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Abstract 
This paper presents a technique to derive and 

implement error detectors to protect an application 

from data errors. The error detectors are derived 

automatically using compiler-based static analysis 

from the backward program slice of critical variables 

in the program. Critical variables are defined as those 

that are highly sensitive to errors, and deriving error 

detectors for these variables provides high coverage 

for errors in any data value used in the program. The 

error detectors take the form of checking expressions 

and are optimized for each control flow path followed 

at runtime. The derived detectors are implemented 

using a combination of hardware and software. 

Experiments show that the derived detectors incur low 

performance overheads while achieving high error-

detection coverage. 

1. Introduction 

This paper presents a methodology to derive error 

detectors for an application based on compiler (static) 

analysis. The derived detectors protect the application 

from data errors. A data error is defined as a 

divergence in the data values used in the application 

from an error-free run of the program. Data errors can 

result from incorrect computation and would not be 

caught by generic techniques such as ECC in memory. 

They can also arise due to software defects (bugs). 

In the past, static analysis [1] and dynamic analysis [2] 

approaches have been proposed to find bugs in 

programs. These approaches have proven effective in 

finding known kinds of errors prior to deployment of 

the application in an operational environment. 

However, studies have shown that the kinds of errors 

encountered by applications in operational settings are 

often subtle errors (such as timing and synchronization 

errors) [8], which are not caught by static and dynamic 

methods. Furthermore, programs upon encountering an 

error, may execute for billions of cycles before 

crashing (if they crash), during which time the error 

may propagate to permanent state [15]. In order to 

detect runtime errors, we need mechanisms that can 

provide high-coverage, low-latency (rapid) error 

detection to preempt uncontrolled system crash/hang 

and prevent error propagation that can lead to state 

corruption. 

Duplication has traditionally been used to provide 

high-coverage at runtime for software errors and 

hardware-errors. However, in order to prevent error-

propagation and preempt crashes, a comparison needs 

to be performed after every instruction, which in turn 

results in high performance overhead. Therefore, 

duplication approaches compare the results of 

replicated instructions at selected program points such 

as stores to memory [4] [14]. While this reduces the 

performance overhead of duplication, it sacrifices 

coverage as the program may crash before reaching the 

comparison point. Further, duplication-based 

techniques detect all errors that manifest in instructions 

and data. It has been found that less than 50% of these 

errors result in application failure (crash, hang or 

incorrect output) [11]. Therefore, more than 50% of the 

errors detected by duplication are wasteful from the 

application’s perspective. 

The main contribution of this paper is an approach to 

derive runtime error detectors based on application 

properties extracted using static analysis. The derived 

checks preempt crashes and provide high-coverage in 

detecting errors that result in application failures.  

The coverage of the derived detectors is evaluated 

using fault-injection experiments. The key findings are: 

 Derived detectors detect around 75% of errors that 

propagate and cause crashes. The percentage of 

benign errors detected is less than 3%. 

 The average performance overhead of the derived 

detectors across 14 benchmark applications is 

33%. 

2. Fault Model 

Hardware transient errors that results in corruption of 

architectural state are considered. Examples of such 

errors are: 

 Errors in Instruction Fetch and Decode: Either 

the wrong instruction is fetched, (OR) a correct 

instruction is decoded incorrectly resulting in data 

value corruption. 



 Errors in Execute and Memory Units: An ALU 

instruction is executed incorrectly inside a 

functional unit, (OR) the wrong memory address is 

computed for a load/store instruction, resulting in 

value corruption. 

 Errors in Cache/Memory/Register File Errors: 

A value in the cache, memory, or register file 

experiences a soft error that causes it to be 

incorrectly interpreted in the program (assuming 

that ECC is not used). 

Software transient errors such as buffer overflows 

(memory errors) and race conditions (timing errors), 

which can corrupt data values used in the program, are 

also considered.  

3. Approach 

This section presents an overview of the detector 

derivation approach. The approach is based on the 

technique of program slicing. 

3.1 Terms and Definitions 

Backward Program Slice of a variable at a program 

location is defined as the set of all program 

statements/instructions that can affect the value of the 

variable at that program location [6].  

Critical variable: A program variable that exhibits 

high sensitivity to random data errors in the application 

is a critical variable. Placing checks on critical 

variables achieves high detection coverage. 

Checking expression: A checking expression is a 

sequence of instructions that recomputes the critical 

variable, and is optimized aggressively and differently 

from the rest of the program code. The instruction 

sequence is computed from the backward slice of the 

critical variable for a specific control path in the 

program. 

3.2 Steps in Detector Derivation 

The main steps in the derivation of error detectors are 

as follows: 

3.2.1 Identification of critical variables. The critical 

variables are identified based on an analysis of the 

dynamic dependence graph of the program presented in 

[3]. This analysis is carried out on a per-function basis 

in the program i.e. each function in the program is 

considered separately for identification of critical 

variables. 

3.2.2 Computation of backward slice of critical 

variables. A backward traversal of the static 

dependence graph of the program is performed starting 

from the instruction that computes the value of the 

critical variable going back to the beginning of the 

function. The slice is specialized for each acyclic 

control path that reaches the computation of the critical 

variable from the top of the function. The slicing 

algorithm used is a static slicing technique that 

considers all possible dependences between 

instructions in the program regardless of program 

inputs.  

3.2.3 Check derivation, insertion, instrumentation. 

 Check derivation: The specialized backward slice 

for each control path is optimized considering only the 

instructions on the corresponding path, to form the 

checking expression. 

 Check insertion: The checking expression is 

inserted in the program immediately after the 

computation of the critical variable (check placement 

point). 

 Instrumentation: Program is instrumented to track 

control-paths followed at runtime so as to choose the 

checking expression for that specific control path. 

3.2.4. Runtime checking in hardware and software. 

The control path followed is tracked by the inserted 

instrumentation in hardware at runtime. The path-

specific inserted checks are executed at appropriate 

points in the execution depending on the runtime 

control path. The checks recompute the value of the 

critical variable for the runtime control path. The 

recomputed value is compared with the original value 

computed by the main program. In case of a mismatch, 

the original program is stopped and recovery is 

initiated.  

There are two sources of runtime overhead for the 

detector:  

(1) Path Tracking: The overhead of tracking paths is 

significant (4x) when done in software. Therefore, a 

prototype implementation of path tracking is performed 

in hardware. This hardware is integrated with the 

Reliability and Security Engine (RSE) [12]. RSE is a 

hardware framework that provides a plug-and-play 

environment for including modules that can perform a 

variety of checking and monitoring tasks in the 

processor’s data-path. The path-tracking hardware is 

implemented as a module in the RSE. Due to space 

constraints, the design of the path-tracking module is 

not presented in this paper but may be found in [13]. 

(2) Checking: In order to further reduce the 

performance overhead, the check execution itself can 

be moved to hardware. This would involve 

implementing expressions directly in the RSE and is a 

direction for future work. 

4. Detector Derivation 

The derivation of detectors is done by introducing a 

new pass into the LLVM compiler [7], called the Value 

Recomputation Pass (VRP). The VRP performs the 

backward slicing starting from the instruction that 



computes the value of the critical variable to the 

beginning of the function. It also performs check 

derivation, insertion and instrumentation. The output of 

the pass is provided as input to other optimization 

passes in LLVM. By extracting the path-specific 

backward slice and exposing it to other optimization 

passes in the compiler, the Value Recomputation pass 

enables aggressive compiler optimizations to be 

performed on the slice that would not be possible 

otherwise. 

  
void Bubble(int srtElements, int* sortList) { 

           int i, j,  top; 

          bInitarr( sortList, srtElements ); 

          top=srtelements; 

         while ( top>1 ) {//Outer-while-loop 

                 i=1; 

                while ( i<top ) {// Inner while-loop 

                          if ( sortlist[i] > sortlist[i+1] ) 

                         { 

                                     j = sortlist[i]; 

                                    sortlist[i] = sortlist[i+1]; 

                                    sortlist[i+1] = j; 

                         } // end-if 

                         i=i+1; 

                } // end-inner-while 

               top=top-1; 

        } // end-outer-while 

} 

 
loopentry:

…

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, then ], [tmp.i, endif ]

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayElement sortlist, tmp.i            

tmp.10 = load [ tmp.9 ]      

tmp.12 = add i.1, 1                  

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]           

tmp.15 = setgt tmp.10, tmp.14      

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]

br endif

endif: 
tmp.16 = setlt tmp.12, top         

br tmp.16, no_exit, loop_exit

loopexit:

….  
Figure 1: Bubble sort code fragment and 

intermediate code corresponding to inner loop 
 

Figure 1 shows the source and LLVM intermediate 

code (SSA form [9]) for the inner while loop of a 

bubble sort program. In SSA form, each variable 

(value) is defined exactly once in the program, and the 

definition is assigned a unique name [9], which makes 

it easy to identify dependences among instructions. 

In Figure 1, assume that the variable tmp.10 has been 

identified as a critical variable. The final outcome after 

running the VRP and optimization passes is shown in 

Figure 2 for the computation of the critical variable 

tmp.10. The backward slice of this variable consists of 

the instructions that compute the values of tmp.9, tmp.i, 

indvar.i. These instructions are specialized and 

optimized depending on the control path executed 

(path0 and path1). 

no_exit:.
indvar = phi  [0, loopentry], [tmp.i, then ], [tmp.i, endif ]   

old.tmp..i = tmp..i 

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayIndex sortlist, tmp.i             

tmp.10 = load [ tmp.9 ]      

pathVal = getState( ) 

br pathVal, path.0, path.1

path0:
new.0.tmp.9 = getArrayIndex sortList, 1

new.0.tmp.10 = load [ new.0.tmp.9 ]          

br Check

path1:
new.1.tmp.i = add old.tmp.i, 1         

new.1.tmp.9 = getArrayIndex sortlist, new.1.tmp.i        

new.1.tmp.10 = load [ new.1.tmp.9 ]     

br Check

Check:
new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, path1]

compare = seteq new.10, tmp.10

br compare, errorBlock, restBlock

restBlock:

tmp.12 = add int i.1, 1                  

tmp.13 = getArrayIndex sortlist, tmp.12             

tmp.14 = load tmp.13

tmp.15 = setgt tmp.10, tmp.14       

br bool tmp.15, label then, label endif

errorBlock:

call errFunc()

 
Figure 2: Transformations introduced by the 

VRP passes for the Bubble sort code fragment 

 

4.1 Algorithm 

The instruction that computes the critical variable is 

called the critical instruction. In order to derive the 

backward program slice, a backward traversal of the 

Static Dependence Graph (SDG) is performed starting 

from the critical instruction. The traversal continues 

until one of the following conditions is met, (1) The 

beginning of the current function is reached (only intra-

procedural slices are considered) or (2) A basic block 

that had been previously encountered in the backward 

traversal is revisited (loops are not recomputed) or (3) 

The critical instruction occurs in-between the producer 

instruction of the dependence and the consumer 

instruction of the dependence (only previous loop 

iterations are considered when traversing loop-carried 

dependences) or (4) A memory dependence is 

encountered. The rationale for each of these cases is 

presented below:  

 Intra-procedural Slices:  It is sufficient to 

consider intra-procedural slices in the backward 

traversal because each function is considered separately 



for the detector placement analysis. For example in 

Figure 1, the array sortList is passed in as an argument 

to the function from the main function. The slice does 

not include the computation of sortList in main. If 

sortList is a critical variable in the main function, then 

a check will be placed for the variable in the main 

function.  

 No recomputation of loops: During the backward 

traversal, if a dependence within a loop is encountered, 

the loop is not recomputed in the checking expression. 

Instead, the check is broken into two checks, one 

placed on the critical variable and one on the variable 

that affects the critical variable within the loop.  

 Only the previous loop iteration is considered in 

traversing loop carried dependences: When a loop-

carried-dependence across two or more iterations is 

encountered, the dependence is truncated and the loop 

dependence is not included in the slice. This is because 

duplicating across multiple loop iterations can involve 

loop unrolling or buffering intermediate values that are 

rewritten in the loop. Instead, the check is broken into 

two checks, one for the dependence-generating variable 

and one for the critical variable. 

 Memory Dependences not considered. While 

LLVM does not represent memory objects in SSA 

form, it promotes most memory objects to registers 

prior to running a pass (including the Value 

Recomputation pass). Since there is an unbounded 

number of virtual registers for storing variables in SSA 

form, the compiler is not constrained by the number of 

physical registers. 

The details of the Value Recomputation Pass are not 

presented due to space constraints and may be found in 

the technical report version of this paper [13]. 

4.2 Derived Checks 

The VRP creates two different instruction sequences to 

compute the value of the critical variable 

corresponding to the control paths in the code. The first 

control path corresponds to the control transfer from 

the basic block loopentry to the basic block no_exit in 

Figure 1. The optimized set of instructions 

corresponding to the first control path is encoded as a 

checking expression in the block path0 in Figure 2.  

The second control path corresponds to the control 

transfer from the basic block endif to the basic block 

no_exit in Figure 1. The optimized set of instructions 

corresponding to the first control path is encoded as a 

checking expression in the block path1 in Figure 2.  

The instructions in the basic blocks path0 and path1 

recompute the value of the critical variable tmp.10. 

These instruction sequences constitute the checking 

expressions for the critical variable tmp.10. The basic 

block Check in Figure 2(c) compares the value 

computed by the checking expressions to the value 

computed in the original program. A mismatch signals 

an error and the appropriate error handler is invoked in 

the basic block error. Otherwise, control is transferred 

to the basic block restBlock, which contains the 

instructions following the computation of tmp.10. 

5. Experimental Setup 

This section describes the mechanisms for 

measurement of performance and coverage provided by 

the proposed technique.  

5.1 Performance Measurements 

The technique is evaluated with 9 programs from the 

Stanford benchmark suite and 5 programs from the 

Olden benchmark suite [10] . All experiments are 

carried out on a single processor P4 machine with 1GB 

RAM and 2.0Ghz clock running on the Linux operating 

system. Since the path-tracking is done in hardware, the 

overhead of tracking paths is negligible. The main 

sources of performance overhead for the technique are: 

 Modification overhead: Performance overhead 

due to the extra code introduced by the VRP pass.  

 Checking overhead: Performance overhead of 

executing the instructions in each check to recompute 

the critical variable. 

5.2 Coverage Measurements 

Fault Injection. Faults are injected into the application 

code to measure the coverage of the proposed 

technique. The fault-injection methodology inserts calls 

to a special faultInject function (at compile-time) after 

the computation of each program variable in the 

original program, with the value of the variable passed 

as an argument to the faultInject function. At runtime, 

the call to the faultInject function corrupts the value of 

a single program variable by flipping a single bit in its 

value. The value into which the fault is injected is 

chosen at random from the entire set of dynamic values 

used in an error-free execution of the program. In order 

to ensure controllability, only a single fault is injected 

in each execution of the application. 

Error Detection. After a fault is injected, the 

following program outcomes are possible: (1) abnormal 

program termination (crash), (2) program continues 

and produces correct output (success), (3) program 

continues and produces incorrect output (fail-silent 

violation) or (4) program timeouts (hang).  

The injected fault may also cause one of the inserted 

detectors to detect the error and flag a violation. When 

a violation is flagged, the program is allowed to 

continue (although in reality it would be stopped) so 



that the final outcome of the program can be observed. 

The coverage of the detector is classified based on the 

observed outcome. For example, a detector is said to 

detect a crash if the detector upon encountering the 

error, flags a violation, and the program crashes. 

Error Propagation. Our goal is to measure the 

effectiveness of the detectors in detecting errors that 

propagate before causing the program to crash. For 

errors that do not propagate before the crash, the crash 

itself may be considered the detection mechanism. 

Hence, coverage provided by the derived detectors for 

non-propagated errors is not reported.  

In the experiments, error propagation is tracked by 

observing whether an instruction that uses the 

erroneous variable’s value (according to the static data 

dependence graph of the program) is executed after the 

fault has been injected. If the original value into which 

the error was injected is overwritten, the error 

propagation is no longer tracked. 

6. Results 

This section presents the performance and coverage 

results obtained from the experimental evaluation of 

the proposed technique. The results are reported for the 

case when 5 critical variables were chosen in each 

function by the detector placement analysis. 

6.1 Performance 

The performance results are shown in Figure 3. The 

main results are summarized below:  

 The average checking overhead introduced by the 

detectors is 25%, while the average code modification 

overhead is 8%. The total performance overhead is 

therefore 33%. 

 The worst-case overheads incurred are in the case 

of tsp, which has a total overhead of nearly 80%. This 

is because tsp is a compute-intensive program 

involving tight loops. Placing checks within a loop 

introduces extra branches, and therefore increases its 

overhead.  

6.2 Coverage 

The coverage results (reported in percentages) are 

reported in Table 1. For each application, 1000 faults 

are injected, one in each execution of the application. A 

blank entry in the table indicates that no faults of the 

type were manifested for the application. For example, 

no hangs were manifested for IntMM in our 

experiment. Only program crashes that exhibit error 

propagation are considered. The numbers within the 

braces in this column indicate the percentage of 

propagated, crash-causing errors that are detected 

before propagation. The results in Table 1 show that: 

 The derived detectors detect 77% of errors that 

propagate and crash the program. 64% of crash-causing 

errors that propagate are detected before first 

propagation. These correspond to 83% of the 

propagated crash-causing errors that are detected. 

 The derived detectors detect 41% of errors that 

result in fail-silent violations (incorrect outputs) and 

35% of errors that result in hangs. 

 The number of benign errors detected is 2.5% on 

average. These errors have no effect on the execution 

of the application. 

 The worst-case coverage for crashes (that exhibit 

error propagation) is obtained in the case of the Olden 

program health (39%). The health program is 

allocation-intensive, and spends a substantial fraction 

(over 50%) of its time in malloc calls. Our technique 

does not protect the return value of mallocs as 

duplicating malloc calls may change the semantics of 

the program. Further, the technique does not place 

detectors within the body of the malloc function, as it 

does not have access to the source-code of library 

functions. This is not an inherent limitation of our 

technique, and can be overcome by placing detectors 

inside library functions (by the library developer). 

Performance overheads with 5 critical variables per function
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Figure 3: Performance overhead of executing checks in software (5 critical variables per function)



Table 1: Error-detection coverage of detectors 

Apps 
Propagated 
Crashes (%) 

FSV 
(%) 

Hang 
(%) 

Success 
(%) 

IntMM 100 (97) 100  9 

RealMM 100 (98)   0 

FFT 57 (34) 7 60 0.5 

Quicksort 90 (57) 44 100 4 

Bubblesort 100 (73) 100 0 5 

Treesort 75 (68) 50  3 

Perm 100 (55) 16  0.9 

Queens 79 (61) 20  3 

Towers 79 (78) 39 100 2 

Health 39 (39) 0 0 0 

Em3d 79 (79)   1 

Mst 83 (53) 79 0 5 

Barnes-Hut 49 (39)  23  

Tsp 64 (64)  0 0 

Average 77 (64) 41 35 2.5 

6.3 Discussion 

The results indicate that our technique can achieve 75-

80% coverage for errors that propagate and cause the 

program to crash. Full-duplication approaches can 

provide 100% coverage if they perform comparisons 

after each instruction. In practice, this is very expensive 

and full-duplication approaches compare instructions 

before store and branch instructions [4][14]. In this 

optimized mode of execution, the coverage provided 

by full-duplication is less than 100%. Studies that 

describe these techniques do not quantify the detection 

coverage in terms of error propagation, so a direct 

comparison with our technique is not possible. Further, 

the performance overhead of the technique is only 33 

%, compared to full-duplication in software, which 

incurs an overhead of 60-100% [4][14].  

An important aspect of the technique is that it detects 

just 2.5 % of benign errors in an application. In 

contrast, full duplication techniques detect between 50-

60% of benign errors in the program [11]. 

7. Conclusions 

This paper presented a technique to derive error 

detectors for protecting an application from data errors. 

The error detectors are derived automatically using 

compiler-based static analysis from the backward 

program slice of critical variables in the program. The 

slice is optimized aggressively based on specific 

control-paths in the application, to form a checking 

expression. At runtime, the executed control path is 

tracked using specialized hardware and the checking 

expressions corresponding to the control-path are 

invoked. The checking expression recomputes the 

value of the critical variable and a mismatch between 

the recomputed and original values indicates an error.  
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