philip R. Zimmermann. The official PGP User’s Guide. MIT Press, 1995.

[50] John A. Zinky, David E. Bakken, and Richard E. Schantz. Architectural support for quality

of service for CORBA objects. Theory and Practice of Object Systems, 3(1), 1997.

176

