
A Security Assessment of Trusted Platform

Modules

Computer Science Technical Report

TR2007-597

Evan R. Sparks

Evan.R.Sparks.07@Alum.Dartmouth.ORG

Senior Honors Thesis

http://www.cs.dartmouth.edu/∼pkilab/sparks/

Department of Computer Science

Dartmouth College

Advisor: Dr. Sean W. Smith

June 28, 2007

1

Contents

1 Introduction 4

2 Motivation 6

3 Background 7
3.1 The TCG Architecture . 7

3.2 Trusted Platform Modules . 7

3.3 The Low Pin Count Bus . 9

4 Experimental setup 9
4.1 Software attack . 10

4.2 Reset attack . 10

4.3 Timing attack . 11

5 Discussion of attacks 11
5.1 Software attack . 12

5.2 Reset attack . 16

5.3 Timing attack . 19

6 Countermeasures 21
6.1 Software defenses . 21

6.2 Reset defenses . 22

6.3 Timing defenses . 23

7 Future Work 23
7.1 Software . 23

7.2 Hardware . 25

7.3 Power . 25

2

8 Conclusions 26

9 Acknowledgments 27

3

Abstract

Trusted Platform Modules (TPMs) are becoming ubiquitous devices in-

cluded in newly released personal computers. Broadly speaking, the aim

of this technology is to provide a facility for authenticating the platform on

which they are running: they are able to measure attest to the authentic-

ity of a hardware and software configuration. Designed to be cheap, com-

modity devices which motherboard and processor vendors can include in

their products with minimal marginal cost, these devices have a good the-

oretical design. Unfortunately, there exist several practical constraints on

the effectiveness of TPMs and the architectures which employ them which

leave them open to attack. We demonstrate some hardware and software at-

tacks against these devices and architectures. These attacks include Time of

Check/Time of Use attacks on the Integrity Measurment Architecture, and a

bus attack against the Low Pin Count bus. Further we explore the possibility

of side-channel attacks against TPMs.

1 Introduction

The term ”Trusted Platform Module” refers to a specification (and implementation

of that specification) of a microcontroller which has been designed by the TPM

Work Group, a part of the Trusted Computing Group (TCG). The primary purpose

of a TPM is to provide low-volume public key cryptographic services to a machine

using a private key stored on the TPM itself and to store credentials only to be used

when the system is in some specific configuration. Using the TPM in conjunction

with a trusted system BIOS, computers equipped with a TPM can boot into a

trusted operating system, and can verify the configuration of software which is

running on them to third parties.

One requirement of Trusted Platform Modules during development of the

4

TPM spec was that they be producible at a low cost. This restriction led to a

low requirements for hardware security. While the chip itself is required to be

FIPS 140-2 compliant, this protection does not cover all possible attack vectors

against it (particularly for the lower ”levels” of the FIPS 140-2 standard).

The process by which third parties can verify software configurations remotely

is known as “Remote Attestation”. This process allows the TPM to measure and

sign the authenticity of a program at load time. This signature can be part of a

challenge-response protocol with a third party, so that they can be sure that the

program that is running is the one which they expect. Unfortunately, on modern

computers, measuring a program at load time is not sufficient to verify its authen-

ticity. If an attacker can modify a program after it has been measured, then he can

run it in whatever configuration he prefers, unbeknownst to the third party.

In this paper, we will explore a number of new attacks against TPM’s both in

terms of hardware and software. On the software side, we will exploit the ability

of modern operating systems to modify arbitrary regions of memory at any time

in order to change a running program after it has loaded. We modify the behavior

of the program such that it does the opposite of what a third party would want it

to do, without the detection of the TPM or the third party.

On the hardware front, we explore two kinds of attack. First, we look at “fak-

ing” the trusted boot process in such a way that a TPM is taken into a state where

it should not be, given the machine’s hardware and software configuration. This

completely circumvents the remote trust concept, since the TPM no longer has

any reliable information on the platform. Second, we explore the feasibility of

side-channel attacks on the TPM’s cryptographic system.

Related Work Kursawe, et. al [8] look at a number of passive attacks against

TPMs by monitoring signals across the bus that the TPM resides on in their test

5

machine. They also hint at the possibility of more active attacks such as the ones

we will demonstrate in this paper. Part way through our independent work on

the reset attack, Bernhard Kauer [2] demonstrated TPM Reset Attacks and pro-

posed a countermeasure; his work has been accepted into USENIX Security 2007.

Sadeghi, et. al [12] also discuss testing TPMs for specification compliance. Be-

fore TPMs came into existence, researchers at the IBM corporation (including my

adviser) created the IBM-4758, a FIPS 140-1 level 4 system designed to be a se-

cure cryptographic coprocessor and key store, which provided many of the same

features as a TPM. [6] This device offers a number of physical security features

that TPMs lack. These features (among others) make the device rather expen-

sive, and as such it is not a suitable substitute for a TPM in most use cases. Paul

Kocher [10] invented (in the public world) and demonstrated the first side-channel

attacks on RSA, which relied on timing. He also invented differential power anal-

ysis attacks against RSA engines [9]. David Brumley and Dan Boneh [3] have

demonstrated a timing attack against an implementation of RSA which employs

the Chinese Remainder Theorem (CRT) and Montgomery Reductions.

2 Motivation

The mission statement of the TCG reads “Through the collaboration of platform,

software, and technology vendors develop a specification that delivers an en-

hanced HW and OS based trusted computing platform that enhances customers’

trusted domains.” [15] There are a variety of usage situations for this architecture,

including risk management, asset management, e-commerce, digital rights man-

agement, and security monitoring and response, among others. It is vital that if

we are to trust the architecture to enhance the security of these situations, that we

understand how the architecture works, and where it might fail.

6

The aim of this research is to show that people need to be careful when decid-

ing to adopt the TCG architecture in their particular usage situation, and to reiter-

ate that there is no such thing as a security solution that works perfectly. We seek

to highlight a number of problems with the TCG architecture and in specific TPM

implementations. It is important that adopters of the TCG architecture understand

and weigh these risks when making the decision to adopt the architecture.

3 Background

In this section we provide background information to the reader about the inner

workings of certain aspects of the TCG architecture and TPMs. While not ex-

haustive, this section will help the reader be familiar with a number of terms and

concepts used throughout the paper.

3.1 The TCG Architecture

The TCG architecture is a proposed standard created by the TCG to enhance en-

able the creation of a trusted computing platform. Its main features enable Secure

I/O, memory curtaining, sealed storage, and remote attestation. [11] The reliabil-

ity of these features all rest on a single piece of hardware, known as a Trusted

Platform Module. The TPM and the platform’s BIOS make up the core root of

trust for the platform. That is, if one of these systems is compromised, then the

entire system fails.

3.2 Trusted Platform Modules

Trusted Platform Modules, as mentioned before, are the basis for the TCG archi-

tecture. They provide a number of key features, including non-bulk RSA encryp-

7

tion and decryption, secure storage of private and master keys (and other creden-

tials), integrity measurement (through the use of Platform Configuration Registers

(PCRs)), and pseudo random number generation. We focus on the integrity mea-

surement features of TPMs and their ability to securely store private keys.

The Endorsement Key is the critical piece of information stored on the TPM

which keeps this system secure. An endorsement key is a private key which the

TPM uses to generate all other keys that it sends to other parts of the platform.

All keys created are bound to a specific endorsement key. They reside in key

blobs which can only be decrypted with the endorsement (or the key which cre-

ated them). It is a requirement of the TPM specification that this Endorsement

Key be protected and never be exposed to external reading. [14] This key is used

in the generation of the Attestation Identity Key (AIK) which is used in remote

attestation. The AIK cannot be used by the TPM unless the platform owner pro-

vides the TPM with a 160-bit AIK authentication value. Further, keys may not

be loaded by the TPM unless the key which created them (their parent key) has

also been loaded, and users can provide the proper authentication credentials to

use them.

Platform Configuration Registers are a vital component of TPMs. They are

a set of volatile registers which support only the extend operation. When the

TPM is initialized, the PCRs are originally set to a null value. When the system

is measured, the TPM takes a SHA-1 hash of the data that is reported to it, and

extends a particular PCR with that value. It does this by concatenating the old

value of the PCR with the newly reported value, and taking a SHA-1 of the result.

By this process, only a particular sequence of measurements with the same results

will leave a particular PCR in the same state. PCRs are useful because they are

non-volatile, non-writable by anyone but the TPM, and because of properties of

8

SHA-1, difficult to coerce into a desired state, except by having everything on the

platform be the same. A third party can keep a database of ‘acceptable states’,

which will simply be a copy of the PCR values and the public key of a particular

platform. Only if that platform can sign those values (and a random challenge),

will the third party believe that the platform really is who it says it is.

3.3 The Low Pin Count Bus

Most TPMs deployed today are microcontrollers that sit on the Low Pin Count

(LPC) bus. Designed as a replacement for ISA, the LPC bus is a common fixture

on modern motherboards. [7] As a result, on most modern Intel-based computers,

the most common devices found on the LPC bus are the BIOS and legacy input

and output devices (via SuperI/O). The reasons behind putting the TPM on the

LPC bus are threefold. First, the TPM needs to be logically close to the BIOS. By

locating the TPM on the same bus as the BIOS, it is easier to measure the BIOS

directly, rather than having to go through the CPU or other equipment. Second,

this bus is easy to write software for, since from a software level it looks just like

an ISA bus. Third, at 33MHz this bus is sufficiently fast for relaying results of

low volume cryptographic operations back to the system in a reasonable amount

of time.

4 Experimental setup

In this section, we will discuss the experimental setup of some new attacks on

TPMs and the architectures which employ them. Our reset attack is a replication

of the attack which was performed by Bernhard Kauer; we were scooped. [2]

9

4.1 Software attack

We run our software attack on an IBM NetVista PC, equipped with a Atmel TPM

v1.1b. This attack has also been shown to run on more recent PCs equipped with

STMicro v1.2 TPMs. The PC is running Linux v2.6.15.6 with the TPM device

driver statically compiled into the kernel. It uses Trusted GRUB (a secure boot-

loader) to undergo a trusted boot process at boot time. We make the assumption

that a user with root access has the ability to insert a loadable kernel module

(LKM) with insmod. Even if this assumption cannot be met, any vulnerability

in the Linux kernel which allows a (root or non-root) user to run arbitrary code

in kernel mode will allow the attack to take place. These types of vulnerabili-

ties have occurred in the Linux kernel frequently. [1] Critics of this attack will

make the claim that a truly TCG compliant system will only allow trusted kernel

modules to be inserted, and will only run a trusted kernel. However, “trusted”

does not mean “trustworthy.” Commodity operating systems have a long history

of not being trustworthy, even if users choose to trust them. In reality loading

only “trusted” modules would severely limit the operating power and usability of

the system. Also, given a vulnerability like this, the system will not detect the

rogue code running. Further, given the size and complexity of modern operating

systems, deciding whether or not to fully trust a particular version of an operating

system is difficult.

4.2 Reset attack

We use a similar IBM NetVista PC as used in the software attack for our re-

set attack. The motherboard in this machine has support for a TPM “module”

daughter-board. There is a 28-pin header on the board which attaches a small

TPM board to the motherboard. This makes considerable design sense for IBM,

10

since the TPM specification is constantly changing and the ability to easily swap

an old version TPM out of the motherboard in exchange for a new one is a reality

of the industry. Fortunately for us, this design also allows us to both monitor the

LPC bus and interpose the TPM with relative ease. To drive the reset, we use 3-

inches of insulated 30-gage wire, as well as some ribbon cable to make the TPM

easier to access physically.

We use an Agilent 16803A Logic Analyzer to monitor signals across the LPC

bus on both of these boards. This device will eventually allow us to “record” a

trusted boot process.

4.3 Timing attack

In our timing attack against TPMs, we use the Boneh and Bromley [3] variant of

RSA Timing Analysis attack against the RSA engine in an STMicro v1.2 TPM.

The data sheet of this chip [13] tells us that the RSA engine uses CRT to do

RSA quickly. We run this attack on an Intel Core2 Duo equipped Dell PC running

OpenSolaris, due to the high-resolution timing features that Solaris supports. This

PC contains a STMicro v1.2 TPM.

5 Discussion of attacks

In this section, we discuss and analyze some specific attacks on TPMs and the

TCG architecture. Namely, we examine the exploitation of a Time of Check/Time

of Use (TOCTOU) vulnerability in the Remote Attestation model of the TCG

architecture. We then explore malicious bus attacks on an Atmel v1.1b TPM

sitting on an LPC bus. Finally, we look at the susceptibility of these TPMs to

timing analysis attacks.

11

Figure 1: IMA Remote Attestation

5.1 Software attack

One key facility that TPMs provide is the ability for the TPM to attest to the

configuration of a piece of software to a third party. The TPM measures that

configuration of the software at load time, signs this configuration (using a key

derived from its secret key). Then the user passes this configuration on to a third

party which presumably uses this configuration information to decide whether or

not to allow the measured platform to run a piece of software or join a network

session.

The issue here is that there is no mechanism for an attestation requester to

make sure that things haven’t changed since the TPM last measured. Current

attestation setups call for a combination of secure boot, followed by post-boot

measurements at the application level. A current and popular attestation scheme

for Linux is called Integrity Measurement Architecture (IMA), developed by IBM.

Figure 1 illustrates this process. A trusted platform must be able to verify that it

12

has loaded proper software by having appropriate values in its Platform Configu-

ration Registers (PCRs). A challenging service provider will only supply services

to the platform if it can prove that it has the proper software loaded.

IMA employs use of an “mmap file hook”, as well as a “load module hook”

to measure files before they are mapped into memory and to measure modules

before they are integrated into the kernel, respectively. [4]

Notice that a key component of this system is that if measures a binary at

load time. If a binary changes after it has been loaded, the configuration of the

system will not match the attested configuration. In the traditional model, this is

not a problem because the memory that makes up a binary’s .text segment is

mapped as read-only in the operating system’s page table. With IMA, the .text

segment will be measured before the program is loaded into RAM. This means

that if a program can change this segment of RAM after it has been loaded, that

its behavior can be modified, even though the measurement in the TPM shows

that the program is in its original state.

The page table is the data structure which the kernel uses to map virtual ad-

dresses to pages in physical RAM. In Linux, this structure also contains informa-

tion on the permissions that a process has to read or modify the particular segment

of RAM. Each process has its own page table. As such, these need to be efficient

(both in terms of time and space) data structures. The current model in use in

Linux systems is illustrated in Figure 2. In this 4-level model, a virtual address is

first looked up in the Page Global Directory, which gives an entry in the Page Mid-

dle Directory, which then points to a specific Page Table Entry, which contains a

pointer to a physical location in RAM.

When a program needs access to a virtual address, the kernel needs to look

it up in the page table to see which physical page needs to be read or written to.

If this address is paged out, it will need to swap it back in, in order to give the

13

Figure 2: Linux 4-level Page Table

program the ability to read or write to that data. It does this by traversing the

tree shown above, and seeing the properties that are stored in the rest of the data

structure. If, for instance, a program tries to write to an address on a page that is

not listed as writeable, the kernel will raise a page fault.

Our attack consists of a kernel module which takes 3 parameters: a target

process ID, a target virtual address, and some data to write at that address. In

order to show that simply monitoring a process’s page tables is not a sufficient

defense against this attack, our module will not modify the target process’s data

structures at all, but will modify those of insmod, the program which puts it into

the kernel. Equivalently, the module could modify any other process’s page table,

and the attack would still work. The attack will simply copy the page table entry

that maps to the corresponding target virtual address into the kernel’s page table

at an arbitrary address. The page table entry contains both the permissions and

status associated with that page, as well as that page’s virtual address. After this

entry is copied into the kernel’s page table, we modify the entry and mark it as

14

Figure 3: Page Table Before Attack

Figure 4: Page Table After Attack

writable. Then, we will write data supplied by the user of the kernel module to

the corresponding page in physical memory. By doing this, we are modifying the

.text segment of the program, and will change the way the program executes

when it gets to an instruction in the modified address range. Figures 3 and 4

illustrate this attack.

We have constructed a small example login program to demonstrate this at-

tack. The program takes in a password, and if the password matches the hard-

coded password in the program, we execute a shell; otherwise, we quit. After

disassembling this program with gdb, it is determined that it suffices to change a

je opcode to a jne opcode in the .text segment, to reverse the decision whether

to execute this shell. Instead of running a shell upon receipt of an appropriate

username and password pair, the program will exit. Further, upon receipt of an

invalid password, the system will execute a shell.

15

On x86 architectures, the change between a je and a jne opcode is a differ-

ence of one bit. The hexadecimal representation of je is 0x74, while it is 0x75

for jne. After we have loaded and measured our login program, we insert our

module, feeding it the virtual address of the je instruction in the running login

program, as well, the process ID of the login program, and an overwrite value of

0x75. The module remaps the page table entry of the kernel to have one entry

point to the target page, and writes 0x75 to the target physical address. When the

program runs, the wrong instruction executes when we enter in a bad password,

and we are given a shell. When the module is unloaded, everything is restored

to its original state, and it looks to the outside world (and the TPM) like nothing

has changed. Future measurements will not pick up on the fact that the program

changed.

We use a “toy” example in our demonstration for the purposes of clarity, how-

ever this technique can be applied quite easily to any program. This attack shows

that if a user has means to modify arbitrary regions of memory, they can render

the measurements of the TPM useless, unless the TPM keeps continuous mea-

surements of the loaded program’s memory.

5.2 Reset attack

Figure 5 contains a diagram of how a trusted boot process takes place in the TCG

architecture. Trusted boot is a key process in the architecture, and by compromis-

ing this process, we are able to compromise the entire TCG platform. Below is a

diagram of how the trusted boot process occurs, once the TPM has been correctly

initialized by the BIOS.

First, the BIOS feeds the TPM its own measurements, the TPM will then ex-

tend these measurement values in its PCRs. The TPM and BIOS then measure

the boot loader, which reports back its measurement, and if that matches what the

16

Figure 5: Trusted Boot Process

BIOS expects, it is allowed to load. The boot loader will then measure the OS and

feed the measurements into the TPM, and only allow it to load if its measurements

match what the boot loader expects. Each stage up the process is similar, and it

is easy to see how we build a chain of trust where we finally have a trusted OS

loaded. Applications built on top of this platform can then “know” that the system

has followed this process by making sure the PCRs contain the correct values. If

we assume that SHA-1 is a preimage resistant hash function, and that the PCRs

cannot be easily reset, then we cannot fake this process.

However, if the TPM receives a hardware reset, independent of the rest of the

system actually restarting, it will think that the system has been restarted, and

will return to its uninitialized, inoperable state, before the BIOS first communi-

cates with the TPM. That is, the PCR values will be reset, and we will be able

to initialize the TPM using a malicious device driver. This process is shown in

Figure 6.

In order to drive the hardware reset, we temporarily connect the LRESET line

17

Figure 6: TPM Initialization/Reset Behavior

of the LPC bus to the GROUND line using a short piece of wire. This has the

effect of resetting every device on the LPC bus, including the TPM. The TPM

will then automatically execute the TPM Init instruction and be initialized. If an

attacker wanted to avoid resetting his or her keyboard and other devices on the

bus, they could physically isolate the LRESET line which feeds into the TPM and

only send the TPM a reset signal.

Once the TPM has been initialized, we must feed it a TPM Startup(ST CLEAR)

command. We do this using a modified TPM device driver. Since there is no local-

ity check in place for the TPM Startup() command, we can execute this operation.

We can then perform whatever TPM Extend()’s are necessary to get its PCRs into

the “trusted” state. The measurements required to do this could be recorded using

a logic analyzer as shown by Kursawe et. al [8]. It may also be possible to figure

out what these values would be by reverse engineering the BIOS and mimicking

the way it takes measurements of the system to determine which measurements

should be fed to the TPM.

18

Our aim here would be to record a trusted boot process of a particular system

with a particular TPM. This “recording” will actually be a copy of the measure-

ments reported to the TPM by the system during the boot process. With this

recording in hand, our next step is to change the platform. To demonstrate the

power of this attack, we could swap out the trusted hard drive of the machine,

and swap in another hard drive running a different operating system. When the

system reboots, the TPM will measure it, and it will be different from the trusted

platform. Thus, the TPM will not be willing to disclose any attestation keys that

are bound to that platform. The next step of our attack is to send the TPM a ‘reset’

signal, convincing it that the system is being restarted, and needs to be measured

again. We will then feed the previously recorded measurements of the trusted

system. When this process is finished, the TPM be in the same state that it was

after the trusted platform was booted, but will actually be running in an untrusted

configuration. With the TPM in this state, we will be able to get it to perform

whatever operations we wish that are bound to the trusted platform.

We have demonstrated the possibility of issuing the TPM a reset command,

and getting it into a state where it will extend arbitrary measurements into its

newly reset PCRs. Kursawe et. al have demonstrated the possibility of recording

the trusted boot process. By combining these two experiments, it is trivial to see

that this attack is possible.

5.3 Timing attack

In order to pull off Kocher’s timing attack, we need to be able to take high resolu-

tion timing samples of how long it takes for a TPM operation to complete while it

is executing a cryptographic operation which uses a private key.

This attack is based on Brumley and Boneh’s [3] attack against a version of

OpenSSL which employed the CRT to perform the RSA decryption operation.

19

We chose this method because according to the spec sheet of the TPM we used,

the TPM employs CRT for RSA decryption. [13] By performing a “TPM Seal”

operation on a series of specially crafted input strings, we are able to measure

differences in the amount of time it takes to complete each operation (regardless of

whether the operation fails), we should be able to iterate through and successfully

“guess” each bit of the key.

Unfortunately, successful completion of this attack requires approximately

2100 timing samples per bit, and since each timing sample takes approximately

0.8 seconds to complete, this attack will take close to 40 days to complete, a time

frame which is out of the scope of this paper.

However, this attack should be theoretically possible since we can see that

RSA operations on different inputs take variable amounts of time. In order to see

this, we first crafted two inputs, which, according to Brumley and Boneh’s attack

should yield different average execution times for a TPM Unseal operation. We

then ran the operation on each input approximately 2400 times, measuring the

execution time for each. The distributions of these two groups of samples are ap-

proximately normal. After removing outliers, a T-Test was then run against the

two distributions to ensure that the difference between their means is statistically

significant. The resulting p-value of 0.03 indicates that we can reject the null

hypothesis that these two distributions are the same. This indicates that timing at-

tacks should be possible against TPMs. We also observed that RSA operations on

the same inputs take the same amount of time using a similar method, indicating

that RSA blinding is not happening.

20

6 Countermeasures

In this section, we discuss a variety of countermeasures which may help prevent

the attacks described above, and enhance the overall security of the TCG archi-

tecture.

6.1 Software defenses

The core problem with the Remote Attestation model is that if memory is changed

after it is measured, an attacker can run untrusted code. One possible solution

here is to build a system in which the attacker cannot change memory after it is

measured. In the real world, however, this is a difficult proposition. A computer

has to be able to read and write its memory in order to function, and it is difficult

to enforce this policy. Secure page tables may be an appropriate solution to the

system above, but they do not protect against every possible avenue of attack. In

versions of the Linux kernel prior to 2.6.5, a root user could write to arbitrary

segments of the /dev/mem character device, which is a device which contains the

system’s physical memory. Overwriting memory at the right location is equivalent

to the attack demonstrated above, but requires no modification of page tables.

Instead of trying to restrict the usability of a platform to users and platform

owners by prohibiting modification of system memory or page tables, the system

should simply monitor the state of memory of the application it is attesting to. If

some protected memory of a particular program changes, the system will notice

this and incorporate the change into its measurements. Optionally, the system

could actively report such a change to the operating system or the challenging

service provider.

Nihal D’Cunha has proposed such a system which employs use of the Xen

hypervisor system to monitor the status of a particular program’s memory. [5] If a

21

protected segment of memory is modified, the system detects it, and the relevent

PCRs are updated. Thus, the change is reflected in the system, and cannot easily

be hidden.

6.2 Reset defenses

The TPM is vulnerable to a reset attack because of the assumption that the TPM’s

PCRs cannot be easily reset without resetting the entire system. The other crucial

assumption is that only the BIOS will be initially feeding measurements to the

TPM. Both assumptions are erroneous. With physical access to the LPC bus, it is

trivial to drive a reset across just that bus, and not the entire system. Further, if

one can isolate the TPM on that bus, it is also trivial to send just the TPM the reset

signal.

Bernhard Kauer has also produced OSLO, a secure bootloader which employs

AMD’s sk init command to bring the PCRs into a special state. This works

because the processor transmits a special signal to the TPM along with its mea-

surements which indicates that it is in secure initialization mode. While this is

hard to fake from the operating system level, an attacker who could inject arbi-

trary signals onto the LPC bus could easily fake this command as well, defeating

this defense. We have prototyped a board to allow this, but time ran out before we

could finish debugging it.

If the TPM is integrated on die with the microprocessor or the BIOS, it will be

much more difficult to physically access the lines leading in and out of the chip. It

seems to make most sense to join it with the BIOS, since the BIOS and TPM are

inextricably linked as the“Core Root of Trust” in the TCG architecture. To address

the problem in systems which already exist, good locks on cases and epoxy over

anywhere where lines to the LPC bus are exposed will help minimize the threat of

physical attack against the LPC bus. Additionally, if the TPM and BIOS can have

22

an encrypted communication session such that the TPM can positively identify

that it is only speaking with the BIOS, then it would be trivial to enforce that

only the BIOS can issue a TPM Startup command and feed the TPM its first

measurements. Currently, this ability does not exist in the TPM specification.

6.3 Timing defenses

In order to appropriately defend against timing attacks, TPM vendors should ei-

ther employ RSA blinding [10] in their implementations, or employ a modular

arithmetic core which executes modular exponentiation in constant time. Alter-

natively, TPMs could return results of all private key operations in constant time.

These countermeasures would not defend against other kinds of side-channel at-

tacks, such as differential power analysis. However, it remains to be seen whether

TPMs are susceptible to such attacks.

7 Future Work

This research leaves the door open for future researchers to continue to explore a

number of attacks and defenses on TPMs and the TCG architecture. We mention

a number of potential avenues for research in this section.

7.1 Software

In our software attack, we only discussed attacks against the Linux operating sys-

tem equipped with a TPM. Similar (and in fact, easier) attacks exist against the

Windows operating system, since writing to the PhysicalMemory device is pos-

sible for device drivers. This attack is the same as the attack against /dev/mem

described above.

23

Figure 7: Another Proposed Page Table Attack

Another possible attack against the Linux page table system would work slightly

differently from the one mentioned above. Instead of updating the value stored in

physical memory at the same location that the process points to, we instead up-

date the process’s page table to point to a different page of physical memory that

our kernel module has already written to. An illustration of the after-effect this

attack can be seen in Figure 7. This attack would not be caught by the monitoring

system described above, because the memory at the original physical location has

not been modified. Only the process’s page table has been updated. A mechanism

to monitor that a process’s page table has not been updated would be necessary to

protect against this type of attack. Nihal D’Cunha has also suggested this defense

and implemented a solution based on the XEN hypervisor system. This solution

combined with the one mentioned above would protect against all types of page

table based TOCTOU attacks on TPMs.

Future researchers might also explore different means of modifying memory

after it has been measured. A hardware switch which swaps out one stick of

DRAM for another while the computer is running might be a feasible attack. Us-

ing DMA to circumvent the control that the operating system has over system

memory after that memory has been measured is also a possibility.

24

7.2 Hardware

Bernhard Kauer proposes a solution to reset attacks based on locality on LPC

bus traffic. However, none of the LPC bus traffic is encrypted or authenticated.

Thus, anyone with access to the bus could build a device which feeds data with

the appropriate locality to the TPM. An FPGA equipped with an LPC interface

would be sufficient for such an attack.

Future researchers may also want to look at a less expensive and more simple

way of recording the trusted boot process. If it is possible to do this step with

cheap, consumer level hardware, the door is open to just about anyone to attack

these systems, not just those individuals with access to a logic analyzer. It may

also be a good idea to look at other implementations of TPMs other than just

those designed by STMicro. We chose STMicro for the purposes of this paper not

because we thought their implementation was bad, but rather because they appear

to be the largest TPM manufacturer for consumer-grade products.

7.3 Power

Another avenue of exploration would be the feasibility of performing Paul Kocher’s

Differential Power Analysis attack against a TPM. In our lab, we have an Agilent

Infiniium series oscilloscope. This device, combined with a 5-ohm resistor on the

power line leading to the chip could measure the changes in current in the chip.

This power line could then be connected to a stable external DC power supply

(Agilent model E3631A), which will provide a steady 3.3V of power, as opposed

to a more noisy traditional PC power supply. This experimental would allow for

accurate measurement of power usage by the TPM during cryptographic opera-

tions.

25

8 Conclusions

We have demonstrated a number of attacks on current TPM implementations and

the architectures which employ them. Specifically, we have shown that because

the TPM does not monitor running processes after it has measured them, the IMA

architecture is broken. We have also reproduced the TPM Reset() attack originally

carried out by Bernhard Kauer and shown that it poses a threat to the system. We

have also demonstrated that RSA timing attacks against TPMs should be possible.

The ability to securely authenticate a system, rather than a user of that system,

is a necessity for the future of computing in an interconnected world. Rootkits,

virtualization, and many realities of modern computing make it difficult to au-

thenticate a platform from the application level going down to the hardware. It is

necessary to have some kind of hardware that can authenticate the configuration

of a particular platform. TPMs and the TCG architecture provide a good starting

point for this.

While no perfect solution to this problem exists, there are a number of solu-

tions out there that can improve the security of a system. The TCG architecture

combined with TPMs is just one such proposed solution. Unfortunately, there are

a number of vulnerabilities in this system which allow an attacker to circumvent

the protection that the it provides. Going forward, it is important that those con-

sidering platform deployment and those designing the TCG specification keep in

mind reasonable hardware protection systems. Specification designers should also

remember that if all it takes is a single software bug to compromise the entire sys-

tem, then perhaps a design more resilient to partial failure should be considered.

26

9 Acknowledgments

This research was sponsored in part by the National Cyber Security Division of

the Department of Homeland Security (under Grant Award Number 2006-CS-

001-000001) and by the National Science Foundation (under grant award CNS-

0524695). The views and conclusions do not necessarily represent the sponsors.

I would like to thank Sean Smith, Ted Cooley, and Steve Weingart for their

help with this research project. I would also like to thank lab mates Nihal D’Cunha,

John Baek, and Patrick Tsang for providing some key insights into understanding

the systems I explored. Finally, I would like to thank my family and friends for

their continued support throughout the years which no doubt made this thesis pos-

sible.

27

References

[1] Google Search For: Linux Kernel Vulnerabilities.

[2] Bernhard Kauer. OSLO: Improving the security of Trusted Computing.

Technical report, Technische Universitt Dresden, Department of Computer

Science, 2007.

[3] D. Boneh and D. Brumley. Remote Timing Attacks are Practical. In Pro-

ceedings of the 12th USENIX Security Symposium, 2003.

[4] David Safford, Mimi Zohar, Alan Boulanger. Trusted Computing For Linux.

Slideshow Presentation.

[5] Nihal A. D’Cunha. Exploring the Integration of Memory Management and

Trusted Computing. Technical Report TR2007-594, Dartmouth College,

Computer Science, Hanover, NH, May 2007.

[6] Dyer, J.G.; Lindemann, M.; Perez, R.; Sailer, R.; van Doorn, L.; Smith, S.W.

Building the IBM 4758 Secure Coprocessor. Computer, 34:57–66, 2001.

[7] Intel Corporation. Intel Low Pin Count Interface Specification. Technical

report, Intel Corporation, 2002.

[8] Klaus Kursawe; Dries Schellekens; and Bart Preneel. Analyzing trusted

platform communication. In CRASH Workshop: CRyptographic Advances

in Secure Hardware, 2005.

[9] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.

In CRYPTO ’99: Proceedings of the 19th Annual International Cryptology

Conference on Advances in Cryptology, pages 388–397, London, UK, 1999.

Springer-Verlag.

28

[10] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. In CRYPTO ’96: Proceedings of the 16th

Annual International Cryptology Conference on Advances in Cryptology,

pages 104–113, London, UK, 1996. Springer-Verlag.

[11] Pearson, Siani. Trusted Computing Platforms. Prentice Hall PTR, Upper

Saddle River, 2003.

[12] Ahmad-Reza Sadeghi, Marcel Selhorst, Christian Stuble, Christian Wachs-

mann, and Marcel Winandy. Tcg inside?: a note on tpm specification com-

pliance. In STC ’06: Proceedings of the first ACM workshop on Scalable

trusted computing, pages 47–56, New York, NY, USA, 2006. ACM Press.

[13] STMicro Electronics. ST19WP18-TPM-A Datasheet, 2005.

[14] TPM Work Group. TCG TPM Specification Version 1.2 Revision 94. Tech-

nical report, Trusted Computing Group, 2006.

[15] Trusted Computing Group. TCG Specification Architecture Overview Revi-

sion 1.2. Technical report, Trusted Computing Group, 2004.

29

