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Abstract

This thesis addresses vulnerabilities in current Trusteehi@iting architecture by explor-
ing a design for a better Trusted Platform Module (TPM); dra tntegrates more closely
with the CPU’s Memory Management Unit (MMU). We establiskattisoftware-based
attacks on trusted memory can be carried out undetectablnbgdversary on current
TCG/TPM implementations. We demonstrate that an attackarsufficient privileges can
compromise the integrity of a TPM-protected system by myawlif critical loaded code and
static data after measurement has taken place. More spédlgjftbese attacks illustrate the
Time Of Check vs. Time of Use (TOCTOU) class of attacks.

We propose to enhance the MMU, enabling it to detect when mgoomtaining trusted
code or data is being maliciously modified at run-time. Oredgbn, it should be able to
notify the TPM of these modifications. We seek to use the qoiscef selective memory
immutability as a security tool to harden the MMU, which widsult in a more robust
TCG/TPM implementation. To substantiate our ideas for pncgposed hardware feature,
we designed and implemented a software prototype systemhwmploys the monitoring
capabilities of the Xen virtual machine monitor.

We performed a security evaluation of our prototype andieddid that it can detect all
our software-based TOCTOU attacks. We applied our prowotgprerify the integrity of
data associated with an application, as well as suggestkdgiemented ways to pre-
vent unauthorized use of data by associating it with its ovpmecess. Our performance

evaluation reveals minimal overhead.
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Chapter 1

Introduction

For many, "Trusted Computing” is a term that has come to mieatrthe system will behave
as expected, consistently. Theusted Computing Grou@CG)* [19] is a consortium that
works toward developing and advancing open standardsustetrt computing across plat-
forms of multiple types. Their main goals are to increasettbst level of a system by
allowing it to be remotely verifiable and to aid users in petiteg their sensitive informa-
tion, such as passwords and keys, from compromise. The oarpanent of the proposal
is theTrusted Platform ModuléTPM) .

A TPM is a micro-controller chip, mounted on the motherbaafrd computer, that can
be used to provide a range of hardware-based security ésatmprograms that know how
to use them. In the last few years, major vendors of compyttess have been shipping
machines that have included TPMs, with associated BIOS@tpp

TPMs provide a hardware-baseabt of trustthat can be extended to include associated
software. Each link in the chain of trust extends its trustht® subsequent one. A TPM
provides internal storage space for storing cryptograkéys and other security critical in-
formation. It provides cryptographic functions for endigp/decryption, signing/verifying

as well as hardware-based random number generation. TR#duaalities can be used to

1Formerly known as th&rusted Computing Platform Allian¢@ CPA)



attest the initial configuration of the underlying compgtpiatform, as well as to seal and
bind data to a specific platform configuration.

However, current TPM-based approaches of attesting tontiegrity of critical code
and data are not foolproof and can be circumvehbgdmalicious adversaries. While it is
hard to tamper with the hardware, it is much easier to sulbersoftware.

A major drawbackof the TCG architecture is that it only provides load-timegan-
tees. Integrity measurements are taken just before thea@fis loaded into memory, and
it is assumed that the loaded in-memory software remainsanged. However, this is not
necessarily true — an adversary can exploit the differeet@den when software is mea-
sured and when it is actually used, to induce run-time valbiéities. This is an instance
of the Time Of Check vs. Time of USEOCTOU) class of attacks.

In its current implementation, the TPM holds only static sw@aments and so these
malicious changes will not be reflected in its state. Codé ighaorrect at the time of
hashing may be modified by the time of its use. Change-afiehing is a considerable
threat to securing elements in the TCG architecture.

A possiblesolutionto this limitation is to have the CPUBlemory Management Unit
(MMU) modified to work more closely with the TPM. The MMU shaube made aware of
the software that has been measured at load-time, and sheuwalole to signal to the TPM
when the memory corresponding to that loaded software isgbeihanged in malicious
ways at run-time.

To explore and test our ideas with regard to this solutioméolimitations in the TCG
architecture, we use the monitoring capabilities of Xen -ep@n-sourc&/irtual Machine
Monitor (VMM) for x86. Our implementation is a software proof-offa@ept demonstra-

tion of a proposed hardware (MMU) feature.

2Evan Sparks and Kwang-Hyun Baek of the Dartmouth PKI/Trabbtatory are investigating power
analysis, physical, and software attacks on TPMs.



1.1 Contribution
This thesis makes the following contributions:

e demonstration of a vulnerability in the current TCG/TPMhatecture, a set of software-
based attacks which exploit this vulnerability, and thdizaéion that such vulnera-

bilities allow for undetectable tampering of trusted meyor

e a working prototype system with minimal overhead that afidar the detection of

such attacks by monitoring trusted page table entries aysigdl frames of RAM,;

¢ the application of our prototype to verify the integrity aitd, such as configuration

files, associated with an application;

e a suggestion and implementation of how to associate semslitita with the process

that owns it, so as to prevent unauthorized use of the dadl; an

e the recommendation of having a closer binding between thé Mi¥d the TPM, so

that the detection that is currently done by Xen could be dgnine MMU.

1.2 Motivating Example

Certification AuthoritieCA) are the keystone of moBwublic Key Infrastructure$PKI).
They act as trusted third parties by using their private kegign certificates. Each cer-
tificate binds together a public key and some informationdllg identity — such as name,
address, organization etc.) about the holder of the cooreipg private key. However,
CAs are known to be expensive and complicated to install aamhtain. The CA-in-a-
Box [6] project aimed at addressing these problems by helpingl emidrprises (such as,

a university) deploy PKI in an easy and cost-effective manne



That project developed tools using open-source softwgpefSGSL 1L3] & OpenCA [12])
and a TPM, allowing enterprises to set-up a hardware seciteyGimply booting a CD.
The TPM is used in that project to enforce the following feasuwf the CA's long-lived

private key:
e ensuring that it is only used for authorized operations.
e guaranteeing that it cannot be compromised by an adversary.

The TPM is used to hold the CA's private Keys well as to add assurance that the key
would only be used when the system was correctly configuradea€A — by wrapping
the private key to specified values in a specified subset d?@ies. The TPM would then
decrypt and use (i.e., not release to the outside) that kigywdren those PCRs have those
values.

However, as described earlier, current TCG/TPM implenteorta suffer from the TOC-
TOU limitation. Therefore, at run-time, there should be g whdetecting compromise to
the platform configuration and thus preventing the CA fromngi&s private key.

We will use this example as the motivating problem for adsiregthe TOCTOU issues

within the TCG architecture.

1.3 Thesis Outline

This thesis is organized as follows: Chaptdariefly describes the build blocks needed for
our prototype. Chapte® gives a detailed explanation of the design and implemeamtati
of our prototype system. Chaptérdescribes software-based TOCTOU attacks on TPM
measured memory, and ways to detect them using our protsiygiem. We also show

how to apply our prototype to verify the integrity of data @sated with an application,

3We assume that the CA's private key is implemented as a RSdeat&l, that is used only within the
TPM and is protected by it.



and ways to tie data with the process that owns it. Chaptgiscusses some areas for
possible future work. Chaptdf examines related work. Finally, Chaptémpresents a

summary and concluding remarks.



Chapter 2

Background

This chapter gives a brief summary of the building blockswfprototype.

2.1 The TPM

TPMs have shielded locations callBthtform Configuration Registe(®CR) , each 160-
bits long, that hold a digest of integrity measurements. TRBI has to provide at least 16
PCRs in TCG 1.1bZ1] and 24 PCRs in TCG 1.2[)] inside its protected memory.

The contents of a PCR can only betendedand can only be reset by a rebboEx-
tending a PCR implies that when a new value is to be stored iartcplar PCR, it is
concatenated with the previously stored PCR value, and la dfathe combined value is
taken. The syntax of the operation is:

Extend(PCR[i], newvalue): PCRi] = SHAL(PCR[i], newval ue)

While this allows a large number of values to be measured amddswithout simply
overwriting previous measurements, it also prevents moaigcusers from substituting a

known good value for one that indicates tampering.

1This concerns only PCR[0-15]. PCR[17-20] (as provided irGI'C2) can be reset anytime by Locality
4. “Locality” is a concept that allows the TPM to be aware ofetttrusted process on the platform is sending
it commands. There are six Localities defined (numbers 0 twdd_agacy).
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Figure 2.1:Generic Architecture Diagram of the TCG Authenticated Bewcess.

2.1.1 Attestation

On system start-up, a hardware component, callecCtire Root of Trust Measuremeht
(CRTM), hashes the BIOS and other firmware related configurdiles and extends the
result into a specific PCR on the TPM. The BIOS proceeds to tieshext piece of soft-
ware that is executed, which is usually the boot-loaderaioet in theMaster Boot Record
(MBR) of the system, and extends the result into a specific B&Ee TPM. If the boot-
loader is TCG-enabled (e.g., Trusted-Grg) [t will continue the chain of trust by extend-
ing the hash value of the software it loads (e.g., the opegatystem) into another PCR.
This chain of hash values stored in the PCRs is calle@lgitéorm configurationThe TPM
can sign this platform configuration using a protected kegitest it to a remote challenger.

The TCG authenticated boot process is shown in Figute

2.1.2 Sealing and Wrapping

To ensure that certain sensitive data on a platform can amlgdsessed under a specific
platform configuration, a sealing mechanism is providede platform configuration is

defined by the set (or subset) of values contained in the PE&ssitive data is encrypted

2This is usually the BIOS boot block, as it is the first piece ade that executes on system start-up.
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using a public key and cannot be decrypted unless the system is in the samerpiatf
configuration as it were at the time of sealing.

The TPM can also be used to create RSA key pairs (a public keyaarivate key),
where the usage of the private key is bound to a platform cordtgpn. More specifically,
such key pairs, calledrappedkeys, have their private key encrypted by a specified parent
key, and are bound to a set of values in a specified subset fGRs. The PCR subset is
specified at key pair creation time. The TPM will decrypt aisé (i.e., not release to the
outside) the private key, only if those subset of PCRs hazs#me values as were present
at key pair creation time.

Essentially, secrets are accessible only when the plat®nmma defined configuration.

h Storage Root Key (SRK)

Protects (by encrypting)

1
v > 1 [

°

ﬁ bound °
Signature Key > O
TPM PCRs

Figure 2.2.TPM Wrapped Key

3The corresponding private key is stored encrypted withénTtRM.



2.2 x86 Memory Management

Our prototype is implemented on the Intel x86 architectWe.chose this because it is the
most popular processor architecture in use today. Thisosetcaps features of the x86
virtual memory architecture that are relevant to undeditagithe working of our prototype.

Page TablegPT) are data structures used by the virtual memory subsyiiestore
mappings between virtual memory addresses and physicedssis. When an instruction
attempts to access a virtual memory address, the hardwaviJjMonverts that virtual
address to a physical address by walking the page tableshandaccesses the physical
memory.

Linux on the x86 architecture usually uses a two-level padpetstructure for virtual
address translation, as shown in Figdr8. The first level table is called Bage Global
Directory (PGD) . The x86'<CR3 privileged register holds the physical base address of the
currently active process’s PGD. The PGD points to secovel-RRT pages.

With 32-bit virtual addresses, the most significant 10 lnts31 to bit 22) of the address
are used as an index into the PGD. The PGD is the size of a paget Kilobytes, and
has2' entries, each of which is 4 bytes long. Each entry in the PQRains the physical
address of the base of a second-level PT page.

The next 10 bits (bit 21 to bit 12) of the virtual address deiee an index into the
PT page. The PT page is also the size of a page. The PT page’hastries, each of
which is 4 bytes. The most significant 20 bits d?age Table EntryPTE) contain the most
significant bits of the physical address of a frame in RAM, levkine other 12 bits are used
as permission and status bits.

The last 12 bits (bit 11 to bit 0) of the virtual address areduse an offset within the

physical frame.



CR3

32-bit Virtual Address

RAM

Physical
Addresses

31 22 21 12 11
DIR PT OFFSET
Page Global Directory Page Table
PGDE PTE

Figure 2.3:Two-level x86 Page Table structure.
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2.3 The Xen Hypervisor

Xen [22] is a free and open-source VMM (also called a hypervisor)x@8 that allows
for the simultaneous execution of multiple guest operasiypgfems on the same physical
hardware. It provides features like secure isolation, uss® control, quality-of-service
guarantees, and live migration of virtual machingks [Operating systems need to be ex-
plicitly ported/modified to run on Xen, although compatityiis maintained for user-level
applications and libraries. The latest Intanderpol Technologfv/T) [8] and AMD Paci-
fica [1] processors support hardware-assisted virtualizatidnghwallow Xen to execute
unmodified operating system binaries.

The components of a Xen-enabled system, as sketched ineFigliinclude the Xen
hypervisor (Ring 0), a privileged domaih(Ring 1), multiple unprivileged domains (Ring
1) and some user-level control and management tools (Ring@t8) privileged domain is
commonly referred to a®omain-0, and the unprivileged domains B®main-U Control
software running in the privileged domain has access to &@anterface running in the
hypervisor that can be used to create, suspend, migrateanohate unprivileged domains.

Xen replaces the interrupts mechanism from devices witlsgncnronous event mech-
anism. CPU resources are dynamically distributed amongadwmsn To provide strong
isolation, main memory is statically partitioned betweemains by specifying the initial
memory allocation for each domain at the time of their cagati The hypervisor is re-
sponsible for managing its own memory as well as that of theaios it hosts. Memory

management in Xen is further discussed in Secidn3

4In x86 architecture, there are four privilege levels, @limgs, numbered from 0 to 3, with 0 being the
most privileged.
5“Domain” is Xen terminology for a virtual machine.

11



VM1 (Dom0) VM2 (DomU)

Control & Unmodified Unmodified
Management User User  fo---- [ R > Ring 3

S/W Applications Applications

X system calls / /
v v v
Guest OS Guest OS S EEEE EEEEE » Ring 1
A
hypercall hypercall

Xen VMM/Hypervisor EEE EEEED » Ring 0

i direct access

Physical Hardware

Figure 2.4:Standard layout for a Xen-enabled system hosting a przl@pmain (Domain-0) and
an unprivileged domain (Domain-U).

2.3.1 Paravirtualization

Xen'’s high performance virtualization is achieved by engpig a technique calleparavir-
tualization Paravirtualization requires operating systems to be extteat they are running
in a virtual machine. This virtualization technique presem software interface to virtual
machines, that is similar, but not exactly alike, to thathe tinderlying hardware. This
requires explicit porting of the operating systems to besdblrun atop the VMM. The
porting essentially entails replacing the guest OS’s lagad instructions with appropriate
calls (hypercalls, Section.3.2 to the VMM.

The hypervisor also maintains/atual CPU for each domain. When a guest OS would
like to write to a protected register (which is disallowedcs it takes a privileged instruc-
tion to do so), the hypervisor writes the value to the comesing virtual register in the

virtual CPU.

12



2.3.2 Hypercalls

Domains communicate with Xen using software interruptéedahypercalls. Hypercalls
are calls from Ring 1 to Ring 0 that allow Guest OSes to reggestto perform operations
on their behalf. This is done in a manner similar to how systafts, from Ring 3 to Ring
0, allow applications to invoke privileged operations inaditional OS.

On x86/32 machines the instruction required T 0x82. Currently there are about

thirty five hypercalls. We have added three additional hgalés for our prototype.

2.3.3 Memory Management

Memory management is one of the more important aspects aof Xerthe same physical
memory is used by multiple domains, caution has to be takerdserve isolation and
security. Unprivileged domains should be restricted frameasing each other's memory.
Guest OSes are responsible for allocating and managingdwai hardware page tables,
which have to be registered with Xen. Guest OSes are limiteddd-only access to their
page tables, i.e. they are disallowed from creating wrgtabdppings to frames containing
active page tables. Each page table update is interceptedadidated by the hypervisor
to ensure that domains only manipulate their own page tallesnains may batch these
operations to make sequential updates more efficient.

Domains are allocated physical memory at creation time bynhilpervisor. The mem-
ory is not necessarily a contiguous chunk in the physical RAbwever, as most operating
systems are not equipped to operate in a fragmérghysical address space, Xen intro-
duces a new type of memory, referred tgpasudo-physicahemory, which is distinct from
machinememory. Machine memory refers to the physical memory (RANjalled in the

machine, while pseudo-physical memory is a per-VM abstracproviding a guest OS

5 In most operating systems physical addresses of kernelagpdiven its linear address, are calculated
by subtracting a constant offset. For example, for the Likaxnel the offset is 0xC0000000.

13



with the illusion that its memory is a contiguous range of §ibgl pages. The translation
between these two addresses is not transparent, and guesh@©&l to do this translation
for themselves. Xen maintains globally readable tablesgiavide the mapping between

machine and pseudo-physical memory addresses and vi@e vers

Xen Page Tables

To make PT updates by the guest OS visible to the hyperviasf the pages that are
currently part of a PT are mapped read-only in the guest. {3D8gs are only allowed
read access to their PTs, with all updates being performeleblyypervisor. Xen currently

offers three PT update modes to the guests that it hosts:

Hypercall Mode Inthis mode, guest OSes have to explicitly make hyperaaitsi(updat e)
to update their PTs. The hypervisor validates the updates) bequested. If none of the

memory constraints are violated, the PT is updated.

Writable Page Table Mode In this mode, guest OSes are led to believe that their PTEs
are directly writable. Guest attempts to write to their PTRgse a page fault (because the
PTs are mapped read-only), which is trapped and emulatedegytpervisor. If none of

the memory constraints are violated, the PT is updated.

Shadow Page Table Mode This mode is mainly used by the guest OS when live migra-
tion is being performed. In this mode, there are two sets &f e guest OS sees a set of
PTs, that are distinct from the ones seen by the hypervidw.hypervisor sees the actual
hardware page tables (pointed to by (PR3 register). The hypervisor is responsible for

propagating changes made to the guest’s PTs to the realamtesice versa.

14



2.3.4 Event Channels

The hypervisor controls access to physical devices to enisafation, dependability and
efficient usage. Access is managed using an event mechanism.

Interrupts are handled within the hypervisor. On receiangnterrupt, the hypervisor
issues to the corresponding Domain an asynchronous evénatian. Notications are
delivered to Domains through event channels. The hypearemmmunicates these events
with a Domain through a shared memory page.

Domain-0 has direct access all the system hardware. A dused by Domain-0 to
provide access to a virtual device to other domains is calleackend device drivewhile
a driver that a domain uses to control a virtual driver isethlifrontend device driverThis
set-up is shown in Figurg.5.

A Domain has a set of event channel connection points, calbets, which connect
to one end of a channel. The opposite end of the channel ctanteeeither gphysical
Interrupt RequestiRQ) , avirtual IRQ or a port in an alternate Domain. A physical IRQ is
synonymous with the native IRQ of a device, while a virtuaBIRefers to an IRQ managed
by the hypervisor. This mechanism allows an event genetates backend driver to be
delivered to the frontend driver as a virtual IRQ.

We created a new Xen virtual IRQ for our prototype to notifyrban-0 of tampering

with trusted memory.

2.4 Virtual TPMs

For our prototype we will be using the unprivileged Domaiaslour test system. Unpriv-
ileged VMs cannot access the system’s hardware TPM, and popvide Domain-1 with
TPM access, we need to make use of virtual TPMs.

In a virtual machine-based environmeNirtual TPM (VTPM) [4] support provides

15



TPM functionality to the different virtual machines rungion the platform. vTPM sup-
port has to be explicitly requested for by the VMs, by havingpiecified in their creation
configuration files. The vTPM interface gives each domairirtigression that it is access-
ing its own exclusive TPM, as if it were a hardware TPM.

The vTPM interface is implemented using a split device drarehitecture, as shown
in Figure 2.5, The virtual device is provided using two collaboratingvedrs (as dis-
cussed earlier): the frontend device driver, which runsnruaprivileged user Domain
(Domain-U), and the backend device driver, which runs innglpged domain with access
to the real device hardware (currently Domain 0). The frodtexports a character device
/ dev/ t pnD to user-level applications for communicating with the vTPMis is consis-
tent with the interface provided if a hardware TPM is avd#ain the system. The backend
provides a single interfadedev/ vt pmwhere the vTPM has threads waiting for requests
from the different domains that have a corresponding frohte

The frontend driver receives 10 requests from its kernel fandards these onto the
backend. The backend receives these |10 requests, andas#sie for verifying that they
are safe and do not violate isolation guarantees. It theressthese requests to the actual
hardware TPM. On IO completion, the backend notifies theténoah, which correspond-
ingly reports 10 completion to its own kernel.

The vTPM implementation exists as a user-level process m&m0. The vTPM man-
ager ¢t pmmanager d) is used for the creation, deletion, suspension and magratif
VTPM instances. It is also responsible for multiplexinguests from the different VMs to
their respective VTPM instances. TPM commands are deliviecen a Domain-U to the
vTPM manager, which dispatches it to a software TPM. Thensott TPM provides TPM
functionality to virtual machines.

In order to distinguish which VM the TPM command was issuedira 4-byte vTPM

instance number is concatenated to the beginning of each ddMnand packet by the

16



backend device driver. The instance number pinpoints wiicue vTPM instance a VM

can interface with.

Domain O Domain U Domain U
o0 0 User User
Applications Applications
W p.4
VTMM ager o 00
ackend Frontend Frontend
| Driy Driver Driver
A

Xen Hypervisor

Physical
TPM

Figure 2.5:vTPM architecture for Xen.
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Chapter 3

Design and Implementation

In this chapter, we discuss the major design choices behisdmplementation. We will

also explore the actual execution of this prototype.

3.1 Reasons for using Xen

The reasons for using a virtual machine-based system, suXhrg to explore and test our

ideas with respect to the TOCTOU issues with the TCG archite@re as follows:

e Xen is being used in this project not for its virtualizaticeatures, but as a layer
that runs directly below the operating system — similar ®glacement of the hard-
ware layer in a non-virtualized environment. Its placentelps us study possible

hardware features.

e In a Xen based system, all memory updates trap into the thperwsor layer —

making it easy to monitor and keep tabs on changing memory.

¢ Redesigning the MMU hardware is tricky, so we do not want terapt that until we

were certain that the end goal was useful.
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e A potentially better alternative to using Xen would haverb&®use an open-source
x86 emulator (such as BochS][or QEMU [14]). However, as of their current im-
plementation, none of these emulators have support foramgla TPM. Also, the
only currently existing software-based TPM emulatb8][does not integrate with

any of these. Integrating them would be a major task in itself

¢ In the long run, Xen might prove to be an end in itself and wehnize able to just

use Xen, rather than modifying the MMU, even for real depleyin

3.2 Role of Xen

We could have used Xen in our implementation to address th&/TEM TOCTOU limi-
tation via two different approaches, as explained below.cM@se to go with the first of

these.

3.2.1 Transparent layer

The strategic placement of the thin Xen hypervisor layewken the machine’s hardware
and the operating system could be seen as a way to prototgoges that could be made
in hardware (i.e. in the MMU).

With this approach, the purpose of Xen would be to solely destrate a proposed
hardware change, and would not be intended to be integratietheTCG Software Stack
(TSS) .

Xen'’s role would be that of a “transparent” layer, manifiegtfeatures that would ide-

ally be present in hardware.

1The TCG Software Stack is the software supporting the plattoTPM.
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Figure 3.1:Extending the Authenticated Boot Process into the virsealienvironment.
3.2.2 Partofthe TSS

Alternatively, Xen could be used with the purpose of incogbiog it into the TSS. The
trusted boot sequence would now include the measuremetieoXén hypervisor exe-
cutable, the Domain-0 Kernel and applications running inm2m-0, subsequent to the
system being booted by a trusted boot-loader. The advamtates model is that our
Trusted Computing Bag@ CB) will be extended all the way up to the hosting virtual-ma
chine environment.

The TCG trust management architecture is currently defimdg up to the bootstrap
loader, for this implementation we will need to extend thaiolof trust up to applications
running in Domain-0, as shown in FiguBel

However, as the hypervisor layer is not currently part of Ti@&G trust management
architecture, incorporating it into the TSS will necedsitarevision of the TCG specifica-

tion.

3.3 TPM Status

Employing Xen to monitor measured memory and update the THP&wthat measured

memory is altered could have two possible implications @®RM'’s status, as explained
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below. We choose to go with the second implementation.

3.3.1 Dynamic TPM

The idea here is to update the TPM'’s state every time the meésnemory of an ap-
plication is changed. At all times then, the TPM’s state walflect the current memory
configuration of a particular application, and of the systena whole. This would allow a
remote verifier to be aware of the current state of the apdican memory, and to make
trust judgments based on these presently stored PCR values.

When the hypervisor detects a write to the monitored area apalication’s memory;, it
would invoke a re-measurement of the application in membing re-measurement would
involve, calculating a SHAL hash of the critical area of timeaby in memory (as opposed
to the initial measurement stored in the PCR, which was obthary image on disk). This
remeasured value would be extended to the TPM.

In this case, monitoring of memory writes would be enabladlie entire lifetime of
an application, as the TPM state would need to be updated teaehthe application’s

measured memory changed.

3.3.2 Static (Tamper-indicating) TPM

The idea here is, to update the TPM'’s state only the first traethe measured memory of
an application is changed. This would allow a remote vertbegasily recognize that the
state of the application in memory has changed, and heneetdetpering.

When the hypervisor detects the first write to a critical arfean application’s memory,
it would notinvoke a re-measurement of the application; instead, wodcely extend the
TPM with a random value.

In this case, monitoring of memory writes could be turnedadtér the first update to

the TPM, as that update would be sufficient to indicate tampgeMonitoring subsequent
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writes (tampering) will not provide any further benefit. $istrategy will not have as much

of a negative impact on performance as the first approach.

3.4 Implementation Outline

The prototype implementation consists of three primary ponents: the instrumented
Linux Kernel for reporting, the modified Xen hypervisor foomtoring, and the invalida-
tion in the TPM.

The steps below are carried out after the application is oredsand extended into the

vTPM of the Domain under test.

3.4.1 Reporting

The paravirtualized Kernel of the Domain under test (in owt@ype — Domain-1), has
been instrumented to allow it to report to the hypervisore-BTEs, and physical frames
that these PTEs map to, of the memory to be monitored, as simavigure 3.2

To enable this feature, two new hypercalls have been addibe ten hypervisor:

e HYPERVI SORr eport _pt es reports to the hypervisor a list of PTEs that map the
memory that needs to be monitored. The PTEs are essentiallgrttries that map

the. t ext section of the binary into memory.

e HYPERVI SOR.r eport _f r ames reports to the hypervisor a list of physical mem-
ory addresses that need to be monitored. The addressessgobytbical base ad-

dresses of each frame that contain memory that needs to hitoneah
These hypercalls make use of a new function that we have @added Kernel:

e virt to_phys() walks a process’s page tables in software to translateaViai-

dresses to physical addresses. We pass to this functiomathesd end virtual ad-
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Figure 3.2:Reporting to the hypervisor the PTEs and frames to be mamuitor

dresses of thet ext section of the binary to be monitored. Using the fact that

there are 4096 bytes of data on each pagealculates the number of virtual pages

spanned by the address range passed to it. It then accesaédraas on each page

of the range, so as to have it mapped into memory. This stejgjisned to overcome

potential problems due tdemand loading. At this point, the whole of the t ext

section of the binary is mapped into memory. This step howdas performance

implications in that it slows down application start-up sa®wn in Sectior.4. The

function then walks the page tables of the process to trengia virtual addresses

to physical addresses (physical base address) of each frathe range. A data

structure containing a list of these addresses is retum#eetcalling function.

Also, on program exit (normal or abnormal), we need to haeemionitored PTES

and frame addresses removed from the monitored list. Tisinement is fulfilled by

20ur experimental system has a 4Kb page size.

3Demand loading is a lazy loading technique, where only asmkpages are loaded into memory.

23



instrumenting the Kernel'do_exi t function to invoke a new hypercall:

e HYPERVI SORr eport _exi t reports to the hypervisor when an application that is
being monitored exits. The hypervisor's monitoring codertiieletes the relevant

entries from its monitored lists.

3.4.2 Monitoring

Once the required PTEs and frame addresses are passed dgam fowill monitor them

to detect any modifications made to them, as shown in FigLie

Domain O Domain 1
X |
User
Application
vTPM Manager

PTE update request
y

Domain-0 Domain-1
Kernel Kernel

trapped PTE
update request

\ 4
. compare against @
Xen HyperVIsor monitored list ”

Figure 3.3:Monitoring the reported PTEs and frames for updation.

Writes to these physical memory addresses, or updates $e fHEEs to make them
map to a different subset of memory pages or make them intalei mappings, will be
treated as tampering. The reason for this is that since waan&oring the read-only code

section of an application, neither of the above updatesegiigrhately required.
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The most convenient and reliable method of detecting thygssstof updates is to ‘hook’
into Xen's page table updation code. As mentioned earligpage table updates in a Xen
system go through the hypervisor. This enables us to putde tleat can track specific
addresses and PTEs.

The default mode of page table updates on our experimeritgd sethe Writable Page
Table mode, as described in Secti®®.3 In this mode, writes to page table pages are
trapped and emulated by the hypervisor, usingpgher _enul at ed_updat e() func-
tion.

Amongst other parameters, this function receives the addrethe PTE that needs to
be updated and the new value to be written into it. After danigw sanity checks, it
invokes Xen'supdat e_| 1e() function to do the actual update.

updat e_| 1e() isthe function that we instrument to detect tampering. Agsbother
parameters, this function receives the old PTE value andetePTE value that it needs to

be updated to. To detect tampering, we perform the followimecks:

e For PTEs: we check to see if theld PTE value passed in is part of our monitored
list. Ifitis, it means that a ‘trusted PTE’ is being updatecither point to a different
set of frames, or to make it writable. The alternate set ah&s are considered as
potentially malicious frames, and the updated writablerpssion leaves the corre-
sponding trusted memory open for overwriting with malid@mode. This scenario is

described in more detail in Sectidnl.2and Sectiorit.1.3

e For frames: We first check to see if theewPTE value passed in has its writable bit
set. If it does, we calculate the physical address of thedramoints to. We then
inspect if this physical address is part of our monitored ligit is, it means that a
‘trusted frame’ is being mapped writable by this new PTE. Wr#able mapping,
created by this new PTE is interpreted as a means to overhgtérusted frame’

with potentially malicious code. This scenario is desatili@ more detail in Sec-
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tion4.1.1

Once the tampering is detected in the hypervisor layer, veel he be able to indicate
this fact to Domain-0. We do this by creating a new virtuaemtpt, VI RQ.-TAMPER,
that a guest OS may receive from Xevii RQ TAMPER, is a global virtualinterrupt Re-
guest(IRQ) , that can be allocated once per guest, and is used iprototype to indicate

tampering with trusted memory.

3.4.3 Invalidating

Once tampering of trusted memory is detected in the hyparlayer, the Domain under
test needs to have its integrity measurements updatedisitiame by way of updating the

Domain’s platform configuration in its virtual TPM, as showrFigure3.4.

Domain O Domain 1
) =
User
Application
vTPM Manager

Extend with
random value

Domain-0 é Domain-1
Kernel 2 Kernel
VIRQ_TAMPER

If tampering

detected Xen Hypervisor ”

Figure 3.4:Updating PCR in vTPM of Domain-1 on tamper detection.

Our intention is to have the hardware (MMU) do this updatensigering that, in our

prototype, the hypervisor together with Domain-0 are pigythe role of the hardware, we
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need to have either of them perform this updation. Howewthare are no device drivers
present in the hypervisor layer, the hypervisor is unabiaterface with the virtual TPM
of Domain-1, and so this task is redirected to the privileDedhain-0.

The hypervisor will indicate tampering to Domain-0 by sergpa specific virtual inter-
rupt (VI RQ TAMPER) to it. A Linux Kernel Module in Domain-0 will receive this iar-
rupt, and will proceed to extend the concerned PCR in thealiftPM of Domain-1 with
arandom value.

We have to make use of the virtual TPM Managet gmmanager d) to talk to the
virtual TPM of Domain-1. In its current implementation, thietual TPM manager only
delivers TPM commands from unprivileged Domains to thevsafe TPM. Domain-0 is
not allowed to directly interface with the software TPM. However, forrquiototype, we
need Domain-0 to have this ability, and so we have to misleadittual TPM Manager into
thinking that the TPM commands from Domain-0 are actuallginating from Domain-1.

In Domain-0, we construct the required TPM 1I/O buffers anchotand sequences re-
quired for aTPMExt end to a PCR of Domain-1. As described in Sectidd, there
is a unique instance number associated with each vTPM. Tolelomain-0 to access
the vTPM instance of Domain-1, we prepend the above TPM camdrpackets with the
instance number associated with Domain-1. This effegtibelp us forge packets from

Domain-1.

4Domain-0 is only allowed to access the actual hardware TPMe@software TPM, but not the vTPM
instances of other unprivileged domains.
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Chapter 4

Experiments and Evaluation

Our prototype on x86, runs on a Xen 3.0.3 virtual machineetdaystem. Xen'’s privileged
and unprivileged domains run Linux Kernel 2.6.16.29. Owleation hardware consists of
a 2 GHz Pentium processor with 1.5 GB of RAM. Virtual machinese allocated 128 MB

of RAM in this environment. Our machine has an Atmel TPM 1.@sgy chip.

4.1 Security Evaluation

In this section, we describe some software-based attacksroent TCG/TPM architecture,
and show how our prototype successfully detects all of tlaseks. We present three
attack scenarios that we implemented, which can be usedt@guneasured memory by
exploiting the previously mentioned TOCTOU vulnerability
These attacks, seek to change theext ! section of a loaded binary. Thet ext

section is mapped read-only into memory, and so, is cormeally considered safe from
tampering. However, with sufficient 0ot ) privileges, an attacker can employ methods to
modify the code stored in it by remapping or overwriting it.

The attacking process for all three attacks could be ownetidgttacker, or could be

1The. t ext section holds the complied code of a program
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an arbitrary process. In our scenarios, the attacker talesf®tm of a kernel module that is
inserted into the kernel.

For these attacks the victim process we attackedithe CA. To make things plausible
we decided to attack smaller test programs. Nonethelesgetults we obtained would

theoretically be the same if the victim process was the CA.

4.1.1 Attack and Defense 1

This attack scenario involves an attacker overwriting thsted code of a victim process
by creating writable page mappings to the victim process'stéd frames from another
process, as shown in Figudel.

We carried out this attack by modifyiAg PTE in our malicious process to map to a
physical frame in RAM that the victim process’s trusted cedes currently mapped to.
We modified the PTE to hold the frame address of the victimgss@age that we wanted
to overwrite. The PTE that we chose to update already hadritalMe bit set, so we did
not need to update the permission bits. Using this illegitenmapping we were able to
overwrite a part of the trusted frame with arbitrary data.

It is interesting to note that this attack was possible withtaving to tamper with any
of the victim process’s data structures.

The above update to the malicious process’s PTs goes thtbeghypervisor and in
effect through our monitoring code. The monitoring code=det that a writable mapping
is being created to a subset of the physical frames that ibistering. It evaluates this as
being a tampering attempt, and raises an alarm.

In the case of the CA, the attacker could overwrite its trdistemory to gain unautho-

rized use of its private key, such as to sign bogus certificate

°The attack could also be carried out by creating a new PTEhgs to the victim process’s frames
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Figure 4.1:Attacker manipulates PTE(s) of his process to map to trisédes of victim process.
Overwrites memory in RAM.
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4.1.2 Attack and Defense 2

This attack scenario requires an attacker to modify theddusode of a victim process by
updating the mappings of itst ext section to point to rogue frames in RAM, as shown
in Figure4.2.

We carried out this attack by using our malicious procesgttate the address portion
of a PTE in the victim process that was mapping its code seclibe updated address in
the PTE mapped to rogue physical frames in RAM that were gaiomalicious process.
Due to these updated mappings, the victim process’s trestge was now substituted with
the content of our rogue frame.

The above update to the victim process’s PTs goes throudtygervisor and in effect
through our monitoring code. The monitoring code detecs ghsubset of its monitored
PTEs are being updated to point to different portions of RAMvaluates this as being a
tampering attempt, and raises an alarm.

In the case of the CA, the attacker could modify its trustednowy to point to rogue
frames, which allowed for unauthorized use of its privatg kech as to sign bogus certifi-

cates.
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Figure 4.2:Attacker manipulates PTE (address portion) of victim pssa® map to rogue frames
in RAM.
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4.1.3 Attack and Defense 3

This attack scenario entails an attacker overwriting thstéd code of a victim process
by updating the permission bits of it ext section to make them writable, as shown
in Figure4.3,

We carried out this attack by using our malicious processpiate the permission
bits of a PTE in the victim process that was mapping its codtiee We updated the
permission bits to set the writable bit making the corresjompmapped frame writable. We
used this writable mapping to modify the trusted code in tlo&éna process with arbitrary
data.

The above update to the victim process’s PTs goes throudtygervisor and in effect
through our monitoring code. The monitoring code detechs ghsubset of its monitored
PTEs are being updated to make them writable It evaluatesathbeing a tampering at-
tempt, and raises an alarm.

In the case of the CA, the attacker could overwrite its trdistemory to gain unautho-

rized use of its private key, such as to sign bogus certificate
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Figure 4.3:Attacker manipulates PTE (permission bits) of victim pissce make frames writable.
Overwrites memory in RAM.
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TPM Implementation

Current

Prototype
TPM Implementation

Attack 1 || undetected allows for unauthorized detected, reported & no unauthorized use
use of CAs private key| TPM state updated of CA's private key

Attack 2 || undetected allows for unauthorized detected, reported & no unauthorized use
use of CAs private key| TPM state updated of CA's private key

Attack 3 || undetected allows for unauthorized detected, reported & no unauthorized use
use of CAs private key| TPM state updated of CA's private key

Table 4.1:Comparison of TPM implementations

4.2 Protecting Data and Secrets

As described in Sectio.1.2 the TPM can be used to generate RSA key-pairs, where
the usage of the private key is bound to a particular platfoomfiguration. The platform
configuration is defined by the set (or subset) of values aoedan the PCRs.

We can use this feature of the TPM to verify the integrity dbdauch as a configuration
file, associated with an application. Using the CA as an examp want to ensure that
the CA will use its private key only when it is running the legiate CA binary, as well
as is correctly configured to be the CA. The initial settingshe CA are setup using a
configuration file. Therefore, at CA start-up, it is essdmtizznsure that we are reading the
correct untampered CA configuration file.

To achieve this, in an initial test run, we do both — hash thel@#ary, as well as the
CA configuration file, and extend both to specific distinct BCR/e then generate the CA's
signing key pair, as a wrapped key pair that is bound to theafiweementioned PCRs.

In production run, when we start-up the CA, we do the sameg,have its binary and
configuration file extended to the same specific PCRs as before

Note:If the production run is performed after a system reboot eftdst run, the PCRs
would have automatically beereroized and we don’t need to do anything special. If,

however, the production run is being performed without aesysreboot of the test run,
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we have to ensure that the CA specific PCRse zeroized using thEPM PCR Reset
command.
When the CA's encrypted private key is requested to be usesidaing, it will only be

able to be decrypted and used within the TPM if the followingditions hold:
e The PCR containing the hash of the binary is unchanged.
e The PCR containing the hash of the configuration file is as @®pe

These checks guarantee two things. First, the CA procesgeinmmemory has not
been tampered with since start-up. If it had, our prototypeilal have detected the tam-
pering and updated the PCR. Second, the CA was started-bipheitorrect configuration
file, and so, is set-up and running as expected.

To prove our hypothesis, we tested out the above ideas usiafj st programs and
found them to be safe and effective.

In a similar vein, we can use the TPM sealing functionalitalow an application to
encrypt data, and ensure that the data will only be decryptesh the application is set-up

and running as expected.

4.3 Binding Secrets and Data to Processes

In their current specification and implementation, theisgalrapping and signing facil-
ities do not bind secrets and data to their ‘owner’ procesg.‘dd/ner’ we refer to the
application that either encrypted/signed a piece of datpeoerated a key.

This lack of binding could have security implications. Amynning application on the
system could potentially unseal the data or unwrap the kay,use it for unauthorized

purposes. The TCG specification does have a provision tal@gainst this — specifying

3In this case, the CA specific PCRs chosen will have to be a sobtiee resettable PCRs.
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a password that will be checked against at the time of unsealing or uppirag, in con-
junction with checking the value in the PCRs. However, if aggword is specified, or if it
is easily guessable, it leaves open the possibility for thaized use.

One way of resolving this problem would be to have a dedicatsdttable PCR on
the TPM that would be extended with the hash of the binary efdlrrently executing
process on the system. This PCR would be included in the $2C8¥s that are used for
sealing/wrapping against. As a consequence, the ‘ownecgss would be required to be
currently active on the processor for unsealing/unwrappinbe successful. Every time
there is a context-switch (indicated by a change of valub&CR3 register), the above-
mentioned PCR would first be reset, and then be extended hethelevant hash value.
This mechanism would prevent a process that is not the ‘cvafiexr particular sensitive
artifact from accessing it.

On systems where the context switching rate is high, haviegeéset and extend TPM
commands carried out on every context switch, might be gilida and inefficient. We
suggest and implement a more feasible resolution to thisi@no. Note, however, that this
will work only for a ‘session’, i.e., if the application is hoe-started. This steps are as

follows:

¢ We implemented newZr eat e_Key andSeal commands as part of the TSS that
include the curren€R3 register value as part of the binding information, alonghwit
the specified PCRs. This would cause the sealed/wrappedodageassociated with

the currently active process, and help establish an ‘owner’

e Similarly, we implemented newnseal andSi gn commands that compare the
previously storedCR3 register value against the current value, as well as checks

against the PCR values. If they match, it implies that it es‘ttwner’ of the data that

4The password is stored in a wrappedKey data structure asedaivith the corresponding asymmetric
key.
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is trying to access it. Hence, the unsealing/signing woeldlbowed, else it would

be disallowed.

4.4 Performance Evaluation

In this section, we evaluate the performance of our pro®tyygstem. We measure the
additional overhead incurred by our system vs. a native XERM system. The results
show that our prototype offers enhanced security featutiés avminimal performance
overhead.

Table4.2shows the overhead incurred in the Linux Kernel for repgrtisted PTEs/frames
to the hypervisor. As can be seen for the first run the overtsaadich greater than for sub-
sequent runs. The reason being that for the first run noneegddlges of the code section
have been mapped into memory as yet. For subsequent ruhs, plages have not been
swapped out reporting is much faster. On the average, fofidterun it takes between

8-14 microseconds for the reporting of a PTE-frame pair ftbenGuest OS to the hyper-

visor.
Binary Size of Number of PTEs/FramesOverhead orn Average overhead on
Name | Binary (Kb) to monitor first run (us) | subsequent rung§)
openssl| 392 93 774 23
perl 1036 248 3558 687
aptitude 2248 559 7963 1977
gdb 2312 609 8501 2219

Table 4.2:Reporting Overhead

Table4.3shows the overhead incurred in the hypervisor for monigptiiasted PTEs/frames
passed to it from the Guest OS. We performed two sets of @lonk. The first shows
the overhead incurred on loading a binary when the hypeargismonitored list is empty.
The other shows the overhead incurred on loading a binanynwviere are a thousand

PTEs/frames being monitored.
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Binary Size of | Overhead when monitoredOverhead when 1000 PTEs/Fram
Name | Binary (Kb) listis empty (us) are being monitoredus)
openssl| 392 289 2799
perl 1036 680 3164
aptitude 2248 1462 3952
gdb 2312 1588 4072

Table 4.3:Monitoring Overhead

These results show that the overhead of our prototype systaimost negligible, mak-

ing it a very usable and deployable.
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Chapter 5

Discussion and Future Work

In this chapter, several issues that deserve more carefaligssion and consideration are
listed. We also point out potential avenues for further aese. Implementation of these

ideas will help make this prototype more complete and robust

Protection: We only protect against physical memory accesses thatsob/esl by travers-
ing the page tables maintained by the MMRIrect Memory AccesDMA) allows certain
hardware subsystems to access system memory independittyCPU will not be pro-

tected against.

Paging to Disk: Pages can be swapped in and out of physical memory and ondisthe

If a page gets swapped out, its present bit will be clearedbéng read back from disk,
this page may be allocated into a different frame than it wasipusly stored in. If a page
mapped by a subset of the physical addresses that we areonagitgets swapped out,
we need to remove those addresses from our monitored Ity @ahate it with a new set of
addresses when the page gets swapped in again. Also, whee @es swapped out, its
PTE is updated to record the disk location (swap space) athathie content of the page

can be found. We will need to make note of this address, tokctiet the page that gets
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swapped back in is the same that was swapped out.
In our initial prototype, we have not implemented any fuowtility related to swapping,

and leave this as future work.

Context Switches: Since we are monitoring physical addresses, which remaiguan
across context switches between applications (or virtwadhimes), no special processing

is required for this case.

Memory to Monitor:  Ideally, besides critical code, it would be beneficial to man
static read-only data and memory at which important kemelegoplication data structures,
such as interrupt descriptor tables, system call tabledamnztion pointer tablesGlobal

Offset Tabl§GOT) andProcedure Linkage Tabl@°LT) ) are stored.

Dynamic TPM: Implementing the dynamic TPM, as described in Sec8dhl, would
be a radical step forward in the way TPMs currently operateould enable the TPM to
hold the run-time memory configuration of a process, and éatlow for more accurate

trust judgments.
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Chapter 6

Related Work

6.1 IMA

IBM designed and implemented a TPM-badetégrity Measurement Architectut@MA)
to measure the integrity of a Linux system. Their implemgotg[15] was able to extend
the TCG trust measurement architecture from the BIOS alidneup into the application
layer.

Integrity measurements are taken as soon as executabntetoaded into the sys-
tem, but before it is executed. An ordered list of measurésismmaintained within the
kernel, and the TPM is used to protect the integrity of ttes IRemote parties can verify
what software stack is loaded by viewing the list, and ushregPM state to ensure that

the list has not been tampered with.

6.2 Bear/Enforcer

The Bear/Enforcer][l, 10] project from Dartmouth College developed.aux Security
Module(LSM) to help improve integrity of a Linux system.

The Enforcer is a Linux Security Module that calculates thsrhof each protected file
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asitis opened, and compares it to a previously stored vHladile is found to be modified,
Enforcer does some combination of the following: deniegssto the file, writes an entry

in the system log, panics the system or locks the TCG hardware

6.3 Copilot

Copilot [9] is a run-time kernel integrity monitor, that uses a semabats-mastering PCI
add-in card to make checks on system memory.

The Copilot monitor, routinely recomputes hashes of theéks text, modules, and
other critical data structures, and compares them aganwstik good values to detect for

any corruption.

6.4 Pioneer

Pioneer 1 6] provides software-based run-time code attestation.

A trusted entity known as theerifier can verify the software stack running on an un-
trusted platform, by sending a challenge to a self-checkerification function on that
platform. The check-sum, returned as the response to tlifeeveis checked for correct-
ness as well as if it is returned within the expected time @r i@n adversary tries to ma-
nipulate the check-sum computation, the computation tinllenaticeably increase. This
helps the verifier determine if a dynamic root of trust exsighe untrusted platform. The
dynamic root of trust is then used to measure further exbtegdhat run in an untampered

execution environment.
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6.5 Bind

BIND [17] is a service that performs fine-grained attestation foatdisthing a trusted en-
vironment for distributed systems.

Rather than attesting to the entire contents of memory, BiBsts only to a critical
piece of code, that is about to execute. It narrows the gapdsst time-of-attestation
and time-of-use, by measuring code immediately before éxiecuted, and protects the
execution of the attested code by using a sand-boxing meshart also binds the code
attestation with the data that it produces. It requires wgner annotations, and runs

within a Secure Kernel that is available in the nesGrande Technologft.T) -style CPUs.

6.6 Terra

Terra [7] is a virtual machine-based platform for trusted computing

The Terra Trusted VMM (TVMM), partitions a single platformto multiple isolated
virtual machines. Using a TVMM, existing OSes and applaagican run in an “open-box
VM” or a “closed-box VM.” The privacy and integrity of the ctants of a closed-box VM
are protected by the TVMM. The TVMM also allows applicatidnsattest their software
stack to remote parties. Attestation is done by decompasiegtable entities into fixed-

sized blocks, and computing a separate hash over each block.
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Chapter 7

Summary and Conclusion

7.1 Summary

In this research, we described the design and implementafia prototype system, that
will serve as a defense toward the TOCTOU limitation of th&SFCPM architecture. Once
deployed, the integrity measurements of a TPM-protectatesy, will more reliably be

able to be trusted. The TPM will be capable of indicating grapering of memory con-

taining trusted data.

7.2 Conclusion

The goal of this thesis was, to demonstrate flaws and lironatin the current TCG/TPM

architecture. In the course of this research, we made tleniolg contributions:

e We pointed out that current assumptions made about meas@@wry at run-time is
flawed. Specifically, that previously measured memory cambeified at run-time,

in a way that is undetectable by the TPM.

¢ We demonstrated a few software-based TOCTOU attacks orumsgasiemory, and
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exhibited ways to detect such attacks — by monitoring thevegit PTEs and physical
frames of RAM.

e We applied our prototype to verify the integrity of data asated with an application.
We also suggested and implemented ways to associate dativevjirocess that owns

it, SO as to prevent unauthorized use of it.

e Our recommendation is to have a closer binding between thé&JMNt the TPM, so

that the above detection that is currently done by Xen, catobe by the MMU.
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Appendix A

Technical Detalls

This appendix contains various technical details relattingur prototype.

A.1 Virtual machine configuration file

Shown below is the configuration file for virtual machine Dama. The Domain is named

"vm01”, and is used as the test machine for our prototype.

name="vno1"

kernel ="/ boot/vm i nuz-2.6. 16. 29- xen"

root ="/ dev/ sdal"

menory=128

di sk=['file:/vserver/inmges/vnOl.ing, sdal, w ,
"file:/vserver/inmges/vnDl-swap.ing, sda2, w ]

vtpm = [’instance=1, backend=0’]

# network

vi f=[ " mac=00: 16: 41: AE: 50: E4’ ]

dhcp="dhcp"

extra="3"
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A.2 Attack Overview

Listed here are the steps carried out for each of the attauksl@fenses described in Sec-

tion4.1:

e Ensure that the virtual TPM backend driver is available imiam-0. If not statically
compiled into the Kernel, the module can be loaded using ¢inencand:

nodpr obe t pnbk
This will make available a character device:
/ dev/ vt pm
which is where the vTPM listens for requests.
e Start the virtual TPM manager daemon in Domain-0. The contht@wlo that is:
vt pm managerd

e Launch the virtual machine that will function as the test mae. The command for
that is:

xmcreate -c /etc/xen/vnDl-config.sxp

This virtual machine should be TPM-enabled, i.e., the TPdhtiend driver must be
compiled for its Kernel, and in its configuration file it shdudpecify that it would
like to be associated with a vTPM instance using the commaed |

vtpm = [’instance=<i nstance nunber>, backend=<domain id>"]

as shown in the configuration file above.

e Once the guest machine is started, we need the TPM frontéret tv be activated.
If the driver is not compiled into the kernel, it must be loddesing the following
command:
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nodpr obe t pm xenu
This will make available a character device:

/ dev/t pnmD

e In Domain-0, we load a process that waits for an interrpRQ_TAMPER) from the

hypervisor. The interrupt indicates tampering of trustezmory.

e We start the victim process in Domain-1. On being loadednmémory, the PTEs/frames

mapping its code section are reported to the hypervisor

e We attack the above process by inserting a Kernel moduleDotoain-1, that ma-

nipulates PTEs/frames of the process. This tampering ectit by the hypervisor.

e The hypervisor upcalls into Domain-0 to indicate this tanmpg On receiving this
upcall, i.e., the interrupt, our ‘invalidating process’dapes a specific PCR in the

virtual TPM of Domain-1 with a random value.
¢ In Domain-1, the updated PCR values can be seen using tloeviod command:

cat /sys/devices/xen/vtpmO0/pcrs

A.3 Important files modified

For hooking into the page-table update code
xen- 3. 0. 3_0-src/xen/arch/ x86/ m c

For adding new hypercalls

Xen si de:

xen-3. 0.3 _0-src/ xen/arch/ x86/ x86_32/entry. S
xen-3.0.3_0-src/xen/include/ asm x86/ hypercal | . h
xen-3. 0.3 _0-src/ xen/arch/ x86/ mm c

Li nux si de:

xen-3.0.3_0-src/linux-2.6.16.29-xen/include/ asmi 386/ mach-xen/ asm hypercal | . h
xen-3.0.3 0-src/linux-2.6.16.29-xen/include/xen/interface/xen.h
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A.4 Binding secrets and data to processes

Current Implementation

1. CreateKey [options] <keyname> <parent keyhandl e>

!

Encrypted key bl ob
(containing private key)

2. Loadkey <parent keyhandl e> <encrypted key blob file>

!
keyhandl e to | oaded key

3. Signfile [options] <keyhandl e> <input file> <output file>

!

signed file
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New Implementation

1. CreateKey [options] <keyname> <parent keyhandl e> <CR3 val ue>

!

Encrypted key bl ob
(containing private key)
+

CR3
l

Seal file [options] <keyhandl e> <input file> <outputfile> <CR3 val ue>

!
New encrypted bl ob(key blob + CR3)

2. LoadSi gnKey <parent keyhandl e> <new encrypted bl ob> <input file>
<out put file> <CR3 val ue>

!
Unseal fil e <keyhandl e> <new encrypted bl ob> <outputfile> <CR3 val ue>
1
<outputfile>( encrypted blob + stored CR3 ) == <CR3> passed in
! !
If No -- Abort If Yes -- Load
!
Si gn
|
Evi ct Key
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A.5 Sample source code

Below is the listing ofvi rt .t o_phys(), which is a function to walk the page-tables in

software.

static unsigned long virt _to phys(struct mmstruct *nmm unsigned |ong start_addr
unsi gned | ong end_addr, unsigned |ong protected franes[])
{
pgd_t +pgd;
prd_t pn;
pte_t =ptep, pte

unsi gned pgd_i ndex, pte_index;
unsi gned long ret = 0OUL;
unsi gned | ong addr = start_addr

int i =0;
i nt garbage;

/+iterate through pages=*/

for(addr = start_addr; addr <= end_addr; addr += 4096)
{

pgd_of fset (mm addr);

prmd_of f set (pgd, addr);
pte_of fset _map(pnd, addr);

pgd
pnd

ptep

/I access an address on each page
garbage = *((int+)addr);

if(pte_present(*ptep)) {
pte = *ptep;
ret = pte.pte | ow & ((ul ong) OxFFFFF000);

protected_frames[i++] = ret;
}
}
[+ print this to prevent the conpiler fromoptimzing it out=*/

printk("%\n", garbage);
return protected_franes;
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