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ACHIEVING OVER-THE-WIRE CONFIGURABLE CONFIDENTIALITY, INTEGRITY,

AUTHENTICATION AND AVAILABILITY IN GRIDSTAT’S

STATUS DISSEMINATION

Abstract

by Erik Solum, M.S.
Washington State University

December 2007

Chair: Carl Hauser

As a result of ever increasing demands for electrical power the power grid is continuously

being operated closer and closer to its operational limits. This can only be done safely by

increasing both the quantity and quality of the monitoring data across utilities. GridStat is a

framework that tries to address this need by leveraging a QoS aware status dissemination overlay

network built on the publish-subscribe paradigm.

The publish-subscribe paradigm allows a decoupling of the producers and the consumers of

information. In GridStat the publishers produce status updates at regular intervals, which the

subscribers can subscribe to at any rate they need with quality of service (QoS) guarantees, such

as maximum latency and redundant paths, at any point in the network. The status updates are

routed through a mesh of application level routers called the data plane, controlled by a

management plane of hierarchically structured QoS brokers.

The power grid’s increasing reliance on richer monitoring data also necessitates a greater level

of security, especially considering the world’s building political tensions. Sensitive data also

needs to be secured from malicious attackers that could use the information indirectly or, by

manipulating the data, directly harm the power grid. The inter-utility-sharing of information also

makes it necessary to keep market sensitive data confidential from competitors. The real challenge
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in this problem space lies in providing the security for power grid information systems that are

large and distributed with long life cycles. Unmanned nodes would be expected to operate for as

much as 25 years while the security requirements are constantly changing and unpredictable.

This thesis presents a security architecture extension to GridStat’s management plane that pro-

vides confidentiality, integrity, authentication and availability to the data plane through the use of

over-the-wire runtime configurable sets of software modules. New modules can be added to the

security architecture at runtime and be securely distributed to the data plane end points. This allow

the security to evolve with the inevitable changes in the security field and make optimal tradeoffs

between different security and performance attributes for each individual publication.
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CHAPTER ONE

INTRODUCTION

The power grid is one of the largest man-made structures in the world. It is a complex structure

that spans a multitude of domains and organizations that each can affect it to a greater or lesser

extent. In an effort to avoid blackouts such as the 1965 North-eastern US blackouts the Supervisory

Control And Data Acquisition (SCADA) system was developed and is still the industry standard.

This is a static poll based system that does not take advantage of the developments in information

technology since the 1960’s.

At the same time power consumption has increased tremendously since the 1960’s without a

corresponding use of resources to increase the the grid’s capacity. This increase forces the grid to

operate with decreasing margins [22]. As the 2003 US and Canadian blackout exemplified, a new

information system that enables greater quantity and quality of sensors, real time monitoring and

a higher degree of inter-utility information sharing is needed to handle this new reality [12].

GridStat is an information system being developed to solve many of the problems currently

evident in the power grid that up to now mainly has implemented performance and fault-tolerance

considerations. This thesis presents a security architecture that provides GridStat’s data dissemi-

nation with confidentiality and integrity in addition to further enhance its availability.

1.1 GridStat

GridStat is a middleware approach to a data acquisition framework under development for the

power grid that uses a unique combination of distributed network technologies to provide fault-

tolerance combined with real time performance [21]. It employs a specialized version of the

publish-subscribe paradigm centered on status dissemination. It is managed by a management

plane, that provides it with quality of service (QoS) guarantees. Status dissemination is based

upon periodic updates of status variables called status updates that are routed to the subscribers at
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constant, but differentiated rates.

In GridStat the routing of status updates are done by application-level routers, called status

routers, comprising an overlay network topology on top of any legacy network infrastructure. This

enables GridStat to span a heterogeneous set of underlying network protocols and, with the help of

the management plane, extend end-to-end QoS guarantees across them in a way no native network

protocol could [18]. The publishers, subscribers and status routers are defined as the data plane to

differentiate it from the management plane which controls it.

The latest extensions to GridStat is the introduction of hierarchical modes that enables quick

switches from one subset of subscriptions to another to handle power grid contingencies [10].

Mode switches can also be used in cases of denial of service attacks to shead data. The mode

switch extension uses a remote procedure call (RPC) framework called Ratatoskr, another new

addition developed on top of GridStat’s data dissemination[35]. By building an RPC mechanisms

on top of the publish-subscribe data dissemination Ratatoskr inherits, and the hierarchical modes

by transitivity, its properties such as QoS guarantees. The security architecture presented in this

thesis will provide these extensions with security through securing the data plane that they rely on.

1.2 Securing GridStat’s Data Plane

Any system aiming to transport sensitive data need to make efforts to secure that data. GridStat be-

ing developed for disseminating status information in the power grid makes it not only imperative

to ensure confidentiality, but since safety critical decisions will be based upon this information,

also integrity, authentication and availability.

One of GridStat’s main goals is to enable a national deployment that spans utilities and thus

enable information sharing that can increase the power grid stability [12]. In order for this to be

possible the utilities need to feel that their market sensitive data is safe from other utilities. The

utilities therefore need to be able to differentiate the confidentiality levels on status information.

In addition to securing market sensitive data from competitors, information systems for the
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power grid need to defend against malicious attacks that intend to harm the power grid. The more

comprehensive an information system becomes, the greater the consequences of a successful attack

and thus the need for security measures increases. In light of the last decade’s developments in the

world and the ”war on terror” the need for securing the power grid against such attacks have been

all around recognized [15] and has manifested itself, among other things, as Department of Energy

(DOE) and National Science Foundation (NSF) grants for research into this area. GridStat is part

of such a research project called Trustworthy Cyber-infrastructure for Power Systems (TCIP) [1].

1.2.1 Problem scope

GridStat has up to now focused on availability, performance and integrity with an emphasis on

fault-tolerance aspects. The goal of this thesis is to develop a Data Plane Security Architecture

that addresses the need for a self-sufficient security system that provides mechanisms which, when

combined with later developed policies, ensure confidentiality, integrity, authentication and further

improve the accessability of the communication streams between the publishers and subscribers

in the data plane. The security architecture also have to handle special GridStat’s mechanisms, of

which multicast (2.1.2.2), redundant paths (2.1.2.1) and rate filtering (2.1.2) are the most notable,

while exploiting some of its other properties, such as its relatively static topology and types of

services.

Securing the flow of information in the data plane entails securing the status updates against

attacks from the moment they leave the publisher until they are received by the subscriber. These

attacks could be everything from simple sniffing, to more advanced man-in-the-middle attacks and

injection of bad data.

The problem scope is limited to the communication and does not involve end-point security

of the GridStat components such as publishers, subscribers, status routers, QoS brokers and their

management communication. Although consequences of breaches in their security will be taken

into consideration, security mechanisms for the end-points are defined outside the problem scope
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and will have to be addressed by future projects.

In order to make a security system self-sufficient it needs to secure its own communication.

Nothing is gained by adding security measures for the data plane while introducing new security

weaknesses in the management plane. Any security system needs to protect its own management

communication by providing confidentiality, integrity and authentication in the same way as it

provides it for the payload data.

1.2.2 Dynamic Security Architecture

Information systems for the power grid have life expectancies of 25 years or more and thus causes

another serious technical challenge for this problem space. No one knows how much the compu-

tational power available to attackers will increase over such a long period of time, not to mention

possible breakthroughs in ways to crack specific algorithms. This makes it very hard to design a

static security system that with reasonable certainty can be trusted until the communication system

someday is replaced. If using such a static approach is at all possible it would necessitate using a

worst case approach when choosing algorithms and key lengths to account for the uncertainty in

what the future might bring. This would be extremely wasteful on resources and add unacceptable

levels of latency.

To avoid using worst case approaches, a dynamic solution where changes can be done to the

security in response to inevitable changes in the security field is desirable, allowing GridStat to

evolve with the changes in the security field instead of being at its mercy.

1.2.3 Challenges

The fact that information systems for the power grid are large distributed networks of mainly

unmanned nodes and that crucial control decisions relays on the data from these nodes add some

additional challenges with the use of dynamic approaches. Since no information can be lost it

is impossible to shut down nodes for maintenance. Updates have to be done in runtime without

any significant interruption in the information flow. The potential remoteness of the nodes make
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manual updates too inconvenient to be a viable solution and necessitates a solution where the nodes

can be remotely updated.

On top of the more general challenges of life expectancy and node distribution the fact that

GridStat employs techniques such as redundant paths and multicast places further restrictions on

the development of a security architecture for the data plane. Multicast is based upon the idea that

identical packets are being sent to multiple recipients. This makes it impractical to use any type

of security measures that differentiate the packets being sent based upon their recipients. The use

of differentiated rates between the publishers and subscribers also invalidates the use of stream

ciphers since they are based upon a stream where the producer and consumers are synchronized.

Bounding the latency that is introduced to acceptable levels also poses a challenge. Com-

munication systems for the power grid need to provide status updates in real-time. Real-time

requirements heavily favor an end-to-end approach where the added latency of a security measure

is bounded by the end point latencies, and not a function of the length of the path.

Finally the real world problem of the utilities having concerns against letting others control

the access to their information has to be addressed. For GridStat to be successfully deployed the

utilities need to feel that their market sensitive data is safe. This not only means encrypting to

achieve data confidentiality, but also keeping the access control of a utilities data within the utility

or else the utilities would be reluctant to move from the current system where they have complete

control.

1.3 Research Contributions

The research contributions of this thesis are:

• Design and implementation of a novel modular security architecture for the data plane of

managed status dissemination publish-subscribe frameworks (GridStat).
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• Design and implementation of a protocol that allows secure redistribution of security mod-

ules and keys over compromised communication links to reestablish security.

• Exploration of the different types of security modules relevant for information systems for

the power grid and a series of proof-of-concept module implementations based on those

explorations.

• An experimental performance evaluation of the security architecture’s infrastructure as well

as the proof-of-concept modules, individually and in sets.

1.4 Organization of Thesis

The thesis is divided into six chapters, Chapter 1 has introduced the problem space and goals of

the thesis while Chapter 2 delves into more background details such as the GridStat framework,

the current standards in the power grid industry and existing research on adding security to the

publish-subscribe paradigm.

Chapter 3 presents a threat model based on the industry and academic background research

explored in Chapter 2 before it moves on to a novel security architecture addressing the threats

through the use of over-the-wire configurable sets of software modules. Then Chapter 4 speci-

fies the design and implementation of the security architecture and a series of proof-of-concept

modules.

The performance of the implementation of the security architecture is evaluated in Chapter 5,

both with respect to scalability of the infrastructure and the real-time capabilities of the data plane.

Finally Chapter 6 offers concluding remarks and potential areas of future research.
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CHAPTER TWO

BACKGROUND AND RELATED WORK

This Chapter provides a background to the security architecture presented in this thesis. Section

2.1 gives an overview of GridStat, its properties, restrictions and challenges while Section 2.2

looks into the current industry standards and requirements. Finally, conventional PKI approaches

and current publish-subscribe security research are described in Section 2.3 and 2.4 respectively.

2.1 GridStat

GridStat is a rate-based status dissemination network developed mainly for use in the power grid,

but it has many other applicable domains where the majority of the data is periodic in nature.

It is an overlay network based on the publisher-subscriber paradigm which is a communication

paradigm that supports dynamic, asynchronous, many-to-many communications in a distributed

environment. By combining publish-subscribe with QoS management in a novel way GridStat

can disseminate periodic status information to a multitude of parties in real time with scalability,

flexibility, timeliness and reliability [21, 12].

Being an overlay network, GridStat can run on top of existing and future communication in-

frastructures overcoming their inherent heterogeneity. This is accomplished by application-level

routers called status routers. The status routers are the backbone of the data plane which also

contains publishers and subscribers. The status routers are controlled by a management plane that

provides QoS guarantees to the subscribers through a hierarchy of QoS brokers as shown in Figure

2.1.

GridStat employs a unique combination of techniques to improve reliability, timeliness and

performance of which the use of redundant paths, multicast and bandwidth control are some of the

most significant. The use of redundant paths not only greatly improves the reliability and average

latency, but can significantly reduce the cost of employing multicast.
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Figure 2.1: GridStat framework overview

2.1.1 Management Plane

The management plane, also called the QoS broker hierarchy, is a set of QoS brokers organized in

a hierarchy that manages the resources of the data plane. Each QoS broker manages registration

and deregistration of publications and subscriptions, path allocation, placement of condensation

functions, status router control and mode change mechanisms [10] to its subset of the data plane.

Figure 2.2 illustrates that there currently are no limit to the number of levels in the hierarchy, and

how the lowest level of the hierarchy is populated by leaf QoS brokers, of which subset of the data

plane they control are called clouds.

To set up a new status variable publications, publishers contact the leaf QoS broker that serves

their cloud and specify the properties of the variable to be published such as type, size and rate

before starting to push updates into the data plane. The leaf QoS brokers propagate this information

up through their ancestors to the root QoS broker.

Subscribers that want to subscribe to any of the available publications also contact their leaf

QoS broker with the publication name together with the desired QoS attributes for the different

modes they want to subscribe to the publication in. The subscription requests are then forwarded
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Figure 2.2: The Management Plane

up the hierarchy until they reach the lowest common QoS broker ancestor between the publisher

and the subscriber. This QoS Broker decides whether the desired QoS parameters can be met and

if so, starts allocating paths between the publisher and subscriber. If the publisher and subscriber

share the same leaf QoS broker the paths will be internal to their cloud, otherwise inter-cloud paths

will be set up.

The QoS brokers allocate paths in the data plane by directly controlling the routing tables in the

status routers. Each status router got a routing table for each of its ancestor QoS brokers controlling

separate percentages of the available bandwidth.

2.1.2 Data Plane

The data plane is a virtual message bus that routes status updates from publishers to subscribers

based upon application-level status routers organized into clouds, each controlled by a leaf QoS
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broker. Figure 2.3 illustrates how the publish-subscribe paradigm enables information to be in-

serted and extracted at any point in the data plane by adding publishers and subscribers. Sub-

scribers can subscribe to any publication, regardless of the publishers position. In Figure 2.3, the

subscribers Sub-1 and Sub-2 both subscribe to the same publication published by Pub-1 as shown

by the red lines.

Pub-1

Pub-2

A B
Sub-1

Sub-3

Sub-2

Publisher Subscriber Status Router Publication2Publication1

Figure 2.3: The Data Plane

The status routers use rate filtering and multicast to better utilize the bandwidth resources.

When subscribers subscribe to a publication, they can freely specify the rate of updates they want

as long as it is less or equal to the publication rate. This means that different subscribers with

different needs can use different rates on the same publication. The status routers filter all the

status updates based upon the current need of subscribers, resulting in drops of all unneeded status

updates. In the extreme case of there not being any subscribers to a publication, all the updates

of that publication is dropped at the edge status router. Currently the data plane uses UDP as the

underlying network protocol to move data between publishers, status routers and subscribers.

2.1.2.1 Multicast

GridStat uses the multicast technique to send the same information only once over the same link.

This means that a status update that has more than one subscriber is routed as a single update as

far as possible before being split up into separate updates.
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Figure 2.4 illustrates how multicast can be used to reduce the bandwidth needed to support two

subscribers to the same publication. Both Sub-1 and Sub-2 subscribe to the publisher in cloud A

with different rates; Sub-1 subscribes with the rate of 1 while Sub-2 gets an update with the rate

of 2. This means that every other time a status update is routed to Sub-2, Sub-1 also needs one.

Instead of sending a separate copy of the status update to Sub-1 a single update is routed as far as

possible before being spilt up into two copies. In this case the single copy of the update is routed

all the way from the publisher in cloud A to the middle of cloud B before being duplicated into

two streams.

Publisher Subscriber

A B

Status Router Sub-2 Stream Sub-1 Stream Multicast stream

Sub-1

Sub-2

Figure 2.4: Multicast

While the use of multicast decreases the bandwidth it places some restrictions on the develop-

ment of security architecture since it excludes the use of any technique that differentiates the status

updates based on the receiver. For multicast to work the update that is sent needs to be identical

regardless of the intended receiver.

2.1.2.2 Redundant Paths

GridStat employs redundant paths between publishers and subscribers that are set up by the man-

agement plane to achieve a tunable levels of availability. Figure 2.5 illustrates how more than one

path can be allocated to achieve spatial redundancy. The primary path is colored blue while the

redundant path is red. Notice that it is not always the case that the shortest path is the fastest in

overlay networks.
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Figure 2.5: Redundant Paths

While redundant paths cannot improve the worst-case latency it can, in cases with network

faults, reduce the average latency and provide an increased probability for the status update to

reach the subscriber. If one of the distinct paths encounters difficulties that either slows down the

delivery, or in the worst case drops, the status update, there is still a chance that the second path

can deliver it.

2.2 Conventional Power Grid Information Security

The power industry has until recently not focused on security for their information systems. The

protocols they have developed have been focused on increasing the power system reliability, while

little thought has been put into the security aspect. Security by obscurity was thought to be suffi-

cient. As is stated in [15] the power industry generally thought:

Who could possibly care about the megawatts on a line, or have the knowledge of how

to read the idiosyncratic bits and bytes appropriate for one-out-of-a-hundred commu-

nication protocols? And why would anyone want to disrupt power systems?

In the advent of the changes to the world situation, the increasing reliance on the information

system and the standardization of protocols, this attitude has slowly changed. In the late 1990’s the

The International Electrotechnical Commission (IEC) Technical Council (TC) 57 Power Systems
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Management And Associated Information Exchange, which is responsible for developing inter-

national standards for power grid information systems, created a working group called WG15 to

explore the security aspects of their protocols.

2.2.1 IEC TC57 WG15

WG15 is an IEC TC57 working group with the title Power system control and associated com-

munications - Data and communication security. Since its creation in 1997 it has tried to develop

security mechanisms for the power grid information system. It has defined four main types of

desired security properties, confidentiality, integrity, availability and non-repudiation and explored

how to provide safeguards against them. Figure 2.6 show the types of attacks the group envisions

and which types of attacks they actively try to address [15].

Denial of Service or 

Prevention of 

Authorized Access

Confidentiality Integrity Availability Non-repuditaiton

Unauthorized 
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Unauthorized 

Modification or theft 
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that did not
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Denial of Service

Integrity Violation
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Figure 2.6: Attacks defined by IEC TC57 WG15

WG15’s ongoing work follows a complementing approach instead of new development. They

focus on retrofitting existing power grid protocols presented in Table 2.1 with well known general

security techniques instead of developing new systems with specialized security integrated from the
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IEC 60870-5 Used in Europe and other non-US countries for SCADA system to
RTU data communications

DNP3 Derived from IEC 60870-5 and is in use in the US and now is widely
used in many other countries as well, primarily for SCADA system
to RTU data communications

IEC 60870-6
(ICCP)

Used for communication between control centers and between
SCADA systems

IEC 61850
(GOOSE)

Used for protective relaying, substation automation, distribution au-
tomation, power quality, distributed energy resources, substation to
control center, and other power industry operational functions.

Table 2.1: Protocols supported by WG15

Security Pro-
tocol

Domain Techniques employed

IEC 62351-3 Profiles That Include TCP/IP Security Certificates (PKI) and TLS
IEC 62351-4 Profiles That Include MMS TLS and Association Control Service Element

(ACSE)
IEC 62351-5 Serial Communication Pro-

files
Simple authentication

IEC 62351-5 Peer-to-Peer Profiles Simple authentication

Table 2.2: Security protocols developed by WG15

beginning. WG15 has presented proposed security protocols for each of these protocols, primarily

based upon the use of Secure Sockets Layer (SSL) and its successor Transport Layer Security

(TLS) where it is computationally possible as shown in Table 2.2. In cases where the lack of

computational power makes the use of SSL add too much latency, such as with IEC 61850 that has

a 4 millisecond end-to-end latency requirement [15], they do not employ any techniques to achieve

confidentiality only authentication.

By only considering the use of general security techniques developed for the general Internet

such as TLS, WG15 is unable to provide the performance needed to achieve confidentiality when

the latency requirements for the data is tight. They also lock their components to a static security

mechanism that needs manual update to handle changes that might arise during its life time. There
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is obviously a need for a more dynamic and specialized security architecture that can provide

confidentiality to all types of information even with tight latency requirements.

2.3 Public Key Infrastructure (PKI) based security

Since the introduction of public key cryptography in 1976 [17] and the development of RSA in

1978 [33] public key infrastructure, or PKI, has grown into an integral and crucial part of modern

life. In fact, it can be argued that the rise of Internet commerce wouldn’t have been possible

without it. PKI architectures provide the security for everything from online banking and shopping

to online voting.

Generally public key cryptography, or asymmetric cryptography, is built upon the use of a pair

of related keys, a public key and a private key. One key is used to encrypt while the other is used to

decrypt. This means that if each party has one of the keys they can communicate securely without

knowing the other key.

Since public key cryptography is asymmetric, a message encrypted with one key needs to be

decrypted by the other, it can be used either to achieve confidentiality or authentication. If the

public key is used to encrypt the message, only a node that has the private key can decrypt it,

effectively creating a way for many-to-one one-way confidential communication channel. If the

private key is used to encrypt the message every node with the public key can decrypt it which

means the message is not confidential, but since only the private key could have encrypted the

message in the first place, the origin of the message can be authenticated. This is often called

electronic signatures [14].

Asymmetric algorithms generally need much longer keys than symmetric algorithms to achieve

the same level of security since the relationship between the keys in a key pair can be exploited

to quicker derive the key by brute force. Microsoft recommends the use of 4096 bit keys for

root-certificates[2] which places huge restrictions on what problem domains it can be used. Many

problem domains do not have the processing power or the time to employ such large keys.
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Public key infrastructures build on public key cryptography, but only use it to achieve trust and

to agree upon a faster and less resource greedy symmetrical session key for the real data trans-

ference. This way the performance hit of using asymmetric algorithms can be partially mitigated.

Section 2.3.1 gives a brief overview of the the ruling PKI standard ITU-T X.509, while Section

2.3.2 explores TLS which is a widely used partial implementations of X.509.

2.3.1 X.509

X.509 is being developed by the Public-Key Infrastructure working group (PKIX) and was first

proposed in 1988. It has gone through two major updates since then, one in 1993 and one in 2005

[3]. X.509 specifies standards for formats, certificates, certificate validation and a hierarchical

composition of certificate authorities (CAs).

Certificates combine public keys with digital signatures and something that identifies them,

e.g. an IP address. These certificates are sent from the server side to the client side (called an

end node in X.509 terminology) of a connection so that the clients can authenticate the server by

ascertaining that the signatures of the certificates are valid. Figure 2.7 illustrates how public key

cryptography can be used to accomplish this. If the signature is valid the client can conclude that

the public key it received is the correct key for the server with the specified name and thus assume

that the server is the only one that can decrypt messages encrypted with the public key.

There are two ways to sign a certificate, either it can be self-signed which means that the server

signs his own certificate with its own key before sending it to the client. Self-signed certificates

achieve little security when sent over-the-wire. The only thing a client can conclude from such

a certificate is that whoever sent the certificate possesses the private key it was signed with. For

self-signed certificates to provide any security they have to be loaded out of band from a trusted

source [3].

The alternative way is to use trusted third parties, that in X.509 terminology are called Cer-

tificate Authorities, to sign the certificate. By signing a certificate the CA endorses the server and
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Figure 2.7: Certificate signature validation

says: If you trust me, you can trust that he is who he says he is. This assumes that the client already

got the CA’s public key installed and can use it to validate its signature.

The use of CAs creates the possibility of a hierarchy of CAs where each level endorses the

one below and one root-CA on the top uses a self-signed root certificate. As RFC 4210 [11]

specifies, this root certificate must be loaded out of band into the end node and cannot be securely

sent over the wire. In practical implementations this is usually accomplished by supplying lists of

root certificates that are installed with operating systems and browsers, but how the root certificate

should be supplied is not defined by X.509.

A certificate may be revoked if it is discovered that its related private key has been compro-

mised, or if the relationship (between an entity and a public key) embedded in the certificate is

discovered to be incorrect or has changed. X.509 does this by checking if a certificate is valid

through the use of a certificate revocation list (CRL) whose address is specified in the certificate.

A X.509 certificate roughly contains the following information:

• The public key being signed.

• A name, which can refer to a person, a computer or an organization.

• A validity period.
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• Certificate Authority identification.

• The location (URL) of a revocation center.

• Name of the algorithm to use.

• The digital signature of the certificate produced by the CA’s private key.

X.509 also defines an optional entity, called Registration Authority (RA), that complements

the CAs by taking care of personal authentication, token distribution, revocation reporting, name

assignment, key generation and archival of key pairs. Figure 2.8 illustrates how the different X.509

entities interoperate and are organized.
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Figure 2.8: The X.509 Architecture

2.3.1.1 Weaknesses of the PKI architecture

Even though PKI has been embraced for Internet security, it is not a silver bullet for every type of

security problem. As [19] explores, there are some risks associated with the use of PKI. Most of
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the risks are related to the PKI implementation and use on the general Internet where trust issues

are raised such as whether end users really can thrust CAs, but there are also some limitations

inherent to the PKI architecture.

PKI security is built upon the assumption that there exists a secure root certificate and, since

root certificates must be loaded out of band, they cannot easily be updated once installed. Even root

certificates with the recommended 4096 bit sized keys do not have eternal lifecycles and needs to

be updated. Microsoft recommends replacing a standalone root certificate every 20 years [2]. This

is more than long enough for this to be a non issue for conventional Internet use since users replace

their browsers and operating systems at a much faster rate than 20 years, but it poses a problem for

systems where out of band updates do not have the same rate of update. Information systems for

the power grid, on the other hand, are highly distributed with innumerable unmanned devices and

have a life expectancy well above the recommended root certificate life cycle. There is also no way

of guaranteeing that the key is not compromised through unforseen circumstances, such as through

leaks, whether they are caused by human error or discontent employees. This further emphasizes

the need a security architecture that does not rely on only out-of-band replaceable system wide

keys.

2.3.2 Transport Layer Security (TLS)

Transport Layer Security (TLS) and its predecessor Secure Sockets Layer (SSL) are X.509 based

protocols that provide a way to set up end-to-end secure communication channels between two

secure nodes over a unsecured network. TLS uses the latest X.509v3 standard [11] for its certifi-

cates and is widely used to achieve confidentiality, integrity and authentication in areas such as

web browsing, e-mail and instant messaging.

The TLS protocol is divided into four phases. As Figure 2.9 illustrates the first phase lets the

server and client initiate communication by exchanging random numbers. In the second phase

the client receives the server’s certificate and verifies it while the server in phase three receives the
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clients certificate encrypted with the client’s private key, and a pre-master-secret encrypted with the

servers public key, which is used to calculate a master secret that phase four can use as a symmetric

key[16].
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Figure 2.9: Transport Layer Security (TLS) protocol

Several different security algorithms are supported by TLS. For authentication RSA [33] and

Digital Signature Algorithm (DSA) [4] are used. While RSA is used both for encryption and

signing, DSA is a digital signature algorithm only. Either MD5 [31] or SHA [5] is used to for

integrity, while IDEA, RC2, RC4, DES and 3DES are supported for the symmetric encryption.

Some of the attributes of the supported symmetric encryption algorithms are presented in Table

2.3.

As explored in Section 2.2.1, the power industry has proposed to use TLS as the main security
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Algorithm Cipher Type Block Size Key Size Ref
IDEA Block 64 128 [25]
RC2 Block 64 40 [32]
RC4 Stream N/A 40 and 128 [23]
DES Block 64 64(56a) [6]
3DES Block 64 168(128a) [7]

Table 2.3: Symmetric algorithms supported by TLS

aEffective key size

protocol for their information system. Since TLS follows the X.509 protocol it inherits its strengths

and weaknesses and this thesis will theretofore argue that it is not the right protocol for GridStat

and present an alternative security architecture.

2.4 Publish-Subscribe Security

The publish-subscribe research tends to focus on performance, scalability and expressiveness [36]

and the research on security related matters that is being done is mainly concentrated on content-

based publish subscribe (CBPS)[29, 28, 30, 24]. In CBPS systems the subscribers register filter

functions and events are routed based on evaluations of these functions applied on the, usually

complexly structured, events. Since the brokers in a CBPS require full or partial knowledge of the

content of the events to route correctly the introduction of confidentiality poses interesting research

questions. Most approaches published on how to address these requirements have been different

variations on encrypting each attribute of an event with a different key, thus allowing brokers with

different needs to decrypt just what is needed to route the event successfully [28]. Khurana [24]

presents an extension to this approach that supports events that have an XML structure. Others

employ end-to-end techniques such as only encrypting the values of events, while keeping the

attribute types in clear text to route the information [30].

While most research on security in CBPS is not directly applicable to rate-based status dis-

semination publish-subscribe some of it can be useful such as Wang et. al. [36] which does not

present a security architecture, but explores the issues related to security in the publish-subscribe
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paradigm that can be used as part of the threat model specified in Section 3.1. Pesonon et. al. [29]

present a security architecture for multi-domain CBPSs that acknowledges the fact that confiden-

tiality in multi-domains warrant special considerations such as to what the intermediate brokers

are allowed to know about the content of routed events and where the access control to the events

should be placed. The architecture employs two separate security schemes, one for the connection

between the end points (publishers and subscribers) to the brokers based on TLS and another for

the inter-broker communication that allows the brokers to access the events partially.

A common trait of the security architectures published for CBPS is that they all employ PKI

in a lesser or greater fashion. This introduces weaknesses that are introduced in Section 2.3 and

further explored in 3.3. They also use asymmetric algorithms such as RSA to achieve event/status

update authentication, which is well known for adding unacceptable levels of latency to real-time

status dissemination and confirmed by the performance evaluation in Section 5.2.1, and a simple

alternative will be presented in Section 4.6.4.
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CHAPTER THREE

DATA PLANE SECURITY ARCHITECTURE

In this Chapter the general architecture behind the data plane security system is presented. Intro-

ductory the threat model developed based on threats to information systems for the power grid and

generally desired security properties for publish-subscribe systems, is presented.

Then the idea of building a security architecture around the use of transparent interchangeable

software security modules to address these threats is explored. Finally, the infrastructure security

needed to support such a dynamic approach is discussed. All together this provide the groundwork

for the design and implementation solutions presented in Chapter 4.

3.1 Threat Model

The stated goal of this thesis is to present a security architecture that adds confidentiality, integrity

and, to a lesser degree, availability to GridStat’s data plane. This Section will present a convergence

of two different approaches to threat models, one based on the functionality of publish-subscribe

systems as defined by Wang et. al. [36] and one based on types of attacks on power grid informa-

tion systems developed by IEC TC57 WG15 [15]

The Wang et. al. approach to threat models is requirements based, which means that general

goals of a security architecture in a publish-subscribe network are used as a starting point. He

divides the requirements into two sub categories, application security and infrastructure security.

Application security comprises the security of the data flow from publisher to subscriber, while

infrastructure security consists of the security of management communication. As previously ob-

served, the main focus of this thesis is on the application security and not present a general infras-

tructure security architecture; only a partial infrastructure security architecture that can support the

application security mechanisms. Wang et. al. further define the following application security

issues for publish-subscribe systems:
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Authentication: Authentication is needed for subscribers to assert that the events they receive

actually originated at the correct publisher.

Information integrity: Subscribers needs to be able to check the integrity of received events.

Information confidentiality: Keeping events flowing from publishers to subscribers confidential.

While all of the application security issues above will be addressed by the security architecture

presented in this thesis, the following infrastructure issues will only be partially addressed:

Publication confidentiality: Assuring that only authorized subscribers gain access to publica-

tions.

Subscription Integrity: Protect subscriptions from unauthorized modifications.

Service integrity: Protect against compromised infrastructure level components.

User anonymity: Keep the identity of users confidential.

Subscription confidentiality: Keep what the subscriber subscribes to confidential.

Availability Reduce the risk of malicious publications and subscriptions that can be used to over-

load the system.

Accountability: Require subscribers to be accountable for the information they receive.

These issues are based on general publish-subscribe systems and does not take into account

the special needs of information systems for the power grid. To address both the publish-subscribe

aspects and the power grid aspect, these issues can mapped to the threat model developed by

the security group within the IEC TC57 presented in Section 2.2.1 as shown in figure 3.1. User

anonymity is the only issue that cannot be mapped to a type of attack since user anonymity is
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Figure 3.1: Threat Model

something to avoid in information systems for the power grid where accountability is much more

important.

As the bold-italic text in Figure 3.1 illustrates, the security architecture presented in this thesis

addresses only parts of the overall security question associated with an information system for the

power grid, but while having a narrower focus be able to provide more deeper protection. The

presented architecture will concentrate on providing information confidentiality, integrity and au-

thentication while defending against listening and modification of data and malicious interactions

with the security infrastructure in addition to partial denial of service protection.

The security of GridStat’s original infrastructure, such as end-point security and QoS broker

communication, is assumed to be secured by other means, or by future extension to the presented

security architecture. Some fault tolerance mechanisms, such as the use of redundant paths and
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backup services that already are part of the GridStat framework, provide some protection against

attacks on availability, while future work needs to be done to design new mechanisms to protect

against other type of attacks on non-repudiation and physical attacks on the infrastructure. Even

though it is assumed that other security measures cover the general GridStat infrastructure it is not

assumed that they cannot be compromised. The security architecture presented in this thesis will

take into account the effect of different component being compromised and try to minimize the

negative effects through the use of compartmentalizing techniques.

GridStat is primarily designed to run on a private network separated from the public Internet

either physically or logically in order to achieve reliable QoS. While this reduces the chance of

arbitrary attacks it does not remove the risk of more organized attacks with resources that could

give them access to the private network. Therefore all considerations specified above have to be

taken into account.

3.2 Interchangeable Transparent Modules

The data plane security architecture is built upon the idea of using transparent interchangeable

security modules to achieve security for GridStat’s data plane. This implemented as a security

extension to the existing management plane, called the security management plane, that generates

keys and assigns sets of modules from a module repository, to the publishers and subscribers, on a

per status variable granularity according to dynamic policies as illustrated in Figure 3.2.

Assigning sets of modules and keys on a per status variable granularity enables the security

system to address the different needs of different multicast streams with status updates. For some of

these publications the need for confidentiality might be the strongest concern, and thus be assigned

strong encryption modules; others might put emphasis on integrity and obfuscation, while others

again might have strict real-time requirements and use faster, but weaker, security modules. These

assignments are specified in publication policies and corresponding subscription policies, which

design is specified in Section 4.4.1 and 4.4.2.
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Figure 3.2: The Interchangeable Transparent Modules approach

Each publisher and subscriber receives one publication or subscription policy for each of their

respective publications and subscriptions. Based on these policies they download the security mod-

ules they need from the security management plane and instantiate them with the keys specified

in the policy. The keys are random generated for each of the assigned modules by the security

management plane. When the modules are installed they are transparently applied to each of the

publishers’ and subscribers’ event streams.

Above publication and subscription policies there is another layer of policies called security

group policies (SGP) that define policies for groups of publications to ease the operation of poli-

cies. Whenever a publisher wants to start a new publication it has to register the publication with

a pre-existing security group. The security management plane uses this association to assign mod-

ules to the publication policy based on the current policy for the specified security group and thus,

by implication, also to all corresponding subscription policies. Any changes instituted to the SGP

will be propagated down the publication and subscription policies that are associated with it in one

of two ways specified in Section 4.5.

The security management plane’s repository of modules’ can be changed over time by adding
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new modules at runtime. These new modules can both be assigned to new publications and to

existing publications by adding and/or replacing old modules assigned to the different security

groups. All modules added to the module repository need two have two separate parts; a file

containing the actual code which will do the modules work and a module policy specifying the

properties and behavior of the module, and one optional key generator, if the module needs a

special type of key generations not supported by the default key generator.

The strength of a modular approach is that new security modules can be implemented with

varied functionality and performance attributes. By combining the modules in different combina-

tions the security architecture provides a unique toolset for easily making and enforcing tradeoffs

between different security and performance properties on an extremely small granularity. It also

enables system administrators to respond to changes in the security field by introducing new mod-

ules to replace old ones whenever needed.

There are almost an infinite number of modules that could be implemented and deployed,

however this thesis defines five major groups of module types that are of initial interest, each of

which has a clear and differentiated goal from the others.

Encryption modules Modules that encrypt information to achieve confidentiality.

Authentication modules Modules that with the use of digital signatures let receivers of informa-

tion authenticate its origin.

Integrity modules Error check and error correcting modules whose goal is to assert the integrity

of the information or correct integrity faults.

Obfuscation modules Modules whose goal is to mask recognizable patterns of data such as re-

peating bit sequences, which could be used to break the confidentiality achieved by the

encryption module.
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Filtering modules Modules that try to reduce the risk of denial of service by filtering published

events so only the events that are needed are pushed into the data plane.

More information on the design of the specific proof-of-concept modules can be found in Sec-

tion 4.6 and an performance evaluation of these can be found in Section 5.1.

3.3 Security in the Security Management Communication

Adding security measures to provide data plane security, while at the same time introducing new

security weaknesses in the management plane on which it relies is futile. Any security system

needs to protect its own management communication by providing confidentiality, integrity, au-

thentication and availability for itself in the same way as it provides its payload, in this case the

flow of status updates from publishers to subscribers in the data plane.

The challenges to secure the security management communication are many, but slightly dif-

ferentiated from the challenges to securing the data plane. Communication in the data plane is

based on publishers that push their information through multicast streams to multiple subscribers

with real time latency requirements as described in Section 2.1.2. Through these channels a steady

stream of information is transferred, which given enough time, enables an attacker to gather huge

amounts of data about its security measures.

Security management communication, on the other hand, is point-to-point communication with

sporadic burst of information with relatively loose latency requirements. This gives security man-

agement communication fewer restrictions on the type of security measures that can be taken than

with the data plane communication.

Figure 3.3 depicts the two types of security management plane communication that needs to

be secured; the communication from the data plane nodes to the security management plane rep-

resented by a Security Management Server (SMS) and the internal security management plane

communication between SMSs. More on the security management structure and components can

be found in Section 4.1.
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The modular approach to securing the data plane introduced in Section 3.2 necessitates a secure

distribution of policies and modules from the security management plane down to the publishers

and subscribers. To support such a dynamic solution to data plane security a dynamic approach

is also needed for the security management communication. A chain is never stronger than the

weakest link and building a dynamic security system on top of a static management security would

avail little. If some part of the static security is compromised, no level of flexibility in the rest of

the system would make any difference.

3.3.1 PKI

Dynamic data plane security hinges on nodes in the data plane being able to securely contact the

security management extension and download the modules and the keys they need. The challenge

arises when the communication link is suspected of being compromised and there thus is a need

to re-establish security by replacing the keys and/or modules used to secure it. As Section 2.3

explores, the conventional way of securing such communication is the use of PKI systems such

as X.509. X.509 and other PKIs build upon the idea of using certificates signed by certificate

authorities and asymmetrical encryption algorithms to establish secure connections. Clients are

provided a root certificate containing a public key out of band that can authenticate that incoming

information is signed by the corresponding private key. This provides the basis on which other

layers of security can be built such as letting other servers publish their own certificate with their
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own public key signed by the original root private key.

In GridStat’s case employing PKI would enable each SMS to replace public keys and modules

used to secure the communication to its children nodes that could be, or already are, compromised

securely by signing them with the root private key, as many times as is needed. Figure 3.4 illustrates

how such a replacement protocol, which replaces the current module and keys used for security,

could look. While this protocol could be further extended with a second key switch to ensure that

after-the-fact attacks extracting the key from its previous use with the old module to compromise

the communication with the new would not be possible, the main problem here is the Achilles heel

of all PKI systems, namely their inability to replace the underlying root key and authentication

algorithm.
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Figure 3.4: PKI module and key management communication replacement protocol

As previously stated the problem with PKI approach is that everything hinges on the integrity of
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the root private key. Different PKIs have different designs, some with highly advanced hierarchies

of certificates such as X.509, but they all have in common that there must exist a root certificate

signed by a private key to authenticate them. If that private key is compromised the whole security

system would be compromised.

Designing a security system using a dynamic and modular approach necessitates that its man-

agement communication also shares these properties. If the root private key somehow becomes

compromised, no new modules or keys could be distributed safely to the data plane, a system is

only as dynamic as its least dynamic component.

Alternatively, it is possible to exploit the relatively static topology of GridStat. While PKI is

designed for being able to handle an ever changing field of new web services, servers and clients,

GridStat is a much more stable environment. A GridStat node, being a data plane node or a

SMS has only a single parent it needs to communicate with and that parent will extremely rarely

be changed. In GridStat new children nodes can be added, but never without explicitly being

registered at its connection point by an authorized operator. All new children need to be registered

with their parent in order to be able to access its services. This means that security management

communication does not need to handle dynamic connections which simplifies the problem space

greatly and allows the approach pre-loading of a finite set of keys and an initial module.

3.3.2 Key set pre-loading

By providing all new nodes that are being added to GridStat and their parents with a set of k keys

and an initial encryption module as shown in Figure 3.5, it is possible to build a dynamic solution

with some limitations, but which removes the need for static root keys that potentially could be

compromised either as a result of brute force attacks or human error.

Pre-loading k keys makes it possible to switch keys k times even if the current key is com-

promised. This is possible since there is no need to send any keys over the wire, something that
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makes it impossible for an attacker gain access to the new key through sniffing. The only mis-

chief an attacker can try is to provoke a situation that forces the child and parent node out of

key-synchronization. That can either be attempted by initiating false key switches or interrupting

valid ongoing switches.

Figure 3.6 illustrates how the parent node initiates a key switch by sending a key-switch com-

mand together with a random number encoded with the current key. The child node decrypts the

number with the current key, increments the number by one, and returns it together with a new

random number encrypted with the next key in the key list. This concludes phase one. If it could

be assumed that the child never would receive false key change commands from attackers mas-

querading as the parent aimed to push the child out of key synchronization with the real parent,

the protocol could have finished here. But since this cannot be assumed, the parent node initiates

phase two of the protocol which asserts that both sides completed the key change successfully by

first checking that the child node correctly incremented the first random number. Then the parent

decrypts, increments and re-encrypts the second random number and sends it back to the child.

The child checks that the random number is incremented correctly, increments it a second time

and sends it back to the parent. The client now assumes that the key switch is complete and moves

permanently to the new key. The server assumes the same when it receives the random number

incremented for a second time.

Forcing both parties in the key switch to prove their possession of the next key in the list makes
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it impossible for an attacker to initiate invalid key switches without possessing the next key in

the list. If either of the random number checks fails, or either the first message or its reply isn’t

received, both the child and the parent revert back to the old key after a short timeout.

To combat the chance that interruptions or loss of the last reply from the child to the parent

causing the nodes to go out of key sync, the last message has to be treated differently than the

others. Since the child assumes the key switch was successful when it returns the second random

number incremented by 2 without checking whether the parent node received it, the parent cannot

follow the pattern of the other messages and reset back to the old key if it does not receive it. The

parent now has to decide whether the child node has completed the key switch or not.
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If the child did not receive the last message from the parent it will revert to the old key after a

given timeout. In an effort to avoid this happening the parent first tries to repeat the last message

until he gets a correct response, in which case the key change has been completed successfully, or

the time before the child will revert to the old key runs out.

If the parent has not received any responses, or only invalid ones, when the timeout kicks in,

nothing can be asserted about which key the child node uses, the old or the new. To resolve this

question the parent initiates a series of next-key-probes, as illustrated in Figure 3.7, with alternating

base keys. First the parent sends a probe using the old key as base, if no reply is received, or the

reply number is wrong, a new probe using the new key is sent. The parent will continue to do this

until it gets a correct reply.
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Figure 3.7: Key Re-synchronization protocol

Since the child has to use either the new key or the old key there can be only two reasons

for the parent not to receive a correct response. Either there is network failure, which means that

when the network is fixed the probes will re-synchronize the keys, or a man-in-the-middle keeps
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intercepting the commands. In the case of the man-in-the-middle attack the attacker needs to be

able to continuously intercept all the commands between the child and the parent to keep such a

denial of service attack up. As soon as the interception stops, the nodes will re-synchronize. Worth

noting is that if the attacker has the control needed over the network needed to accomplish such

denial of service it can completely sever the communication between the two nodes without the

need to attack specific protocols. Adding additional elaborate measures to combat such attacks on

specific protocols would thus be fruitless.

Key switches in themselves cannot handle the case where the current key is compromised as a

result of the module being compromisable. When the module is compromisable the attacker can

by listening in to the message-flow extract the key used. This means that in general all messages

that are sent using this encryption module, no matter the number of key switches, are insecure and

open to man-in-the-middle attacks after a undeterminable amount of time.

By utilizing the fact that modules in themselves are not secret, it is possible to extend the key

switch protocol to also replace the current module, even though it is compromised. Successfully

replacing a compromised module with a new module necessitates the transference of the new

module from the parent to the child without any men-in-the-middle compromising the modules

integrity. To create a special case where the chance of such a successful man-in-the middle is well

below acceptable levels the following assumptions about what preconditions an attacker needs to

satisfy to extract a new key from the currently used module have be exploited:

1. Assumption: A relatively large number of processing cycles, which takes time.

2. Assumption: A significant amount of data to base their algorithms on.

These assumptions can be taken advantage of. First of all, by switching keys when sending a

new encryption module the attacker is denied two things.

1. They cannot use any key they previously have decoded from the communication stream.
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2. They have to discard all previously collected data about the stream and start from the begin-

ning.

Since the amount of data needed to transfer a new module is relatively small, the chance of the

attacker getting enough data from that transfer alone to decode the new key is very low. Observe

that for a man-in-the-middle attack to successfully compromise the integrity of a module transfer

the attacker needs to be able to replace the real module with a fake module that it has encrypted with

the currently active key. By switching to a new key just before sending the module the attacker’s

workload can be significantly increased by forcing it to extract the new key on very little data

before being able to do the encryption. If the attacker by chance should get enough information in

that single message with the new module to extract the new key, it still needs some time to calculate

it. By adding strict time limits on these transitions the attacker would need to accomplish all this

without adding a significant level of latency.

To further enhance the protocol, keys could be switched a second time after the new module

is transferred. This will ensure that when the security management communication link starts

using the new module, it got a new key that has not been used with the old module. Something

that, assuming the new module is secure, makes it impossible for the attacker to use information

gleaned from the use of the old module with the new module. Figure 3.8 depicts the module switch

protocol, red arrows symbolize messages encrypted with the old key and module, orange arrows

messages encrypted with the temporary key and old module, while the green arrows symbolizes

safe communication using the new key and the new module.

First the parent sends a replace module command encrypted with the old key and module. Both

the parent and the child moves to a temporary key. Then the parent sends the new module and a

random number, encrypted with the temporary key and the old module. When the child receives

message C it decrypts the new module and random number, installs the new module, increments

the random number, generates a new random number and then changes keys again to a new key.
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Finally the child replies to the parent with the two random numbers encrypted with the new module

and the new key. Receiving message D the parent also moves from the temporary key to the next

key and decrypts the message.

This module switch protocol would make it extremely hard to perform a man in the middle

attack and should reduce chance of a successful attack to acceptable levels. The essential part here

is to enforce a tight time requirement on a response to message C. If the parent does not receive
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a message D within a set time it red-flags the node and aborts the operation. To be able to do a

successful man in the middle attack the attacker must be able to extract the temporary key from the

single message C in a short enough time to encrypt its false module with this key and send it to the

child without exceeding the time limit.

The third phase in the protocol is added to assert that the module switch was successful and

avoid the problem of loss of the last confirming message, caused by an attacker or by mundane

network problems, resulting in the child and parent to go out of module and key synchronization.

Loss of any intermediate messages can easily be solved by letting both parties revert to old keys

and modules after a timeout, effectively re-synchronizing the parties. If the parent does not receive

F, or the response is invalid, a similar approach to handling the loss of the last message in the key

switch protocol illustrated in Figure 3.7 can be employed to re-synchronize the child and parent.

As shown it is possible to replace a module k/2 times if the child is preloaded with k keys. Even

though this definitely imposes a finite limitation on the dynamic aspects of the security architecture,

it can be argued that with the correct size of k this would not hamper the security significantly. The

only reason for needing an infinite number of keys is that the keys and modules keep getting

compromised indefinitely. For this to be true there has to be another weakness in the security

system that no amount of key or module switches can remedy. Assuming a finite life expectancy

there should exist a k such that there are enough keys to switch modules as many times as needed

during the deployment of GridStat.

Calculating the size of k is outside the scope of this thesis, and would be strictly application

dependant, but a simple example is to base the size of k on the expected deployment time divided

on the time it takes to replace a module. This would result in the maximum number of keys it is

possible to use during the deployment phase of the security architecture’s lifecycle. The actual size

of k would be much smaller, but it informally proves the point that having a finite k not necessarily

makes the security architecture more static.
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The pre-loaded approach provide a second level of security. While the data plane communi-

cation is secured through the use of assigned data plane security modules and keys that can be

replaced without limitations, the pre-load load approach secure the transfer of these data plane

modules and keys with the limitation that the modules and keys securing each of these security

communication links only can be replaced a finite number of times.

3.4 Coupling of the Management Plane and the Security Management Plane

There are three major integration models that the security extension to the management plane could

be use; either letting it be completely integrated into the existing management plane, partially

integrated or completely decoupled. All of these have their own sets of tradeoffs.

Complete integration as shown in Figure 3.9 entails that the security management plane is

integrated into the existing QoS hierarchy to the level that the security management servers only

live as a logical group of functionality in the QoS Broker processes. A by-product of such an

approach would be that by sharing the process, they also share the same interface which makes the

security management plane completely transparent for the data plane. It also becomes transparent

to include the security extension to any backup replication scheme for the management plane.

A problem with complete integration is the loss of flexibility that can become important in the

future work of extending the data plane security architecture into the QoS hierarchy. By muddling

what could be separate functionality into one component the complexity is increased and the ease

of understanding degraded.

Letting the security servers be modules, with their own interfaces, instead of integrated logic,

enables the possibility that the QoS brokers can communicate with SMSs in a similar way to what

the data plane nodes are doing through the same secure interfaces. This secure communication

would provide a secure base from which it is possible to provide secure hierarchical communica-

tion using the Ratatoskr RPC [35] calls. When the QoS hierarchy uses Ratatoskr RPC calls they act
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like publishers and subscribers and can thus be treated as such transparently by the security man-

agement plane if the QoS brokers communicate through the security management servers’ external

interface.

A third tradeoff associated with a completely integrated solution is that the security manage-

ment plane (SMP) topology by definition will be bound to the management topology. SMSs have

a different utility model than QoS Brokers and thus might be suited for other flatter or deeper

topologies than the QoS brokers in the different deployments.

With the partial integration approach depicted in Figure 3.9 the SMSs still live on the same

hardware as the QoS brokers, but in separate processes and with separate interfaces. This reduces

the level of transparency, but greatly increases the level of flexibility, both on the software en-

gineering side by enabling simpler non-intrusive implementation, and by allowing the Ratatoskr

RPC transparent access to the SMP services. It also allows for the flexibility of quickly, without

the need for code changes, moving to a completely decoupled approach if that is desired.

A complete decoupling of the security management plane as shown in Figure 3.9, would further

increase the flexibility of the system by enabling the security management plane to be deployed

in a completely different topology from the QoS Broker hierarchy. This would make it possible

to deploy the security management plane in an optimized topology for each situation, but make it

necessary to provide it with its own backup replication scheme to ensure acceptable levels of fault

tolerance.
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Interface

Process

QoS 

Broker

Process

SMS

Process

Hardware Hardware

QoS 
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Process

SMS

Process

Hardware
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Figure 3.9: Security Management Plane Intgeration
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In an effort to maximize the flexibility without adding too much complexity the presented

security architecture will employ a partial integrated approach. While this adds some restrictions

on the topology of the security management plane it makes it fairly easy to include the SMP into the

existing backup replication scheme and can in addition quickly be moved to complete decoupling

if that is desired.
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CHAPTER FOUR

DESIGN

This chapter presents the design and implementation of the security architecture presented in Chap-

ter 3. It first fleshes out the design of the security management plane and explores some tradeoffs

that had to be done in Section 4.1, then moves on to the enhancements done to the data plane to

support the architecture.

The chapter then proceeds to present the Transmuter class and its crucial mechanisms in

Section 4.3 before it moves on to the five XML policy definitions developed for the security ex-

tension. Section 4.5 delves into the different policy propagation mechanisms that let modules and

keys be assigned and reassigned to the publishers and subscribers.

Finally Section 4.6 defines the different types of security modules needed to provide the nec-

essary security and presents a set of implemented proof-of-concept modules based on these types.

4.1 Security Management Plane (SMP)

As described in Section 3.2, the SMP is an extension to the existing management plane. This

extension controls the security aspects of the data plane by assigning, re-assigning and distribut-

ing dynamic sets of security modules and keys to the publishers and subscribers. The simplest

way for the SMP to achieve these properties would be to just let a single Security Management

Server (SMS) control the whole data plane, but this is not a viable solution since this would add a

unacceptable scaling constraint and introduce a single point of failure.

To mitigate both the scaling and single point of failure problem, the SMP needs to be divided

into sets of SMSs each serving their own subset of the data plane. There are several ways to orga-

nize these SMSs into topologies, however, given the hierarchical structure of the existing manage-

ment plane, the most logical is to use a form of hierarchical topology that can utilize the existing

command structure and replication scheme for increased fault-tolerance as shown in Section 4.1.1.

43



Section 4.1.2 and 4.1.3 explores the design of leaf-SMSs and interior-SMSs respectively.

4.1.1 Hierarchy

The security management plane manifests itself as a set of security management servers organized

in a hierarchy with a special type of servers called leaf Security Management Servers (leaf-SMS)

as leafs and interior security management servers (interior-SMS) as internal nodes. The leaf-SMSs

serve a single GridStat cloud by assigning keys and modules to all publications within that cloud.

They also provide the publications with access control by controlling the access to their assigned

modules and keys. Without the correct modules and keys a subscriber will not be able to access

the information of the publication, thus the leaf-SMS controls access to all information published

in the cloud it services.

The development of an access control scheme that provide the flexibility needed for a cross

domain security system, such as the one outlined here, is outside the scope of this thesis. The

security management servers instead employs a simple access list scheme to decide whether a

subscriber should be granted access to a publications modules and keys. However there is an

ongoing project where TrustBuilder [38, 26] is used to provide attribute based incremental trust

negotiation. More details on this project can be found in the future work Section 6.2.7.

The interior-SMSs do not contain any information about publications; their only job is to for-

ward inter-cloud subscription requests to the leaf-SMS that controls the requested publication in a

DNS like fashion [27]. They are needed in order provide the SMP with a level of flexibility that a

pier-to-pier scheme of direct communication between leaf-SMS cannot support. With the pre-load

scheme, outlined in Section 3.3, of all communication links between components, except the data

plane communication, need to be explicitly supplied with a set of keys and a module. In a pier-

to-pier approach this means that all SMSs needs to be supplied with the keys and modules needed

to communicate with all other SMSs. In addition to the resources needed to store all the keys, the

pier-to-pier approach would make it impractical to add new SMSs since they have to be registered
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with all the other SMSs. By letting the hierarchy of interior-SMSs handle the inter leaf-SMS com-

munication, new leaf-SMS can be added by only registering it with its parent interior-SMS, thus

greatly reducing the need for key storage resources and increasing the ease of use.

To address the utilities concerns about letting others control the access to their information, all

publication information, and its access control, is kept at the leaf level and only the leaf-SMS that

serves the cloud of the publisher can grant access to it. This also makes it impractical to cache

subscription policies in the hierarchy since only the leaf-SMS that owns them can grant access to

them. In addition it is of outmost importance that the policies returned to subscribers are guaranteed

to be the most recent, something that makes the use of caching of the policies cumbersome.

Modules, being much larger in size than policies, have a much greater potential benefit from

being cached. They also lack the cache drawbacks of integrity problems and access control since

the modules are static in nature and not sensitive data in themselves. Section 5.3 will show the

average latency associated with requesting missing modules for subscribers can be greatly reduced

by letting the SMS hierarchy cache the modules.

A publication or subscription request is treated in two phases, first the data plane node, a

publisher or subscriber, fills out a policy file with the information it has access to such as the name

of the publication, then it sends this policy to the SMP. The SMP then completes the policy with

module and key assignments if the data plane node has the needed credentials, and sends a copy

of the completed policy back. The data plane node then checks whether it has all the assigned

modules in its own library of modules; if not, it requests the missing modules from the SMP.

The two phase approach take advantage of the fact that modules can be cached, while poli-

cies cannot, by separating these two into two different rounds of communication. In addition to

ensuring that the modules are not transferred unnecessary if they already are cached further down

the path, the two phases also allow publishers and subscribers to download the needed modules

in parallel, significantly improving performance. Figure 4.1 shows how the SMP is organized on

top of the data plane. If Pub-1 wants to publish a variable it simply goes through the two round
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communication with the leaf-SMS that controls cloud A, retrieving a publication policy and its

associated modules.
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Figure 4.1: The Security Management Plane Hierarchy

To set up a inter-cloud subscription, such as Sub-1 in cloud N subscribing to the new Pub-1

publication, the leaf-SMS that serves cloud N, and thus receives the first round of the subscription

request from Sub-1, needs to forward the uncompleted subscription policy to the leaf-SMS that

owns the publication policy in question, in this case the leaf-SMS controlling cloud A. This is

done by forwarding the subscription policy to the parent SMS. The parent SMS checks whether

the publisher, in this case Pub-1, is within the scope of any of its children with a hash table lookup.

If the lookup returns false the policy is forwarded further up the hierarchy, but if the publisher is

found within its scope it forwards the policy down to the towards the leaf-SMS that serves that

publisher.

When the subscription policy reaches the leaf-SMS that controls access to the publication the

leaf-SMS goes through the same process as with local subscriptions, it tests the subscriptions’

credentials and if accepted fills out the subscription policy with module and key assignment before

returning it, in this case through the hierarchy and back to the subscriber Sub-1. The subscriber

then requests any missing modules that it needs based upon the received policy. If the module is
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cached in the hierarchy these modules will be returned to the subscriber relatively quickly, but in

the worst case only the leaf-SMS with the publication information has the modules requested. In

that case the modules will follow the exact same path as the policy did, but this time the modules

will be cached and thus provide better performance for further subscription requests that use these

modules.

Availability is an important aspect of security systems where the data that it secures is of vital

importance and, even though the actual implementation of mechanisms such as backup servers and

replicas is outside the scope of this thesis, the architecture is designed with such extensions in mind.

By having a hierarchical structure that mimics the structure of the existing GridStat management

plane, it can easily utilize the accessibility mechanisms that are, and will be, developed for it. The

implementation of the leaf-SMS and interior-SMS is done in such a way that all information is

stored in XML structures. This means that backup replicas relatively simply can be deployed by

replicating the content of these XML databases and thus replicate the SMS’s states. This fits well

with the replica approach for the existing management plane and Figure 4.1 also illustrates how

the GridStat replica scheme for the management plane could be extended into the SMP.

4.1.2 Leaf Security Management Server (Leaf-SMS)

The leaf-SMS serves a single GridStat cloud, providing data plane security for that section of the

data plane. It issues publication policies, with module and key assignments, to all publications

that publishers in the cloud register and issues subscription policies to all subscriptions to these

publications, whether they are local or global.

Figure 4.2 depicts the logical structure of leaf-SMS. At its core it has four databases keeping

its state. The Publication/Subscription policy DB contains all the currently used

policies for publications in the leaf-SMS’s subset of the data plane and their subscriptions, the

Security Group Policy DB keeps the SGPs that are defined for the leaf-SMS, while the
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Security Management Communication Policy DB (SMCP-DB) contains the Secu-

rity Management Communication Policies (SMCPs) that specifies the security for the virtual point-

to-point security management communication links. More information about SMCPs can be found

in Section 4.4.4. The fourth database is a module repository that contains the modules that are used

to provide security for both the data plane and the security management plane.

As Figure 4.2 shows, a leaf-SMS has three interfaces. First of all it has a user interface where

operators can issue commands. Secondly, it has an interface to its parent interior-SMS called

a Parent SMS Communicator, a two way interface where commands and information can

flow both ways.

Finally there is the main interface to the data plane called the Data Plane Communicator.

Its task is to handle the two-way communication with the publishers and subscribers in the leaf-

SMS’ cloud. The inbound communication can be two things, either a policy the data plane node

wants to get updated, or a request for a module that the originator needs. Both inbound and

outbound messages have to go through the Transmuter that looks up what modules that are

currently assigned to communication with the source or target in the SMCP-DB, and applies these

modules to the request before the command is passed on.

In the case of policy updates, the requests are passed up to the Policy Engine which per-

forms the update and returns the updated policy through the Transmuter again, while in the case

of the module request, the module is retrieved from the module repository if it exist there. If the

module repository does not have it, the requests is sent to the Parent SMS Communicator

which will return the module if it exist in any SMSs in the hierarchy.

The Policy Engine is the main logical component in the leaf-SMS. It controls access to

existing policies and the creation of new ones. Whenever it receives a policy for update from the

data plane, it synchronizes it with the current policy for that publication or subscription in the

Publication/Subscription Policy Db. If it gets a publication policy that does not yet

exists, it retrieves the SGP for the security group that the publication policy specifies it wants to be
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Figure 4.2: Leaf Security Management Server

a part of, and completes the policy with the information specified there, such as to set an expiration

date on the policy and assign modules. Before adding the new module to the policy database and

returning a copy to the publisher, the Policy Engine generates keys to the assigned modules

with the key generator specified in the module policy for each module. This can either be the

default generator provided by the leaf-SMS itself, or a specially supplied key generator module for

that security module. More on the use of key generator modules can be found in Section 4.6.1.

In addition, to respond to data plane requests, the Policy Engine also handles changes

done to the SGPs through the user-interface. Whenever a SGP is changed the Policy Engine

propagates these changes to all publication and subscription policies in its policy database that are

associated with that SGP. It can also propagate these updates down to the publishers and subscribers

that are already using the affected policies, if that is desired by the operator. More on that can be

found under Forced and Natural policy updates in Section 4.5.2 and 4.5.1 respectively.

Outgoing communication to the data plane consist of sending forced policy update commands
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and applying SMCP changes for the different communication links with the respective children

data plane nodes. SMCP changes are accomplished by switching keys and/or switching to another

module according to the protocols defined in Section 3.3.

The Parent SMS Communicator controls all communication with the parent interior-

SMS and is identical for any SMS, whether it is a leaf or interior. It can send and receive subscrip-

tion policy updates and module download requests that cannot be handled locally, which enable

subscription policies and modules to be routed through the hierarchy. It also has a RegisterOffspring

command that makes it possible for the leaf-SMS to register the data plane nodes that it serves with

its parent. In addition the Parent SMS Communicator can receive SMCP change protocol

commands. These commands change the policy for the virtual point-to-point communication with

the parent.

The operator controls the leaf-SMS through the user interface. Here he, or she, can define new

security groups or edit existing ones, add and remove modules, and register child nodes with their

associated SMCP.

4.1.3 Interior Security Management Server (interior-SMS)

A interior security management server’s task can be compared to that of a DNS server. They are

organized in a hierarchy and do not store any publication or subscription policies themselves, but

exist to route subscription policies and modules on behalf of leaf-SMSs. This means that a interior-

SMS does not need a Policy Engine or a Publication/Subscription Policy Database

as the leaf-SMS. Neither does it have a Data Plane Communicator, but instead it has a

Child SMS Communicator which enables it to communicate with its children SMSs.

Figure 4.3 depicts the logical structure of a interior-SMS. It has three databases, two of which it

has in common with the leaf-SMS, namely the module repository and the SMCP-DB. The SMCP-

DB is obviously needed to communicate securely with its children and parent, in the same way

as the leaf-SMS talks to its parent interior-SMS and data plane nodes. The interior-SMS need
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a module repository for two reasons: to store the modules assigned in the SMCPs and to cache

modules that are being routed through the hierarchy.

The third database, called Publisher to Child DB, which is unique to the interior-SMS,

stores the name of all the publishers registered in its scope. The leaf-SMS registers its publishers

with its interior-SMS parent which stores the publisher associated with the child that serves it in

the Publisher to Child Database and forwards the registration to its parent.
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Figure 4.3: Interior Security Management Server

The user interface of a interior-SMS is a limited form of the user interface of a leaf-SMS.

Since an interior-SMS does not control any data plane policies, the user interface only needs to

support the adding and removing of modules and the management of the virtual point-to-point

communication lines with its children SMSs. This is done through the same Child Organizer as

the leaf-SMSs use to manage their communication with the data plane nodes.

4.2 Data Plane Extensions

To support the use of security modules and the publication and subscription policies when they are

assigned, the GridStat’s data plane had to be extended. Since the security architecture leverages an
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end-to-end approach these extensions are limited to the publishers and subscribers that are the end

points of the data plane status update streams.

4.2.1 Publisher

A publisher in GridStat is a producer of, with a few exceptions, periodic status updates. Publishers

register publications with the management plane, together with their rate and type, and get assigned

a publication id before starting to push status updates of that type with the specified rate into the

data plane.

To support the security architecture presented in this thesis the GridStat publisher component

has been extended and made more modular. The design of the publisher has moved from the

original all-in-one design depicted in Figure 4.4 to the extended version in Figure 4.5.
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In the extended publisher the publisher core has the same commands available as the original

publisher, but instead of directly contacting the management plane and pushing data into the data

plane, all communication is sent to a proxy which delegates the tasks to different components. To

set up new publications the core sends a register-publication command to its proxy who forwards

the command to the Management Communicator. In order to successfully start publishing

a new publication, the Management Communicator then has to register the new publication

with the management plane, and get assigned a publication security policy by sending a pull policy

command to the security management plane extension. All communication with the security man-

agement plane goes through the Transmuter which applies a security module according to the

currently assigned SMCP to secure the communication between the publisher and its leaf-SMS.

More details about the Transmuter and SMCPs can be found in Section 4.3 and 4.4.4 respectively.

When the Management Communicator receives the assigned publication policy, it checks

whether the local Module Library has some or all of the modules that were assigned, and

then sends a fetch module command to the security management plane for any that are missing.

Finally the policy can be added to the Policy Library, activated in the Transmuter and the

publisher core can start publishing through the proxy and into the now secured status update stream.

More information about how policies are activated can be found under the policy propagation

Section 4.5.

The two libraries keep the local dynamic security content organized. The Module Library

stores all the downloaded modules, so they can be used whenever a policy assigns one of them

without needing to download them again, while the Policy Library keep the records of the

currently active publication policy for each of the publisher’s publications and the SMCP needed

to securely communicate with its leaf-SMS.
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4.2.2 Subscriber

Subscribers are consumers of, with a few exceptions, rate-based status updates. The most notable

exception is the already mentioed RPC system Ratatoskr [35]. A subscriber requests a subscription,

with QoS requirements, to a published variable from the management plane. If the management

plane accepts the request, the subscriber will start receiving status updates with the specified QoS

guarantees from the status router that functions as the subscriber’s connection point with the data

plane. A subscriber also has functionality to retrieve the currently available modes and handle

mode changes that potentially change subscription properties [10].

In this project the GridStat subscriber has been extended and made more modular to support

the new security architecture for the data plane. The design of the subscriber has been moved from

the all-in-one architecture shown in Figure 4.6 to the extended subscriber depicted in Figure 4.7.
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The extended subscriber design mirrors that of the extended publisher and reuses many of the

same components. As with the extended publisher the extended subscriber lets the core keep all

the functionality from the original subscriber, but lets it communicate with a proxy instead of

directly with the external interfaces. The proxy delegates the commands to whatever component

that should handle the command.

The process of registering a subscription is similar to the way a publication is registered with

the exception of how the policy is activated in the Transmuter. The registration process is

described in the previous publisher Section and more on the activation process can be found under
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Figure 4.7: Extended Subscriber

the policy propagation Section 4.5.

4.3 Transmuter

Transmuters are objects embedded in all publishers, subscribers and SMSs that enforce the policies

for the communication links. They take the messages sent over these links and apply the modules

and keys assigned to that communication link specified in the respective policy files on each end

point. Figure 4.8 show the Transmuter simple transmute method responsible for handling

data plane traffic.

The transmute method performs three main tasks. First, it provides subscribers with the

ability to perform reactive module switches described in Section 4.5.3. Secondly, it performs its

main task of applying all the modules and keys assigned to the publication of which the status

variable is a part and returns the transmuted result.

Finally the method checks whether the policy currently in effect is expired and needs an update.

Since downloading a new policy can take a long time, and the Transmuter needs to be ready to

handle more updates, it does not perform the update itself, but initiates a new thread to perform the

task as described in detail in Section 4.5.1.
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p u b l i c B y t e B u f f e r [ ] t r a n s m u t e ( B y t e B u f f e r [ ] b u f f e r A r r a y , I n t H o l d e r l e n g t h )
{

B y t e B u f f e r [ ] r e t = b u f f e r A r r a y ;

/ / E x t r a c t i n g t h e v a r i a b l e i d from t h e s t a t u s u pda t e
i n t v a r i a b l e I d = b u f f e r A r r a y [ 0 ] . g e t I n t ( C o n s t a n t s . UPDATE VARIABLE ID OFFSET ) ;
/ / E x t r a c t i n g t h e p o l i c y stamp from t h e c u r r e n t l y used p o l i c y f o r t h i s v a r i a b l e
byte policyNum = m pl . ge tPol icyNum ( v a r i a b l e I d ) ;

i f ( m type ==PUBLISHER )
{

/ / S tamping p a c k e t w i t h p o l i c y number
b u f f e r A r r a y [ 0 ] . p u t ( C o n s t a n t s . UPDATE POLICY STAMP OFFSET , policyNum ) ;

}
e l s e
{

/ / E x t r a c t i n g t h e p o l i c y stamp from r e c e i v e d u pda t e
byte p o l i c y S t a m p = b u f f e r A r r a y [ 0 ] . g e t ( C o n s t a n t s . UPDATE POLICY STAMP OFFSET ) ;

/ / Check ing whe ther p o l i c y stamp c o r r e s p o n d s t o t h e c u r r e n t p o l i c y
i f ( policyNum != p o l i c y S t a m p )
{

/ / Forc ing a s w i t c h t o t h e new p o l i c y
i f ( ! m pl . a c t i v a t e P o l i c y ( v a r i a b l e I d , p o l i c y S t a m p ) )

re turn b u f f e r A r r a y ;
}

}

/ / R e t r i e v i n g t h e a s s i g n e d modules
Module [ ] modules = m pl . ge tModules ( v a r i a b l e I d ) ;

/ / I t e r a t e t h r o u g h t h e modules and a p p l y them t o t h e up da t e
f o r ( i n t i =0 ; i<modules . l e n g t h ; i ++)
{

t r y{ r e t = modules [ i ] . p e r f o r m A c t i o n ( r e t ) ;}
ca tch ( A c t i o n F a i l e d E x c e p t i o n e )
{

System . o u t . p r i n t l n ( ”WARNING: Unable t o t r a n s m u t e B y t e B u f f e r : ”+e ) ;
}

}

/ / Check t o s e e i f t h e p o l i c y i s e x p i r e d and need t o be upda ted
i f ( m pl . p o l i c y E x p i r e d ( v a r i a b l e I d ) )
{

P o l i c y R e p l a c e r T h r e a d p r t = new P o l i c y R e p l a c e r T h r e a d (
v a r i a b l e
P o l i c y C o n s t a n t s . MODULE SWITCH DELAY ) ;

p r t . s t a r t ( ) ;
}

re turn r e t ;
}

Figure 4.8: The Transmuters transmute method

4.4 XML policies

The security architecture uses XML policies in order to provide a unified way of representing

dynamic security aspects. These policies can easily be transferred between components can also

be stored in persistent databases that allow for backup state replication.

Five different types of XML policies have been developed; the publication policy, subscription

policy, security group policy (SGP), security management communication policy (SMCP), and

module policy. While the first four specify assignment of security rules, such as modules and keys,
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for some given type of communication lines, the module policy differentiates itself somewhat by

describing security module attributes.

4.4.1 Publication Policy

Publication policies are XML structures that specify a set of security rules for a publication. Figure

4.9 shows the organization of this XML structure. It consist of 9 main nodes; type, time frame,

policy number, publication name, publication id, publisher name, security group, assigned modules

and a change log. This simple structure makes it easy to extend and add more functionality in

future iterations and development. One example of such an extension, an ongoing project using

TrustBuilder [38] to achieve dynamic user level access control, is explored in Section 6.2.7.

<G r i d S t a t P o l i c y>
<Type>P u b l i c a t i o n</ Type>
<ValidTimeFrame>

<From />
<To />

</ ValidTimeFrame>
<Modules />
<PolicyNum />
<P u b l i c a t i o n />
<P u b l i c a t i o n I d />
<P u b l i s h e r />
<SecurityGroup />
<ChangeLog />

</ G r i d S t a t P o l i c y>

Figure 4.9: The Publication Policy XML Structure

Publication policies are initially created by a publisher that wants to publish a variable. The

publisher specifies the name and the id of the variable, its own name as publisher, the name of the

desired security group with which the publication should be associated. It sets the policy number

to zero and adds a Created entry in the change log. An example of such a policy before it is sent

the SMP is shown in Figure 4.10. The incomplete policy is then sent to the publisher’s leaf-SMS.

The leaf-SMS then fills in the missing information based on the current policy specified for

the relevant security group. First it assigns the modules and generates keys, then it sets the valid

time frame for the policy by taking the current time in milliseconds and adding the expiration time

specified in the security group policy. Finally it updates the policy number and adds a modification
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entry in the change log. An example of how a publication policy might look after the assignments

can be seen in Figure 4.11.

The policy number in the policy is a sequential 8 bit number that is updated each time the

policy is changed. By letting the publisher stamp the status updates that it publishes with this

policy number, the subscribers can check which version of the policy was applied to the update

and thus be able to switch to the new versions of the policy at the correct times. More on this can

be found in the policy propagation Section 4.5.

<G r i d S t a t P o l i c y>
<Type>P u b l i c a t i o n</ Type>
<ValidTimeFrame>

<From />
<To />

</ ValidTimeFrame>
<Modules />
<PolicyNum>0</ PolicyNum>
<P u b l i c a t i o n>s t a t u s 1</ P u b l i c a t i o n>
<P u b l i c a t i o n I d>1587288427</ P u b l i c a t i o n I d>
<P u b l i s h e r>c1 . pub1</ P u b l i s h e r>
<SecurityGroup>0</ SecurityGroup >
<ChangeLog>
<Modi f i ca t ionEntry

Time=” 1189029273264 ”
Author =” c1 . pub1 ”>

<M o d i f i c a t i o n>C r e a t e d</ M o d i f i c a t i o n>
</ Modi f i ca t ionEntry>

</ ChangeLog>
</ G r i d S t a t P o l i c y>

Figure 4.10: A Publication Policy after its creation by a Publisher

4.4.2 Subscription Policy

Subscription policies are the subscription side equivalent of the publication policy. They are XML

structures that contain the security specifications for single subscriptions and thus have many sim-

ilarities with publication policies. As Figure 4.12 shows, the structure is almost identical to that of

the publication policy structure shown in Figure 4.9. The only differences are the type is Subscrip-

tion and the added Subscriber node where the name of the subscriber can be stored.

Subscription policies are initially created by a potential subscriber that wants to subscribe to

publication. The subscriber adds as much information as it has access to when it creates the policy,

before sending it to its leaf-SMS. Figure 4.13 is an example of how such a policy might look before

it is sent to the SMP.
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<G r i d S t a t P o l i c y>
<Type>P u b l i c a t i o n</ Type>
<ValidTimeFrame>

<From>1189115183367</ From>
<To>1207259183367</ To>

</ ValidTimeFrame>
<PolicyNum>1</ PolicyNum>
<P u b l i c a t i o n>s t a t u s 1</ P u b l i c a t i o n>
<P u b l i c a t i o n I d>1587288427</ P u b l i c a t i o n I d>
<P u b l i s h e r>c1 . pub1</ P u b l i s h e r>
<SecurityGroup>0</ SecurityGroup>
<Modules>

<Module Type=” O b f u s c a t i o n ”>
<Name>A e s O b f u s c a t i o n</ Name>
<Key>N/A</ Key>

</ Module>
<Module Type=” E n c r y p t ”>

<Name>B l o wf i s h</ Name>
<Key>

1449348335888062224299847228441709147956497932551
</ Key>

</ Module>
</ Modules>
<ChangeLog>

<Modi f i ca t ionEntry
Time=” 1189115183335 ”
Author =” c1 . pub1 ”>

<M o d i f i c a t i o n>C r e a t e d</ M o d i f i c a t i o n>
</ Modi f i ca t ionEntry>
<Modi f i ca t ionEntry

Time=” 1189115183367 ”
Author =” c1 . sms ”>

<M o d i f i c a t i o n>Ass igned new module ( s )</ M o d i f i c a t i o n>
<M o d i f i c a t i o n>Ass igned new keys</ M o d i f i c a t i o n>
<M o d i f i c a t i o n>Modi f i ed t h e e x p i r a t i o n t ime</ M o d i f i c a t i o n>

</ Modi f i ca t ionEntry>
</ ChangeLog>

</ G r i d S t a t P o l i c y>

Figure 4.11: A complete Publication Policy

<G r i d S t a t P o l i c y>
<Type>S u b s c r i p t i o n</ Type>
<ValidTimeFrame>

<From />
<To />

</ ValidTimeFrame>
<Modules />
<PolicyNum />
<P u b l i c a t i o n />
<P u b l i c a t i o n I d />
<P u b l i s h e r />
<Subscr iber />
<ChangeLog />

</ G r i d S t a t P o l i c y>

Figure 4.12: The Subscription Policy XML Structure
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It is when the subscription policy reaches the leaf-SMS of the subscriber that the differences

between publication and subscription policies start to show. Publication policies are all local to a

single cloud and its leaf-SMS. A publication policy is therefore never sent outside the originating

cloud, since only the publisher and its leaf-SMS need a copy of it, while a subscription policy

needs to be routed to whatever leaf-SMS has the corresponding publication policy ,as described in

Section 4.1.

Regardless of whatever routing is done to the subscription policy in the management plane, the

policy will be completed and returned to the originating subscriber if the subscriber has the needed

credentials to access the publication. As Figure 4.14 exemplifies, the completed policy contains

the module assignments and the keys needed to decode the updates published by the publisher.

Note that a subscription policy has the assigned modules in reverse order of the corresponding

publication policy to be able to reverse the transmutation caused by the publisher’s Transmuter

applying its publication policy.

<G r i d S t a t P o l i c y>
<Type>S u b s c r i p t i o n</ Type>
<ValidTimeFrame>

<From />
<To />

</ ValidTimeFrame>
<Modules />
<PolicyNum />
<P u b l i c a t i o n>s t a t u s 1</ P u b l i c a t i o n>
<P u b l i c a t i o n I d>1587288427</ P u b l i c a t i o n I d>
<P u b l i s h e r>c1 . pub1</ P u b l i s h e r>
<Subscr iber>c1 . sub2</ Subscr iber>
<SecurityGroup />
<ChangeLog>

<Modi f i ca t ionEntry
Time=” 1189029270398 ”
Author =” c1 . sub2 ”>

<M o d i f i c a t i o n>C r e a t e d</ M o d i f i c a t i o n>
</ Modi f i ca t ionEntry>

</ ChangeLog>
</ G r i d S t a t P o l i c y>

Figure 4.13: A Subscription Policy after its creation by a Subscriber

A subscription policy also has the same expiration date as the corresponding publication policy

it is associated with, to enable the use of a natural update pull scheme to propagate changes to

security group policies down the data plane without losing any updates. More on how policies are

updated can be found under natural policy updates and forced policy updates in Section 4.5.
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<G r i d S t a t P o l i c y>
<Type> S u b s c r i p t i o n </ Type>
<ValidTimeFrame>

<From>1189115183367</ From>
<To>1207259183367</ To>

</ ValidTimeFrame>
<PolicyNum>1</ PolicyNum>
<P u b l i c a t i o n>s t a t u s 1</ P u b l i c a t i o n>
<P u b l i c a t i o n I d>1587288427</ P u b l i c a t i o n I d>
<P u b l i s h e r>c1 . pub1</ P u b l i s h e r>
<Subscr iber>c1 . sub2</ Subscr iber>
<SecurityGroup>0</ SecurityGroup>
<Modules>

<Module Type=” E n c r y p t ”>
<Name>B l o wf i s h</ Name>
<Key>1449348335888062224299847228441709147956497932551</ Key>

</ Module>
<Module Type=” O b f u s c a t i o n ”>

<Name>A e s O b f u s c a t i o n</ Name>
<Key>N/A</ Key>

</ Module>
</ Modules>
<ChangeLog>

<Modi f i ca t ionEntry
Time=” 1189029270398 ”
Author =” c1 . sub2 ”>

<M o d i f i c a t i o n>C r e a t e d</ M o d i f i c a t i o n>
</ Modi f i ca t ionEntry>
<Modi f i ca t ionEntry

Time=” 1189029271249 ”
Author =” c1 . sms ”>

<M o d i f i c a t i o n>Ass igned new module ( s )</ M o d i f i c a t i o n>
<M o d i f i c a t i o n>Ass igned new keys</ M o d i f i c a t i o n>
<M o d i f i c a t i o n>Modi f i ed t h e e x p i r a t i o n t ime</ M o d i f i c a t i o n>

</ Modi f i ca t ionEntry>
</ ChangeLog>

</ G r i d S t a t P o l i c y>

Figure 4.14: A complete Subscription Policy

4.4.3 Security Group Policy (SGP)

Security groups abstract common security needs for groups of publications and thus make it easier

to manage large groups of publication and subscription policies. Security groups can be created

in the security management plane together with a SGP that specifies the security aspects of all the

publications in that group.

Security group policies, or SGP’s, are XML structures that specify the security aspects of secu-

rity groups. These specifications are applied to all publications, and their subscriptions, belonging

to the security group, by the leaf-SMS that originally defined that security group. As Figure 4.15

illustrates, the SGP is built up of only five nodes: policy type, modules, expiration length, and a

change log. The Modules node holds the list and order of modules to be assigned to publications

registered with that security group, the Name node holds the name of the security group, while the

ExpirationLength specifies how often publications and subscriptions belonging to this group
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needs to update their policy. Figure 4.16 exemplifies a completed SGP.

<G r i d S t a t P o l i c y>
<Type>S e c u r i t y G r o u p</ Type>
<Modules />
<Name />
<Expirat ionLength />
<ChangeLog />

</ G r i d S t a t P o l i c y>

Figure 4.15: The Security Group Policy XML Structure

<G r i d S t a t P o l i c y>
<Type>S e c u r i t y G r o u p</ Type>
<Modules>

<Module ”>AesObfusca t ion </Module>
<Module ”>RSA</ Module>
<Module ”>T r i p l e D e s </Module>
<Module ”>SHA512ErrorCheck</ Module>

</ Modules>
<Name>0</ Name>
<Expirat ionLength>964130816</ Expirat ionLength>
<ChangeLog>

<Modi f i ca t ionEntry
Time=” 1189029270398 ”
Author =” c1 . sms ”>

<M o d i f i c a t i o n>C r e a t e d</ M o d i f i c a t i o n>
</ Modi f i ca t ionEntry>

</ ChangeLog>
</ G r i d S t a t P o l i c y>

Figure 4.16: A filled out Security Group Policy

Each security group, and corresponding policy, is defined locally for a single leaf-SMS and

the publications within the cloud which it serves. Utilities are not very comfortable with letting

others control the security and access to their sensitive information. By letting the operators of the

leaf-SMS define the security groups for their own cloud through the leaf-SMS user interface, the

security control is kept with the utility that operates that server. This makes each utility able to

define their own security policies for their own publications, and thus increase their comfort level

with sharing information.

Figure 4.17 illustrates how each leaf-SMS has its own sets of security groups, all data plane

nodes that have at least one policy member of leaf-SMS A’s security groups are colored blue,

while all data plane nodes that have at least one policy member of leaf-SMS B’s security groups

are colored green. All publishers served by the same leaf-SMS must register their publications as

members of one of that leaf-SMS’s defined security groups, while subscription policies becomes
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members of the same security group as the publication it subscribes to. This means Sub-A1 that

subscribes to the local Pub-A1 will be a member of whatever blue security group Pub-A1 is a

member of, while the global subscription that Sub-A2 has with Pub-B1 makes it part of the green

security group set controlled by leaf-SMS B.

Leaf-SMS A Leaf-SMS B

Pub-A1

Pub-An

.

.

.

Pub-B1

Pub-Bn

.

.

.

Sub-A1 Sub-A2 Sub-B1 Sub-B2

Security Groups:

[0, 1, 2]

Security Groups:

[A, B, C]

A B

Interior-SMS

(Subscribes to Pub-A1) (Subscribes to Pub-B1) (Subscribes to Pub-A1) (Subscribes to Pub-B1)

Publisher using leaf-

SMS A’s SGP’s

Publisher using leaf-

SMS B’s SGP’s
Subscriber with subscription 

controlled by a leaf-SMS A SGP

Subscriber with subscription 

controlled by a leaf-SMS B SGP

Status Router Leaf Security Management Server Interior Security Management Server

Figure 4.17: The local scope of SGPs

4.4.4 Security Management Communication Policy (SMCP)

To be able to provide dynamic data plane security, a new security management plane had to be

put in place to manage it. As explored in Section 3.3 and 4.1 these virtual one-to-one management

communication links also need to be secured in order to support the data plane security. The SMCP

is a XML structure where these security aspects can be specified.

While Figure 4.3 presented the general types of virtual point-to-point links that SMCPs serve,
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the design decision, explained in section 4.1.1, to organize the SMSs into a hierarchy and divide

them into leaf-SMSs and interior-SMS, results in the slight type extension depicted in Figure 4.18.

The general internal communication type is now replaced by communication links between a leaf-

SMS and its parent interior-SMS, and a interior-SMS and its parent.

Publisher

Subscriber

Data Plane nodes to the leaf-SMS 

communication

Internal management plane 

communication

Leaf-SMS

Leaf-SMS

Leaf-SMS Interior-SMS

Interior-SMSInterior-SMS

Figure 4.18: Types of Security Management Communication

Figure 4.19 depict the basic structure of the SMCP. The policy has a Parent node to specify

the name of the parent, a Child node to store the name of the child, a Modules node to store

the module assignments, and three nodes for the assigned keys. The OutputKeys node store

the keys to be used for outgoing traffic, the InputKeys node for incoming communication and

finally a KeyIndex node that holds the index of the currently used keys. By dividing the keys

into output and input keys the policy is able to support the use of different keys for child-to-parent

and parent-to-child communication, if that is desired.

<G r i d S t a t P o l i c y>
<Type>SMCP</ Type>
<Parent />
<Child />
<Modules />
<OutputKeys />
<InputKeys />
<KeyIndex />

</ G r i d S t a t P o l i c y>

Figure 4.19: The Security Management Communication Policy XML Structure

SMCPs are defined by the operator that registers a new child with an SMS. A copy of the policy,

together with copies of the specified modules, are initially provided out-of-band to the child node.
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Later changes to the policy, such as key and module changes, are done in-band by taking advantage

of the list of preloaded keys according to the protocols defined in Section 3.3.

An example of how a SMCP for the communication between a publisher and its leaf-SMS with

5 preloaded keys and using the AES security module is shown in Figure 4.20.

<G r i d S t a t P o l i c y>
<Type>SmpCom</ Type>
<Parent>c1 . sms</ Parent >
<Child>c1 . pub1</ Child >
<Modules>

<Module>
<Name>AES</ Name>

</ Modules>
</ Modules >
<OutputKeys>

<Key>1120860969894803319128979973110828814883799326245</ Key>
<Key>573538035040423767260994354675225432755248146933</ Key>
<Key>1162403518264973872069045013208619650037658796705</ Key>
<Key>1180428162164925663256340720587300059427921197772</ Key>
<Key>766464578145571959657874755426490065157494018192</ Key>

</ OutputKeys >
<InputKeys>

<Key>393865857916518092677659599425798904770321059830</ Key>
<Key>309494022550273857007681850407736755244636550858</ Key>
<Key>60204405105558875497288979715846485719727210819</ Key>
<Key>1408348338532037530038187107934866792758171204363</ Key>
<Key>25016262256447490552057754341541253286645477048</ Key>

</ InputKeys >
<KeyIndex>0</ KeyIndex >

</ G r i d S t a t P o l i c y>

Figure 4.20: A Security Management Communication Policy example

4.4.5 Module Policies

Module Policies are different from the other policies by not specifying security rules for a single or

group of communication streams, but instead specifying the properties of modules. When modules

are added to the system through an SMS, the operator has to supply a series of attributes associated

with the new module, which are stored in the module policy XML structure. The module policies

specify the behavior of the modules and where the main copy is stored. As Figure 4.21 indicate,

the module policy has 9 nodes defining attributes, such as the name of the module, the module

type, its author, the date it was added to the repository, the size of its key, where the actual module

file is stored, a description of the module, and the name of the key generator which should be used.

Figure 4.22 and figure 4.23 exemplify two different module policies. Figure 4.22 is an example

of an encryption module that uses a 128 bit key generated by the default key generator, while Figure
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<G r i d S t a t P o l i c y>
<Type>Module</ Type>
<Name />
<ModuleType />
<Author />
<DateAdded />
<KeySize InBi t s />
<ModulePath />
<D e s c r i p t i o n />
<KeyGenerator />

</ G r i d S t a t P o l i c y>

Figure 4.21: The Module Policy XML Structure

4.23 shows an authentication module based upon RSA that uses a 2048 bit key and a standalone

key generator module. The purpose of standalone key generator is defined in Section 4.6.1.

<G r i d S t a t P o l i c y>
<Type>Module</ Type>
<Name>AES</ Name >
<ModuleType>E n c r y p t</ ModuleType >
<Author>E r i k Solum</ Author >
<DateAdded>19−Aug−2007 12 : 3 0 : 2 3 PM</ DateAdded >
<KeySize InBi t s>128</ KeySize InBi t s >
<ModulePath> . / Modu leRepos i t o ry / AES</ ModulePath >
<D e s c r i p t i o n>A 128 b i t AES e n c r y p t i o n module based

upon Suns s t a n d a r d JCE
</ D e s c r i p t i o n>
<KeyGenerator><<DEFAULT>></ KeyGenerator >

</ G r i d S t a t P o l i c y>

Figure 4.22: An AES Module Policy Example

<G r i d S t a t P o l i c y>
<Type>Module</ Type>
<Name>RSA</ Name >
<ModuleType>A u t h e n t i c a t i o n</ ModuleType >
<Author>E r i k Solum</ Author >
<DateAdded>19−Aug−2007 12 : 3 6 : 0 8 PM</ DateAdded >
<KeySize InBi t s>2048</ KeySize InBi t s >
<ModulePath> . / Modu leRepos i t o ry /RSA</ ModulePath >
<D e s c r i p t i o n>A 2048 b i t RSA e n c r y p t i o n module based

upon Suns s t a n d a r d JCE
</ D e s c r i p t i o n>
<KeyGenerator>RSAKeyGenerator . j a r</ KeyGenerator >

</ G r i d S t a t P o l i c y>

Figure 4.23: A RSA Module Policy Example

4.5 Policy Change Propagation

Changes done to SGPs in the security management plane have to be propagated down to the in-

dividual publication and subscription policies and be activated. This section presents the two
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mechanisms that accomplish this: a natural pull mechanism, that with the use of expiration times

provides an eventual propagation, and a forced push mechanism initiated from the security man-

agement plane that provides an immediate propagation. Both mechanisms employ the reactive

policy activation approach described in Section 4.5.3 to minimize the chance of losing status up-

date information during a policy switch.

4.5.1 Natural Policy Change Propagation

Natural policy updates are a pull model for propagating changes done to publication and subscrip-

tion policies based on the fact that all policies have an expiration time, and that whenever a policy

expires, the publisher and subscriber contact the security management plane for an updated policy.

Any changes done to the SGP of the security group to which the publication belongs, will thus be

propagated down to the publisher and subscribers of that publication.

Every security group policy has a set max validation time that is applied to all policies in that

security group. Every publication policy that is created, or updated, is given an expiration time

equal to the current time plus the max SGP validation time. All subscription policies associated

with that publication policy will inherit this expiration time regardless of when the subscription

was set up relative to the publication. This is done so the publication and all its subscribers will

synchronize their policy updates. In order to support this synchronized clocks are assumed. Grid-

Stat already has functionality that relies synchronized clocks, so this is a acceptable assumption.

It is the Transmuter in each publisher and subscriber that initiates the natural policy updates

by checking whether the policy is expired each time it has performed a transmutation with the

policy. The actual update is done by a background thread so as to not interrupt the flow of messages

as defined in the reactive policy activation Section 4.5.3.

When a publication policy is updated the expiration time is reset to the time of the update

plus the max SGP validation time while the subscriber policies still are synchronized directly with

current publication policy expiration.
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4.5.2 Forced Policy Change Propagation

In some cases policy updates are so critical that it is not good enough to wait for the publishers and

subscribers to update themselves naturally. While natural policy updates rely on predetermined

times to update the policies, forced policy update forces the publishers and subscribers to switch to

the new policy immediately. This is push approach in contrast to the natural updates pull approach.

A forced policy update can be initiated by operators that want to force the changes done to a

SGP in a leaf-SMS to be propagated immediately. The Policy Engine will then start sending

out the new updated policies of that security group to every publisher and subscriber that is affected

by the new changes. An evaluation of the performance of this operation can be found in Section

5.3

The publishers and subscribers handle the forced policy update in the same way as the natural

policy updates. Both will immediately start a background thread to download and initiate the

modules assigned in the new policy. The publisher will activate the new module after a constant

delay, to allow the subscribers to get ready, while the subscribers wait to activate the new modules

until they receives the first update transmuted with the new policy.

4.5.3 Reactive Policy Activation

When switching from one set of modules to another in the data plane, it is important that both

publishers and the subscribers synchronize their switch to avoid a temporary policy mismatch that

would cause information loss. As explored in the previous two subsections, policy propagation can

be initiated either by a push or pull approach, but are regardless handled by a background thread

that works concurrently with the normal operation of the status update stream.

In the pull approach the background thread sends the currently used policy to the security

management plane and gets returned an updated version, while in the push approach the updated

policy is pushed down to the publishers and subscribers. Regardless of how the updated policy

is obtained, the thread examines the updated policy and downloads any missing modules before
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initializing them with the updated keys. When all the modules are ready the thread marks itself

ready and goes to sleep before actually replacing the modules that are currently used. If the thread

was started by a publisher, the thread will wake up to perform the switch on a given short delay

after the expiration time. This is done to let the subscribers have time to get ready.

In the subscribers the switch is done based upon the policy stamp on the received updates. Each

policy has a policy number that is incremented each time it is updated. The publisher stamps this

number on all published status updates. The subscribers check this stamp and activate the waiting

modules when they receive the first status update stamped with the new policy number.

The limitation to this solution is the delay between the expiration date and when the publisher

makes the switch. If it is too long the operation takes unnecessarily long, but if it is too short and

the subscribers are not ready to switch information is lost until the subscriber completes its switch.

Work on the actual deployment of GridStat needs to be done to assert the optimal length of this

delay constant.

4.6 Modules

In the implementation of the modular security architecture the modules are implemented as JAR

files that contain all the class definitions needed to enable the Java Virtual Machine to load and

instantiate an object that implements a known module interface in runtime with the help of an

extension to its ClassLoader class. These modules can thus be distributed to the different

nodes and loaded when they are needed, without significant interruption to the primary functions.

As previously stated, the modules are primarily used as transparent interchangeable black boxes

that provide different security mechanisms to both the data plane and the security management

plane.

Modules can be added to the system through the user interface of any SMS and be automatically

propagated based upon the need of the module. When a module is added the operator is required

to specify a series of attributes for the module, which are stored in a module policy that becomes
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associated with the module as specified in Section 4.4.5.

All JARs that are designed to be used as a modules have to contain a class that matches the name

of the JAR file and that implements the predefined module interface presented in Figure 4.24. The

interface forces all module classes to implement three performAction methods which provide

the main interface between the different running GridStat components and the black box modules.

Through these three methods the transmuters can apply whatever functionality the module provides

to the bytes that are passed into it, either in the form of a status update wrapped in a ByteBuffer

array or other types of information in simple byte arrays, or byte array holders. All three methods

throw the ActionFailedException if the action the module is supposed to perform fails,

e.g. if the module is suppose to decrypt, but finds the wrong number of input bytes.

p u b l i c B y t e B u f f e r [ ] t r a n s m u t e ( B y t e B u f f e r [ ] b u f f e r A r r a y , I n t H o l d e r l e n g t h )
{

p u b l i c i n t e r f a c e Module
{

p u b l i c s t a t i c f i n a l s h o r t INIT SUCCESSFUL = 0 ;
p u b l i c s t a t i c f i n a l s h o r t INIT UNSUCCESSFUL = −1;
p u b l i c s t a t i c f i n a l s h o r t DIRECTION IN = −1;
p u b l i c s t a t i c f i n a l s h o r t DIRECTION OUT = 1 ;
p u b l i c s t a t i c f i n a l s h o r t DIRECTION INOUT = 0 ;

p u b l i c B y t e B u f f e r [ ] p e r f o r m A c t i o n ( B y t e B u f f e r [ ] bba ) throws A c t i o n F a i l e d E x c e p t i o n ;
p u b l i c vo id p e r f o r m A c t i o n ( O c t e t B u f f e r H o l d e r obh ) throws A c t i o n F a i l e d E x c e p t i o n ;
p u b l i c byte [ ] p e r f o r m A c t i o n ( byte [ ] b ) throws A c t i o n F a i l e d E x c e p t i o n ;

p u b l i c s h o r t i n i t ( S t r i n g i n i t S t r i n g , s h o r t d i r e c t i o n ) ;
}

}

Figure 4.24: The Security Module Interface

The init method is used to initialize the module object with the needed input information,

such as keys and whether the module object will be used on outgoing or incoming information.

The information needed to do this is provided by whatever policy that specified the use of the

module, and is usually in the form of a large number to be used as key. Note that not all types of

modules need a init string, but all need to be initialized by calling the init method.

The following sections explore the different types of modules defined as relevant to achieving

the goals of the security architecture. Section 4.6.1 takes a closer look on key generator modules

while the rest focus on the five basic security module types defined in 3.2 and their proof-of-concept
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implementations.

4.6.1 Key Generator

While most modules can use the standard hard-coded key generator, some modules require their

keys to be generated in a specific way. This is supported by giving the operator the opportunity to

specify a special key generator in the form of a second key JAR file. This JAR file contain the class

definitions needed to instantiate a key generator class implementing the well-known key generator

interface, shown in Figure 4.25, when he, or she, adds a new module to the system. This causes

the specified key generator to be added to the SMS’s module repository and a reference to it stored

in the module’s policy file.

p u b l i c B y t e B u f f e r [ ] t r a n s m u t e ( B y t e B u f f e r [ ] b u f f e r A r r a y , I n t H o l d e r l e n g t h )
{

p u b l i c i n t e r f a c e KeyGenerator
{

p u b l i c S t r i n g [ ] g e n e r a t e K e y P a i r ( i n t k e y S i z e ) throws NoSuchAlgor i thmExcep t ion ;
}

}

Figure 4.25: The Key Generator Interface

The Key Generator interface forces all key generators to implement a simple generateKeyPair

method which takes the size of the key as input and returns the key as a string. This string can then

be attached to a policy and later used to initialize an object of the module that was associated with

it.

There can be different reasons to provide a special key generator. One such reason might be to

provide a key generator that is not based upon the standard Java random generator, as the default

generator is, but instead a generator that has a different and/or better source of pseudo random

numbers. This further enhances the dynamic aspects of the security system since the dynamic

modules do not need to rely on keys generated through a static key generator that might have

weaknesses that are discovered after deployment.

Secondly some types of algorithms such as RSA need special forms of keys with more prop-

erties than being a random sequence of bytes. Since RSA is asymmetric it needs the keys used at
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the end points to have a special relationship that just random sequences of bytes cannot provide. A

specialized RSA key generator has been implemented and tested.

4.6.2 Encryption Modules

Encryption modules are the main type of modules used to secure GridStat’s data plane. These are

modules that encrypt data in one end of the streams, and decrypt in the other, to provide the stream

with confidentiality.

Even though any encryption algorithm could be implemented as an encryption module the

properties of GridStat poses some limitations. The use of multicast excludes the use of algorithms

that differentiate the published status updates based upon the subscribers; the differences in rates

between publishers and subscribers, imposed by the status router filtering, invalidates all algo-

rithms that requires the producer and consumer to be synchronized, such as stream ciphers; and

the generally strict latency demands further restrict what algorithms that can be used.

Based upon these limitations the use on symmetric block ciphers stands out as the best alterna-

tive being relatively fast, not needing synchronization and keeping the updates identical regardless

of the subscribers. Five block cipher modules have been developed for demonstration purposes:

a Caesar cipher module built from scratch to function as a benchmark module; and a DES, AES,

Blowfish and Triple DES modules built on Sun’s Java Cryptography Extensions (JCE) [37, 8].

These modules are in no way optimal, since they employ costly logic to translate beween the JCE

and GridStat formats, and are only developed as a proof of concept to show that the real-time

requirements of GridStat can be met using this modular approach.

4.6.3 Obfuscation Modules

The problem of keeping small data samples confidential is greatly increased if the content of the

data samples are uniform and/or repeated. This enables an attacker to much more easily extract the

encryption key [20]. Obfuscation modules try to mask these patterns by introducing randomness

to the information. They do not encrypt the data, just mask some of the properties of the data when
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combined with an encryption module, thus complementing the encryption module, not replacing

it.

There are two main problems, repetition of the same data sample and uniform data samples.

Repetition can be caused by a sensor measuring something that has slow rate of change, while

uniform data can be a result of something as simple as a sensor using 0 as a default value when

something is wrong.

There are many ways to obscure, or mask, these facts by introducing randomization. One way

is to make the same data sample look different each time it is sampled by shuffling the content

around based on random values. Since we are using random values we need to let the receiver of

the sample, in GridStat’s case the subscriber, know how it can reorder the data. The simplest way

to do this is to embed the information needed into the original data. This can be allowed since the

objective of the module is not encryption, only obfuscation.

It is possible to shuffle with any granularity. The finer the grain used, the more information is

need to add to enable the subscriber to make sense of the information, but the better the obfuscation.

Combined with the modular approach this allows the granularity to be tuned to the needs of each

individual published variable. Figure 4.26 exemplifies a simplistic way that an 8 byte update could

be shuffled using bytes as granularity.

8 byte

8 bit

byte A

11 byte

3 bit

byte B byte C byte D byte E byte F byte G byte H

byte X byte X byte X byte X byte X byte X byte X byte X

3 byte order index

A 

offset

B 

offset

C 

offset

D 

offset

E 

offset

F 

offset

G 

offset

H 

offset

a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h

a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h

8 byte with data

Suffling operation

Figure 4.26: Obfuscation by shuffling

The shuffling approach has the weakness of its efficiency being a function of the uniformity of

the data. In a worst-case situation with completely uniform data, such as only bits set to 0, shuffling
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will have no effect. Other approaches are required to introduce randomness to the individual bits

regardless of the uniformity of the original data.

One way to achieve real randomization is to perform standard block cipher algorithm opera-

tions with random keys that then are embedded with the update. Using block ciphers with random

keys provides randomization between updates, and thus handles the problem of repeating data

samples. Unfortunately block cipher’s inherent problem that identical blocks always encrypt to the

same block using the same key, still is a weakness. Since the key are replaced between each update

this won’t affect the masking of repeating data samples and uniform data across updates, but it

does reduce the modules’ ability to mask uniform data internally in each update, which opens up a

chance of pattern attacks on individual updates.

An alternative to block ciphers is to introduce randomness by generating one-time-pads that

get applied to the data through a simple algorithm such as the Caesar-Cipher, and then embedded

in the update. Figure 4.27a presents an example of this approach being applied to an 8 byte data

sample. Each byte is incremented with a byte from the one time pad, which then is embedded

into the update. To avoid that the appended obfuscated byte becomes identical to the one-time-pad

when the original byte is uniformly zeros, as byte 8 in Figure 4.27a exemplifies, a simple constant

offset can be added as shown in Figure 4.27b.

One time pads are a special type of process-reversible obfuscation called random number re-

versible obfuscation[13]. This means that the only way the original data can be reverse-engineered

from the obfuscated data, is to either obtain of the one-time-pad, or crack the random generator.

Assuming the encryption module keeps the random one-time-pad confidential, the attacker thus

need to crack the random generator used so he, or she, can gain knowledge of the next random

number. The current implementation is based up the standard Java random generator and thus

shares its strengths and weaknesses.

Two obfuscation modules are implemented and evaluated: one module based upon the block

cipher approach using the AES algorithm called AESObfuscation, and one module using the
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A random generated one-time-pad to be used as the key:

010000000000010100100011110010111100
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A random generated one-time-pad to be used as the key:

010000000000010100100011110010111100

101100111111101111101110100100100101

Static offset: 

13

Figure 4.27: One Time Pad Obfuscation example, a) without offset and b) with an offset

one-time-pad approach called OneTimePadObf. Both are evaluated in Section 5.1.

4.6.4 Authentication Modules

While the encryption modules and obfuscation modules goals are to achieve confidentiality for the

published variables from non-authorized subscribers, the authentication modules objective is to

secure against attackers injecting false information into the status update streams. Authentication

modules address this by letting the publisher sign the status updates with a digital signature that a

corresponding module in the subscriber can verify.

One way to accomplish this is to use asymmetrical algorithms that uses a private key to sign

the status update in the publisher, and a public key to verify it in the subscribers. Given a key

of sufficient length, this ensures that the subscribers only accept messages signed by that private

key. The problem with asymmetrical algorithms is that they need relatively long keys to be secure,

and this makes the signing and verification operation relatively slow. As the evaluation of the

implemented RSA module using a 2048 bit key will show in Section 5.1, its performance is not

compatible with real-time delivery of information.
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An alternative to using resource expensive asymmetric algorithms is to simply add a set of

secret identification bytes to each update in order to sign them. Though such an approach in

itself would achieve little, since an attacker easily could replicate such a signature, combined with

encryption and obfuscation modules it can achieve much of the same effect that using asymmetrical

algorithms can provide, but with the fraction of the cost.

Adding a secret signature to each update, and then applying an obfuscation module that ran-

domizes the signature before it is encrypted by a third module, would make it extremely difficult

for an attacker to inject falsified information. First of all it would need to know the secret signature

and secondly, it would need to know the key used by the encryption.

A limitation inherent to a static signature approach is that, since it is based upon both the

publisher and subscribers knowing the signature, it cannot secure against malicious subscribers.

A subscriber could use their knowledge of the secret key to inject falsified data into the other

subscribers. The SimpleAuth can only authenticate that the status update was sent from a node

part of the key group. However as the implemented SimpleAuth show in Section 5.1, this

is a tradeoff that is greatly outweighed by the much lower use of resources compared to using

asymmetrical algorithms.

4.6.5 Integrity Modules

Error checking and error correcting modules aim to enhance integrity and availability. They do this

by adding redundant information at the publisher, which is used to check/correct status updates at

the subscriber. Integrity modules are usually not in need of a key as their work is not confidential.

The simplest forms of error checking modules are based upon hashing algorithms. Such mod-

ules run a hashing algorithm on the status updates in the publisher, and embed the hash value with

the updates. The corresponding module on the subscriber side, extracts the hash value and re-

peats the hashing to check whether it matches. This provides an integrity check to the process and

four such modules has been implemented for proof-of-concept purposes; the Crc module based
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on simple cyclic redundancy checks (CRC), the MD5ErrorCheck, SHAErrorCheck, and the

SHA512ErrorCheck module. These are evaluated in Section 5.1.

4.6.6 Filtering Modules

Even though the status routers perform filtering, and do not forward unneeded status updates, some

desired attributes could be gained by also letting the publisher filter its outgoing status updates. In

addition to generally reducing the edge status routers workload, that otherwise have to do all the

filtering, it would provide a first line of defense against denial-of-service attacks from misbehaving

publishers.

If a publisher, either by malicious intent or by human/machine error, starts pumping out updates

at a too high rate, it could overload the edge status router and thus result in denial of service to

other publications using that edge status router. Figure 4.28 a) and b) shows how a filter module

placed in the publisher that is controlled by the management plane could efficiently handle this

type of attack by only letting through updates that one or more subscribers needs.

a) Misbehaving publisher without a filter module b) misbehaving publisher w/ a filter module
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Figure 4.28: Filtering module

A filter module was developed and demonstrated for an early proof-of-concept version of the

security system, but not carried on into the new version because of underlying conflicts with how

the current status router rate filtering uses the timestamps in the data plane. Future work is needed
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to work out a way for this conflict to be resolved and to avoid using timestamp manipulation work-

arounds similar to what was used in the earlier proof-of-concept system.
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CHAPTER FIVE

EVALUATION

This Chapter presents experiments that show that the modular security architecture presented in

Chapter 3 and 4 not only are able to provide over-the-wire configurable security, but also adhere to

the real-time requirements of the power grid and handle the scale needed. The following aspects

are considered:

• The level of increased end-to-end latency on the status updates in the data plane caused by

the security extension and the execution of the different proof-of-concept security modules.

• The resulting decreased data plane throughput and increased bandwidth usage.

• The scalability of publication and subscription policy propagation latency, both with respect

to the volume of policies and the number of levels in the security management plane.

• Security management communication policy propagation latency.

The industry standard IEC 61850, also called GOOSE, define 4 milliseconds as maximum real-

time latency between intelligent controllers [15]. While the 4 millisecond real-time requirement of

the power grid impose strict requirements for the end-to-end latency in the data plane, the latency

requirements for policy propagation are more relaxed and more focused on scalability. In an effort

to address these two emphases the evaluation is divided into two sections: Section 5.1 evaluates

the data plane performance with individual and combination of modules, and Section 5.3 evaluates

the performance of the policy propagation infrastructure.

5.1 Data Plane Performance

For a security architecture to be a viable solution for an information system in the power grid it

needs to be able to provide the necessary security as well as keeping the latency within accept-

able levels. This Section will show that the end-to-end approach taken by the presented security
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architecture allows combinations of the implemented proof-of-concept modules in table 5.1 to

accomplish this in a modular way.

Each proof-of-concept module has different security and performance properties. They can

thus be combined into sets that provide the best trade-off between different security aspects and

performance for each published variable.

5.2 Data Plane Testbed

To run the data plane performance experiments a simple GridStat topology was used as shown

in Figure 5.1: a single leaf-QoS Broker, one leaf-SMS, one status router, one publisher, and one

subscriber. A single publication was set up between the publisher and the subscriber. The whole

setup was run on a single machine with a 2.4 GHz Intel E6600 dual-core with 2 gigabytes of RAM

running Ubuntu Linux with kernel 2.6.20-16. All GridStat components where compiled and run

with java2SE 6 (version 1.6.0-02).

SubscriberStatus RouterPublisher

Leaf QoS Broker and SMS

Figure 5.1: Data Plane Performance Test Setup

An inherent problem with measuring Java performance is its use of garbage collection to handle

memory de-allocation. The garbage collector locks down the process when it executes and thus

causes jitter in the measured performance. In an effort to mitigate this all the spikes caused the

garbage collector are filtered out from the presented results. The unfiltered data can be found in

appendix A.
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Name Type Sizea Description
CaesarCipher.jar Confidentiality 4598 A simplistic proof-of-concept module em-

ploying the Caesar cipher algorithm to
achieve symbolic confidentiality

DES.jarb Confidentiality 5427 A Data Encryption Standard[6] implemen-
tation with a 64 bit key of which 58 bit is
effective

Blowfish.jarb Confidentiality 5417 An implementation of the Blowfish
algorithm[34] using a 128 bit key

AES.jarb Confidentiality 5403 A module implementing the Advanced En-
cryption Standard [9] algorithm using a 128
bit key

TripleDES.jarb Confidentiality 5418 Module implementing Advanced Encryp-
tion Standard algorithm [7] using a 160 bit
key of which 128 bit is effective

AESObfusccation.jarb Obfuscation 5447 Module that uses the AES encryption in
combination with random keys that are em-
bedded into the information

OneTimePadObf.jar Obfuscation 4377 Module that uses random generated one
time pads that are applied and then embed-
ded into the data.

RSA.jarb Authentication 5976 Module implementing the RSA
algorithm[33] with a 2048 bit private
key to sign data at the publishers and a
public key to authenticate in the subscribers.

SimpleAuth.jar Authentication 5976 Module that uses a generated static 64 bit
signature to achieve increased performance
over the use of asymmetrical algorithms.

Crc.jar Integrity 5202 Module implementing the a 16 bit CRC al-
gorithm.

MD5ErrorCheck.jarb Integrity 5976 Module implementing the MD5 128 bits
hash algorithmb[31] to ensure the integrity
of the data.

SHAErrorCheck.jarb Integrity 5975 Module implementation of the SHA 160 bits
hash algorithmb[5] to ensure the integrity of
the data.

SHA512ErrorCheck.jarb Integrity 5992 Module implementing the SHA 512 bits
hash algorithmb[5] to ensure the integrity of
the data.

Table 5.1: The proof of concept modules implemented and evaluated

aModule sizes are given in bytes
bModules implemented based on the Suns JCE [37, 8]
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In each experiment the system was allowed to send 30,000 status updates before the perfor-

mance was measured. This is done to allow the Java virtual machine to optimize the execution of

the code. Then the latency for the next 10,000 status updates was measured in the publisher and

the subscriber.

5.2.1 Latency

By employing an end-to-end approach the latency associated with each module becomes constant

relative to the length of the status update paths and the added latency they cause can thus be

presented without taking the path length into account as shown in Table 5.2. Since the size of the

status update obviously affects the number of processor cycles each module needs to perform their

task, an experiment is run for each of the modules with a standard integer update and a 200 byte

string. The status updates would in a deployment of GridStat represent readings from sensors and

these readings are as a norm primary types such as integers, longs and floats, but in rare cases

larger status updates would be needed and thus supported.

The proof-of-concept modules tested in this Section are non-optimized modules of which most

are based on Sun’s JCE, which has a very limited interface that is not compatible with GridStat’s

status update format. As a result the modules need to employ costly translation logic between the

two formats that copies the data at least two times. This means that the numbers presented in Table

5.2 and 5.3 have a lot of potential for improvement, but even so, the security architecture is able to

provide security within the real-time requirements.

As presented in Table 5.2 the baseline CaesarCipher module performs much better than

the other encryption modules. This is partly due to the CaesarCipher’s obvious simplistic

algorithm, but also the fact that it is build from the ground up and does not need to copy the

status update data to translate back and forth to another format. Of the nother encryption modules,

Blowfish performed best with AES as a close second. The experiments show that both can
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Module Publisher side latency Subscriber side latency End-to-end latency
Integer 200 bytes Integer 200 bytes Integer 200 bytes

CaesarCipher 2,856 3,295 3,224 4,844 6,079 8,139
Blowfish 7,336 16,091 9,318 32,263 16,654 48,354
AES 8,341 16,203 8,101 33,231 16442 49,434
DES 8,059 22,945 9,561 42,486 17,620 65,431
TripleDES 9,748 43,642 12,473 70,439 22,221 114,081
OneTimePadObf 8,303 34,314 7,489 28,314 15,792 47,959
AESObfusccation 52,804 57,260 34,134 58,800 86,938 116,060
SimpleAuth 2,161 2,189 2,332 2,414 4,492 4,603
RSA 114∗106 114∗106 933,402 944,225 114∗106 114∗106

Crc 2,589 16,789 2,654 17,075 5,243 33,863
MD5ErrorCheck 5,197 7,721 4,815 6,804 10,002 14,525
SHAErrorCheck 6,490 9,823 5,938 9,423 12,428 19,246
SHA512ErrorCheck 11,051 17,698 12,481 19,028 23,532 36,726

Table 5.2: Proof-of-concept modules and the underlying module logic latencies in nanoseconds

apply a 128 bit encryption on the stream of integers while adding below 17 micro seconds of end-

to-end latency and handle the 200 byte stream within 50 microseconds. DES and TripleDES

on the other hand performed much poorer with the larger data samples. DES with only 58 bit

effective encryption had an average of 65 microseconds latency on the 200 bytes status update

and TripleDES used as much as 114 microseconds on its status updates. Clearly the AES and

Blowfish modules are the better choice for achieving confidentiality.

The two evaluated obfuscation modules follow the two approaches presented in Section 4.6.3.

The AESObfuscation module randomly generates a new key for each status update and uses

this key to encrypt it with the AES algorithm before the random key is appended to the status up-

date. As the experiments show this caries a great cost on performance. Since a new key is used for

each status update the module need to re-initialize its encryption cipher for each event, the perfor-

mance gets much worse than that of the AES encryption module that uses the same key each time.

This corresponds to the findings done by Opyrchal and Prakash [28]. The OneTimePadObf

module on the other hand performs much better, especially with small status updates, which is
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natural since the one time pad approach doubles the size of the status update. The integer experi-

ment shows that data in a status update can be completely obfuscated within only 16 microseconds

and since the chance of repeating status updates are greater on smaller data samples one time pad

obfuscation seems the more viable obfuscation alternative.

The experiments show that the two authentication modules, RSA and SimpleAuth, based

on the asymmetric RSA algorithm and the static signature scheme presented in 4.6.4 respectively

have hugely different performance impacts. The RSA module with a 2048 bit key adds as much

as 113 milliseconds of latency which is in strict violation with the need for real-time delivery of

information, while the SimpleAuth because of its simplistic logic only adds 4.5 microseconds

in the 200 bytes experiment. This shows that it is unlikely that asymmetric authentication can be

used in situations where there are real-time requirements, but that simpler forms of modules in

combination with other modules such as obfuscation modules could be used to achieve close to the

same level of authentication.

The four integrity modules implemented and evaluated are error checking modules, three of

which that uses different hash algorithms to assert the integrity of reviewed information. The

MD5ErrorCheck module generates a 128 bit hash, the SHAErrorCheck uses 160 bit hash

and the SHA512ErrorCheck module employs a 512 bit hash of to achieve a varying degree of

integrity checks. The varying length of the hash impacts the added end-to-end delay, but they scale

well from the integer size experiments to the 200 bytes experiment and show that a 200 byte sized

status update on average can be error checked with either a MD5 hash or a SHA hash within 20

micro seconds end-to-end. The Crc module behaves differently that the hash algorithms. It is very

fast on small data sizes, but the performance quickly deteriorate when the data size is increased.

To test how the performance was affected by combining modules into sets the experiments in

presented in Table 5.3 were undertaken. As the two first experiments show, the order in which

modules are organized affects the latency they add. This is due to the different inflation of the

data size, e.g. applying a hash module before applying an encryption module will require the

84



# Module set
Publisher side latency Subscriber side latency End-to-end latency

Integer 200
bytes Integer 200

bytes Integer 200
bytes

1
MD5ErrorCheck

16,612 27,208 14,736 35,231 31,348 62,439
Blowfish

2
Blowfish

12,746 24,588 10,412 34,434 23,158 59,022
MD5ErrorCheck

3
OneTimePadObf

14,042 54,404 14,736 52,885 28,778 107,289Blowfish
MD5ErrorCheck

4
OneTimePadObf

15,376 60,701 15,946 60,111 31,322 120,813AES
SHA

5
SimpleAuth

13,393 46,717 11,392 39,115 24,785 85,833OneTimePadObf
Blowfish

6
AESObfuscation

70,602 135,048 59,304 108,073 129,906 243,121TripleDES
SHA512

8

SimpleAuth

15,765 121,353 13,280 96,782 28,348 218,136
OneTimePadObf
Crc
Blowfish

7

SimpleAuth

15,068 59,583 16,577 49,986 32,342 109,569
OneTimePadObf
Blowfish
SHA

Table 5.3: Module set latencies in nanoseconds
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encryption module to encrypt the hash and thus increase the latency. Section 5.2.3 explores the

modules different data inflation rates in more detail.

Experiment 3 and 4 in Table 5.3 show that combinations of one-time-pad obfuscation, Blow-

fish/AES encryption and MD5/SHA integrity modules can be applied to a stream of integers status

updates with an average added latency of below 32 microseconds and 120 microseconds for the

200 byte stream. Experiment 5, on the other hand, show that if we instead of error checking are

interested in authenticating without integrity checks, the stream the added latency can be reduced

down to 85 microseconds for the 200 bytes stream.

To show a worst case scenario, experiment 6 combines the three slowest non-asymmetric mod-

ules; AESObfuscation, TripleDES and the SHA512ErrorCheck. The added latency gets

as high as 130 microseconds for integers and 243 for the 200 bytes. This clearly not a good combi-

nation of modules, but shows that as long as the number of processing cycles are constant related

to the length of the status update stream, even this combination can be tolerated.

Experiment 7 and 8 takes it one step further and show that we are able to provide authentica-

tion, obfuscation, encryption and integrity by combining the SimpleAuth, OneTimePadObf,

Blowfish and the SHAErrorCheck or Crc module. With the use of the Crc module the the

security only adds 28 milliseconds of end-to-end latency comparative to the 32 microseconds with

the SHAErrorCheck. On the larger 200 byte stream the situation is reversed. The Crc module

does not handle the increased size of the data and is easily outperformed by the set of modules that

employs SHA that only adds 110 microseconds end-to-end latency. This clearly shows that even

with the non-optimized proof-of-concept modules evaluated here the modular approach is able to

provide the security needed for the status update streams while adhering to the stated real-time

requirements. Future optimization will further reduce the added latency and enable even higher

levels of encryption.
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5.2.2 Throughput

The theoretical throughput can be calculated by dividing 10 ∗ 108 by the number of nanoseconds

latency shown in shown in Table 5.2 and 5.3. The most interesting throughputs, that of the module

combinations, are presented in table 5.4.

Employing security measures costs resources and that is illustrated by experiment 6 that shows

that the using the AESObfuscation, TripleDES and SHA512ErrorCheck modules to-

gether the theoretical throughput of the publisher according to the experiments is reduced to just

7405 200 bytes status updates per second. The corresponding subscriber is reduced to only 9,253

status updates of equal size per second.

On the other hand experiment 7 and 8 shows that with the right combination of modules it is

possible to provide obfuscation, encryption, authentication and integrity control while having a

theoretical throughput of 66000 integer status updates per second, or 16000 200 bytes updates per

second. That would translate to roughly 40 Mbit for the integers and 110 Mbit for the 200 byte

updates. These numbers, being a function of the latency numbers, share the latency numbers im-

mense potential for improvement when optimized modules are developed as discussed in Section

6.2.1.

Another property that can be observed from Table 5.4 is that as a norm the publisher needs

slightly more resources to obfuscate and encrypt the data than the subscribers need to normalize

and decrypt the data.

5.2.3 Bandwidth

In addition to increasing the latency most security also inflate the size of the data needed to be

transferred and thus increase the bandwidth usage. The different proof-of-concept modules all

have varying degrees of data inflation. For some, such as the integrity modules, this is a constant

increase, while for others, such as the OneTimePadObf module, the increase is a function of the

size of the original data.
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# Module set Publisher Throughput Subscriber Throughput
Integer 200 bytes Integer 200 bytes

1
MD5ErrorCheck

60,197 36,754 84,432 28,384
Blowfish

2
Blowfish

78,455 40,671 96,039 29,041
MD5ErrorCheck

3
OneTimePadObf

71,213 18,381 67,863 18,909Blowfish
MD5ErrorCheck

4
OneTimePadObf

65,038 16,474 62,711 16636AES
SHA

5
SimpleAuth

74.669 21405 87,778 25,565OneTimePadObf
Blowfish

6
AESObfuscation

14,164 7,405 16,862 9,253TripleDES
SHA512

7

SimpleAuth

66,366 8,240 75,301 10,332
OneTimePadObf
Crc
Blowfish

7

SimpleAuth

63,433 16,783 60,324 20,006
OneTimePadObf
Blowfish
SHA

Table 5.4: Module combination throughput
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Table 5.5 showa how the modules impact the size of the status updates during the experiments.

All the encryption modules with the exception of the CasesarCipher module increase the size

of the status update by rounding up to the nearest byte size that can be divided by 8. This inflates

the status update by the x bytes satisfying the following equation: (orgSize + x)mod 8 = 0,

0 < x <= 8. Notice that the AES module deviates from the others by having a minimum cipher

text size of 16 bytes, which result in a 12 byte increase for the integer status update. Above the 16

byte minimum cipher text size the AES module behaves in the same way as the other encryption

modules.

Comparing the two obfuscation modules, the AESObfuscation module has a constant in-

flation on the status update size, but a higher starting point, while the one-time-pad module always

doubles the size of the update. As a result, on status updates below 10 bytes the OneTimePadObf

module will produce smaller updates, but on larger updates the AESObfuscation obfuscation

becomes the more conservative. A way to remedy the linear size increase to a degree could be to

extend the OneTimePadObf module with simple techniques to reduce the size of the one-time-

pad such as repeating smaller pads. This would reduce the level of obfuscation, but also greatly

decrease the blow up of the update size and could be tuned to fit the needs of each individual

publication.

As Table 5.5 illustrates the two authentication modules does not only differ greatly in their

use of CPU cycles, but also in their use of bandwidth. The 2048 bits RSA module inherently

increases the size of the data to blocks of 258 bytes. The result of this is that no matter how

small the original data it is signing the minimal bandwidth use is 258 bytes. In comparison the

SimpleAuth module adds only the 8 byte digital signature no matter the size of the data. Again

we can observe that the SimpleAuth module combined with other modules perform better that

the conventional RSA module for small status updates with real-time delivery requirements.

The three hash based integrity modules obviously inflate the size of the data with exactly the

size of their hash. The more secure the hash, the larger the data becomes and this reveals yet another
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Module Data Inflation in bytes
Integer 200 bytes

CaesarCipher 0 0
DES 4 8
Blowfish 4 8
AES 12 8
TripleDES 4 8
AESObfusccation 28 24
OneTimePadObf 4 200
RSA 256 56
SimpleAuth 8 8
Crc 2 2
MD5ErrorCheck 16 16
SHAErrorCheck 20 20
SHA512ErrorCheck 64 64

Table 5.5: Modules bandwidth usage

place where assigning security modules on a per-publication granularity enables optimization. The

standard hash algorithms have been developed for large amounts of data, not small 4 byte status

updates. This is illustrated by the SHA module in Table 5.5 which use a 8 byte hash to assure the

integrity of a 4 byte status update. This is obviously not an optimized solution and the more simple

cyclic redundancy check (CRC) module is more efficient, bot in respect to latency and bandwidth.

As the bandwidth experiments have shown the use of security modules comes with a cost on the

bandwidth usage, but is within acceptable limits. The physical need for bandwidth is of course a

multiplication of the bits of each update and the rate of which the update is published. If one update

is published each second the extra bandwidth needed for the modules are simply their inflation in

bytes multiplied by 8.

5.3 Security Management Infrastructure Performance

There are no real-time requirements in the security management infrastructure communication.

Here the scalability of latencies is the emphasized property. For the security architecture to be a
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viable alternative for a large critical information infrastructure it has to handle large scales.

In the case of the presented security architecture there are two main ways it can scale: increas-

ing the size of the security management plane and by increasing the number of publishers and

subscribers. Section 5.3.3 presents experiments on these two aspects, while Section 5.3.2 looks

into the performance of the security management communication policy propagation protocol de-

fined in Section 3.3. All the experiments are run on the testbed presented in Section 5.3.1.

5.3.1 Security Management Infrastructure Testbed

All the security management infrastructure performance experiments inherently have different

GridStat topologies, but they all are run on the same underlying testbed provided by TCIP [1].

• 4 nodes each with an Intel 2.4 Ghz E6600 dual core CPU with 2 gigabytes of RAM

• Linux Fedora 6 with kernel 2.6.22.7-57

• java2SE 6 version 1.6.0-02

• 100 Mbit Switched LAN

5.3.2 Security Management Communication Policy Propagation

The protocols defined in Section 3.3 are used in order to propagate and activate a change to a

security management communication policy. These types of policies always have the narrow scope

of only a single communication link from a parent, either an interior-SMS or a leaf-SMS, to a child

interior-SMS, leaf-SMS, publisher or subscriber, they thus operate completely independently of the

larger topology. Figure 5.2 shows the result of an experiment running 8000 module switches for

such a communication link using the AES encryption module both as the original module and the

new target module.

As the experiments show, the protocol accomplishes the three key changes, the transfer of the

5403 bytes AES module and its activation with the new keys, at an average of 25.3 milliseconds.
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Figure 5.2: Security Management Communication Policy Propagation Latency

This performance is obviously greatly influenced by the speed of the communication link between

the parent and the child, but nevertheless shows that latency related to module and key switches

over single security management links does not pose any significant limiting factor.

5.3.3 Security Group Policy Propagation

Security group policy propagation is the act of propagating changes done to a security group policy

down to publishers and subscribers that have policies belonging to that group. It is thus the main

mechanism providing dynamic flexibility for data plane security. The operation consists of the

leaf-SMS, that receives a change in a SGP through its user interface from a controller, completing

the following tasks:

• Update its publication and subscription policy data base so it adheres to the new SGP.

• Push out the new publication and subscription policies to the affected publishers and sub-

scribers.

When the publishers and subscribers receive the new polices they have to do the following:
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• Download the new module(s) if they do not already posses it/them.

• Instantiate and activate the new module set with the new set of keys according to the proce-

dures defined in Section 4.5.

The security group policy propagation latencies are defined as the time it takes from the oper-

ator initiating the SGP change until all the publishers and subscribers operate with the new set of

modules and keys. While there is no real-time requirement for this type of communication it needs

to scale reasonable well to handle a real deployment. The next two sections evaluate this in context

of the size of the security management hierarchy and the number of subscribers.

All of the security group policy propagation experiments are done using the AES module to

provide security management communication security between the different GridStat components.

5.3.3.1 Security Management Plane Hierarchy Scalability

To handle a large scale deployment the security architecture needs to be able to propagate SGP

changes with varying number of levels in the security management hierarchy. Two experiments

where done for each hierarchy size from one to five levels with the test setups illustrated in Figure

5.3, one without allowing the SMSs to cache the security modules and one with module caching

enabled.

Figure 5.4 show how the latency scales with and without module caching enabled when the

number of levels in the security management plane increases. Not surprisingly the experiments

without module caching have a much steeper increase in latency than ones with caching enabled

and it reaches as much as 246 milliseconds for five levels. If we decompose the total latencies into

three parts as is shown in Figure 5.5 and 5.6 this becomes even more apparent.

The total latency is the sum of the time it takes to update the policy database at the originating

leaf-SMS plus the time it takes to push out the new policies and the time it takes the publishers

and subscribers to download and activate the new modules. In both the experiments where the

cache is enabled and disabled the time it takes to update the database is constant relative to the
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Figure 5.3: Security Group Policy Propagation Hierarchy Scale Test Setup
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Figure 5.4: Security Group Policy Propagation latency with and without module caching

number of levels in the hierarchy, approximately 72 milliseconds, and thus does not contribute to

an latency increase. The time it takes to download the new module, on the other hand, provides the

differentiation between enabled and disabled caching. In the cached experiments the time it takes

the subscriber to download the module is approximately 50 milliseconds since the module only

has to be transferred from the cache of the local leaf-SMS, while in the experiments with caching
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Figure 5.5: Decomposition of the latencies without caching
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Figure 5.6: Decomposition of the cached latencies

disabled the module has to be routed all the way up and down the hierarchy. As a result the cache

disabled experiment with five levels used 82 milliseconds more than the corresponding experiment

with caching enabled in accordance with the following analysis:

• Caching Disabled: U + p(l) + d(l) = TotalLatency , where U is the constant time it takes

to update the policy database, p(l) is the time it takes to push out the new policies, d(l) is the

time it takes the subscriber to download and activate the new module and l is the number of

levels in the security hierarchy.
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• Caching Enabled: U + p(l) + D = TotalLatency, where U is the constant time it takes to

update the policy database, p(l) is the time it takes to push out the new policies, D is the

constant time it takes the subscriber to download and activate the new module and l is the

number of levels in the security hierarchy.

The experiments show that with caching enabled the changes to SGPs can still be propagated

down to the publishers and subscribers with reasonable large security management planes within a

reasonable amount of time.

5.3.3.2 Subscriber scalability

In addition to being able to handle a large security management infrastructure, the architecture has

to handle scale with respect to the number of publishers and subscribers that use the infrastructure.

To show how the latencies behaved with an increasing number of subscribers the test setup with one

through seven subscribers with a five level cache enabled security management plane as depicted

in Figure 5.7 was set up.

Seven Subscribers

Publisher Subscriber Status Router QoS Broker Leaf-SMS Interior-SMS

Leaf QoS Broker and SMS Leaf QoS Broker and SMS

QoS Broker

One Subscriber

Leaf QoS Broker and SMS Leaf QoS Broker and SMS

QoS Broker

Figure 5.7: Security Group Policy Propagation Subscriber Scale Test Setup

While seven subscribers might look like a small number it is a realistic number in context of the

power grid. Because of the sensitivity of the data it is seldom shared indiscriminately. A subscriber
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in the local utility’s control center, one in their backup center, a couple at oversight organizations

and some for their immediate neighbors seems a likely approximation. There are also limitations

to how many nodes that can run on the hardware available in the testbed.

The total latency for these experiments can be decomposed into the following formula:

U + p(l, s) + MAX(Di) = TotalLatency

Where U is the constant time it takes to update the policy database, p(l, s) is the time it takes to

push out the new policies, MAX(Di) is the time it takes the slowest subscriber to download and

activate the new module, l is the number of levels in the security hierarchy and s is the number of

subscribers.

The publication and subscription polices are currently being pushed out sequentially and this

causes the time it takes push them all out to be the product of the time it takes to push out one policy

and the number of polices. As seen in Figure 5.8 this is the main cause of the linear increase in

latency when the number of subscribers increase. Future optimizations increasing the parallelism

of the policy pushing discussed in Section 6.2.2 have the potential of eliminating the decrease in

performance caused by the sequential pushing.
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Figure 5.8: Security Group Policy Propagation Subscriber Scale Latencies

Notice that the time used to download and activate a new module is constant with respect to the
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number of subscribers. This is an effect of each subscriber downloading the modules in parallel

and thus does not impact the overall latency.

As the experiments show there is some room for improvement by achieving a higher degree of

parallelism when pushing out new policies, but even without this improvement the security archi-

tecture is able to change the security module and keys used for a publisher and seven subscribers

within 225 milliseconds.
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CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

6.1 Concluding Remarks

The security architecture presented in this thesis addresses the need for flexible security critical

information systems with long lifecycles. The current information system for the power grid is

used as an example since it was designed several decades ago and does not take advantage of

the developments in distributed systems that have happened since then. The grid is constantly

being operated closer to its limits and as a result the increasingly richer monitoring information

becomes more and more critical. GridStat provides a QoS-managed publish-subscribe framework

that addresses many of the issues that current hard wired, strictly hierarchical information system

does not, but have lacked an implemented security architecture.

This thesis explores the conventional industry approaches of using PKI based techniques, such

as TLS/SSL, to provide the needed security mechanisms for GridStat and finds that they do not

provide the flexibility that is needed. Information systems for the power grid are huge distributed

systems of largely unmanned nodes with 25 year life expectancy. To address the need for flexibility

that can handle changes in the security field, which is in a constant arms race between the security

scientists and the hacker community, an alternative novel security architecture based on the use

of transparent interchangeable security modules is presented based on the presented threat model.

This security architecture, extension to GridStat’s existing management plane, is called the secu-

rity management plane (SMP). It contains a dynamic module repository with security modules that

can be assigned and reassigned to publishers and subscribers at a status variable granularity. This

means that each status variable may be assigned its own set of security modules providing the op-

timal tradeoffs between different security aspects such as encryption, obfuscation, authentication,

integrity and filtering, and performance properties such as latency.
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To support the dynamic module approach in the data plane the security mechanisms securing

the security infrastructure needs the same level of flexibility. There is little to be gained from build-

ing something really flexible on top of a static foundation since that would expose the overlying

dynamic building to any cracks found in the static foundation. To address this a protocol was de-

veloped that takes advantage of the relatively static attributes of information systems in the power

grid such as its constant set of services and the fact that every component that wants to connect

to the network needs to be explicitly allowed. This is done by leveraging pre-loading of keys to

achieve complete flexibility in aspect to the use of security algorithms.

In addition to presenting the design and implementation of the security architecture the thesis

explores the different types of relevant security modules, alternative approaches and algorithms

for each type of security module and a series of implemented proof-of-concept modules based

on this exploration. The evaluation of the security architecture with the implemented proof-of-

concept modules showed that the modular security architecture was able to provide confidentiality,

integrity, and authentication well within the performance requirements set by the power grid in-

dustry.

The evaluation of the security architecture infrastructure also showed that it is able to handle

large scale systems. With five levels of security management servers in the security management

plane hierarchy the over-the-wire replacement of a module used to secure a average publication

and its subscriptions takes less than 200 milliseconds.

Overall this thesis has presented and evaluated a novel security architecture for GridStat. It was

shown that, even though there exists many aspects that needs to be explored deeper through future

research, the security architecture provides GridStat with the mechanisms needed to support rich

and flexible security for its data plane that performs within the real-time requirement put on it by

the power grid.
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6.2 Future Work

6.2.1 Implement Optimized Modules

The proof-of-concept modules where implemented to show that it was feasible to provide the

needed security through the use of combinations of modules but there is a lot of room for improve-

ment. First of all a from-the-ground-up implementation of the different algorithms would have

removed the need to translate the GridStat formatted data to a form that Sun’s JCE can understand

and back again. This translation adds two unnecessary copy operations that contribute greatly to

the total latency, especially for larger data samples.

Secondly if GridStat is going stay mainly Java based there has to be put more work into solving

the garbage collection problem. Having a garbage collector that could kick in at any time is in

conflict with achieving real-time guarantees. This is not just something that has to be solved for

the parts of the security architecture that have real-time requirements, but also every other GridStat

component that are involved in data delivery.

6.2.2 Increase the parallelism in the Security Management plane

Currently the process of pushing out updated polices from the security management plane is done

sequentially. Policy number i is never pushed out before it is confirmed that i−1 has been received

by the intended publisher or subscriber. This amplifies, as the experimental results in Section

5.3.3.1 show, any latencies caused by routing policies through the security hierarchy since each of

the policies then need to be encrypted independently.

By increasing the parallelism of the policy propagation this could be partially remedied. Every

SMS has a set of children and a single parent. Instead of letting the SMS sequentially push out

the policies without considering whether there is more than one policy that is going to the same

child or parent, the policies could be bundled according to their immediate target. This reduces the

number of transfers needed by only sending one message per link, thus providing a higher degree

of parallelism and potentially increase the performance.
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6.2.3 Deployment and independent evaluation

Before any security architecture can be deployed it needs to be independently tested. It is not

enough to show that the architecture is theoretically sound. That says little about the implementa-

tion of the architecture. Therefore there is a project already underway between the GridStat group,

Avista Utilities, Pacific Northwest National Laboratory (PNNL) and Idaho National Laboratory

(INL) where a small GridStat setup with the security extension will be set up for evaluation. INL

will employ a red team trying to find weaknesses and/or holes in the security implementation.

The results from this project will then be fed back into the development of GridStat as a whole

and the security architecture in particular in order to continuously improve its capabilities.

6.2.4 Policy Development

The security extension to GridStat provides the mechanisms needed to provide flexible security for

its data plane, but future work has to be done to develop policies that take advantage of these mech-

anisms. Since the security extension is capable of per-status-variable granularity more research

should be put into classifying the different types of status variables and their different security and

performance needs. This would enable the development of policies that utilize the possibility of

combining different modules to achieve the best trade off between the different aspects of security

and performance for each group of status variables. There are many possible combinations such

as status variables that are very sensitive, but might not have strict latency requirements, status

variables that are not especially sensitive but have strict integrity requirements, while others again

might need a little of everything.

Developing an optimal set of security polices is a job that has to be done in tight cooperation

with the industry over a extended period of time to achieve the best result.

6.2.5 Develop Security Mechanisms for the QoS-Broker management

This thesis has focused on securing GridStat data plane in an effort to get a manageable problem

space for a single thesis. Future work has to be undertaken to extend the security architecture
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to the QoS broker hierarchy. Worth noting is that even without securing the QoS hierarchy the

end-to-end approach, combined with the access control to the keys and modules in the security

management plane, makes it impossible for an attacker to gain access to any published data through

the unsecured QoS hierarchy. The weakness is that attackers easily can use the unsecured QoS

broker hierarchy to disrupt legal subscribers from getting their data and thus effect denial of service.

Extending the security architecture to the general management plane can be done in several

ways. One way is to let the general management communications use the recently developed RPC

scheme Ratatoskr [35] that is built on top of the data plane. Since the data plane is secured by the

security architecture presented in this thesis this would transitively also secure the management

plane.

Alternatively a scheme similar to the one used to secure the security infrastructure, based on

sets of preloaded keys, could be adopted. This is a somewhat more cumbersome approach, but

has the advantage of not needing to route the management communication through the data plane.

Finally a completely independent architecture could be developed and put in place.

6.2.6 End Point Security

The threat model for presented security architecture does not include end point attacks. These

types of attacks are directed at the end point in the system, either through local physical access or

remote connections. Future work has to be undertaken to find the best way to secure the end points

and this is especially important in the power grid since many of the end points are unmanned.

Defenses against un-authorized physical access have to be in place before a real deployment of

GridStat can be undertaken.

6.2.7 Publication Security

The presented security architecture provides access control by the controlling which subscribers

get access to the modules and keys securing the different publications, but this is currently enforced

through simplistic static access control lists. As Pesonon et. al. observe in [29] any system that
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works across security domains needs more flexible approaches.

To address the need for a more flexible access control there is currently ongoing work with

another member of the TCIP project, Adam Lee, to integrate the attribute based trust scheme

of TrustBuilder [26]. The integration allows potential subscribers to incrementally build chains of

trust with the security management plane. Keeping access control lists updated with every operator

across several utilities is at best cumbersome, TrustBuilder enables GridStat to avoid that problem

by authenticating users based on their attributes instead of explicit identification.

The integration of TrustBuilder2 into the security architecture is being done through a callback

interface as shown in Figure 6.1. The utility worker can specify the credential needed to access

the publication he/she sets up by supplying a trust builder policy. This trust builder policy is then

embedded into the the publication policy that is sent to the SMP. Whenever a potential subscriber

tries to subscribe to that publication the security management server feeds the TrustBuilder policy

into its embedded TrustBuilder server. The TrustBuilder server then initiates an incremental trust

negotiation with the embedded TrustBuilder client embedded in the subscriber. If the subscriber’s

credentials fulfill the publication’s requirements the TrustBuilder returns true and the modules and

keys are sent to the subscriber.

TrustBuilder allows the security architecture to provide GridStat with dynamic attribute based

publication security. This makes makes it much more manageable to enforce access control across

security domains. A demonstration of the integration, limited to one level in the security manage-

ment plane, was shown at the TCIP projects annual National Science Foundation (NSF) review.

6.2.8 Intrusion Detection

The security architecture needs to be complemented by a intrusion detection system (IDS) that can

raise alarms when irregularities are discovered. While the security architecture provides several

hooks for detecting irregularities, it does not act on them. An example of such a hook is the

integrity modules. They check the integrity of incoming data, but only throws an exception if an
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irregularity is discovered. An IDS could use such information, together with other data such as

failed re-keying and module attempts, to provide more intelligent handling of such events.
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APPENDIX ONE
UNFILTERED EXPERIMENT RESULTS

As mentioned in Chapter 5 the experimental result presented is filtered for the interruptions from
the Java garbage collector (GC). This is the case for both the data plane and some of the hierarchical
infrastructure experiments. In an effort to illuminate all aspects of the performance Section A.1
and A.2 presents the unfiltered results.

A.1 Unfiltered Module Experiments
Table A.1 and A.2 contain the filtered experimental results from the publisher and subscriber that
the evaluation in Chapter 5 is rooted on, while Table A.3 and A.4 in comparison present the un-
filtered results. By comparing the two one find that there is a trivial increase in latency without
the filter that does not have a significant overall impact, but that the filter has a huge impact on the
standard deviation. This indicates that if there could be a way to control when and how the garbage
collector runs as is discussed in Section 6.2.1, the latency it adds would be tolerable.

Figure A.1 and Figure A.2 is an example of what the result of the GC filtering. Figure A.1
presents the each of the unfiltered results from applying the DES module on 10,000 status updates
of 200 bytes, while Figure A.2 shows the same results filtered for GC interruptions. Notice that
the scale on Figure A.1 is logarithmic.

A.2 Unfiltered Infrastructure Experiments
Since the infrastructure performance does not have any real-time requirements the jitter in the
performance caused by the GC does not have the same consequence as in the data plane. In
addition the performance of the infrastructure is measured in milliseconds instead of microseconds
and as a result it is only in cases where a significant amount of memory allocation and de-allocation
that the GC filtering has any real impact. This becomes apparent when the filtered and unfiltered
latencies of SGP propagation experiments with the disabled are compared in Figure A.3 and A.4.
By decomposing the total latencies of the cached experiments into subparts, see Figure A.5 and
A.6, we can see that the increased latency is caused by the memory allocation and de-allocation
needed to download and instantiate the module.
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Encryption Average Median Std Deviation Average Median Std Deviation
CaesarCipher 2,856             2,794             743                  3,295             3,277             579                
BLOWFISH 7,336             6,858             2,169             16,091           14,905           4,053            
AES 8,341             7,818             2,740             16,203           15,306           2,988            
DES 8,059             7,496             2,618             22,945           22,071           3,360            
TripleDES 9,748             9,078             3,211             43,642           42,304           4,448            

Obfuscation
OneTimePadObf 8,303             7,069             3,506             19,917           18,701           4,152            
AESObfuscation 52,804           51,169           16,873           57,260           59,346           7,783            

Integrity
CRC 2,589             2,527             671                  16,789           16,770           1,306            
MD5ErrorCheck 5,187             4,943             1,685             7,721             7,121             2,239            
SHAErrorCheck 6,490             5,859             2,808             9,823             9,356             2,366            
SHA512ErrorCheck 11,051           10,378           2,755             17,023           16,083           3,240            

Authentication
SimpleAuth 2,161             2,130             581                  2,134             2,111             580                
RSA 114,002,572 112,183,055 3,826,042     114,858,257 112,884,239 3,811,959    

Combinations
MD5/Blowfish 16,612           16,409           2,412             27,208           24,423           6,827            
Blowfish/MD5 12,746           13,698           2,909             24,588           24,321           2,692            
OneTimePadObf/Blowfish/MD5 14,042           13,347           3,473             54,404           55,424           6,677            
OneTimePadObf/AES/SHA 15,376           15,386           2,324             60,701           62,140           8,195            
SimpleAuth/OneTimePadObf/Blowfish 13,393           11,438           4,156             46,717           47,756           5,256            
SimpleAuth/OneTimePadObf/Blowfish/SHA 15,765           15,712           2,311             59,583           60,798           6,299            
SimpleAuth/OneTimePadObf/Crc/Blowfish 15,068           14,977           1,337             121,353         121,783         6,357            
AESObfuscation/TripleDES/SHA512 70,602           69,799           11,136           135,048         136,378         18,092          

Integer String with 200 characters

Table A.1: Publisher side latency in nanoseconds after filtering out the GC
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Figure A.1: Unfiltered publisher side DES module latency
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Encryption Average Median Std Deviation Average Median Std Deviation
CaesarCipher 3,224             3,289             950                 4,844             5,006             1,084            
BLOWFISH 9,318             8,239             3,542              32,263           33,837           6,361            
AES 8,101             8,036             2,362              33,231           34,576           7,047            
DES 9,561             8,546             3,624              42,486           39,151           13,269          
TripleDES 11,218           10,057           4,194              70,439           75,211           11,836          

Obfuscation
OneTimePadObf 7,489             6,465             3,088              28,042           29,765           5,096            
AESObfuscation 34,134           34,672           8,277              58,800           61,424           16,232          

Integrity
CRC 2,654             2,715             631                 17,075           17,699           2,486            
MD5ErrorCheck 4,815 4,822 1,543 6,804 7,091 1,499

Integer String with 200 characters

MD5ErrorCheck 4,815             4,822             1,543              6,804             7,091             1,499            
SHAErrorCheck 5,938             6,071             1,663              9,423             9,899             1,918            
SHA512ErrorCheck 12,481           13,207           2,717              19,028           20,132           3,588            

Authentication
SimpleAuth 2,332             2,393             688                 2,414             2,494             642               
RSA 933,402         930,034         148,468         944,225         938,888         155,471        

Combinations
MD5/Blowfish 11,844           12,645           2,688              35,231           37,746           7,593            
Blowfish/MD5 10,412           9,929             2,400              34,434           36,513           7,450            
OneTimePadObf/Blowfish/MD5 14,736           15,003           3,103              52,885           50,485           13,367          
OneTimePadObf/AES/SHA 15,946           16,342           3,169              60,111           57,640           15,462          
SimpleAuth/OneTimePadObf/Blowfish 11,392           11,528           3,116              39,115           41,137           6,251            
SimpleAuth/OneTimePadObf/Blowfish/SHA 16,577           16,177           4,211              49,986           52,751           9,272            
SimpleAuth/OneTimePadObf/Crc/Blowfish 13,280           13,207           2,494              96,782           97,811           10,885          
AESObfuscation/TripleDES/SHA512 59,304           61,585           13,099            108,073         107,830         15,894          

Table A.2: Subscriber side latency in nanoseconds after filtering out the GC

40

45

50

55

ds

10

15

20

25

30

35

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

M
ic
ro
se
co
nd

Figure A.2: Unfiltered publisher side DES module latency
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Encryption Average Median Std Deviation Average Median Std Deviation
CaesarCipher 2,856             2,794             743                  3,295             3,277             579                
BLOWFISH 7,419             6,866             4,505             17,071           14,841           57,397          
AES 8,555             7,821             7,862             17,953           15,366           123,886        
DES 8,434             7,477             21,258           23,846           22,127           33,664          
TripleDES 12,052           9,089             209,932         45,337           42,233           52,567          

Obfuscation
OneTimePadObf 8,303             7,069             3,506             23,524           18,682           92,371          
AESObfuscation 59,957           51,169           230,681         57,895           59,375           57,310          

Integrity
CRC 2,589             2,527             671                  16,789           16,770           1,306            
MD5ErrorCheck 6,582             4,942             105,655         7,868             7,121             6,468            
SHAErrorCheck 6,990             5,865             33,502           10,700           9,363             49,496          
SHA512ErrorCheck 14,260           10,386           100,219         17,698           16,084           24,036          

Authentication
SimpleAuth 2,161             2,130             581                  2,197             2,187             943                
RSA 114,002,572 112,183,055 4,394,433     114,858,257 112,884,239 4,735,562    

Combinations
MD5/Blowfish 16,600           16,327           2,556             27,457           24,397           25,873          
Blowfish/MD5 12,748           13,698           2,953             24,610           24,322           2,777            
OneTimePadObf/Blowfish/MD5 17,820           15,570           18,984           54,684           55,323           35,147          
OneTimePadObf/AES/SHA 19,636           16,132           12,736           70,601           62,215           335,739        
SimpleAuth/OneTimePadObf/Blowfish 14,992           12,577           7,431             48,992           47,707           34,585          
SimpleAuth/OneTimePadObf/Blowfish/SHA 15,915           15,705           13,012           59,802           60,663           17,145          
SimpleAuth/OneTimePadObf/Crc/Blowfish 15,495           14,977           42,763           128,674         121,783         6,357            
AESObfuscation/TripleDES/SHA512 73,414           69,640           185,838         142,662         136,696         220,490        

Integer String with 200 characters

Table A.3: Publisher side latency in nanoseconds without GC filtering
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Figure A.3: GC filter impact on SGP propagation latency with module caching disabled
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Encryption Average Median Std Deviation Average Median Std Deviation
CaesarCipher 3,550             3,289             20,046            5,062             5,006             7,560            
BLOWFISH 9,944             8,239             18,145            34,324           33,814           47,967          
AES 8,508             8,040             15,706            34,410           34,594           38,179          
DES 9,985             8,564             13,742            43,328           39,144           16,330          
TripleDES 12,473           10,061           33,641            71,170           75,207           29,871          

Obfuscation
OneTimePadObf 8,030             6,469             19,732            28,952           29,847           11,282          
AESObfuscation 36,514           34,672           80,595            77,110           61,645           1,147,388    

Integrity
CRC 2,654             2,715             631                 17,093           17,703           2,887            
MD5ErrorCheck 5,820 4,822 41,807 7,774 7,027 14,505

Integer String with 200 characters

MD5ErrorCheck 5,820             4,822             41,807            7,774             7,027             14,505          
SHAErrorCheck 6,645             6,071             51,796            9,796             9,891             15,535          
SHA512ErrorCheck 13,561           13,211           54,528            25,239           20,129           556,052        

Authentication
SimpleAuth 2,468             2,393             5,415              28,952           29,847           11,282          
RSA 942,645         902,598         902,407         948,177         938,885         256,731        

Combinations
MD5/Blowfish 11,915           12,648           4,915              35,786           37,739           30,293          
Blowfish/MD5 10,970           9,929             31,805            35,067           36,531           15,915          
OneTimePadObf/Blowfish/MD5 15,416           15,004           33,374            59,630           50,497           340,033        
CaesarObfuscation/AES/SHA 16,906           16,345           37,966            65,884           57,543           316,650        
SimpleAuth/OneTimePadObf/Blowfish 11,507           11,528           5,860              43,508           41,073           392,590        
SimpleAuth/OneTimePadObf/Blowfish/SHA 17,173           16,181           20,888            54,050           52,814           270,225        
SimpleAuth/OneTimePadObf/Crc/Blowfish 13,285           13,207           2,529              104,439         98,272           200,103        
AESObfuscation/TripleDES/SHA512 65,274           61,644           190,536         112,115         107,694         138,261        

Table A.4: Subscriber side latency in nanoseconds without GC filtering
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Figure A.4: GC filter impact on SGP propagation latency with module caching
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Figure A.5: SGP propagation latency decomposition without GC filtering and caching enabled
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Figure A.6: SGP propagation latency decomposition with module caching and GC filtering
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