
SMOCK: A Self-contained Public Key Management Scheme for Mission-critical
Wireless Ad Hoc Networks

Wenbo He Ying Huang Klara Nahrstedt Whay C. Lee
Department of Computer Science Motorola Labs

201 N. Goodwin Avenue 111 Locke Drive
Urbana, IL 61801-2302 Marlborough, MA 01752

Abstract

Mobile ad hoc networks show great potential in emer-
gency response and/or recovery. Such mission-critical ap-
plications demand security service be “anywhere”, “any-
time” and “anyhow”. However, it is challenging to design
a key management scheme in current wireless ad hoc net-
works to fulfill the required attributes of secure communi-
cations, such asdata integrity, authentication, confidential-
ity, non-repudiationandservice availability, whenSybil at-
tacks are present. In this paper, we present a self-contained
public key management scheme, calledSMOCK, which is
able to resist theSybil attack, achieves zero communication
overhead for authentication, and offers high service avail-
ability. In our scheme, small number of cryptographic keys
are stored off-line at individual nodes before they are de-
ployed in the network. To provide good scalability in terms
of number of nodes and storage space, we utilize a combina-
torial design of public-private key pairs, which means nodes
combine more than one key pair to encrypt and decrypt mes-
sages. We also show thatSMOCKprovides controllable re-
silience when malicious nodes break into a limited number
of nodes before key revocation and renewal.

1 Introduction

There are emerging needs of secure communications
in mission-critical applications over wireless ad hoc net-
works, including battlefield communications, emergency
rescue operations, and disaster recoveries. In these ap-
plications, it is important to support secure communica-
tions in “anywhere”, “anytime” and “anyhow” manner with
following attributes [1] [3]: data integrity, authentica-
tion, confidentiality, non-repudiation, and service avail-
ability. Being good candidates to address these attributes,
Public-Key Cryptography (PKC) schemes have advantages

over the symmetric systems [2]. However, characteris-
tics of mission-critical ad hoc networks pose the follow-
ing new challenges for the design of public key manage-
ment schemes that would support secure communication
over wireless ad hoc networks:

(1) Vulnerability to theSybil Attack: Wireless commu-
nications are prone to both active and passive attacks. The
Sybilattack [4] is an active attack and particularly detrimen-
tal to mobile ad hoc networks. When theSybilattack hap-
pens, an attacker can claim multiple identities and the fake
identities can easily defeat reputation and threshold proto-
cols, where a legitimate node must rely on majority of nodes
to reach decisions. Therefore, a node should not trust oth-
ers unless the node can infer someone else is trustable from
local information.

(2) Unreliable Communications and Network Dynamics:
Due to shared-medium nature of wireless links, flows may
frequently interfere with each other. Moreover, a network
may be partitioned frequently due to node mobility and poor
channel condition. Mobile nodes may leave and join the ad
hoc network frequently and new legitimated nodes may join
the network later after some nodes have been deployed in
the field. Mobility increases the complexity for trust man-
agement.

(3) Large Scale: The number of ad hoc wireless devices
deployed at an incident scene depends on specific nature
of the incident. In general, the network size can be very
large. In addition, an ad hoc network should be able to ac-
commodate more mobile devices if necessary, therefore it
is necessary to have newly deployed devices and previously
deployed devices trust each other without introducing too
much overhead.

(4) Resource Constraints: The wireless devices usually
have limited bandwidth, memory and processing power.
Among these constrains, communication bandwidth con-
sumption and memory are two big concerns for key man-
agement schemes. Wireless bandwidth is the scarcest re-

sources in wireless network. On the other hand, memory
concern for key storage is more and more evident, since the
requirement on network scalability (or network size) is in-
creasing.

Given the above challenges (1) and (2), a node in a
network may encounter untrustworthy peers and unreliable
communication. Therefore, we need a self-contained key
management scheme. A realistic assumption about mission-
critical applications is that: Before mobile devices are dis-
patched to an incident area, they are able to communi-
cate securely with the trusted authentication server in their
domain center, and get prepared before their deployment.
Once the wireless devices are dispatched into the incident
area, the centralized trusted server loses control of these de-
vices and the mobile devices cannot trust anybody if local
information cannot authenticate it. In this paper, we design
a self-contained public-key management scheme, where all
necessary cryptographic keys (certificates) are stored at in-
dividual nodes before nodes are deployed in the incident
area. As a result, we can expect almost zero commu-
nication overhead for authentication. In contrast to tra-
ditional certificate-based schemes, our authentication pro-
cedure does not require the communication of certificate,
binding the node’s ID to its public key, and signed by an
off-line trusted authority. The required storage space for
traditional self-contained public key management schemes
is of O(n) order. With challenges (3) and (4), storage space
at individual nodes may be too small to accommodate self-
contained security service, when network sizen is large.
Hence, we present a Scalable Method Of Cryptographic
Key (SMOCK) management scheme, which scales logarith-
mically with network size,O(log n), with respect to storage
space.

In order forSMOCKto use smaller set of cryptographic
keys, a sender uses multiple keys to encrypt a message and
a receiver needs multiple keys to decrypt the message. We
then use the public key cryptography as follows: Each node
possesses a unique combination of private keys, and knows
all public keys. The private key combination pattern is un-
ambiguously associated with the node ID. It means, if a
senderA wants to send a message to receiverB, A will
first acquireB’s ID to infer a set of private keys owned
by B. ThenA will encrypt the message with the public
key set that corresponds to the private keys owned byB.
We have evaluatedSMOCKwith respect to the communica-
tion overhead for key management, memory footprint, and
resilience to node break-in by adversaries. Note that it is
likely that adversaries may eventually break into a limited
number of nodes over a certain period before a network de-
tects the break-in and revokes the compromised keys. How-
ever, before the system detects break-ins, a majority of net-
work nodes under theSMOCKwill operate securely even
when a small amount of nodes are compromised.

The paper is organized as follows: In Section 2, we sum-
marize the related work in key management schemes in mo-
bile ad hoc networks. In Section 3, we describe the back-
ground and problem description. Section 4 provides the
details of our key allocation algorithms. Section 5 gives
detailed protocols for secure communication and bootstrap-
ping when new nodes are deployed. Section 6 evaluates the
proposed scheme. Finally, Section 7 provides concluding
remarks.

2 Related Work

For secure communication, wireless sensor networks use
symmetric key techniques [11, 12, 13, 14, 15, 16, 17]. The
main advantage of symmetric key techniques is its compu-
tational and energy efficiency. In symmetric key techniques,
secret keys are pre-distributed among nodes before their de-
ployment. A challenge of the key distribution scheme is to
use small memory size to establish secure communication
among a large number of nodes and achieve good resilience.
In sensor network context, the “security” emphasizes link
layer security, and the major security goal is to prevent out-
siders (adversaries) to use network resources. Due to the
lack of support forauthenticationandconfidentiality, [12]
and [13] are not suitable in mission-critical applications
over wireless ad hoc networks. Pairwise key distribution
schemes [14] [16] are able to bolsterauthentication. How-
ever, the connectivity is still probabilistic in these schemes
and there could be some partitions in the network. To fully
support required features of mission-critical networks, in-
cludingdata integrity, authentication, confidentiality, non-
repudiationandservice availability, we consider public key
schemes for secure communication over wireless ad hoc
networks in this paper.

Public key (certificate) based approaches were originally
proposed to provide solutions to secure communications for
the Internet [5], where security services rely on a centralized
certification server. However, with a centralized server, se-
curity service for mission-critical applications may suffer
from low availability and poor scalability due to the low re-
liability and poor connectivity of mobile ad hoc networks.
Also, a single point failure of centralized server is able to
paralyze the whole network, which makes the network ex-
tremely vulnerable to compromises and denial-of-service
attacks. To improve resilience to break-ins in wireless ad
hoc networks, Zhou and Haas tailor the certificate-based
approaches to ad hoc networks and present a distributed
public-key management scheme for ad hoc networks [3],
where multiple distributed certificate authorities are used.
To sign a certificate, each authority generates a partial sig-
nature for the certificate and submits the partial signature to
a coordinator that calculates the signature from the partial
signatures. Kong et al. describe a similar but fully dis-

tributed scheme [6], where every node carries a share of
the private key. In certification service, if a node collects
K partial certificates from its one-hop neighbors, the node
is able to obtain its complete certificate. This scheme in-
creases availability and reduces multi-hop communication
of authentication service. However, such a system is vul-
nerable to the Sybil attack [4], where an attacker can claim
multiple identities (larger thanK), and cheats honest nodes
with the fake partial certificate. To improve security service
availability and system scalability, Capkun, Buttyan, and
Hubaux propose a self-organized public key management
system [7], where users issue certificates based on their per-
sonal acquaintances. Each user maintains a local certificate
repository. When two users want to verify the public keys
of each other, they merge their local certificate repositories
and try to find (within the merged repository) appropriate
certificate chains that make the verification possible. How-
ever, it yields low security assurance whenSybilattacks are
present due to the lack of trust anchor, sinceSybilattackers
can easily defeat reputation and threshold protocols [6] [7]
[8] [9] [10]. Therefore, we turn to self-contained public key
approaches for high security assurance and low communi-
cation overhead.

Recent development of ECC algorithms and implemen-
tations [18] [19] [20] show that ECC is an efficient PKC
scheme and it is becoming very feasible to consider ECC
based PKC schemes in mobile ad hoc networks. Currently,
there are ongoing efforts to include ECC as a recommended
security mechanism, such as IEEE 802.15 WPAN, OMA
(Open Mobile Alliance), and IETF: IPSec, TLS, PKIX,
S/MIME. To bridge the gap between the development of
PKC technologies and the use of PKC in mobile ad hoc net-
works, scalable key management schemes are needed.

3 Problem Statement

In SMOCK, let us assume a group of people in an inci-
dent area, who want to exchange correspondence securely
among each other in a pair-wise fashion1. The key poolK
of such a group consists of a set of private-public key pairs,
and is maintained by an off-line trusted server. Each key
pair consists of two mathematically related keys. Thei-th
key pair in the key pool is represented by(ki

priv, ki
pub). To

support secure communication in the group, each member
is loaded with all public keys of the group and assigned a
distinct subset of private keys. LetKpriv

Alice denote a subset
of private keys held by Alice, andKpub

Alice represents Alice’s
corresponding public key subset. If Bob wants to send a
secret message to Alice, he needs to knowKpub

Alice, where
Kpriv

Alice 6⊂ Kpriv
anybody else. Bob is able to pass the secret mes-

1Symbols and terms used throughout this paper are shown as in Table
1

sage to Alice, using the public keysKpub
Alice to encrypt the

message. The message can be opened only by Alice, who
has the private key setKpriv

Alice, but others do not.

Table 1. Notations and Symbols
K A Key pool: a set of public-private

key pairs
privateKeyij j-th private key hold by useri
publicKeyij j-th public key hold by useri
Kpriv

i A set of private keys held by useri,
Kpriv

i = {privateKeyij}
Kpub

i A set of public keys corresponding to
Kpriv

i

Ki A set of public-private
key pairs held by user i,
Ki = {(kpriv, kpub)| kpriv ∈
Kpriv

i & corresponding kpub ∈
Kpub

i }
M Memory size for key storage
a Number of distinct key pairsa = |K|
b Number of private keys held by each

user under isometric key allocation,
b = |K1| = |K2| = · · · = |Kn|

kc(x) Expected number of disclosed keys
whenx nodes are broken in

kv(x) Maximum number of disclosed keys
whenx nodes are broken in

Vx(a, b) Vulnerability metrics asx nodes are
broken in.

C(a, b) Abbreviation ofa chooseb,

(
a
b

)

V A set of nodes in the ad hoc wireless
network

n Total number of nodes in the network,
n = |V |

Consider an example of a small group with 10 users.
In SMOCK, we need 5 distinct public-private key pairs to
build pair-wise secure communication channels among 10
users. They are(k1

priv, k1
pub), (k2

priv, k2
pub), (k3

priv, k3
pub),

(k4
priv, k4

pub), (k5
priv, k5

pub). Each user keeps 5 public keys
and 2 private keys. The unique private key set allocation for
each user is then shown in Table 2.

In this scenario, we know that

• Each person keeps a predetermined subset of private
keys, and no one else has all the private keys in that
subset.

• For a public-private key pair, multiple copies of the
private key can be held by different users. In the given
scenario, each private key has 4 copies.

Table 2. An example private key allocation
User Kpriv

i private-key set held by
useri

1 Kpriv
1 = {k1

priv, k2
priv}

2 Kpriv
2 = {k1

priv, k3
priv}

3 Kpriv
3 = {k1

priv, k4
priv}

4 Kpriv
4 = {k1

priv, k5
priv}

5 Kpriv
5 = {k2

priv, k3
priv}

6 Kpriv
6 = {k2

priv, k4
priv}

7 Kpriv
7 = {k2

priv, k5
priv}

8 Kpriv
8 = {k3

priv, k4
priv}

9 Kpriv
9 = {k3

priv, k5
priv}

10 Kpriv
10 = {k4

priv, k5
priv}

• A message is encrypted by multiple public keys, and
it can only be read by a user who has the corre-
sponding private keys. For example, if user 1 en-
crypts a messagem by public keysk2

pub andk5
pub as

Enc(Enc(m, k2
pub), k

5
pub), then only user 7 can de-

crypt it with private keysk2
priv andk5

priv.

In traditional public management schemes, each user
holds one public-private key pair. Therefore, a user should
store n public keys and 1 private key to achieve self-
contained key management in a network of sizen. In
SMOCK10-user example, a user only needs to store 7 keys
(5 public keys and 2 private keys), which is smaller than
11 keys (10 public keys and 1 private keys) in traditional
schemes. We will show that inSMOCKthe total number of
keys held by each user is approximatelyO(log(n)), but it is
O(n) under traditional key management schemes.

3.1 Definitions

Definition 1: Let us consider akey pool K =
{(ki

pub, k
i
priv)|∀i ≤ a}, where thei-th public-private key

pair is defined as(ki
pub, k

i
priv), anda = |K| represents the

number of distinct key pairs. The symbolKpriv
v andKpub

v

stand for a set of private keys and a set of public keys held
by userv respectively.

Definition 2: A key allocationKA: 2K → V , maps the
key pairs inK to a set of users inV , so thatv ∈ V is
assigned a subset of key pairsKi (Ki ⊂ K)). To guarantee
the secure communication between each pair of nodesi and
j, we have∀i ∀j Ki 6⊆Kj (the same asKpriv

i 6⊆Kpriv
j) and

Kj 6⊆Ki (the same asKpriv
j 6⊆Kpriv

i), iff i 6= j. If this
property holds, thekey allocationis valid.

Definition 3: We say that a key allocation is isometric,
if |K1| = |K2| = · · · = |Kn| = b; otherwise, the key

allocation is non-isometric.
Definition 4: We say that the key assignment to useri

andj conflict, if eitherKpriv
i ⊆Kpriv

j orKpriv
j ⊆Kpriv

i . For
a valid key allocation, there does not exist conflicting key
assignments for any pair of the users.

3.2 Objectives

To guarantee the secure communication amongn people,
we need to have enough public-private key pairs. On the
other hand, to seek efficiency in storage and computation,
we want to use a small number of key pairs and distribute a
small number of key copies to each person. Generally, we
desire the key management to be memory efficient for key
storage, computationally efficient during encryption and de-
cryption, and resilient to break-ins. Therefore, we define
multiple objectives of theSMOCK key allocation mecha-
nism as follows:

Objective 1Memory Efficiency: Given a network of size
n, we need to find akey poolK and akey allocationKA to
achieve

{
min |K|+ max

i∈V
|Kpriv

i |
s.t. Ki 6⊆Kj andKi 6⊇Kj ∀i 6= j

(1)

where|Kpriv
i | = |Ki| is the total number of private keys

stored at nodei. |K| is the total number of public keys
stored at each node. Note that each node stores all public
keys before the node deployment, but it only stores a small
subset of private keysKpriv

i for useri. If a user is assigned
a key pair(kpub, kpriv), then the user holds the private key
kpriv. Therefore,|K| + |Kpriv

i | is the number of memory
slots at nodei to store the public keys and private keys for
secure communications.

Objective 2Computational Complexity: To simplify se-
curity operation, each person wants to use a small num-
ber of public keys to encrypt the outgoing messages, and
a small number of private keys to decrypt incoming mes-
sages. Therefore, we have the following objective
{

min max
i∈V

|Kpriv
i |

s.t. Ki 6⊆Kj ,Ki 6⊇Kj (∀i 6= j) and|K| ≤ M
(2)

whereM is the total number of memory slots for key stor-
age at each node.

Proposition 1: Isometric allocation of keys performs bet-
ter than non-isometric allocation in terms ofObjective 1and
Objective 2.

Proof of Proposition 1is shown in [21]. Therefore, we
assume isometric key allocation throughout the rest of this
paper.

Objective 3Resilience Requirement: Under isometric
key allocation scheme, we denotea = |K| andb = |Ki| =

|Kpriv
i |. Each user needs only to carryb private keys

anda public keys under isometric key allocation, wherein
b << a << (a + b) << n. Clearly, if a node is com-
promised, all its keys are compromised, regardless of the
number of private keys it carries. Therefore, on the average
C(kc(x), b) distinct key-sets are compromised when adver-
saries break intox nodes, and up toC(kv(x), b) distinct
key-sets are compromised in the worst case.

We denote a vulnerability metric byVx(a, b), which
is the percentage of communications being compromised
whenx nodes are broken in. It follows that the vulnerability
metric,Vx(a, b) is C(kc(x), b)

C(a,b) on the average orC(kv(x), b)
C(a,b)

in the worst case, wherekv(x) = xb. To achieve the desired
resilience when adversaries break intox nodes, we define
the resilience requirement as

Vx(a, b) =
C(kc(x), b)

C(a, b)
≤ P (3)

whereP is the resilience bound representing the upper-
bound of the compromised communications whenx nodes
are randomly compromised, each with equal likelihood.

Proposition 2: Let us assume the number of key pairs
used by the network isa, and each node possessesb private
keys. If x nodes are broken in, then on averagekc(x) =

ba−(a−b)
(

(a−b)
a

)x−1

c keys will be disclosed. Therefore,
C(kc(x), b)

C(a,b) percentage of the node will be compromised.
Proof ofProposition 2can be found in [21]. We can also

conclude that in worst case,kv(x) = min(xb, a) keys will
be disclosed, whenx nodes are broken in.

We observe thatC(kc(x), b) and C(kv(x), b) do not
compare favorably withx. But, by increasing the value of
a, we can makeC(a, b) >> n, therefore, makeVx(a, b)
compare favorably withx/n, which we refer to asbench-
mark resilience. There is a trade-off between memory us-
age and resilience against break-ins: For a larger number of
public-private key pairs, we can get better resilience against
break-ins at the cost of larger memory footprint.

4 Key Allocation Algorithm

Due to Proposition 1, SMOCK uses the isometric key
allocation algorithms to achieve the objectives outlined in
Section 3.2. In this section we show: (1) For a given net-
work, how to determinea andb; (2) How to allocate distinct
private key sets to users to achieve secure communication
between each pair of users. To determine value ofa and
b, we first specify an algorithm to obtain the optimal key
allocation solution in terms of bothObjective 1andObjec-
tive 2with constraint of the resilience requirement specified
in Objective 3. Observing the trade-off between memory
usage and resilience against break-ins, we then present an

algorithm to fully utilize memory space to achieve better
resilience by slightly relaxing the optimality ofObjective 1
andObjective 2. With the given value ofa andb, Section 4.2
discusses key allocation details ofSMOCK.

4.1 Derivation of a and b

4.1.1 Optimization of design objectives

Valueb affects the complexity of encryption and decryp-
tion. Therefore, we’d like to relaxa to allow b to be small.
The extreme case is thata = n andb = 1,2 where each per-
son keeps a key and every key only has a single copy. The
following algorithm helps to determinea andb to achieve
the design objectives. Assume the network size isn.

Objective 1requiresa
n to be small for key storage effi-

ciency. MeanwhileObjective 3requiresa
b to be large for

good resilience. Therefore, there are two conflicting objec-
tives. Algorithm 1 trades off between memory efficiency
and good resilience.

Algorithm 1:
(1) Initialize l = 2.

While (C(l, b l
2c) < n)

do{l = l + 1};
a = l, b = b l

2c;

(2) While (C(a, b− 1) > n)
do{b = b− 1};

(3) While (C(a + 1, b− 1) > n)
do{a = a + 1, b = b− 1}

(4) While (Equation (3) is not satisfied)
do{

if(C(a + 1, b− 1) > n)
{a = a + 1, b = b− 1}

else
{a = a + 1}

}
(5) |K| = a and |Ki| = b.

Step (1) of Algorithm 1 calculates the minimum num-
ber of memory slots to store public keys in order to support
the secure communication amongn nodes. Step (2) mini-
mizesObjective 1. Step (3) further optimizes theObjective
2 while keepingObjective 1unchanged. Step (4) ensures
that the key allocation meetObjective 3. If the resulting
a andb do not satisfy the resilience requirement specified
by Objective 3, we either increasea, or simultaneously in-
creasea and decreaseb. Thus a

n is increased by1n and a
b

is increased by1b or b+1
b(b−1) . Forn >> b, it is a reasonable

trade-off of memory slots to achieve better resilience.

2This is exactly the traditional public key management scenario.

4.1.2 Meeting key storage constraint

Total memory slots for key storage are often limited
by M , whereM is large enough to supportn nodes. In
this case, we should fully utilize the memory slots to opti-
mize Objective 2and achieve the best resilience given by
C(kc(x),b)

C(a,b) in Equation 3. Thus, we come up with Algorithm
2.

Algorithm 2:
(1) Leta = d 2M

3 e, b = bM
3 c;

(2) While (C(a + 1, b− 1) > n)
do{a = a + 1, b = b− 1};

(3) Then|K| = a and |Ki| = b.

4.2 Key Allocation

For a given network sizen, we have determineda and
b. The key assignment should satisfyKi 6⊆Kj andKi 6⊇Kj ,
so that thekey allocationdescribed above can support the
pair-wise secure communication for a network of sizen =
C(a, b). Assuming a single private key can be assigned to
at mosty nodes, we haveb×n = a× y (both sides indicate
the total copies of private keys in the system). Therefore,
y = b

an = b
aC(a, b). We randomly assignb private keys

to network nodes in the key allocation, where a single key
should be assigned to at mostb

aC(a, b) nodes. Otherwise,
we cannot get a valid key allocation. In the example given
in Table 2, each key is assigned 4 times, wherea = 5, b =
2. For a key assignment, we just need to assign a random
unused private key combination to a node (totally, there are
C(a, b) possible combinations). Algorithm 3 illustrates the
procedure to assign a subset private keys to a node. Note
that very smalla andb can support a very large network.
E.g., if we ignore the resilience requirement,a = 20, b =
4, the network size can be as large as 4845.

Algorithm 3:
(1) For thei-th node(i ≤ C(a, b)), randomly selectb
distinct private keys to generate a subset of keys, where
either of theseb private keys has been assigned more
than b

aC(a, b) times;
(2) If (the generated key set= an assigned key set)

Adjust key by key in the generated key set to get
unassigned key set;
(3) Assign the generated key set to nodei.

5 Secure Communication Protocols

Section 4 shows how to determinea, b and how to as-
sign private-key set to a node if network sizen is given.
In this section we specify detailed protocols used for initial-
ization, communication, and bootstrapping when new nodes

are deployed. The initialization phase is performed before
deployment. Since communication and bootstrapping are
on-line procedures, they have to be very efficient in terms
of communication overhead (using a small number of mes-
sages).

5.1 Initialization

The initialization phase is to assign keys and identifica-
tions to each node. The algorithms for key allocation are
shown in Section 4. A node’s identification (ID) is a good
indicator to show what subset of private keys the node car-
ries. If two nodes want to exchange a secure message, each
needs to know the ID of the other. From the ID, a node
can infer which private keys the other node has, and it can
encrypt the message with the corresponding public keys.
Node IDs do not have to form a contiguous range. After
key allocation, each node knows the private keys assigned
to it, and all the public keys. We label the keys by numbers
0, 1, 2 · · ·. Let keyIDj

i
be thei-th private key held by node

j. Leta be the total number of public keys andb be the num-
ber of private keys kept at each node. For each nodej, we
havekeyIDj

1 < keyIDj
2 < · · · < keyIDj

b . The ID field
spansb× dlog2 ae bits as shown in Figure 1. EachkeyIDj

i

takesdlog2 ae bits. It is easy to show that the node ID is
unique as long as each node is assigned a unique subset of
private keys.

2

j
keyID
1

j
keyID
 j

b
keyID
...

Figure 1. ID field of node j

In the example shown in Table 2, user 7’s private key set
is Kpriv

7 = {k2
priv, k5

priv}. Correspondingly, the ID of the
user 7 is “010|101”, wherea = 5, b = 2. We can see that a
node automatically obtains an ID after it has been assigned
a private-key set. If other peer nodes know user 7’s ID,
they can infer that user 7 has private key number 2 (k2

priv)
and private key number 5 (k5

priv). If user 7 claims a fake
identity, other nodes will use public keys represented by the
fake identity to encrypt the messages. Therefore, the user 7
cannot decrypt the message. In this way,SMOCKscheme
is able to resist against theSybilattack.

5.2 Secure Communication

Figure 2 shows a protocol of secure communication be-
tween Alice and Bob, where Alice and Bob establish a se-
cure communication channel. If Alice already knows Bob’s
ID, she can send an encrypted message (EncMsg) directly
to Bob. Otherwise, she needs to send a ID request message
to Bob, and Bob replies with his ID. After Alice receives

Bob’s ID, she can figure out which private keys Bob is asso-
ciated with, and she encrypts the message correspondingly
before she sends the message.

Since Bob holds a unique subset of private keys, only he
is able to decrypt the message correctly. Note that, Bob’s ID
can be transmitted by plain text. Even so, malicious users
who steal Bob’s ID cannot decrypt the encrypted message.

Bob
Alice

1: ID Request

2: ID of Bob

3: EncMsg to Bob

Figure 2. Secure communication protocol be-
tween Alice and Bob

5.3 Bootstrapping to Accommodate New
Nodes

In some cases, we need to deploy new nodes to an exist-
ing ad hoc network. InSMOCK, it is trivial to make newly
deployed node to trust previously deployed nodes. How-
ever, in case of insufficient number of keys, a bootstrap-
ping procedure should be run to have previously deployed
devices trust newly deployed devices. Let us assume that
n nodes are already deployed in a network witha public
keys and each node storesb private keys, andm new nodes
are being assigned into the network. Ifn + m < C(a, b)
and resilience requirement (Equation (3)) are still satisfied
after we deploym more nodes, then no bootstrapping is
necessary, since the newly deployed nodes can be assigned
with unused combinations of private keys from the exist-
ing key pool owned by off-line trusted server before they
are deployed. However, if network sizen + m is larger
thanC(a, b) or resilience requirement is violated after in-
cremental deployment, then the system needs to generate
more key pairs, saya′ new key pairs. We can still assign
b private keys to the additional nodes before their deploy-
ment. In this case, a bootstrapping procedure is necessary
to introduce newly generated public keys to the previously
deployed nodes is necessary. After new nodes join the net-
work, they need to broadcast the newly generated public
keys to those previous deployed nodes. Therefore, the pre-
vious deployed nodes are able to infer the value ofa+a′. To
prevent unauthorized nodes to broadcast fake public keys
in the bootstrapping procedure, the trusted domain center
should sign the newly generated public keys. Since we fix
b, those previously deployed nodes can adjust the existing
ID field to spanb× dlog2(a + a′)e bits.

It can be verified that, givenC(a, b), the increment ofa
by 1 bringsC(a, b − 1) new valid key sets for new nodes.
Therefore, witha′ new key pairs, the network is able to

accommodate
a′−1∑
i=0

C(a + i, b − 1) new nodes. Note that

keepingb unchanged and increasinga does not violate the
resilience boundP given inObjective 3.

6 Evaluations

6.1 Small Memory Footprint

In SMOCK, a few key pairs can support secure commu-
nication of a very large network. According to theAlgo-
rithm 1 in Section 4.1, 18 key pairs in the network can sup-
port end-to-end secure communication among up to 1000
nodes without resilience consideration. In Figure 3(a), we
show the minimum number of keys needed at each node
for typical mission-critical network sizes. Therefore, we
can achieve very small memory footprint under theSMOCK
scheme.

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

20

22

Nu
mb

er
 of

 ke
ys

of private keys

of public keys

Total # of keys stored at each device

(a) n ≤ 1000

10 100 1000 10000
8

10

12

14

16

18

20

22

24

Network size

To
tal

 nu
mb

er
 of

 ke
ys

(b) On logarithmic scalen ≤ 10000

Figure 3. The minimum number of keys
needed

A total of a public keys can support at mostC(a, ba
2 c)

nodes in the network. By Stirling’s Approximation,n! ≈√
(2n + 1

3)π nne−n. Hence,a public keys can support a

network of sizeΘ(2a√
a
), where2a is dominant asn turns

very large. Accordingly, the total number of key pairs re-
quired is at a level ofΘ(log2 n) = Θ(1

lg 2 lg n) = Θ(lg n),
which can be verified by Figure 3(b). We conclude that the
SMOCKscheme yields very small memory footprint.

If we relax the storage limitation, the number of private
keys needed decreases, and computational complexity is re-

duced accordingly. Figure 4 shows the trade-off between
computational complexity and key storage space for differ-
ent network scales, where the computational complexity is
inferred by the number of private keys needed. We can con-
clude that the larger the storage space is, the smaller number
of private keys are kept at each node, thus the smaller com-
putational complexity it is.

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Network size

Nu
m

be
r o

f p
riv

at
e

ke
ys

The case to achieve minimum total # of keys

M=40

M=60

(a) n ≤ 1000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

Network size

Nu
m

be
r o

f p
riv

at
e

ke
ys

The case to achieve minimum # of keys

M=40

M=60

(b) 1000 ≤ n ≤ 10000

Figure 4. Trade-off between storage space
and computational complexity (M is total
memory slots for key storage)

6.2 Communication Overhead for Key
Management

SinceSMOCK is a self-contained public-key manage-
ment scheme, a node does not need to contact/trust other
nodes for certificate verification. Only during the boot-
strapping phase when new nodes join the network and the
key revocation process, communication is needed for key
management. Therefore,SMOCKhas little communication
overhead for key management.

6.3 Resilience to Break-ins

6.3.1 Average case analysis

The break-in of any single node by an adversary does not
release enough information to the adversary to break secure
communication for any pair of nodes. However, break-ins

of multiple nodes may compromise a set of other nodes.
Assumex nodes are compromised andkc(x) is the expected
number of keys disclosed correspondingly. AsProposition

2 shows,kc(x) = ba−(a−b)
(

a−b
a

)x−1c. ThenC(kc(x), b)
C(a,b)

percentage of nodes will be compromised. Let’s assume
n = 1000, Figure 5(a) shows the average case percentage
of compromised nodes when a small portion of nodes are
controlled by adversaries.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of break−ins

Pe
rc

en
ta

ge
 o

f c
om

pr
om

ise
d

no
de

s a=30

a=40

a=50

a=60

(a) Average case (b = 4)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of break−ins

Pe
rc

en
ta

ge
 o

f c
om

pr
om

ise
d

no
de

s a=60, b=3

a=80, b=4

a=100, b=5

(b) Worst case

Figure 5. Percentage of compromised nodes
with break-ins

6.3.2 Worst case analysis

For mission-critical applications, it may be important
to consider resilience against the worst case where each
newly compromised node releasesb new keys to the
adversary. If we definekv(x) as the number of keys
disclosed by the break-ins ofx nodes, then in the worst
case,kv(x) = min(xb, a), wherea is the total number
of key pairs andb is the number of private keys kept by
each node. In the worst case, we want to calculate the
probability that an allocated key set is compromised as
Prob(a key set is compromised | the key set is allocated).
Since the events “a key set is compromised” and “a key
set is allocated” are independent, then the worst case prob-
ability is Prob(a key set is compromised). Therefore,
givena andb, in worst case, the break-in ofx nodes results
in C(kv(x), b)

C(a,b) percent of the communication compromises,
wheren is the network size. Figure 5(b) shows the worst

0.5% 1% 1.5% 2%
0

200

400

600

800

1000

1200

Percentage of break-ins

To
ta

l n
um

be
r o

f k
ey

s
To achieve benchmark resilience in average case

To achieve benchmark resilience in worst case

In conventional public key case

(a) Smaller storage space (x ≤ 20)

0
0

0.2%

0.4%

0.6%

0.8%

1%

1.2%

1.4%

1.6%

1.8%

2%

Percentage of break-ins

Pe
rc

en
ta

ge
 o

f c
om

pr
om

is
ed

 n
od

es

Vx(a,b) by SMOCK achieving benchmark resilience

x/N by Conventional public key case

1%0.5% 2%1.5%

(b) Equivalent resilience when achieving
benchmark resilience atx = 20

2% 4% 6% 8% 10%
0

200

400

600

800

1000

1200

Percentage of captured nodes

To
ta

l n
um

be
r o

f k
ey

s

To achieve benchmark resilience in average case

To achieve benchmark resilience in worst case

In conventional public key case

(c) Storage space to achieve benchmark re-
silience (20 ≤ x ≤ 100)

Figure 6. Comparison between SMOCKwhich achieves benchmark resilience and conventional pub-
lic key scheme for n = 1000

case percentage of the compromised nodes, where we can
see that the break-in ofda

b e nodes can compromise the
whole network in the worst case. However, the break-in of
d a

2be nodes only compromises a small ratio of the network.
With the help of break-in detection and key revocation
mechanisms3 we can assume that only a few number of
nodes (less thand a

2be) can be broken in.

6.3.3 Control resilience

As long as the number of key pairs is large enough, the
percentage of the compromised nodes will be small enough
when a certain number of nodes are compromised. This
is the practical reason that we want to choose a somewhat
larger value fora, the total number of key pairs used in
the network. Figure 5 shows that break-in of any single
node cannot compromise any other node in the network,
and break-in of multiple nodes may disclose information
to the adversary to compromise more than the number of
nodes which are broken in. The break-in of multiple nodes
will be more expensive for the adversary than the break-
in of a single node. On the other hand, whenever the
network detects the compromise of a user, it is necessary
to nip it in the bud by dynamically revoking and redis-
tributing new keys. Consider the resilience requirement as:
Vx(a, b) = C(kc(20), b)

C(a,b) ≤ 20%. When 20 or fewer nodes
are cracked in, we require that at most20% of the secure
channels are compromised. According toAlgorithm 1, the
minimum number of memory slots needed to fulfill such
resilience requirement is 70.

Figure 6 compares the total number of keys needed to
achieveVx(a, b) ≈ x/n for x = 20 underSMOCKwith
the conventional public key scheme. We assume that only a
small subset of nodes may be broken in during a reasonable
time window before key revocation. Figure 6(a) and Figure

3Note that break-in detection and key revocation mechanisms are im-
portant mechanisms, which are out the scope of this paper.

6(b) show that in the caseSMOCKachieves benchmark re-
silience atx = 20 thatVx(a, b) ≈ x/n, it provides equiva-
lent resilience when less than 20 nodes are compromised,
but requires much smaller memory size, comparing with
conventional scheme. Figure 6(c) shows the total number of
keys required to be stored at each node in order to achieve
benchmark resilience whenx goes up untilx = 100. It
shows good scalability ofSMOCK to tolerate more break-
ins. For applications with a high resilience requirement,
we recommend usingx/n as the resilience bound inOb-
jective 3.

7 Conclusions

We depict a key self-contained key management scheme,
which requires significantly less key storage space than tra-
ditional schemes and almost zero communication overhead
for authentication in a mission-critical wireless ad hoc net-
work with n nodes. The scheme also achieves controllable
resilience against node compromise by defining required
benchmark resilience.

In this paper, we generalize the traditional public key
management schemes.a = n andb = 1 in SMOCKturned
out to be the traditional public-key infrastructure. We can
also see thatSMOCKscheme is able resistSybilattacks, and
fulfill the secure communication requirement in terms of
integrity, authentication, confidentiality, non-repudiation,
andservice availability.

8 Acknowledgement

The research in this paper is supported by Motorola grant
1-557641-239016-191100.

References

[1] A. Menezes, P.V. Oorschot, and S. Vanstone,
Handbook of Applied Cryptography.CRC Press,
Boca Raton, FL, 1996.

[2] B. Schneier,Applied Cryptography.2nd Edition,
John Wiley & Sons, New York, 1996.

[3] L. Zhou and Z. J. Haas.Securing Ad Hoc Net-
works.IEEE Network Magazine, Nov. 1999.

[4] J. Douceur.The Sybil Attack.In Proceedings of the
IPTPS Workshop, March 2002.

[5] S. Kent and T. Polk. Public-key infras-
tructure (x.509) (pkix) charter.Available at
http://www.ietf.org/html.charters/pkixcharter.html.

[6] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang.
Providing robust and ubiquitous security support
for mobile ad-hoc networks.In Proceedings of the
9th IEEE International Conference on Network
Protocols (ICNP 2001), 2001.

[7] S. Capkun, L. Buttyan, and J.-P. Hubaux.Self-
organized public-key management for mobile ad
hoc networks.IEEE Transactions on Mobile Com-
puting, 2(1), January-March 2003.

[8] A. Cheng and E. Friedman.Sybilproof Reputa-
tion Mechanisms. In ACM Workshop on the Eco-
nomics of Peer-to-Peer Systems, August 2005.

[9] M. G. Gouda, and E. Jung,Certificate Dispersal
in Ad-Hoc Networks, in the Proceedings of the
24th IEEE International Conference on Distributed
Computing Systems (ICDCS 04), March 2004.

[10] S. Yi, R. Kravets,MOCA: Mobile Certificate Au-
thority for Wireless Ad Hoc Networks, 2nd Annual
PKI Research Workshop (PKI ’03), Gaithersburg,
Maryland, April, 2003.

[11] S.A. Camtepe and B. Yener,Combinatorial design
of key distribution mechanisms for wireless sensor
networks.In Proceedings of 9th European Sym-
posium On Research in Computer Security (ES-
ORICS 04), 2004.

[12] L. Eschenauer and V. D. Gligor.A key-
management scheme for distributed sensor
networks.In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security,
pages 41-47, November 2002.

[13] H. Chan, A. Perrig, and D. Song.Random key pre-
distribution schemes for sensor networks.In IEEE
Symposium on Research in Security and Privacy,
pages 197-213, 2003.

[14] W. Du, J. Deng, Y. S. Han, and P. K. Varshney.
A pairwise key pre-distribution scheme for wire-
less sensor networks.In Proceedings of the 10th
ACM Conference on Computer and Communica-
tions Security (CCS), pages 42-51, Washington,
DC, USA, October 27-31 2003.

[15] S. Zhu, S. Setia, and S. Jajodia.LEAP: Efficient se-
curity mechanisms for large-scale distributed sen-
sor networks.In Proceedings of 10th ACM Con-
ference on Computer and Communications Secu-
rity (CCS’03), pages 62-72, October 2003.

[16] F. Delgosha and F. Fekri.Threshold Key-
Establishment in Distributed Sensor Networks Us-
ing a Multivariate Scheme.In Proceedings of 25th
IEEE INFOCOM, April 2006.

[17] P. Traynor, H. Choi, G. Cao, S. Zhu, T. La
Porta.Establishing Pair-Wise Keys in Heteroge-
neous Sensor Networks.In Proceedings of 25th
IEEE INFOCOM, April 2006.

[18] G. Gaubatz, J. Kaps, and B. Sunar.Public keys
cryptography in sensor networks — revisited.In
The Proceedings of the 1st European Workshop on
Security in Ad-Hoc and Sensor Networks (ESAS),
2004.

[19] D. J. Malan, M. Welsh, and M. D. Smith.A public-
key infrastructure for key distribution in TinyOS
based on elliptic curve cryptography.In The First
IEEE International Conference on Sensor and Ad
Hoc Communications and Networks, Santa Clara,
California, October 2004.

[20] V. Gupta, M Millard, S. Fung, Y. Zhu, N. Gura, H.
Eberle, and S. Chang.Sizzle: A Standards-based
End-to-End Security Architecture for the Embed-
ded Internet.In In Proceedings of the 3rd IEEE
Percom 2005.

[21] W. He, Y. Huang, K. Nahrstedt, W. C. Lee,
SMOCK: A Scalable Method of Cryptographic
Key Management For Mission-Critical Networks.
UIUC Techniqual Report in Department of Com-
puter Science, UIUCDCS-R-2006-2734.

