
Automated Derivation of Application-aware Error Detectors

Using Static Analysis

Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravishankar K. Iyer

Center for Reliable and High Performance Computing, University of Illinois (Urbana-Champaign)

{pattabir, kalbar, rkiyer} @uiuc.edu

Abstract
This paper presents a technique to derive and

implement error detectors to protect an application

from data errors. The error detectors are derived

automatically using compiler-based static analysis

from the backward program slice of critical variables

in the program. Critical variables are defined as those

that are highly sensitive to errors, and deriving error

detectors for these variables provides high coverage

for errors in any data value used in the program. The

error detectors take the form of checking expressions

and are optimized for each control flow path followed

at runtime. The derived detectors are implemented

using a combination of hardware and software.

Experiments show that the derived detectors incur low

performance overheads while achieving high error-

detection coverage.

1. Introduction

This paper presents a methodology to derive error

detectors for an application based on compiler (static)

analysis. The derived detectors protect the application

from data errors. A data error is defined as a

divergence in the data values used in the application

from an error-free run of the program. Data errors can

result from incorrect computation and would not be

caught by generic techniques such as ECC in memory.

They can also arise due to software defects (bugs).

In the past, static analysis [1] and dynamic analysis [2]

approaches have been proposed to find bugs in

programs. These approaches have proven effective in

finding known kinds of errors prior to deployment of

the application in an operational environment.

However, studies have shown that the kinds of errors

encountered by applications in operational settings are

often subtle errors (such as timing and synchronization

errors) [8], which are not caught by static and dynamic

methods. Furthermore, programs upon encountering an

error, may execute for billions of cycles before

crashing (if they crash), during which time the error

may propagate to permanent state [15]. In order to

detect runtime errors, we need mechanisms that can

provide high-coverage, low-latency (rapid) error

detection to preempt uncontrolled system crash/hang

and prevent error propagation that can lead to state

corruption.

Duplication has traditionally been used to provide

high-coverage at runtime for software errors and

hardware-errors. However, in order to prevent error-

propagation and preempt crashes, a comparison needs

to be performed after every instruction, which in turn

results in high performance overhead. Therefore,

duplication approaches compare the results of

replicated instructions at selected program points such

as stores to memory [4] [14]. While this reduces the

performance overhead of duplication, it sacrifices

coverage as the program may crash before reaching the

comparison point. Further, duplication-based

techniques detect all errors that manifest in instructions

and data. It has been found that less than 50% of these

errors result in application failure (crash, hang or

incorrect output) [11]. Therefore, more than 50% of the

errors detected by duplication are wasteful from the

application’s perspective.

The main contribution of this paper is an approach to

derive runtime error detectors based on application

properties extracted using static analysis. The derived

checks preempt crashes and provide high-coverage in

detecting errors that result in application failures.

The coverage of the derived detectors is evaluated

using fault-injection experiments. The key findings are:

 Derived detectors detect around 75% of errors that

propagate and cause crashes. The percentage of

benign errors detected is less than 3%.

 The average performance overhead of the derived

detectors across 14 benchmark applications is

33%.

2. Fault Model

Hardware transient errors that results in corruption of

architectural state are considered. Examples of such

errors are:

 Errors in Instruction Fetch and Decode: Either

the wrong instruction is fetched, (OR) a correct

instruction is decoded incorrectly resulting in data

value corruption.

 Errors in Execute and Memory Units: An ALU

instruction is executed incorrectly inside a

functional unit, (OR) the wrong memory address is

computed for a load/store instruction, resulting in

value corruption.

 Errors in Cache/Memory/Register File Errors:

A value in the cache, memory, or register file

experiences a soft error that causes it to be

incorrectly interpreted in the program (assuming

that ECC is not used).

Software transient errors such as buffer overflows

(memory errors) and race conditions (timing errors),

which can corrupt data values used in the program, are

also considered.

3. Approach

This section presents an overview of the detector

derivation approach. The approach is based on the

technique of program slicing.

3.1 Terms and Definitions

Backward Program Slice of a variable at a program

location is defined as the set of all program

statements/instructions that can affect the value of the

variable at that program location [6].

Critical variable: A program variable that exhibits

high sensitivity to random data errors in the application

is a critical variable. Placing checks on critical

variables achieves high detection coverage.

Checking expression: A checking expression is a

sequence of instructions that recomputes the critical

variable, and is optimized aggressively and differently

from the rest of the program code. The instruction

sequence is computed from the backward slice of the

critical variable for a specific control path in the

program.

3.2 Steps in Detector Derivation

The main steps in the derivation of error detectors are

as follows:

3.2.1 Identification of critical variables. The critical

variables are identified based on an analysis of the

dynamic dependence graph of the program presented in

[3]. This analysis is carried out on a per-function basis

in the program i.e. each function in the program is

considered separately for identification of critical

variables.

3.2.2 Computation of backward slice of critical

variables. A backward traversal of the static

dependence graph of the program is performed starting

from the instruction that computes the value of the

critical variable going back to the beginning of the

function. The slice is specialized for each acyclic

control path that reaches the computation of the critical

variable from the top of the function. The slicing

algorithm used is a static slicing technique that

considers all possible dependences between

instructions in the program regardless of program

inputs.

3.2.3 Check derivation, insertion, instrumentation.

 Check derivation: The specialized backward slice

for each control path is optimized considering only the

instructions on the corresponding path, to form the

checking expression.

 Check insertion: The checking expression is

inserted in the program immediately after the

computation of the critical variable (check placement

point).

 Instrumentation: Program is instrumented to track

control-paths followed at runtime so as to choose the

checking expression for that specific control path.

3.2.4. Runtime checking in hardware and software.

The control path followed is tracked by the inserted

instrumentation in hardware at runtime. The path-

specific inserted checks are executed at appropriate

points in the execution depending on the runtime

control path. The checks recompute the value of the

critical variable for the runtime control path. The

recomputed value is compared with the original value

computed by the main program. In case of a mismatch,

the original program is stopped and recovery is

initiated.

There are two sources of runtime overhead for the

detector:

(1) Path Tracking: The overhead of tracking paths is

significant (4x) when done in software. Therefore, a

prototype implementation of path tracking is performed

in hardware. This hardware is integrated with the

Reliability and Security Engine (RSE) [12]. RSE is a

hardware framework that provides a plug-and-play

environment for including modules that can perform a

variety of checking and monitoring tasks in the

processor’s data-path. The path-tracking hardware is

implemented as a module in the RSE. Due to space

constraints, the design of the path-tracking module is

not presented in this paper but may be found in [13].

(2) Checking: In order to further reduce the

performance overhead, the check execution itself can

be moved to hardware. This would involve

implementing expressions directly in the RSE and is a

direction for future work.

4. Detector Derivation

The derivation of detectors is done by introducing a

new pass into the LLVM compiler [7], called the Value

Recomputation Pass (VRP). The VRP performs the

backward slicing starting from the instruction that

computes the value of the critical variable to the

beginning of the function. It also performs check

derivation, insertion and instrumentation. The output of

the pass is provided as input to other optimization

passes in LLVM. By extracting the path-specific

backward slice and exposing it to other optimization

passes in the compiler, the Value Recomputation pass

enables aggressive compiler optimizations to be

performed on the slice that would not be possible

otherwise.

void Bubble(int srtElements, int* sortList) {

 int i, j, top;

 bInitarr(sortList, srtElements);

 top=srtelements;

 while (top>1) {//Outer-while-loop

 i=1;

 while (i<top) {// Inner while-loop

 if (sortlist[i] > sortlist[i+1])

 {

 j = sortlist[i];

 sortlist[i] = sortlist[i+1];

 sortlist[i+1] = j;

 } // end-if

 i=i+1;

 } // end-inner-while

 top=top-1;

 } // end-outer-while

}

loopentry:

…

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [0, loopentry], [tmp.i, then], [tmp.i, endif]

tmp.i = add indvar.i, 1

i.1 = cast tmp.i to int

tmp.9 = getArrayElement sortlist, tmp.i

tmp.10 = load [tmp.9]

tmp.12 = add i.1, 1

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]

tmp.15 = setgt tmp.10, tmp.14

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]

br endif

endif:
tmp.16 = setlt tmp.12, top

br tmp.16, no_exit, loop_exit

loopexit:

….
Figure 1: Bubble sort code fragment and

intermediate code corresponding to inner loop

Figure 1 shows the source and LLVM intermediate

code (SSA form [9]) for the inner while loop of a

bubble sort program. In SSA form, each variable

(value) is defined exactly once in the program, and the

definition is assigned a unique name [9], which makes

it easy to identify dependences among instructions.

In Figure 1, assume that the variable tmp.10 has been

identified as a critical variable. The final outcome after

running the VRP and optimization passes is shown in

Figure 2 for the computation of the critical variable

tmp.10. The backward slice of this variable consists of

the instructions that compute the values of tmp.9, tmp.i,

indvar.i. These instructions are specialized and

optimized depending on the control path executed

(path0 and path1).

no_exit:.
indvar = phi [0, loopentry], [tmp.i, then], [tmp.i, endif]

old.tmp..i = tmp..i

tmp.i = add indvar.i, 1

i.1 = cast tmp.i to int

tmp.9 = getArrayIndex sortlist, tmp.i

tmp.10 = load [tmp.9]

pathVal = getState()

br pathVal, path.0, path.1

path0:
new.0.tmp.9 = getArrayIndex sortList, 1

new.0.tmp.10 = load [new.0.tmp.9]

br Check

path1:
new.1.tmp.i = add old.tmp.i, 1

new.1.tmp.9 = getArrayIndex sortlist, new.1.tmp.i

new.1.tmp.10 = load [new.1.tmp.9]

br Check

Check:
new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, path1]

compare = seteq new.10, tmp.10

br compare, errorBlock, restBlock

restBlock:

tmp.12 = add int i.1, 1

tmp.13 = getArrayIndex sortlist, tmp.12

tmp.14 = load tmp.13

tmp.15 = setgt tmp.10, tmp.14

br bool tmp.15, label then, label endif

errorBlock:

call errFunc()

Figure 2: Transformations introduced by the

VRP passes for the Bubble sort code fragment

4.1 Algorithm

The instruction that computes the critical variable is

called the critical instruction. In order to derive the

backward program slice, a backward traversal of the

Static Dependence Graph (SDG) is performed starting

from the critical instruction. The traversal continues

until one of the following conditions is met, (1) The

beginning of the current function is reached (only intra-

procedural slices are considered) or (2) A basic block

that had been previously encountered in the backward

traversal is revisited (loops are not recomputed) or (3)

The critical instruction occurs in-between the producer

instruction of the dependence and the consumer

instruction of the dependence (only previous loop

iterations are considered when traversing loop-carried

dependences) or (4) A memory dependence is

encountered. The rationale for each of these cases is

presented below:

 Intra-procedural Slices: It is sufficient to

consider intra-procedural slices in the backward

traversal because each function is considered separately

for the detector placement analysis. For example in

Figure 1, the array sortList is passed in as an argument

to the function from the main function. The slice does

not include the computation of sortList in main. If

sortList is a critical variable in the main function, then

a check will be placed for the variable in the main

function.

 No recomputation of loops: During the backward

traversal, if a dependence within a loop is encountered,

the loop is not recomputed in the checking expression.

Instead, the check is broken into two checks, one

placed on the critical variable and one on the variable

that affects the critical variable within the loop.

 Only the previous loop iteration is considered in

traversing loop carried dependences: When a loop-

carried-dependence across two or more iterations is

encountered, the dependence is truncated and the loop

dependence is not included in the slice. This is because

duplicating across multiple loop iterations can involve

loop unrolling or buffering intermediate values that are

rewritten in the loop. Instead, the check is broken into

two checks, one for the dependence-generating variable

and one for the critical variable.

 Memory Dependences not considered. While

LLVM does not represent memory objects in SSA

form, it promotes most memory objects to registers

prior to running a pass (including the Value

Recomputation pass). Since there is an unbounded

number of virtual registers for storing variables in SSA

form, the compiler is not constrained by the number of

physical registers.

The details of the Value Recomputation Pass are not

presented due to space constraints and may be found in

the technical report version of this paper [13].

4.2 Derived Checks

The VRP creates two different instruction sequences to

compute the value of the critical variable

corresponding to the control paths in the code. The first

control path corresponds to the control transfer from

the basic block loopentry to the basic block no_exit in

Figure 1. The optimized set of instructions

corresponding to the first control path is encoded as a

checking expression in the block path0 in Figure 2.

The second control path corresponds to the control

transfer from the basic block endif to the basic block

no_exit in Figure 1. The optimized set of instructions

corresponding to the first control path is encoded as a

checking expression in the block path1 in Figure 2.

The instructions in the basic blocks path0 and path1

recompute the value of the critical variable tmp.10.

These instruction sequences constitute the checking

expressions for the critical variable tmp.10. The basic

block Check in Figure 2(c) compares the value

computed by the checking expressions to the value

computed in the original program. A mismatch signals

an error and the appropriate error handler is invoked in

the basic block error. Otherwise, control is transferred

to the basic block restBlock, which contains the

instructions following the computation of tmp.10.

5. Experimental Setup

This section describes the mechanisms for

measurement of performance and coverage provided by

the proposed technique.

5.1 Performance Measurements

The technique is evaluated with 9 programs from the

Stanford benchmark suite and 5 programs from the

Olden benchmark suite [10] . All experiments are

carried out on a single processor P4 machine with 1GB

RAM and 2.0Ghz clock running on the Linux operating

system. Since the path-tracking is done in hardware, the

overhead of tracking paths is negligible. The main

sources of performance overhead for the technique are:

 Modification overhead: Performance overhead

due to the extra code introduced by the VRP pass.

 Checking overhead: Performance overhead of

executing the instructions in each check to recompute

the critical variable.

5.2 Coverage Measurements

Fault Injection. Faults are injected into the application

code to measure the coverage of the proposed

technique. The fault-injection methodology inserts calls

to a special faultInject function (at compile-time) after

the computation of each program variable in the

original program, with the value of the variable passed

as an argument to the faultInject function. At runtime,

the call to the faultInject function corrupts the value of

a single program variable by flipping a single bit in its

value. The value into which the fault is injected is

chosen at random from the entire set of dynamic values

used in an error-free execution of the program. In order

to ensure controllability, only a single fault is injected

in each execution of the application.

Error Detection. After a fault is injected, the

following program outcomes are possible: (1) abnormal

program termination (crash), (2) program continues

and produces correct output (success), (3) program

continues and produces incorrect output (fail-silent

violation) or (4) program timeouts (hang).

The injected fault may also cause one of the inserted

detectors to detect the error and flag a violation. When

a violation is flagged, the program is allowed to

continue (although in reality it would be stopped) so

that the final outcome of the program can be observed.

The coverage of the detector is classified based on the

observed outcome. For example, a detector is said to

detect a crash if the detector upon encountering the

error, flags a violation, and the program crashes.

Error Propagation. Our goal is to measure the

effectiveness of the detectors in detecting errors that

propagate before causing the program to crash. For

errors that do not propagate before the crash, the crash

itself may be considered the detection mechanism.

Hence, coverage provided by the derived detectors for

non-propagated errors is not reported.

In the experiments, error propagation is tracked by

observing whether an instruction that uses the

erroneous variable’s value (according to the static data

dependence graph of the program) is executed after the

fault has been injected. If the original value into which

the error was injected is overwritten, the error

propagation is no longer tracked.

6. Results

This section presents the performance and coverage

results obtained from the experimental evaluation of

the proposed technique. The results are reported for the

case when 5 critical variables were chosen in each

function by the detector placement analysis.

6.1 Performance

The performance results are shown in Figure 3. The

main results are summarized below:

 The average checking overhead introduced by the

detectors is 25%, while the average code modification

overhead is 8%. The total performance overhead is

therefore 33%.

 The worst-case overheads incurred are in the case

of tsp, which has a total overhead of nearly 80%. This

is because tsp is a compute-intensive program

involving tight loops. Placing checks within a loop

introduces extra branches, and therefore increases its

overhead.

6.2 Coverage

The coverage results (reported in percentages) are

reported in Table 1. For each application, 1000 faults

are injected, one in each execution of the application. A

blank entry in the table indicates that no faults of the

type were manifested for the application. For example,

no hangs were manifested for IntMM in our

experiment. Only program crashes that exhibit error

propagation are considered. The numbers within the

braces in this column indicate the percentage of

propagated, crash-causing errors that are detected

before propagation. The results in Table 1 show that:

 The derived detectors detect 77% of errors that

propagate and crash the program. 64% of crash-causing

errors that propagate are detected before first

propagation. These correspond to 83% of the

propagated crash-causing errors that are detected.

 The derived detectors detect 41% of errors that

result in fail-silent violations (incorrect outputs) and

35% of errors that result in hangs.

 The number of benign errors detected is 2.5% on

average. These errors have no effect on the execution

of the application.

 The worst-case coverage for crashes (that exhibit

error propagation) is obtained in the case of the Olden

program health (39%). The health program is

allocation-intensive, and spends a substantial fraction

(over 50%) of its time in malloc calls. Our technique

does not protect the return value of mallocs as

duplicating malloc calls may change the semantics of

the program. Further, the technique does not place

detectors within the body of the malloc function, as it

does not have access to the source-code of library

functions. This is not an inherent limitation of our

technique, and can be overcome by placing detectors

inside library functions (by the library developer).

Performance overheads with 5 critical variables per function

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

In
tM

M

R
ea

lM
M

O
sc

ar

Bub
bl
eso

rt

Q
ui
ck

so
rt

Tre
es

ort

Per
m

Q
ue

ens

Towers

H
ea

lth

em
3d m

st

ba
rn

es
-h

ut ts
p

M
ea

n

Benchmark

S
lo

w
d

o
w

n

Baseline Modifications Checking

Figure 3: Performance overhead of executing checks in software (5 critical variables per function)

Table 1: Error-detection coverage of detectors

Apps
Propagated
Crashes (%)

FSV
(%)

Hang
(%)

Success
(%)

IntMM 100 (97) 100 9

RealMM 100 (98) 0

FFT 57 (34) 7 60 0.5

Quicksort 90 (57) 44 100 4

Bubblesort 100 (73) 100 0 5

Treesort 75 (68) 50 3

Perm 100 (55) 16 0.9

Queens 79 (61) 20 3

Towers 79 (78) 39 100 2

Health 39 (39) 0 0 0

Em3d 79 (79) 1

Mst 83 (53) 79 0 5

Barnes-Hut 49 (39) 23

Tsp 64 (64) 0 0

Average 77 (64) 41 35 2.5

6.3 Discussion

The results indicate that our technique can achieve 75-

80% coverage for errors that propagate and cause the

program to crash. Full-duplication approaches can

provide 100% coverage if they perform comparisons

after each instruction. In practice, this is very expensive

and full-duplication approaches compare instructions

before store and branch instructions [4][14]. In this

optimized mode of execution, the coverage provided

by full-duplication is less than 100%. Studies that

describe these techniques do not quantify the detection

coverage in terms of error propagation, so a direct

comparison with our technique is not possible. Further,

the performance overhead of the technique is only 33

%, compared to full-duplication in software, which

incurs an overhead of 60-100% [4][14].

An important aspect of the technique is that it detects

just 2.5 % of benign errors in an application. In

contrast, full duplication techniques detect between 50-

60% of benign errors in the program [11].

7. Conclusions

This paper presented a technique to derive error

detectors for protecting an application from data errors.

The error detectors are derived automatically using

compiler-based static analysis from the backward

program slice of critical variables in the program. The

slice is optimized aggressively based on specific

control-paths in the application, to form a checking

expression. At runtime, the executed control path is

tracked using specialized hardware and the checking

expressions corresponding to the control-path are

invoked. The checking expression recomputes the

value of the critical variable and a mismatch between

the recomputed and original values indicates an error.

Acknowledgements

This work was supported in part by the U.S.

Department of Commerce under Grant SBAHQ-05-I-

0062, NSF grant CRI CNS 05-51665, Gigascale

Research Center (GSRC/Marco), Motorola

Corporation, and Intel Corporation.

References

[1] D. Evans, et al., LCLint: A tool for using specifications to

check code, In Proc. ACM Second Symp. on Foundations of

Software Engineering (FSE), 1994, pp. 87-96.

[2] M. D. Ernst, et al., Dynamically discovering likely

program invariants to support program evolution, In Proc. Intl. Conf.

on Software Engineering (ICSE), 1999, pp. 213-224.

[3] K.Pattabiraman, Z.Kalbarczyk, R.K. Iyer, Application-

based metrics for strategic placement of detectors, 11th

International Symposium on Pacific Rim Dependable

Computing(PRDC), 2005, pp. 95-102.

[4] N.S. Oh, P. P. Shirvani, E. J. McCluskey. Error detection

by duplicated instructions in super-scalar processors, IEEE

Transactions on Reliability, 2002, 51(1), pp. 63-75.

[5] N.S. Oh, S. Mitra, E.J. McCluskey, ED4I: Error

Detection by diverse data and duplicated instructions in super-scalar

processors, IEEE Transactions on Reliability, 2002, 51(1), pp. 180-

199.

[6] Mark Weiser, Program slicing, In 5th International

Conference on Software Engineering, 1981, pp. 439-449.

[7] C. Lattner and V. Adve. LLVM: A compilation

framework for lifelong program analysis & transformation. In Proc.

ACM Symp. on Code Generation and Optimization (CGO'04), 2004,

pp. 75.

[8] Jim Gray. Why do computers stop and what can be done

about it? In Proc. Fifth Symp. Reliability in Distributed Software

and Database Systems, 1986, pp. 3-12.

[9] R. Cytron, et al., Efficiently computing static single

assignment form and the control dependence graph, ACM Trans. on

Programming Languages and Systems 13(4), 1991, pp. 451-490.

[10] M. Carlisle, A. Rogers. Software caching and

computation migration in Olden, In 5th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PpoPP), 1995,

pp. 29-38.

[11] N. Nakka, K.Pattabiraman and R.K. Iyer, Processor

Level Selective Replication, to appear in Proc. Dependable Systems

and Networks (DSN), 2007.

[12] N. Nakka, et al., An architectural framework for

providing reliability and security support, Proc. Intl. Conference on

Dependable Systems and Networks (DSN), 2004, pp. 585.

[13] K. Pattabiraman and R.K. Iyer, Automated Derivation of

Application-aware Error Detectors using Compiler Analysis, UILU-

ENG-07-2203, Technical Report, Univ. of Illinois (Urbana-

Champaign), Jan. 2007.

[14] G. A. Reis, et al., SWIFT: Software Implemented Fault

Tolerance, In Proc. 3rd International Symposium on Code

Generation and Optimization(CGO), Washington, DC, 2005,

pp.243-254.

[15] S. Chandra, P. M. Chen. How fail-stop are faulty

programs? In Proc. 28th Symposium on Fault-Tolerant Computing

(FTCS), 1998, pp. 240.

