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Abstract. Pairing-based cryptography (PBC) has enabled the construc-
tion of many cryptographic protocols. However, there are scenarios when
PBC is too heavyweight to use, such as when the computing devices are
resource-constrained. Pairing delegation introduced in [19] provides a
solution by offloading the computation to more powerful entities.

In this paper, we introduce the concept of, and construct several pro-
tocols for, batch pairing delegation, which offers significantly improved
efficiency over multiple runs of state-of-the-art (non-batch) delegation
protocols. We prove the security of our proposed protocols in the model
we formalized for batch pairing delegation. Also, we have implemented
our protocols in software for experimentation.

Moreover, we argue that the secure delegation of pairing computation,
batched or not, requires different protocols depending on the semantic
meaning of the pairings. We propose a taxonomy that classifies pairings
into seven types to assist in choosing the right delegation protocol.

Finally, we propose a novel application of pairing delegation in trusted
computing — we show how pairing delegation can be leveraged to build
a secure coprocessor for pairing computation more cost-effectively.

1 Introduction

Pairing-based Cryptography. Since the first constructive uses of pairings over
elliptic curves in cryptography such as tripartite key exchange [31] and identity-
based encryption (IBE) [8, 36], Pairing-Based Cryptography (PBC) has enabled
for the first time secure and efficient construction of many novel cryptographic
schemes such as attribute-based encryption [4, 28], broadcast encryption [1, 11],
certificateless encryption [21, 24], forward-secure encryption [14, 40], searchable
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encryption [12, 38], aggregate signatures [9], short signatures [7], perfect non-
interactive zero-knowledge (NIZK) [29] and multi-theorem NIZK [16].

Pairing Delegation. Pairing delegation, first introduced by Chevallier-Mames
et al. [19], is a protocol during which an entity offloads the computation of
pairings to another entity. In this paper, we refer to the entity who delegates
the computation as the Delegator, or Ron, and the entity who actually does the
work as the Delegatee, or Ellen.1 The fact that computationally limited devices
such as smartcards are slow and resource-constrained for computing pairings
has been a major motivation for pairing delegation in [19, 32]. By delegating the
computation to more powerful machines such as PCs on which more efficient
architecture and libraries for pairing computation exist, it becomes possible for
those devices to execute various pairing-based cryptographic algorithms.

Security becomes a concern when the delegatee is not fully trusted by the
delegator, and/or the two parties are communicating over an insecure channel. A
pairing computation should be delegated as if the delegator computed the pairing
himself. More precisely, neither the delegatee nor an eavesdropper should be able
to learn anything about the pairing being computed, except perhaps the fact that
the delegator is trying to compute a pairing. Furthermore, the delegator should
be able to tell if he ends up with a correct answer to the computation of the
pairing despite the adverse environment.

The only follow-up work (that the authors are aware of) gives several new
protocol constructions with better efficiency and is due to Kang et al. [32].

Batch Processing. Under certain circumstances, processing tasks in batch
rather than individually yields better efficiency. In batch signature verification
[3], for instance, if verification returns valid, the verifier is assured that all sig-
natures in the batch are valid with overwhelming probability. Otherwise, the
verifier knows there is at least one bad signature. Further work on this topic
studies efficient means to identify bad signatures [34, 35]. Similarly, our idea of
delegating pairing computation in batch tries to improve overall efficiency by
delegating in batch rather than one by one independently.

Our Contributions. We make the following contributions in this paper:

– We introduce the concept of batch pairing delegation and provide four proto-
col constructions, which offer better efficiency than independently invoking
state-of-the-art non-batch delegation protocols. We also obtain new non-
batch delegation protocols. We formalize a new security model for batch
pairing delegation and prove the security of our protocols in the model.

– We observe that the security requirements for pairing delegation protocols,
batch or not, depend on the types of pairings being delegated. We thus
propose a taxonomy of pairings and survey the literature extensively.

– We propose a novel use of pairing delegation in the arena of trusted com-
puting and discuss some practical issues of pairing delegation.

1 A mnemonic guide: Ron is the delegatoR and Ellen is the delegateE.
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Paper Organization. In Section 2, we classify pairings into types and illus-
trate each type with extensive examples. We propose a security model for batch
pairing delegation protocols in Section 3. Section 4 presents our batch pairing
delegation protocol constructions and evaluates their efficiency. We show how
pairing delegation can be used in trusted computing, and discuss some less ap-
parent costs of pairing delegation in Section 5. Section 6 concludes the paper.

2 A Taxonomy of Pairing Types

Definition. Let G1 and G2 be two additive cyclic groups and GT be a multi-
plicative cyclic group, all of prime order p.2 Suppose P and Q are generators of
G1 and G2 respectively. A function e : G1 × G2 → GT is a pairing if it satisfies
the following properties:

– (Bilinearity.) e(xA, yB) = e(A, B)xy for all A ∈ G1, B ∈ G2 and x, y ∈ Zp.
– (Non-degeneracy.) e(P, Q) 6= 1, where 1 is the identity element in GT .
– (Efficient Computability.) e(A, B) can be computed in polynomial time for

all A ∈ G1 and B ∈ G2.

Depending on the pairing, G1 may or may not be the same as G2, and
homomorphism from G2 to G1 may or may not be efficiently computable. While
these variations have implications on many cryptographic schemes [26], they are
not our concern as our delegation protocols work securely irrespective to them.

Taxonomy. We can classify pairings e(A, B) into 16 types according to whether
each of the points A and B is public or secret, and a constant or a variable, which
is governed by the semantic meaning of the points at the protocol level.3 While
the type of a pairing is relatively unimportant when the pairing is computed
locally, it makes a huge difference in how the pairing should be delegated due to
different security requirements and optimization possibilities.4

Consequently, one must devise, and prove the security of, a delegation pro-
tocol with respect to a specific pairing-type. Also, it is important to understand
the type of a pairing in a cryptographic protocol in order to select a secure del-
egation protocol. We therefore propose a taxonomy of pairings into types. In
addition, the taxonomy indicates that some pairing-types are more utilized than
the others (in the literature today), which may be used as a heuristic to evaluate
the impact of an efficient delegation protocol.

2 Recently, composite-order groups with a bilinear map have been constructed [10]
and used (e.g. [11–13, 16, 29]). In this paper, we assume groups are of prime order
for simplicity, even though our results remain valid for composite-order groups.

3 For example, the decryption algorithms of many IBE schemes [8, 27, 36] require the
computation of e(S, U), where S is the decryption key and U is a part of the cipher-
text. Thus, S is a secret constant while U is a public variable.

4 For instance, the delegator does not need to hide a point from the outside if the
point is public. Also, it may be possible for the delegator to pre-compute some of
the operations if one of the points is a constant.



4 Patrick P. Tsang, Sherman S.M. Chow and Sean W. Smith

Note that not all 16 types require a distinct delegation protocol. Half of them
are duplicates of the rest due to the symmetry between the roles played by points
A and B in the protocols.5 Also, there is no need to delegate when both A and
B are constant. As a result, we propose a taxonomy of pairings into 7 types.

Type-SV2. Pairings of this type are such that both points are a secret variable.
We call this the “general” type because intuitively a secure delegation protocol
for this type should also work securely if one or both of the points are instead
public, and/or a constant. To the authors’ best knowledge, no cryptographic
construct in the literature requires the computation of Type-SV2 pairings. Nev-
ertheless, existing works [19, 32] use delegation protocol for this general type as
a basis to construct protocols for delegating pairings of other types.

Type-SVSC. Type-SVSC pairings have a secret variable point and a secret con-
stant point. Their common usage is to prevent the leakage of partial knowledge
about some secrets, exemplified in the following. Decryption in the inversion IBE
scheme in [6] requires the computation of e(A+rB, K), where A and B are from
the ciphertext and (r, K) is the private key. When delegating the computation,
one should treat A + rB as a secret variable, or otherwise partial information
about r would be leaked.6 Another example is the ID-based key agreement proto-
col due to [18], wherein one has to compute the pairing of a secret key and a point
derived from an ephemeral Diffie-Hellman secret exponent. Public knowledge of
the latter point means partial information of such an exponent is leaked, which
is not covered by the security guarantee in many key agreement protocols [22].

Few cryptographic schemes use Type-SVSC pairings. However, our delegation
protocol for pairings of this type forms the basis for our other proposed protocols.

Type-SVPV. Pairings of this type are such that one point is a secret variable
and the other is a public variable. We give several examples of their use here.
In searchable encryption [12, 38], the search gateway is delegated with different
trapdoor for different keywords, so a pairing of secret variables (the trapdoors)
and public variables (ciphertext) will be used. In trace-and-revoke broadcast
system [11], the secret variable is a temporary key derived from the private
key in a way depending on the set of legitimate decryptors, while the public
variable comes from the ciphertext as usual. Pairings of this type also appear
in the private ciphertext validity checking in [27], wherein the secret variable is
determined by a function of the private key and the ciphertext while the public
variable comes from the ciphertext. A less obvious example is an ID-based key
agreement protocol due to Chow and Choo [22]. One might think that the point
associated with the secret key is essentially an ID-based signature due to [15]
and can be made public. However, the other point is also a public variable so it
is the only secret knowledge for ensuring the confidentiality of the session key.

5 This is true even for asymmetric pairings.
6 It is not stated explicitly in [6] whether r in private key is just an auxiliary data for

decryption that is safe to be publicly known.
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Finally, we note that the some computations appeared as Type-SVPV can
actually be replaced by Type-PVPC (the secret variable is replaced by a public
constant) if the secret variable A is chosen by the one who computes the pairing.
Instead of choosing A directly, one can choose a ∈R Zp and set A = aP instead.
The required value for the pairing can be obtained from exponentiating a Type-
PVPC pairing with the secret exponent a. Examples include the signcryption
step in Chow et al.’s scheme [23], and a zero-knowledge proof for the correctness
of the partial decryption in Baek and Zheng’s ID-based threshold decryption [2].

Type-SVPC. Pairings of this type have a secret variable point and a public
constant point, and are rarely used in the cryptographic constructs nowadays.
Type-SVPC pairings appear when one wants to verify the private key obtained
from the key generation center. An example is the ciphertext-policy attribute-
based encryption in [4], where the secret variables come from the different com-
ponents of the private key. Again, similar to Type-SVPV pairings, some pairings
that appear to be Type-SVPC can be treated as pairings of two constants in-
stead, e.g. in the proving step of Kurosawa and Heng’s ID-based identification
protocol [33] and in the signing step of Hess’s ID-based signature [30].

Type-PVSC. Type-PVSC pairings have a public variable point and a secret
constant point, and commonly appear in the decryption algorithm, in which
the decryption key is the secret constant and the ciphertext contributes to the
public variable. Examples include IBE [8, 27, 36], certificateless encryption [21,
24], and other related encryption schemes such as attributed-based encryption
[4, 28], ID-based broadcast encryption [1] and forward-secure encryption [14, 40].
Type-PVSC pairings also exist in some key agreement protocols [17, 18].

Type-PV2. Pairings of this type pair up two public variables. They are present
in many cryptographic constructs. In particular, they are commonly found in
verification of signature schemes and ciphertext validity checks in encryption
schemes. Examples include Boldyreva’s multisignature and blind signature [5],
Boneh et al.’s aggregate signature and ring signature [9], Boneh and Boyen’s
short signature [7], Chow’s verifiable pairing [20], Dodis and Yampolskiy’s ver-
ifiable random function (VRF) [25], the public ciphertext validity checking in
[2, 21], and Groth et al.’s witness-indistinguishable homomorphic proof commit-
ments [29]. The multiplication of ciphertext in the doubly homomorphic encryp-
tion in [10] also uses this type of pairings. Type-PV2 pairings also appear in many
cryptographic schemes involving an implicit tripartite key exchange [31]. The
public variables come from the public keys and the proof/signature/ciphertext.

We note that one may treat the varying public key as a constant when batch-
verifying signatures from the same signer, and hence classify the pairings as the
Type-PVPC (see below) for better efficiency. However, if a point is a combination
of a public key and a signature, this trick is not possible (unless a single pairing
computation is split into two). An example is Cha and Cheon’s scheme [15].
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Type-PVPC. Pairings of this type are such that one of points is a public vari-
able and the other is a public constant. They commonly appear in the encryption
algorithm of IBE schemes based on full-domain hash [8, 40], and the verification
of pairing-based schemes such as Boldyreva’s multisignature and blind signature
[5], Boneh et al.’s aggregate signature, ring signature and verifiably encrypted
signature [9], Boyen and Water’s group signature [13], Chow’s verifiable pairing
[20], the VRF of Chase and Lysyanskaya [16] and Dodis and Yampolskiy [25],
and Hess’s ID-based signature [30]. In these examples, the public constant is
either the master public key or a group generator, and the public variable comes
from the identity of the decryptor or the signature respectively.

Summary. We end this section by noting that pairings of type PVSC, PV2
and PVPC are widely used by cryptographers today. Delegation protocols for
these types can thus be considered very applicable. As we shall see, our proposed
protocols cover two of these three types. Type-SV2 pairings, on the contrary, is
not being used today. A delegation protocol for pairings of this type could be
considered practically useless.

3 Security Model

We formalize the security requirements of batch delegation protocols for pairings
in which one of the points is a constant, which are sufficient for our proposed
protocols. The requirements can however be generalized for other pairing-types.

Let A ∈ G1 be the constant point, and B1, . . ., Bn ∈ G2 be the variable points
to be paired up with A. The protocol’s goal is to compute {e(A, Bi) : i ∈ {1,
. . ., n}}. Let R and E be two probabilistic polynomial time (PPT) algorithms

modeling the Delegator and the Delegatee respectively. Let out
R
← R(in1)E(in2)

denotes out is the output of R(in1) in the interaction with E(in2), where the
inputs in1 and in2 may or may not be equal. Finally, BDH(k) denotes a instance
generator for groups G1, G2, GT with orders 2k and a pairing function e : G1 ×
G2 → GT . Desired properties of a batch delegation protocols for pairings include:

Completeness. The Delegator R obtains {e(A, Bi) : i ∈ {1, . . ., n}} after
interacting with an honest Delegatee E .

Secrecy. Even a cheating Delegatee E cannot learn any information about A
and {Bi : i ∈ {1, . . ., n}}. The simulator is given A (respectively B1, . . .,
Bn) if and only if A (respectively B1, . . ., Bn) is public.

We start by giving definition for the case in which A is public. The definition
for any subset of {B1, . . ., Bn} being public can be defined similarly. We need
to define two more notations about simulatability:

– TransB(param, A, B1, . . ., Bn) denotes a PPT algorithm outputting
the transcript of communication between the interaction of the Delegator
R(param, A, B1, . . ., Bn) and the Delegatee E(param, A).
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– SimB(param, A) denotes a PPT algorithm outputting a transcript sim-
ulating the one between the interaction of the Delegator R(param, A,
B1, . . ., Bn) and the Delegatee E(param, A).

The protocol has secrecy if for all PPT adversaries A, there exists a PPT
simulator Sim such that |Pr [GamesecrB

A (k) = 1]− 1
2 | is negligible in k, over

the random coins of all algorithms.

GamesecrB

A (k)

param← (G1, G2, GT , e)
R
← BDH(k)

b
R
← {0, 1};

if (b = 0)

then Γ
R
← Trans(param, A, B1, . . ., Bn);

else Γ
R
← Sim(param, A);

b̂
R
← A(param, A, Γ );

if (b = b̂) then return 1 else return 0;

Correctness. The Delegator R can detect (with non-negligible probability)
when the Delegatee E is cheating (i.e. the final result leads to a wrong value).

Gamecorr
E (k)

param← (G1, G2, GT , e)
R
← BDH(k)

(t1, t2, . . ., tn)
R
←R(param, A, B1, . . ., Bn)E(param,A,B1,...,Bn);

if (∃i ∈ {1, . . ., n}, (ti 6= e(A, Bi))) return 0; else return 1;

The protocol is correct if the probability that Gamecorr
E (k) = 1, for all

param generated by BDH, for all (A, B1, . . ., Bn) ∈ G1 × G2
n, and for all

PPT adversary E (that may deviate from the protocol in arbitrary way),
over the random coins of all algorithms, is non-negligible in k.
This game is basically saying that, for any cheating Delegatee E and for any
(A, {Bi : i ∈ {1, . . ., n}}), the Delegator R outputs either {e(A, Bi) : i ∈
{1, . . ., n}} or ⊥, denoting invalid, except with negligible probability, even
(A, {Bi : i ∈ {1, . . ., n}}) is given to the cheating Delegatee E .

Note that the definition of correctness in [19, 32] does not specify whether
A and/or B are known to the adversary (or a malicious delegatee). Such an
ambiguity could lead to insecure delegation protocols. For example, we were
able to come up with a delegation protocol by simplifying one of the protocols
in [32] that is secure if and only if A is private. Our adversarial model explicitly
equips the adversary with the knowledge of all points, which is stronger than
what is expected since E is not given some of the points in some cases.

We also remark that even both points are public, a secure pairing delegation
protocol is still necessary due to the correctness requirement.

4 Our Protocols

We present our construction of four protocols for delegating the computation
of pairings in batch, each for a different type of pairings. In all four proto-
cols, the interaction is between delegator Ron and delegatee Ellen during which
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Ron, given a list of n pairs of points 〈(A, B1), . . . , (A, Bn)〉, tries to compute
〈e(A, B1), . . . , e(A, Bn)〉 with the help of Ellen. The common input and private
input to each of the two parties vary from one protocol to another, but the dis-
tinction should be clear from the context. At the end of the protocol runs, Ron
outputs either the correct answers, or ⊥, which indicates a failure.

In our protocols, Ron is equipped with a secret constant e(A, Q) for a random
and private Q. The value of such a constant may be obtained through a one-time
pre-computation either by Ron himself, or by a trusted third party.

All four proposed protocols are secure under the security model defined in
Section 3. The security proofs can be found in Appendix A.

4.1 Our Four Constructions

Protocol-SVSC. This protocol delegates in batch the computation of n Type-
SVSC pairings as follows.

1. (Precompute.) Ron picks rA, rQ ∈R Zp and computes Ã = rAA, Q̃ = rQQ

and e(Ã, Q̃) = e(A, Q)rArQ . This step may be precomputed before knowing
the values of Bi’s.

2. (Request.) Ron sends to Ellen 〈Ã, B̃0, B̃1, . . . , B̃n〉, where ri, bi,∈R Zp and

B̃i = riBi for i = 1 to n, and B̃0 = Q̃ +
∑n

i=1 biB̃i.

3. (Respond.) Ellen sends to Ron 〈α0, α1, . . . , αn〉, where αi = e(Ã, B̃i) for all
i = 0 to n.

4. (Verify.) Ron verifies if αi ∈ GT for i = 0 to n and e(Ã, Q̃)
∏n

i=1 αbi

i = α0.
5. (Output.) Ron returns⊥ if the above verification failed. Otherwise he returns

〈α
1/rAr1

1 , . . . , α
1/rArn
n 〉.

Protocol-SVPC. To batch delegate Type-SVPC pairings, follow the steps in
Protocol-SVSC, except that rA is set to 1 instead of a random element so that Ã
is equivalent to A. As a result, the computation and the transmission of Ã = rAA
in Step 1 and 2 are eliminated.

Protocol-PVSC. To batch delegate Type-PVSC pairings, follow the steps in
Protocol-SVSC, except that all ri’s are set to 1 instead of random elements so
that B̃i is equivalent to Bi for all i = 1 to n. The steps related to of all B̃i’s of
the protocol are also eliminated.

Protocol-PVPC. To batch delegate Type-PVPC pairings, follow the steps in
Protocol-SVSC, except that rA and all ri’s are set to 1 so that Ã is equivalent
to A and B̃i is equivalent to Bi for i = 1 to n. As a result, the computation of
Ã in Step 1, the computation of all B̃i’s in Step 2, the transmission of Ã in Step
2, and the exponentiation of all αi’s in Step 5 of the protocol are all eliminated.

Remarks. In the last two protocols, all the points are public and we do not
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care secrecy. Nevertheless, a secure pairing delegation protocol is still necessary
for the correctness requirement.

Each of our four batch protocols degenerates to a non-batch protocol if we
set n to 1. We therefore obtain as a side-product four protocols for conventional
pairing delegation. As will become clear in the next section, the degenerated
version of our proposed protocols either performs better or is as good as the
existing state-of-the-art protocols.

4.2 Performance Analysis

We now analyze the performance of the four protocols presented above in terms
of both time and space complexities. Specifically, we contrast each of our four
protocol constructions for delegating n pairing computations in batch to n paral-
lel and independent invocations of traditional (non-batch) protocol for delegating
pairings of the same type. We look at several aspects in our comparison, namely
the size of communication, the online computational cost and total computa-
tional cost on the delegator and the total computational cost on the delegatee.

All four protocols selected for comparison are state-of-the-art in the liter-
ature in terms of efficiency. Two of them are due to Chevallier-Mames et al.
[19] and the other two are due to Kang et al. [32] (see Table 1). It has been
assumed in all their four protocols that the delegator already knows e(X, Y )
for some random X and constant Y before the protocol execution. Ron must
therefore either compute e(X, Y ) himself or obtain the value from a trusted third
party. While it is not explicitly suggested in [19, 32] which should the case, we
believe that the latter is much less favorable in practice.7 Consequently, we as-
sume, for the sake of a fair comparison, that it is Ron himself who computes
e(X, Y ) in these protocols, by picking a x ∈R Zp and calculating X = xP and
e(X, Y ) = e(P, Y )x, where e(P, Y ) is a constant already known to Ron. This
adds 1 G1/G2 Scalar Multiplication (SM) and 1 GT Exponentiation (EXP) to
the offline computational costs of Ron in their protocols.

The comparison is detailed in Table 1. We make a few observation here.
First, the size of communication is at least halved in all four cases. Hence, our
protocols give a speedup in communication of a minimum of 2. Second, Ellen
sees a speed up of 2 in all four cases because she has to compute only half
the number of pairings using our protocols. Also, online computational costs
on Ron are roughly the same except that our Protocol-SVPC is slightly worse
than that in [32, §4.3]. Finally, the total computational costs on Ron are always
smaller in all our protocols. Specifically, if we ignore the computation of G1/G2

point additions and GT multiplications (as their costs are dominated by the
costs of the computation of G1/G2 scalar multiplication and GT exponentiation
respectively), the speed up ranges from 1.3 to 4, depending on the relative speed
of computing SMs and EXPs.

7 The following must hold for the protocols to remain secure: the value of e(X, Y ) is
correct, e(X, Y ) is known only to Ron, and Y is known only to Ron in cases where
Y represents some secret of Ron’s. These imply a trusted third party with high
trustworthiness is required, the maintenance of which is costly.
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Table 1. Performance comparison between our proposed protocols and multiple runs
of state-of-the-art non-batch protocols when the batch size is n

Communication Computation at Ron Computation
Type Protocol Complexities (#SMs,#PAs,#EXPs,#MULs)* at Ellen

#rounds (#G1/G2, #GT ) Online cost Total cost (#Pairings)

SVSC [32, §4.2] 2 (4n,2n) (n,n,4n,n) (5n,n,5n,n) 2n
Our Protocol-SVSC 2 (n+2,n+1) (2n,n,3n,n) (2n+2,n,3n+1,n) n+1

SVPC [32, §4.3] 2 (2n,2n) (n,n,3n,n) (3n,n,4n,n) 2n
Our Protocol-SVPC 2 (n+1,n+1) (2n,n,3n,n) (2n+1,n,3n+1,n) n+1

PVSC [19, §6.2] 2 (4n,2n) (n,n,3n,n) (4n,n,4n,n) 2n
Our Protocol-PVSC 2 (n+2,n+1) (n,n,3n,n) (n+2,n,3n+1,n) n+1

PVPC [19, §6.1] 2 (2n,2n) (n,n,2n,n) (2n,n,3n,n) 2n
Our Protocol-PVPC 2 (n+1,n+1) (n,n,2n,n) (n+1,n,2n+1,n) n+1

* PA and MUL denote G1/G2 point addition and GT multiplication respectively.

4.3 Implementation and Experimentation

The fact that computationally limited devices such as smartcards are slow and
resource-constrained for computing pairings has been a major motivation for
delegation in [19, 32]. By delegating the computation to more powerful entities
such as PCs on which efficient libraries for pairing computation exist, it becomes
practical for those devices to execute pairing-based cryptographic algorithms.

In this regard, pairing delegation makes sense only if it is faster for an entity
to delegate the computation than doing the work itself. For instance, Scott et al.
suggested recently in [37] that delegation might not offer any benefit because it
does not offer significant gain in speed. In particular, the time for computing a
pairing is comparable to the time for doing other underlying group operations.8

Nevertheless, one should not project from such a result, that was obtained
from one experimental testbed with a particular set of parameter choices, and
conclude that pairing delegation does not make sense in all scenarios. In fact, the
relative speed of computing pairings and various underlying group operations can
vary greatly depending on numerous factors ranging from the choices of curves
and fields and their representation, to instruction sets, compilers and libraries
in case of general-purpose processors, or architecture and level of parallelism
in case of dedicated hardware coprocessor implementation. Pairing delegation
speeds up pairing computation at the protocol level independent of the choice of
any parameters mentioned above. We believe that the pairing delegation offers
significant benefits in many real-world settings.

To gain some empirical data, we implemented our four proposed protocols
in C using the PBC library9 (version 0.4.7) for its elliptic-curve and pairing
operations. The machine we used for the experiments was a Lenovo T60 laptop
PC with an Intel dual-core 2GHz CPU and 1.5GB of Ram, running Ubuntu
6.10. Timing figures collected using such a platform serve as a heuristic of the

8 This is indeed an exciting result because it demonstrates researchers’ success in
speeding up pairing computation and hence making PBC ever-increasingly practical.

9 http://crypto.stanford.edu/pbc/
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lower bound on the efficiency gain using our batch delegation protocols because
pairing computation has already been made very efficient on such a platform.

We did experiments to compare the latency of computing pairings locally
(without any delegation) to that of using our four protocols, over various types
of underlying elliptic curves.10 In particular, we measured the sum of the time
our protocols spent on performing the Request and the Verify steps. This mea-
surement reflects the latency experienced by the delegator if we ignore the com-
munication overhead and assume that the delegatee can compute pairings in
relatively no noticeable time. Experiments were repeated 10 times using random
input points over which timings were averaged. We used a batch size of 100.11

We calculated the speedups gained from using our protocols over computing
pairings locally. For example, using a Type-F curve, it took 7.87s to compute the
100 pairings locally while a latency of 3.34s was measured when our Protocol-
SVSC was used. The speedup was thus 7.87s/3.34s=2.34. Empirical results for
other experimental parameters are summarized in Table 2. As shown by the ex-
istence of speedups that are less than 1, delegation did not always outperform
local computation in terms of speed. This happens, for example, for curves over
which computing a pairing and computing an SM and/or an EXP take compa-
rable time. However, delegation did shorten the latency of pairing computation
in the majority of cases and some of the speedups were significant.

Table 2. The speedup gained by using our proposed protocols over computing the 100
pairings locally using different types of curves as defined in the PBC Library

Curve Protocol-SVSC Protocol-SVPC Protocol-PVSC Protocol-PVPC

Type-A 0.75 1.75 0.73 2.20

Type-A1 1.13 2.59 1.13 3.23

Type-D225 0.49 1.01 0.49 1.48

Type-E 1.17 3.22 1.20 3.60

Type-F 2.34 2.67 2.36 6.73

Type-G 0.69 1.29 0.67 2.04

5 An Application Scenario

In this section, we propose a new application of pairing delegation and discuss
some less apparent costs of delegation.

A Novel Application in Trusted Computing. An application for pairing
delegation that has not been considered so far falls into the arena of trusted com-
puting. Research in trusted computing strives to raise the trustworthiness of com-
puting devices such as PCs by guaranteeing that they operate correctly and se-
curely even under certain software and/or hardware attacks. To achieve this goal,

10 Please refer to the PBC Library for the characteristics of these curves.
11 As shown earlier, the batch size has little effect on the timing of the delegator.
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trusted computing almost always uses some kind of tamper-resistant, tamper-
evident, and/or tamper-responsive hardware. For example, the IBM 4758/4764
secure coprocessor [39] is a general-purpose PC built into a PCI card that is
wrapped around in an armor made of layers of material capable of detecting tam-
pering attempts. Trusted Computing Group (TCG)’s Trusted Platform Module
(TPM)12 takes a radically different approach—TPMs provide minimal tamper-
resistant storage barely enough for storing a handful of cryptographic key ma-
terial, leaving most of the operation outside the physical protection boundary.
Being cheap enough to be deployed in all PCs was one of the design goals.

The Challenge. In general, we are faced with the following dilemma when build-
ing any trustworthy device, be it a general-purpose machine that runs arbitrary
software, or a dedicated chip devised for a specific application—On one hand, we
would like to put as much circuitry as possible into the Trusted Computing Base
(TCB) to make the device more powerful. But on the other, it gets very pricey
as the protection boundary grows due to increased complexity in configuration,
maintenance and upgrade. Heat dissipation also places a practical limit on how
powerful the hardware inside the TCB could possibly get.

A specific instance of the above challenge we would like to solve in this paper
is how to build a cost-effective pairing coprocessor with high assurance in physical
security. We would like to compute pairings correctly and securely despite the
potential presence of various software and/or hardware attacks, because insecure
pairing computation implies whatever cryptographic protocols for which these
pairings are computed become insecure.

Our Solution. Pairing delegation provides a solution to the problem. One could
build a secure coprocessor for pairing computation using two co-operating mod-
ules that are unbalanced in their size, power and trustworthiness. Specifically,
one of the modules is lightweight but physically secured, which plays the role of
the pairing delegator. The other is powerful but physically unprotected, and acts
as the pairing delegatee, as shown in Figure 1. The security of pairing delegation
guarantees that a pairing coprocessor built in this way operates correctly and
securely even if only the small delegator module is physically armored. Conse-
quently, such a coprocessor is lower in cost thanks to a smaller TCB, but still
achieves good performance because the actual heavyweight pairing computation
is now performed by the more powerful delegatee module.

Building a pairing coprocessor using the delegation approach as described
above also allows more fine-grained engineering decisions for higher flexibility
and better optimization. It is possible, for instance, that the delegator uses a
multiplier module of smaller digital size for the underlying field arithmetics owing
to limitation on space and/or cost while the delegatee does field multiplication
in software on a multi-core PC for lower non-recurring engineering costs. This
approach also permits upgrade, maintenance and reconfiguration of the delegatee
accelerators without having to re-engineer the TCB.

12 https://www.trustedcomputinggroup.org/home



Batch Pairing Delegation 13P a i r i n gD e l e g a t i o nE . g . I B M 4 7 5 8 / 6 4 s ,s m a r t c a r d s ,F P G A s / A S I C s E . g . P C s ,F P G A s / A S I C s
P a i r i n g C o p r o c e s s o rA , Be ( A , B ) R e s o u r c e %c o n s t r a i n e d b u tA r m o r e dD e l e g a t o r P o w e r f u l b u tU n a r m o r e dD e l e g a t e eP a i r i n g % b a s e dC r y p t o g r a p h i cA l g o r i t h m

Fig. 1. An architecture for a cost-effective and trustworthy secure coprocessor for pair-
ing computation that leverages pairing delegation

Some Less Apparent Costs. Pairing delegation incurs additional costs that
must be taken into account so as to correctly decide whether it is more cost-
effective to delegate the computation of pairings. Below we mention some of the
less apparent costs that might get ignored.

Denial-of-Service (DoS) Attacks. Delegation protocols are inherently vulnera-
ble to DoS attacks as the delegator needs cooperative help from the delegatee.
An adversary can launch DoS attacks by corrupting the delegatee, or simply
jamming the channel. Batch delegation protocols are even more vulnerable as
corrupting the value of one pairing in the batch renders all the pairings useless.13

Timing-analysis Attacks. Cryptographic protocols are in general more suscep-
tible to timing attacks than cryptographic algorithms due to the existence of
communication events, the timing of which may be correlated to some internal
secret values. Additional measures must be taken to compensate this extra attack
surface opened up due to the delegation protocols’ necessity to communicate.

Source of Randomness. Pairing delegation requires a cryptographically secure
Random Number Generators (RNG), while computing pairings locally does not.
A secure RNG relies on special hardware to collect random physical events and
incurs costs that vary depending on platform architectures.

Communication Costs. Communication could dominate the whole protocol exe-
cution time in the case when the communication channel has a low bandwidth,
and/or a high latency. Delegation would thus be undesirable. Also, energy-
constrained devices such as sensor nodes may prefer not to delegate because
communication is very costly in terms of power consumption.

Latencies. Gains in efficiency by delegating pairings in batch grow with the size
of the batch. However, computation latencies also grow with batch sizes, as the
answer to the computation of any pairing in the batch won’t be available until
the delegatee has completed computing the whole batch. There is thus a tradeoff
between efficiency and latencies. For instance, while batch protocols are useful

13 A potential solution would be to employ some error-detection techniques to identify
the “bad” pairings in a batch.
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in case of verifying aggregate signatures, they might be unsuitable if pairing
computation occurs rarely, or answers to the computation are needed promptly.

6 Conclusions

In this paper, we have introduced the concept of batch pairing delegation and
provided four protocol constructions, each for a different pairing-type. The secu-
rity of our protocols has been proven under a new security model we formalized.
We have implemented our protocols in software for experimentation, and shown
that our batch delegation protocols are more efficient than both individually del-
egating pairing computation using the state-of-the-art non-batch protocols and
computing the pairings locally without any delegation. Moreover, we have pro-
posed how to build a secure coprocessor for pairing computation cost-effectively
using delegation, and discussed some of the less apparent costs of delegation.
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A Security Proofs

Completeness is trivial. Secrecy is also easy to see. The random choice of rA

and/or the random choices of r1, · · · , rn (depends on which of A and B’s are
public) each time makes the view of the delegatee follows the same distribution.

The following proves that all of our four proposed delegation protocols satisfy
the requirement of correctness. A single proof is sufficient since its crux depends
on the randomness of rQ that is present in all our proposed protocols.

Note that we give an information theoretic argument here. Moreover, all our
protocols are single-round, so they are secure against “concurrent attacker”.

Since e(P, Q) is a generator of GT , we assume without loss of generality that
the adversary returns the values of {α′

i : i ∈ {0, 1, · · · , n}} in the following forms:

α′
i = e(Ã, B̃i)e(P, Q)βi , ∀i ∈ {0, 1, · · · , n}, where βi ∈ Zp, ∀i ∈ {0, 1, · · · , n}

To break the correctness, ∃j ∈ {1, · · · , n} such that βj 6= 0. Note that any
other βis, in particular β0, can take any value arbitrarily.

Suppose αi = e(Ã, B̃i), ∀i ∈ {0, 1, · · · , n}, which means α0 = e(Ã, Q̃)
∏n

i=1 αbi

i .
For verification not to return ⊥, we have the following equation holds:

α′
0 = e(Ã, Q̃)

n∏

i=1

α′bi

i

α0 · e(P, Q)β0 = e(Ã, Q̃)
n∏

i=1

(αi · e(P, Q)βi)bi

e(P, Q)β0 =

n∏

i=1

e(P, Q)βi·bi

β0 =

n∑

b=1

biβi

bjβj = β0 −
∑

i∈{1,··· ,n}\{j}

biβi

From B̃0 = rQQ +
∑n

i=1 biB̃i, as long as rQ is randomly chosen each time,
there are always p possibilities for bj . Without loss of generality, we assume
α′

j 6= e(A, Bj)
1/rArj , i.e. βj 6= 0. With bj being an unknown, the probability that

the above equality holds is at most 1/p. Note that we made no assumption on
other α′

is for i 6= j are correct or (A, {Bi : i ∈ {1, · · · , n}}) being unknown to the
cheating delegatee. However, we do assume Q is kept secret from the delegatee,
otherwise partial information about rQ will be leaked when the delegatee knows
A and/or {Bi : i ∈ {1, · · · , n}}.


