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RATATOSKR: WIDE-AREA ACTUATOR RPC OVER GRIDSTAT WITH TIMELINESS,

REDUNDANCY, AND SAFETY

Abstract

by Erlend Smørgrav Viddal, M.S.
Washington State University

December 2007

Chair: David E. Bakken

The development of the communication infrastructure for the north-American electrical power

grid has failed to fully incorporate important developments in the field of computer science,

affecting the stability and efficiency of the power grid as a whole. The current power-grid

communication standard, SCADA, utilizes protocols specialized for centralized communication,

hampering communication between field sites key for envisioned improvements of power grid

safety and efficiency. Further, a number of different proprietary communication protocols are in

use, making communication between power utility companiesvery difficult.

GridStat is a communication infrastructure designed for a power grid environment that solves

many of the problems with the current situation. GridStat uses a specialization of the

publish-subscribe middleware paradigm, status dissemination, that takes advantage of the

semantics of status data to provide flexible acquisition of power-grid data with multiple

dimensions of QoS semantics. The middleware approach enables communication between

utilities independent of proprietary network protocols, and allows enhanced network features such

as forwarding data through multiple redundant paths. WhileGridStat provides excellent support

for data acquisition, the publish-subscribe architecturesupports only one-way communication and

provides syntax and semantics unsuitable for control communications.

This thesis presents Ratatoskr, a novel scheme for control of actuators using GridStat
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communication. It constructs a two-way communication channel on top of GridStat

publish/subscribe paths, and utilizes the QoS semantics and middleware properties GridStat

provides. For control communication Ratatoskr uses remoteprocedure call (RPC), providing

programmer friendliness and familiarity. The QoS semantics of GridStat are drawn upon to

provide the timeliness required for power-grid operation.Reliability concerns are addressed by

providing three redundancy schemes, ACK/resend, transmitting multiple copies of a single

packet, and spatial redundancy through GridStat’s redundant routing paths feature. Additionally,

pre- and post-condition expressions over GridStat status variables are built into call semantics.

The architecture and design of Ratatoskr is presented, along with results from an evaluation of a

prototype implementation.
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CHAPTER ONE

INTRODUCTION

The North-American electric power-grid is among the largest and most complex systems created

by man. Its critical mission of balancing changing demand and generation of power involves

coordinating diverse sets of components over a very large areas, and in a large number of utility-

domains. This balancing process requires extensive communication between components in the

Grid for monitoring system state and controlling actuator devices. The development of the grid

communication infrastructure has failed to incorporate important developments in the field of com-

puter science, affecting the stability and efficiency of thepower grid as a whole, [2]. GridStat is a

communication infrastructure designed for a power grid environment that would solve many of the

problems with the current situation, but it does not conveniently control communication, [8]. This

thesis proposes a novel scheme for control of actuators using GridStat communication.

1.1 Current Power Grid Communication Infrastructure

In the 1960s, utilities started shifting from mainly using field personnel and telephone communica-

tion for control of the power grid to electronic schemes. Today the predominant Grid communica-

tion architecture is SCADA (Supervisory Control and Data Acquisition). The SCADA architecture

has not changed notably from its origins. It is a centralizedapproach, in which a manned regional

control center gathers data from and issues control signalsto devices in geographically dispersed

field sites. Early systems were developed without any official standards, resulting in numerous

proprietary protocols. SCADA systems have since developedincrementally, and often incorporate

a blend of new and old communication technology. Topologiesare predominately varieties of star-

shapes, and protocols are mostly designed solely for communication between control center and

field sites, [12].
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With increasing stress on the transmission network, distribution models growing more com-

plex and looming threats of terrorism and cyber security risks, there is a pressing need for better

monitoring of grid dynamics and improved control schemes, [2]. The inherent inflexibility of the

SCADA architecture is unable to accommodate this. Communication between utilities is mostly

done by telephone between operators, making observation and containment of grid-wide phenom-

ena such as rolling blackouts very difficult. Fast automatedcontrol schemes involving substation to

substation communication have yet to be standardized, and are implemented using expensive, spe-

cialized point-to-point links, [2]. The Intelligrid project, a vision of a future power grid created by

an international consortium of power researchers, industry representatives, equipment manufactur-

ers and government representatives, argues for several applications of communication substation

to substation, substation to field equipment, and field equipment to field equipment, yet it does not

propose a wide-area communication mechansism, [6]. IEC 61850 is a widely accepted standard for

substation automation that includes standardized self description of devices independent of brand

and an event-driven communication model, [17]. While IEC 61850 holds great potential for im-

proved substation control, it does not specify a wide-area network mechanism in itself. Continued

incremental development of the existing centralized and inflexible communication structure will

severely inhibit potential growth in power-grid efficiencyand stability.

1.2 GridStat

Gridstat is a framework for power-grid communication centered around a middleware network for

power-grid data acquisition, [8]. It provides a flexible communication scheme with the reliability

and timeliness required in a power-grid network. GridStat routes traffic on top of existing com-

munications infrastructure through a series of application-layer routers, overcoming the inherent

heterogeneity of legacy networking technology. The unifying middleware framework creates a
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flexible overlay topology on top of the centralized designs of existing power-grid network infras-

tructures, allows for easy interoperability between powerutility companies despite use of propri-

etary transport protocols and offers abstractions to network services, in addition to several other

features well suited for a power-grid infrastructure that are less relevant in context of this thesis.

GridStat follows the publish-subscribe (pub-sub) paradigm. A device can publish status in-

formation either directly to the GridStat framework, or through an intermediary middleware pub-

lisher module, possibly located on another computer. The GridStat framework makes the infor-

mation available as one or morestatus variables, published values that are regularly updated .

Applications may retrieve status updates by subscribing tostatus variables through a GridStat sub-

scriber interface. The GridStat framework forwards statusupdates from the publisher through the

application-layer routers and finally to the subscriber. This overlay-network scheme allows Grid-

Stat to offer a wide range of network features independent ofthe underlying technology. The most

important of these are multicast and redundant forwarding paths (for fault-tolerance). In addition to

offering functionality additional to that provided by the underlying network, GridStat improves the

network Quality of Service (QoS), the nonfunctional properties of the network. QoS enhancments

provided by GridStat include bounded delay, reliability and security.

Currently GridStat forwards status updates in a one-way, pub-sub fashion, addressing the data

acquisition needs of a grid operations infrastructure. While it would be possible to forward control

commands using the existing status update mechanism, such communication would be cumber-

some with the pub-sub interface and in many cases would require operation success feedback

which is impossible over the one-way paths. Use of SCADA protocols for control while restrict-

ing use of GridStat to data acquisition would require modifying inflexible proprietary legacy code

for each new control operation introduced, and would not be able to utilize the flexible topology

and interoperability introduced with GridStat. Use of other existing QoS-enabled control schemes

would require implementing an overlay transport protocol to allow interoperability and flexible
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topologies, which is redundant when GridStat already provides middleware routing. Further, ex-

isting solutions would not be designed with the capabilities already found in GridStat in mind, and

mechanisms exploiting these would have to reside in the application layer voiding any advantages

that could be achieved by designing use of these features into the control semantics.

1.3 Ratatoskr

This thesis proposes a power grid control scheme, Ratatoskr1, using GridStat publications and

subscriptions for communication. Ratatoskr is designed primarily for control of field sites from

a control center, but use between field sites is imaginable. Remote Procedure Call (RPC) seman-

tics are used because of its programmer friendliness and familiarity. Some of the traditional RPC

features, especially transparency towards local procedure calls, are downplayed to better support

the reliability and timeliness aspects required of a power grid control scheme. Reliability con-

cerns are addressed by providing three redundancy schemes,ACK/resend, transmitting multiple

copies of a single packet, and spatial redundancy through GridStat’s redundant routing paths fea-

ture. ACK/resend represents a tradeoff between the timeliness and the reliability of the call, and

multiple resends and redundant paths trades off reliability for network resources. Since the desired

tradeoff parameters might vary between applications, Ratatoskr exposes these parameters to the

programmer, along with other QoS properties of the call.

Further, Ratatoskr allows pre- and post-conditions, whichare predicate expressions, to be

placed on the procedure calls.Pre-conditionsare evaluated before the execution of a call, and

will abort the call if the expression is not satisfied.Post-conditionsare evaluated after the ex-

ectution of a call and the result returned back to the client application to indicate system state.

Pre- and post-conditions in Ratatoskr may use status variables published to GridStat in the expres-

sions, accommodating usage of data from remote locations. These predicates are built into the call

semantics, providing standardized usage patterns, simplifying reuse and providing the option of

1In norse mythology, Ratatoskr is a squirrel running around the great life-tree Yddgarsil, carrying insults between
mythological creatures living on the branches.
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delayed execution of post-conditions. Pre-conditions aretested before a call is carried out on the

server side, aborting execution if the expression fails. Calls may then verify a safe system state

before potentially dangerous operations, such as avoidingre-energizing a line if manned mainte-

nance is scheduled in a endpoint substation at the time. Postconditions are carried out on the

server after a call has completed, possibly after a specifieddelay. This allows grid programmers

to verify the effects of operations. Power grid field sites often contain various mechanical devices

which affect each other in complex ways, and the outcome of anoperation could be unexpected

even if the operation itself was successful.

1.4 Contributions of Thesis

The research contributions of this thesis are:

• Design and implementation of a novel control scheme for an electical power grid environ-

ment where remote procedure calls are transported over a QoSenabled one-way publish

subscribe middleware network (GridStat).

• Design and implementation of three distinctive techniquesfor redundancy, offering a tradeoff

between worst-case deadline, use of network resources and resiliency towards a variety of

network failure categories. Applications are allowed fine control of redundancy semantics.

• Design and implementation of pre- and post- conditions mechanisms designed into RPC se-

mantics provides additional functionality over application-level implementation and allows

for a standardized mechanism for control signals between utilities.

• An experimental evaluation quantifying the tradeoffs between the redundancy techniques

and their performance.
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1.5 Organization of Thesis

The rest of this thesis is organized as follows: Chapter 2 summarizes related work and gives an

introduction to GridStat required for understanding the contributions of this work. An overview of

the Ratatoskr RPC mechanism and its underlying transport protocol is found in chapter 3. Chapter

4 details the design of a prototype implementation. Chapter5 presents the findings of an experi-

mental evaluation of the prototype. Finally, chapter 6 provides a summary of future work and the

conclusion.
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CHAPTER TWO

BACKGROUND AND RELATED WORK

This chapter gives an overview of relevant technologies, anoverview of the GridStat framework

architecture and details on the GridStat design related to the Ratatoskr mechanism. A more detailed

introduction to GridStat can be found in [8].

2.1 Middleware

Distributed computing involves processes on separate machines cooperating, commonly over a

network. If there are differences in the runtime environments of the interacting processes, such

as data representation, some sort of translation must be performed between processes to ensure

correct interaction. Middleware is software layered between the OS and the application offering

abstractions to inter-process interactions and providingany needed translation services between

process environments. Many different types of middleware interaction styles exist, accommodating

a wide range of distributed system architectures.

2.2 Remote Procedure Call

Remote Procedure Call (RPC), first presented in [4], is a style of middleware providing abstractions

for remote execution of code in a client-server fashion. Client applications call remote procedures

through an interface similar in syntax to local procedures at the client, and the RPC mechanism

handles packing the call with parameters and sending it overthe network, executing the code

corresponding to the call at the server, and transmitting the result back to the client application.

Remote procedure calls allow for return values in spite of the traditional sense of procedure as

a returnless call. RPC calls are in nature synchronous and blocking. A frequent design goal in

RPC systems has been to make remote calls indistinguishablefrom local calls both in syntax and

semantics, although the latter has been shown to be impossible, [30].
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2.2.1 Failure Semantics

Opposed to local procedures, a remote procedure call may fail during remote operation while

the local client process remains operating correctly. Suchfailures could stem from errors during

network transfer or failure during server execution. The failure semantics of an RPC mechanism is

defined by the way remote failures are handled and the guarantees of successful execution provided

to the client application. As any network in practice can be made reliable by resending messages

until an acknowledgment (ACK) is received, there are mainlythree schools of thought for failure

semantics, [28]:

• At-least once- Provides guarantee that an RPC procedure is successfully executed given

eventually reliable communication, but allows for repeated executions of the same call. This

may be achieved by having the client repeatedly send a call until a result is received. The

server executes all calls, no matter if they have been executed before, and sends results upon

successful execution. This provides a strong guarantee, but at-least once is only practical for

idempotent procedures.

• At-most once- Provides guarantee that execution of an RPC procedure is attempted exactly

once at server given eventually reliable communication, but does not guarantee that the at-

tempted execution is successful. A client retries sending acall until it receives a response

from the server. To ensure that the call is attempted at most once redundant calls are filtered

at the server, possibly using logs in stable storage to retain filtering after server crash. The

server must respond negatively to filtered calls so the client knows when to stop sending.

When the client receives a negative response, the executionstatus of the call is uncertain.

• Exactly once- Provides a guarantee that the RPC is executed exactly once at the server, and

so is the ideal case. This is impossible in the general RPC paradigm, as the RPC mechanism

is active only before and after application-level execution of a call on the server, and thus

cannot infer about the success of execution if server fails between these, [29]. This can in
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some cases be resolved through cooperation with the overlying application, but this must

be at the expense of programmability, mechanism complexityand frequent writes to stable

storage, and is seldom used in practice.

While the beforementioned paradigms ideally rely on an eventually reliable network, it is often

not practical to resend messages for an infinite number of times until success. The solution is

most often to utilize no-loss transport protocols, that is transport protocols performing sends using

ACK/retry schemes and that report back the delivery status of the send. While this type of transport

protocol gives a high probability of delivery even over a faulty network, the overhead and high

duration bound of such sends has given rise to a subdivision of at-most once semantics.Maybe

oncesemantics provide zero-or-once execution semantics, but distinguishes from regular at-most

once in that the underlying network sends do not ACK and so does not resend. This best-effort

communication scheme provides a lower bound for end-to-endcalltimes, and has little overhead,

but at the cost of low reliability compared to regular at-least-once.

2.2.2 CORBA

Common Object Request Broker Architecture (CORBA) is a comprehensive standard for inter-

operability between distributed object frameworks, [9]. Distributed objects are processes offering

remote execution that are treated as abstract objects to separate the remote execution interface from

the underlying implementation and platform. While CORBA isnot strictly an RPC mechanism,

the most common mechanism for making calls to distributed objects is so close to RPC in both

syntax and semantics that it is relevant for this thesis. Many extensions to CORBA have been

proposed, among them extensions targeting real-time operation, [11], and fault-tolerance1, [10].

CORBA allows for the use of any underlying transport protocol, but dynamic configuration of

communication protocols are not standardized and left to bespecified by vendors, [24].

1It should be noted that Fault Tolerant CORBA focuses on faulttolerance through replication of services, while
Ratatoskr focuses on replication of communication.
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2.2.2.1 Real-time CORBA

Real-time CORBA is an extension to CORBA for interoperability between frameworks accomo-

dating real-time distributed systems. The extensions emphasize resource management in addition

to the introduction of extensive call prioritization semantics including mapping to OS thread prior-

itization. Real-time CORBA supports setting transport protocol QoS properties upon object bind-

ing, [26]. This allows setting policies per invocation by rebinding for each invocation. Real-time

CORBA is a mature standard with several field-tested implementations. For example, the TAO orb

is being used for operation flight programs by the Boing corporation, [27]. Two strategies for using

existing implementations of Real-time CORBA for actuator control in the power-grid would be to

route Real-time CORBA traffic directly on top of utility networks, or to route Real-time CORBA

traffic over a middleware layer that overcomes incompabilities.

An alternative to using Ratatoskr over a GridStat for actuator control is to employ real-time

CORBA on top of QoS aware networking technologies, such as ATM or diffserv IP. Such a

real-time CORBA approach would provide timely control messages. Further, network level fault-

tolerance may be achieved by using multiple temporally redundant sends of each network packet.

In addition to temporal redundancy, Ratatoskr uses the GridStat redundant paths feature to pro-

vide fault tolerance against network faults. In chapter 5, an evaluation of the performance of the

fault-tolerance capabilities of Ratatoskr shows that redundant path routing provides fault tolerance

against certain fault categories that affect all temporally redundant sends along a single path. We

are not aware of any wide-area network technology providingrouting with redunant paths.

While this thesis presents an RPC mechanism designed specifically for actuator control over

a GridStat connection, an alternative approach would be to implement a transport protocol en-

abling Real-time CORBA to communicate over GridStat. WhereRatatoskr is a pure RPC system,

CORBA provides the advantages of a distributed object architecture, and compability to a large

set of existing third party software components. Since Real-time CORBA extends the complex
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CORBA standard, it requires adherence to a set of standardized semantics. While some require-

ments are provided in [6] and [17], the desired functionality of a power-grid control system is still

largely unmapped and could potentially gain from mehcanisms not compatible the CORBA stan-

dard. The more minimalistic Ratatoskr design allows for rapid experimentation with features such

as pre- and post-conditions and fine grained QoS semantics. Further, the communication subsys-

tem of Ratatoskr can easily be adapted to carry Real-time CORBA traffic instead of Ratatoskr RPC

calls, if Real-time CORBA is deemed desirable for a grid deployment.

2.2.2.2 Fault-tolerance in CORBA

The distributed object paradigm architecture of CORBA lends itself well to service replication. As

the distributed object interface is decoupled from the underlying implementation and environment,

an object interface can be replicated into several implementations running in separate environments

with minimum impact on observed behavior. Several CORBA implementations provide replicated

objects, [23, 25, 20]. A replicated distributed object scheme, coupled with a real-time CORBA

implementation, would provide timely delivery and fault-tolerance. Such a scheme would still

have to rely on a the underlying network for network-level fault tolerance, and would not be able

to reap the benefits of redundant path routing. Further, object replication has to rely on strong

multicast guarantees for synchronization between replicas, which gives a high worst-case message

rounds in face of communication failures and thus scales badly with geographical distance.

2.3 Publish/Subscribe

The Publish/Subscribe middleware architecture centers around producers of information (publish-

ers) and information consumers (subscribers). Publishersmake information events available to a

middleware network, and subscribers can request that events be forwarded to them by the network.

The network forwards only subscribed data and can often optimize delivery paths through multi-

cast, conserving bandwidth, [3]. The information flow is one-way; subscribers make subscription
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requests to the middleware network itself rather than the publishers, allowing a decoupling be-

tween data producers and consumers. Further, published events can be stored in the network until

the subscribers are ready to consume them, allowing a decoupling between publishing time and

delivery to the subscriber, [7].

2.3.1 Status Dissemination

Status dissemination is a specialization of the publish/subscribe paradigm where publishers main-

tain status variables, [8]. Status variables are published values of a given type that are updated

by publishingstatus events. Status events are limited by a maximum rate, and these restrictions

in publication rate and type allow for additional QoS semantics compared to publish-subscribe

systems without such restrictions.

2.4 GridStat

This section presents an overview of GridStat’s architecture, and details the design of modules

relevant to Ratatoskr. The purpose of this overview is to provide a background for the rest of the

thesis. A more complete introduction to gridstat can be found in [8] and [2].

2.4.1 Architecture

The GridStat architecture is separated into two main subsystems, thedata plane, a middleware

databus where status updates supplied by publishers are forwarded to subscribers, and themanag-

ment plane, a set of servers that manages system resources and organizes subscriptions by receiving

subscription requests from subscribers and configuring thedata plane towards forwarding accord-

ingly. GridStat uses two kinds of communication traffic:Data traffic is always forwarded through

the data plane message bus;control trafficbetween GridStat entities can be sent over any middle-

ware control mechanism. The current implementation of GridStat uses CORBA and Ratatoskr as

control message mechanisms.
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Forwarding in the data plane is perfomed bystatus routers, middleware routers placed through-

out a wide area network. Status routers form an overlay network by forwarding status events from

router to router. The status routers retain implementations of all protocols used in the wide area

network, and may function as bridges between the parts of thenetwork using different network-

ing technologies or with separate addressing spaces. Network connections in the data plane (from

publishers and subscribers to status routers and betweens status routers) are represented asevent

channelsthat contain abstractions of data forwarding properties required for resource managment.

Each publisher and subscriber has event channels to one or more status routers.

Whereas the data plane has a flat organization, the managmentplane consists of a hierarchy of

servers calledQoS brokers. QoS brokers in the lowest level of the hierarchy areleaf QoS brokers,

and are the only QoS brokers that directly communicate with entities in the data plane. QoS brokers

above the leaf level are called internal QoS brokers and act as the soleparent QoS Brokerof one or

morechild QoS brokers. All QoS brokers have a parent, with the exception of theroot QoS broker,

and leaf QoS brokers do not have child QoS brokers. Each QoS broker is associated with a set of

entities in the data plane, the QoS broker’scloud. The data plane is divided up so each status router

belongs to the cloud of exactly one leaf QoS broker. Status routers that have event channels to the

same publisher or subscriber must be in the same cloud, and publishers and subscribers belong to

the same cloud as their status routers. The clouds of internal QoS brokers are defined as the union

of the clouds of their children, and thus the cloud of the rootbroker is all entities in the data plane.

Entities are named according to their relationship to the managment plane hierarchy. A GridStat

element must have a name unique within the scope of its parent; its full name is the name within the

scope with an added prefix of the parent’s name. This hierarchy of clouds is meant to correspond

to a natural organization of managment domains in the power grid, such as levels of geographical

areas.

As the data plane provides bounded delay and other QoS guarantees for subscription data,

additional subscriptions must not overload network resources. The managment plane administers
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the use of resources in the data plane, and so handles subscription requests. Subscription requests

are made by the subscriber to its leaf QoS broker. If both the publisher and the subscriber of a new

subscription are within the leaf level QoS broker’s cloud, the leaf-level QoS broker is responsible

for verifying that the connection will not overload networkresources and update the status routers

with the new subscription. If the publisher and subscribersare in different leaf-level clouds, the

subscription request is propagated up in the hierarchy to the first QoS broker that has both within

its cloud.

Ratatoskr is build on top of GridStat subscription paths, and the most relevant GridStat modules

in the context of this thesis are the publisher and the subscriber.

2.4.1.1 Publisher

A publisher is a GridStat entity in the form of a module residing in an application program for pub-

lishing data to a GridStat network. It retains two connections to each of its status routers, an event

channel for forwarding published status updates, and a middleware control channel for control

messages that the status router forwards to the managment plane. The application can announce

a new published variable through the module interface by providing a string name as identifier, a

type, and the rate at which it is published. There is currently no policing on the maximum and min-

imum rates of publish updates. The managment hierarchy returns a 32-bit integer for identifying

the variable within the GridStat network, avariableID. The application may update the value of a

status variable through the module interface by specifyingthe variableID and the new value. The

types of variables provide semantics for subscribed events, in addition to additional functionality

outside the context of this thesis. The current types are various primary types (integer, floating

point, bool...) and a user defined type, which is treated as a simple byte array by GridStat. The

user defined type contains semantics for division into further subtypes, defined by the application.
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2.4.1.2 Subscriber

The subscriber is a GridStat entity module used by applications to subscribe to data published over

the GridStat network by a publisher. Similar to the publisher, the subscriber also retains two chan-

nels to each of its status routers: An event channel for receiving subscribed updates and a control

channel for subscribing or unsubscribing to status variables. To subscribe to a published status

variable, the application passes the variable name, the name of the publisher, QoS parameters and

aSubscriptionHolder, an object that stores the status value and is updated by the subscriber when it

receives updated values from its status router. Applications can access the values directly through

the SubscriptionHolder interface, or can specify a callback method that will be invoked when the

SubscriptonHolder is updated. There are several implmentations of SubscriptionHolders corre-

sponding to the types of status variables, and applicationscan provide additional implementations

for added functionality, or for semantics supporting subtypes of user defined variables. GridStat

allows subscribers to specify that subscription data should be sent overredundant paths. Subscrip-

tions over redundant paths are sent through more than one path in the GridStat network, where,

with the exceptions of Entry-point SRs, a status router or event channel present in one path is not

present in any other paths.
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CHAPTER THREE

THE RATATOSKR RPC MECHANISM

GridStat’s mission is to provide a complete communication framework for the power-grid. In ad-

dition to the existing publish-subscribe functionality, astandardized control-mechanism is needed

for allowing power-utilities to control field equipment through the GridStat infrastructure. Such a

mechanism will have to accommodate timely execution and high fault tolerance due to the critical

nature of Grid operation. Ratatoskr is an RPC mechanism designed to run on top of GridStat’s

publish-subscribe system, utilizing the QoS mechanisms provided by GridStat. Built into the RPC

semantics are pre- and post-conditions on calls, intended for predicates over GridStat published

variables. Ratatoskr’s intended primary use is for control-center operators and mechanisms to

send control-messages to actuators in substations, eitherdirectly accessing actuators or through an

intermediary RPC server that can communicate with actuators through legacy APIs. This chapter

gives an overview of the features of Ratatoskr.

3.1 Definition of terms

The parts of the text regarding the transport protocol uses terms as defined in [18]. Additional

terms are defined below.

• 2WoPS transport protocol- 2-Way over Publish Subscribe. Communication protocol defin-

ing two-way communication over two GridStat one-way subscription paths.

• 2WoPS peer- An application connected to a GridStat framework that utilizes the 2WoPS pro-

tocol for two-way communication using a GridStat publisherfor sending data and a GridStat

subscriber for receiving data.

• Ratatoskr peer- A device connected to a GridStat framework that utilizes Ratatoskr RPC for

communication.
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• Entry-point SR- The GridStat status-router a publisher or subscriber connects to. When

used in relation to a 2WoPS peer, the entry-point SR signifiesthe edge status-router used to

connect both the publisher and subscriber of the 2WoPS peer.The current implementation

of GridStat allows publishers and subscribers to connect only to a single status router, while

the architecture allows for multiple connections. The restof this thesis considers only the

case of a single entry-point SR per publisher or subscriber,as the exact semantics of multiple

entry-point SRs are still undefined.

• TSDU- Transport Services Data Unit, a chunk of data from an overlying application that is

sent through a transport layer connection.

• transport protocol control message- Similar to a TSDU, but data is for control of the 2WoPS

protocol, not for application use.

• TPDU - Transport Protocol Data Unit, a chunk of data from the transport layer that is sent

over a network layer connection. In this context, GridStat pub/sub communication is seen as

a network layer. A TPDU can be a TSDU with added transport layer headers, or data used

exclusively for control information by the transport layer. Several TPDUs can duplicate the

same TSDU, and a single TPDU can be spread over multiple TSDUs, although the latter is

not implemented in the prototype (see section 6.2.3.1).

• NSDU, NPDU - Network Service Data Unit and Network Protocol Data Unit, similar to

TSDU and TPDU but for the network layer (GridStat pub-sub). ANSDU is exactly the

same data as a corresponding TPDU, but viewed in context of the network protocol layer.

An NSDU with an added network-layer header is an NPDU.
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3.2 Two-way Communication over a Publish-Subscribe Framework

GridStat is a publish-subscribe system. Publishers in the system make data in form of status up-

dates available to the GridStat framework. Subscribers mayrequest subscriptions to these vari-

ables, and GridStat will forward subscribed information from publishers to subscribers according

to QoS properties specified at subscription time. Communication is strictly one-way; subscribers

have no way of sending information to publishers. RPC communication requires a two-way com-

munication as procedure calls often will return values to the client, and acknowledgments on suc-

cessful calls are almost universally required even when thecall has no return value. To allow for

a two-way communication link to be established, Ratatoskr utilizes a transport protocol called the

2WoPS protocolon top of GridStat. The 2WoPS protocol achieves two way communication by

instantiating both a publisher and a subscriber behind a single interface. To set up a two-way data

path, two 2WoPS peers each publish a data variable specific tothe session, and subscribe to the

other peer’s corresponding variable. Data is sent over the connection by publishing a status update

containing the data, and received by the other peer through the subscriber interface. The 2WoPS

interface masks the publisher and subscriber behavior.

Using a layered approach to communication allows for other uses than Ratatoskr RPC traffic

of the 2WoPS protocol. For example, the 2WoPS protocol was used for control communication

between QoS Brokers in [1]. Figure 3.1 shows the relationship between the modules of Ratatoskr

(light shade), the GridStat modules used by Ratatoskr (darkshade), and examples of potential other

applications using GridStat or Ratatoskr modules (white).The example shows the architecture

stack for a control center and a substation. The main intended use of Ratatoskr is illustrated by

the control center control system using Ratatoskr RPC to execute control operations on an actuator

in the substation. Other uses of the 2WoPS protocol may be to transport legacy control messages

to actuators if the actuator API remains to be fully implemented for Ratatoskr. The publisher and

subscriber used by the 2WoPS protocol may have other uses, such as sending sensor data from the
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substation to the control center, or publishing reports of power-grid state aggregated in the control

center to be used by protection schemes in the substation. Finally, while GridStat requires control

of the underlying network resources, network technologiesthat manage resource use may reserve

bandwidth for uses outside GridStat, such as transferring video feeds from surveillance cameras in

the substation.

3.2.1 Properties of the 2WoPS Protocol

The 2WoPS protocol is designed specifically for the Ratatoskr RPC. While this does not block out

other uses for two-way communication over GridStat, care should be taken in noting the properties

of the protocol, as these differ from the most common transport protocols, TCP and UDP. Some

suggested extensions to the protocol to enhance use for other applications can be found in section

6.2.3. This section gives a summary the main properties of the 2WoPS protocol.

• Connection oriented- This was a necessary design decision as the underlying GridStat com-

munication is connection-oriented. The 2WoPS protocol interface provides method to open

and close a connection.

• Controlled-loss- An adjustable ACK/resend scheme similar to thek XMIT scheme found in

[21]. A TSDU will be retransmitted up tok times, wherek is a user specified number. No

ACK status is sent by the server on thek-th resend. This reduces the deadline for the sending

process by the time for sending the ACK, at the expense of knowledge of the delivery status.

It should be noted that while a missing ACK suggests that the message was not delivered,

it cannot guarantee a failed delivery, as the message might have arrived while the ACK was

lost. Because delivery status is unclear, the overlying RPCmechanism must still wait for

a return from the server. Whenk is set to 0 the scheme has uncontrolled-loss properties.

The controlled loss scheme gives little indication of the success of a call, which might be

impractical for non-RPC use, so ano-lossscheme is also provided.
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Figure 3.1: Ratatoskr Module Stack

• No-loss- adjustable ACK/resend scheme. Similarly to controlled-loss, TSDUs are retrans-

mitted up tok times, only the no-loss scheme delivers an ACK even on the final send. For

no-loss, delivery of a TSDU is uncertain only if each send attempt experiences faults, while

for controlled-loss, delivery of a TSDU is uncertain even ifthek-th send-attempt experiences

no faults. This gives weaker failure semantics for controlled-loss, and more so at a lowk.

Controlled loss blocks2 ∗ k − 1 trip-times per send and uses2k − 1 TSDU-transfers of

bandwidth where no-loss blocks for2 ∗ k trip-times and uses2k TSDU-transfers per send.

• Timeliness- GridStat provides delivery guarantees for subscriptions. The delivery guarantees

of the underlying subscriptions are used to calculate tighttimeout values for ack/resends, and

delivery guarantees for TSDU sends.

• Blocking- Execution of a sending thread is blocked until the send is completed. A send is

completed either when delivery is confirmed by receiving an ACK from the receiver, when

thek-th ack times out for no-loss, or after thek-th send for controlled-loss. Multiple threads

are still allowed to send in parallel.
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• Unordered delivery- No message ordering is provided. Received NSDUs containing TSDUs

are delivered to the application in the order they were delivered to the 2WoPS protocol by

GridStat.

• No duplicates- TPDUs duplicating the same TSDU are filtered so the TSDU is delivered

only once to the server application.

• Error control - A simplecyclic redundancy check(CRC) is used to discard TPDUs contain-

ing bit errors.

• Hierarchical naming- A naming scheme similar to the one for publishers and subscribers in

GridStat is used. A 2WoPS peer is identified within its GridStat cloud by a strings with no

spaces. The peer registers the publisher and subscriber used for communication with names

based on this string, the publisher is namedsPUB and the subscribersSUB. The names of

the publishers and subscribers must belocally unique, that is no other 2WoPS peer may have

the same name within the leaf-level cloud of the entry-point, and since clouds have unique

names the fully qualified name is globally unique. A leaf-QoSbroker stores the names of all

elements in its cloud and prevents registry of locally non-unique names.

• Message oriented- TSDUs are bounded by the maximum size of GridStat status updates,

which is again bounded by an underlying transport protocol (UDP for the research prototype

of GridStat).

3.2.2 Reliability Measures

A serious concern in any wide area network is that the number of components, geographical out-

stretch, and usage patterns of such networks inevitably lead to lowered reliability when compared

to local area networks. This is especially apparent in the Internet, where most traffic uses the TCP

transport protocol which uses TPDU drops to indicate congestion so it can regulate bandwidth

usage. While GridStat controls network traffic at the network edges to avoid network overload
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at least during normal operation, a GridStat deployment must be expected to share many of the

loss properties of the internet stemming from other sourcesthan traffic overload. These include

hardware failure, maintenance, line damage or short-term miscommunication between routers. A

2002 study on an internet backbone found that with respect tomean failure rate, the median link

failed every ten days, [16]. The mean failure had a duration of over one minute and 10% over 20

minutes. Such failure patterns are acceptable in the Internet because routing protocols will dis-

cover link errors and reconfigure routing to direct traffic around the affected links in a manner of

seconds, and because few Internet applications depend on high network reliability. Also, while

network drop rates during to transfer are negligible in the fiber and copper lines common in wide

area networks today, GridStat is an overlay network and underlying physical network technolo-

gies might display other properties. Connecting remote substations to a utility network by fibre

is expensive, and alternatives include microwave signaling, WiFi, power-line communications or

satellite, all suffering from various forms of signal interference. The 2WoPS protocol provides

several kinds of redundancy to overcome network failures.

3.2.2.1 Reliability Techniques in the 2WoPS Protocol

The 2WoPS protocol employs three techniques for overcomingnetwork losses:

• ACK/resend: allows specially marked TPDUs to be ACKed back to the sender, enabling the

sender to resend the TPDU until it is confirmed successfully sent. ACK/resend is allowed

for TPDUs containing TSDUs, enabling ACK/resend semanticson application messages.

If an ACK is lost the sender will not be aware of delivery success and resend the TSDU,

so redundant TSDUs must be filtered at the receiver. This technique guarantees successful

delivery given an unlimited number of resends and an eventually-consistent network con-

nection. Further, the technique uses a very limited amount of bandwidth to achieve fault

tolerance. The main disadvantage with the technique is thatthe sender must wait a full RTT

before a packet is confirmed lost and resend is commenced, andso the time for successful
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delivery of a packet isRTT ∗ losses. Because the intended use of Ratatoskr is for power-

grid actuator commands which are often time-sensitive, ACK/resend by itself will often be

inadequate. The 2WoPS protocol also offers limitations to the number of resends to allow

applications with strict deadlines to give up on unsuccessful sends after a deadline has been

missed. The number of resends is a parameter to a send commandand can be different for

each TSDU.

• Temporal redundancy -performs multiple network level sends for each TPDU and filters

redundant TPDUs at the receiver. While this technique is implemented in 2WoPS mod-

ules, it is in practice a network layer technique: for each TPDU sent by the transport pro-

tocol with temporal redundancy, the network layer sends multiple NPDUs carrying copies

of the TPDU. Temporal redundancy toleratesn − 1 losses withn copies of the TPDU. The

technique consumesn times more bandwidth than regular sends. The main problem with

temporal redundancy is that network losses may be temporally concentrated. For example,

network congestion will often lead to periods of high loss rates when a router’s buffer for

an outgoing link is filled or maintenance on a router might disable all connecting links for

several minutes. To add to this, by sending several copies ofthe same TPDU in a short span,

the extra bandwidth use might add to existing congestion. The 2WoPS protocol allows ap-

plications to specify a delay between sending each temporally redundant copy of a TPDU.

Delays between sends will only be truly effective for overcoming failures if the durations of

all periods of temporally related failures were known beforehand, but might help to relieve

the congestion aggravation effect of multiple sends. The degree of temporal redundancy is a

parameter to the send command.

• Spatial redundancy: The 2WoPS protocol uses GridStat’s redundant path function to offer

spatial redundancy: all NPDUs and thus TPDUs over a connection with spatial redundancy
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are copied in the GridStat network and sent over multiple paths. Redundant TPDUs are fil-

tered at the receiver. Spatial redundancy toleraten − 1 losses withn redundant paths, and

is not affected by temporal concentration of errors. It should be noted that common mode

failures thoughout the network, such as very high traffic levels during attacks or crisis situa-

tions may affect components involved in all redundant paths. The use of spatial redundancy

is heavily dependent on whether network topology allows forredundant paths, but it is ex-

pected that the high reliability requirements of a criticalinfrastructure as the power-grid will

justify the expense of building a network with a high degree of redundancy. While spatially

redundant TPDUs are forwarded throughout the network in parallel, a small delay overhead

is introduced by the routing mechanisms for multiple paths.Further, it is unlikely that all

redundant paths through the network will provide as low delivery deadlines as the best path

achieved with single-path routing, and so use of redundant paths is likely to increase the

end-to-end delay deadline of a subscription. Spatial redundancy consumes, assuming that

redundant paths are of equal length to a single path connection,n− 1 times more bandwidth

than sends through a single path. It should be noted that the process of allocating redundant

paths through the network is more complex than allocating a single path, and so spatial re-

dundancy induces overhead to the network management. The degree of spatial redundancy

is a property of the subscription used for sending data, and so is set at connection setup time

and subsequently used for every TPDU sent over the connection. A 2WoPS connection can

have different spatial redundancy parameters for each direction. For purposes of analysis and

evaluation this thesis conciders only the case where both directions of a connection have the

same degree of spatial redundancy. The current implementation of GridStat supports only

up to two redundant paths, and does not allow redundant pathsbetween leaf-level clouds,

but work is done to eliminate these limitations.

A comparison of the various redundancy techniques can be seen in table 3.2.2.1.
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ACK/resend Temporal redundancy Spatial redundancy
Overview Receiver ACKs successful

sends, client retries upon
missing ACKS up to n

times

Each TPDU is sentn times,
with k delay between sends

Each TPDU is sent through
n physical paths

Failure tol-
erance

n failures n − 1 failures n − 1 failures

Bandwidth f ∗ (|TSDU | + |ACK|)
wheref is min of n and #
of failures

n ∗ |TSDU | n∗|TSDU |, depending on
topology

Added de-
lay

(f − 1) ∗ RTT (n − 1) ∗ k routing overhead, more de-
pending on topology

Table 3.1: Comparison of Redundancy Techniques

3.2.2.2 Combining Redundancy Techniques

The 2WoPS protocol allows for combinations of the redundancy techniques. Temporal and spatial

redundancy measures are cumulative and as they reside in thenetwork layer affect all TPDUs,

including ACKs. For example, if a sending a TSDU with 3 temporally redundant sends and 4

ACK/resends over a connection with 2 spatially redundant paths in each direction, three NPDUs

containing copies of the TSDU will be sent. At the entry-point router, each of the NPDUs will

be forwarded to the first routers of the redundant paths, and,assuming no network failures, six

NPDUs containing the same TPDU will arrive at the receiver. The receiver will similarly send a

single ACK TPDU, which will be sent in three temporally redundant NPDUs, which again will

be copied onto the redundant paths. If all ACKs are lost in thenetwork, the sender will resend

three new NPDUs containing the TSDU, and so on. This gives application designers the ability to

tailor a connection to the exact needs of the application, allowing use of high spatial and temporal

redundancy where a low delay is required, or relying on ACK/resend for redundancy for less delay-

sensitive applications or where bandwidth is scarce.
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3.3 The Ratatoskr RPC

Ratatoskr RPC is a remote procedure call protocol for power-grid control communication built on

top of the 2WoPS protocol. The primary application for Ratatoskr is remote operation of power-

grid actuators, either to a gateway interfacing multiple devices or by directly controlling intelligent

electronical devices (IEDs) with remote interfaces embedded in the acuator itself. The current grid

communication system is unable to support developments in the power-grid stress levels and the

security threat picture, and propoposed solutions requirereal-time, reliable control [6].

Ratatoskr draws extensively on the features provided by the2WoPS protocol. Delivery guar-

antees for calls is achieved using GridStat’s QoS enabled network communications, and fault-

tolerance is provided through the redundancy techniques found in the 2WoPS protocol. As the

use of redundancy trades off network resources, or worst case delay in the case of ACK/retry,

against safety, applications designers are allowed detailed control over the level techniques used

for redundancy.

In addition to increased safety through fault-tolerance, pre- and post-conditions on calls are

built into the RPC semantics. Pre-conditions are conditional expressions over GridStat variables

that are evaulated before execution of an RPC call, and if theexpression is negative, the call is

negated. Post-conditions are similar expressions evaluated after the call has executed, and negative

results are reported back to the application, allowing evaluations of operation outcome.

3.4 RPC semantics

The RPC semantics are not meant as a final specification for a deployment implementation, as a

full mapping of the requirements and additional functionality needed for this is well beyond the

scope of a master’s thesis. It is rather a platform for further research on control communication in

GridStat, specifically to:

• Make practical an evaluation of the tradeoff space between and performance of the redun-

dancy techniques employed.
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• Create a platform for further exploration of the possibilities of the pre- and post-condition

mechanism.

• Illustrate the QoS semantics available with the capabilities provided by the 2WoPS protocol.

• Provide a building block for future GridStat research projects where timely and reliable

control communication is needed.

• Function as a simple GridStat control mechanism in power-grid simulations or test deploy-

ments, allowing the mapping of new requirements.

As follows, call semantics are designed to be simple and flexible, with extensive use of platform-

specific, generic serialization to allow rapid experimentation at the cost of performance. The pro-

totype was implemented on the Java platform as Java was used for underlying GridStat elements.

Call semantics are use dynamic binding: the server exposes methods to remote invocation by

registering local calls with names and parameter types. Theclient specifies the method name and

an array of objects representing the parameter values, and these are serialized and transported

over the network where the name and parameter types are used as the identifier to the correct call.

Return types are unspecified, and so returned objects must becast to the expected class at the client.

The RPC semantics will catch and serialize any exception cast by the method when executed at

the server, and these will be wrapped in a special exception and cast again when deserialized at

the client. This is a brittle system and requires extensive care during application design, but the

dynamic semantics may easily be hidden behind a wrapper class implementing some sort of static

interface, for example, Interface Description Language (IDL) semantics.

Ordering is implemented on a per-thread-basis. The RPCs areblocking, and so if a single

thread makes two calls to the same server, the first call must either succeed or time out before the

next can be attempted. An RPC call timeout includes the time for sending the return, and so for

the second call to reach the server before the first, the first call would have to be delayed to twice
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it’s maximum guaranteed delay. It is assumed this will not occur as GridStat will use a router

scheduling algorithm that drops NPDUs that exceed their delay, [15].

3.4.1 Pre-and Post Conditions

For many power-grid control-operations, placing pre-conditions on the execution may help in pre-

serving safety in face of unwarranted situations such as power-grid anomalies or unexpected me-

chanical operation. Because of the distances involved, communication must be expected to suffer

from bandwidth and delay limitations. Thus one may assume that the client-side information about

server state is limited and not fully updated, and followingthis, pre-conditions should be placed

on the server-side of the call. Such conditions could be placed in application code using RPC

exceptions, but this could lead to variations in semantics between vendor implementations.

Ratatoskr incorporates pre-conditions in call semantics.This gives standardized predicate

semantics, easing interoperability between equipment vendors and inter-utility communication.

Predicate expressions are modules, accommodating reuse and laying ground for future extensions

(see section 6.2.4.4).

Examples of pre-conditions in power-grid operation may be:

• Isolators are actuators that connect and disconnect de-energized power circuits. A precondi-

tion could be to verify that a line is de-energized before attempring isolation.

• High voltage equipment carries with it electocution hazard, and another pre-condition could

be to verify that no manned maintenance is scheduled at a fieldsite when performing opera-

tions that might place maintenance personel in danger.

Ratatoskr further allows application designers to use the same predicate modules used for pre-

conditions for placing post-conditions on calls. Power-grid operations are complex, and actuator

operations may give unexpected results in face of situations such as mechanical malfunctions or

operator overrides. Server-side post-conditions will be able to utilize the rich information environ-

ment local to the substation for analyzing the physical outcome of an execution and return only a
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brief report to the client. Thus client applications will beable to review the results of calls with-

out having to retrieve large amounts of data from the substation. By allowing a delay before the

post-condition is evaluated, the effect of the operation isallowed to stabilize. By designing the

post-conditions into the RPC semantics, the result of the post-condition is transferred to the client

as a separate send, without affecting the duration of the RPCcall itself.

Examples of post-conditions in power-grid operation may be:

• Load tap changer are components of certain transformers that allow adjustment to voltage

output during load. A post condition could be to verify the new voltage level after load tap

changer operations, or even generate a status report from all connected devices and send it

back to the client.

• Transformer protection is a scheme to detect internal faults in a transformer and isolate it

by braking all connected lines if a fault is detected. A post-condition could be to trigger a

transformer protection scheme after all transformer operations.

3.5 Limitations

Ratatoskr has the following limitations:

• No restarts after failures in client or server are handled. This is discussed in section 6.2.4.1

• Security is not adressed in a proper manner. See section 6.2.5.

• Packet sizes in the 2WoPS protocol are restricted to the maximum packet size of the under-

lying network.

• The prototype design uses many mechanisms specific to Java, and so is platform dependent.

3.6 Assumptions

Ratatoskr makes the following assumptions:

29



• Applications are not subject to byzantine behavior.

• All NSDUs are delivered within two times their guaranteed maximum latency or not deliv-

ered.

30



CHAPTER FOUR

DESIGN OF RATATOSKR

This chapter describes aspects of the design of an experimental protoype of Ratatoskr implemented

in Java. It is by no means meant as a final version for deployment, but rather as a proof-of-

concept implementation, in addition to providing the meansof an evaluation of the fault tolerance

capabilities of Ratatoskr and as a platform for further research. The purpose of this chapter is to

give a proper understanding of the processes used in the evaluation, and to detail the parts of the

design related to the key contributions of this thesis.

4.1 Design of the 2WoPS Transport Protocol

This section details aspects of the design of the 2WoPS Transport Protocol relevant to the evalua-

tion of Ratatoskr.

4.1.1 Modules

This section describes the main modules of the 2WoPS transport protocol. The term module here

designates a purely abstract collection of related behavior, not necessarily with a mapping to a

single class or package. Some modules are implemented as part of GridStat, but are described here

as their use is essential for the 2WoPS protocol.

4.1.1.1 2WoPSPeer

The module containing the main interface for the 2WoPS protocol is the2WoPSPeer. An ap-

plication must instantiate a2WoPSPeer and connected it to the GridStat network for 2WoPS

protocol use. The2WoPSPeer module manages the publisher and subscriber used for communi-

cating over the GridStat network, provides the interface for initiating both sending and receiving

data, and maintains open connections. An application must instantiate a2WoPSPeer and connect

it to a GridStat status router with a locally unique name to communicate over the 2WoPS proto-

col. To receive data, an application registers aservice handler, a callback function for incoming
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connections requests, with a correspondingservice identifier(a 32-bit integer (int) comparable to

a UDP/TCP port number). The service handler provides amessage handler, a callback function

for receiving messages, for incoming connections of the associated service type. An application

wishing to communicate with a remote application must request a new connection to the remote ap-

plication’s2WoPSPeer by specifying the full name (hierarchy position and locallyunique name)

of the remote2WoPSPeer, the desired QoS parameters for the connection, a desired service type

and a callback for incoming TSDUs. If the connection setup issuccessful, the application receives

a2WoPSConnection object for sending data.

4.1.1.2 2WoPSConnection

A connection over the 2WoPS protocol is contained in a2WoPSConnection at each peer. A

2WoPSConnection connects exactly two end-point2WoPSPeers and is associated with a pub-

lished variable for sending and a subscription for receiving at each peer. TSDUs are delivered to

applications using the callback methods provided during connection setup, and each 2WoPS con-

nection serves only a single service type. Send delay guarantees and spatial redundancy charac-

teristics are specified at connection setup time and remain fixed for the duration of the connection.

2WoPSConnection provides methods for sending packets, closing the connection and verifying

wether the connection is open. A connection at one peer is open if it knows that the other side has

set up the connection successfully, and if the connection has not started a closing procedure. Ap-

plication data can only be sent over a connection if it is open. To send data, an application specifies

the TSDU to send, the number of retries for ACK/retry redundancy, and the level of temporal re-

dundancy. For the prototype, an additional parameter for specifying the timeout of the ACK/resend

was also included for overcoming delays induced by evaluation environment timeliness inconsis-

tency. A release version of the protocol must have real-timeproperties to accommodate power-grid

operations and the ACK/retry timeout could be derived from the delay properties of the link. Two

methods for sending are provided; thesend method provides controlled-loss semantics and the
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sendAcked method provides no-loss semantics.

4.1.1.3 Publisher

See section 2.4.1.1. A GridStatPublisher module is used by the 2WoPS protocol for sending

data. Outgoing connections register a user defined variablewith subtype2WoPS TYPE, which

allows the publishing of byte arrays. A peer receiving data on the outgoing connection subscribes

to the published variable. Data is sent by updating the status variable with a TPDU in the form of

a byte-array.

4.1.1.4 2WoPSSubscriptionHolder

See section 2.4.1.2. The subtype ofSubscriptionHolder for the2WoPS TYPE implements

filtering of duplicate TPDUs, TPDU data validation and a queueing system for delivery of TP-

DUs to the 2WoPS transport layer. Each2WoPSConnection is associated with an underlying

2WoPSSubscriptionHolder that handles incoming NPDUs for the subscription used for re-

ceiving data for that connection.

4.1.2 Sending Process

A diagram of the sending process is found in figure 4.1. Each ofthe steps are described below.

1. Application calls send on2WoPSConnection with the TSDU and ACK/resend and tem-

poral redundancy levels as parameters. In2WoPSConnection, the TSDU size is verified

to be below max, a TPDU header is assigned to the TSDU. If the QoS parameters dictate

ACK/resends, or if the send type is no-loss, a request for an ACK is noted in the TPDU

header. The packet is forwarded to2WoPSPeer with temporal redundancy and the vari-

ableID for the status variable used for send by the connection as parameters. The sending

thread is blocked until an ACK is received or until a timeout occurs if an ACK is requested,

else control is returned as soon as all temporally redundantsends are perfomed. The buffer

containing application data is the same for the whole sending process for performance rea-

sons. Blocking for sends is done so the application thread isprevented from editing the
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buffer contents, and this must also be avoided by other application threads.

2. The TPDU is inserted into a scheduler queue. Sends for all connections are scheduled into

the same queue. This is to allow scheduling between connections when several connections

are to send at similar times, and to allow a single sending thread for the whole system instead

of one per connection. For temporally redundant messages, multiple sends for the same

TPDU are scheduled. If TPDUs have temporally redundant sends with delays between each

redundant send, the scheduler allows for an earliest possible send time to be placed on each

send. Packets are sent in order of earliest possible send time, with FIFO access to the queue1.

Sending of the TPDU is done by publishing the TPDU byte-arrayas a GridStat user defined

variable through the publisher kept in the2WoPSPeer.

3. Upon publishing, the publisher transfers the TPDU wrapped in a NPDU to its status router.

4. The GridStat network forwards the NPDU to the receiver’s subscriber. If spatial redundancy

is used, all NPDUs are copied onto all redundant paths, even those already copied with

temporally redundant sends. That is, if temporal redundancy three is over a connection

with spatial redundancy two, six copies of each TPDU will be delivered to the remote peer,

assuming no network losses.

5. The subscriber at the receiver reads the vaiableID of the NPDU from its header and for-

wards it to the correspondingSubscriptionHolder. For 2WoPS TPDUs, this is the

2WoPSSubscriptionHolder is associated with the2WoPSConnection to which the

TPDU is addressed.

6. The2WoPSSubscriptionHolderunwraps the TPDU from the NPDU and verifies data

1This scheduling technique is inadequate for a deployment ofthe system, and should take into account delivery
deadline and perhaps connection priority. A simple scheme was chosen as the prototype implementation is inherently
unreliable with respect to timeliness, and so the effects ontimeliness from an improved scheduling system would be
of little value. Further, the selection of a proper scheduler is outside the scope of this thesis, and left for future work.
See section 6.2.1.1.
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integrity. If the TPDU is redundant to an earlier TPDU it is dropped, else it is delivered to

the2WoPSConnection associated with the2WoPSSubscriptionHolder for further

processing. Further processing is done in a separate threadbecause the subscriber thread is

common to all connections. TSDUs are delivered for further processing by a FIFO queue.

7. The TPDU is processed according to its type. If the type dictates that the TPDU should be

ACKed, the ACK is sent out on the network before other operations (7.1) so as to not extend

the round-trip time. Temporal redundancy parameters to be used for sending the ACK are

noted in the TPDU header and are the same as for the original send. If the TPDU contains

a TSDU, the connection verifies that the TSDU has not been delivered to the application

before and if so delivers the TSDU and records the delivery (7.2). An eventual ACK is re-

turned to the sender before any TSDUs are delivered to the application, so the sending of

the ACK is not delayed by application processing. The2WoPSConnection executes the

callback method for application message receival in the same thread as is used for processing

of TPDUs, and cannot process any TPDUs before control is returned. Together with FIFO

scheduling between the2WoPSSubscriptionHolder and the2WoPSConnection,

this guarantees that TSDUs are delivered to the applicationin the same order they are re-

ceived.

8. Spatial redundancy is in effect also for the ACK TPDU.

9. When the 2WoPSConnection processes an ACK, the thread that sent the packet is notified.

The thread should wait for an ACK unless it has timed out, which would mean the delivery

guarantee is broken. If the thread has timed out and started aresend, the ACK for this send

is still delivered as it still confirms that the TSDU was delivered. If the thread has timed out

and returned to the application, the received ACK is ignored. When the receiver thread is

awakened, it returns a successful delivery notice to the application. If a no-loss send times

out for all retries, an exception specifying that delivery status is uncertain is returned to the

35



application. As controlled-loss receives no ACK on the finalsend, an uncertain delivery is

part of its intended behavior and no exception is cast. All ACK/resends are done with a new

TPDU so it is not filtered at the2WoPSSubscriptionHolder in the receiving peer.

4.2 Design of the RPC Mechanism

The design of the Ratatoskr RPC mechanism centers around a similar architecture to the 2WoPS

protocols2WoPSPeer and2WoPSConnection; an application creates a peer object to establish

use of the mechanism, which provides interfaces for both RPCserver and client tasks. The peer ob-

ject registers as a 2WoPS peer with the GridStat network and readies itself for communication. An

application can take the role of either client, server or both. To act as a server, the application regis-

ters Java methods with the peer object, which make these available for remote invocation. A client

must first obtain a connection to a Ratatoskr peer with registered server methods through the peer

interface, and when a connection is established may performremote procedure calls through the

connection interface. An application can register as several Ratatoskr peers allowing for multiple

interfaces, and each peer interface may establish several connections with different QoS parameters

to the same server.

4.2.1 Modules

4.2.1.1 RPCClientSession

A client-side connection to a server for sending RPCs is represented by anRPCClientSession.

RPCClientSession provides methods to the applications for sending RPC calls or closing

the connection. AnRPCClientSession contains a corresponding2WoPSConnection for

sending the RPC calls.RPCClientSessions cannot share the same 2WoPS connection.

4.2.1.2 CallRepository

CallRepository is a repository of calls exposed to remote invocation. It also contains behavior

for executing the calls.
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Figure 4.1: Sending Process for the 2WoPS Protocol
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4.2.1.3 RPCPeer

The main interface for Ratatoskr RPC usage is theRPCPeer. TheRPCPeer contains and man-

ages the 2WoPSPeer used for communication and receives all incoming messages, and provides

methods to the application for opening new sessions and for exposing local calls for remote invo-

cation.

4.2.2 Use of Reflection and Serialization

Ratatoskr RPC draws extensively on the reflection and serialization features of the Java language.

Reflection allows observation of the structure of the running program, and serialization allows

automatic conversion between bytestreams and Java objectsbased on class definitions. This is

counter to the interoperability goal of GridStat as a middleware platform as these features may only

be used in Java environments, but it allows for very simple and flexible semantics for prototyping

before defining the requirements of a final, platform independent implementation.

To register a method for remote invocation, the client must specify the name by which the

method is identified among the remote methods, an object and aJavaMethod object correspond-

ing to a method implemented by the object. Java’sMethod object contains an array ofType

objects corresponding to the types of parameters to the method. All parameter types to the method

and the type of the return value are required to be serializable. The name given to the method must

be unique within the peer, so no method overloading is available.

To perform a remote invocation, the client specifies a name and an array of serializable objects

corresponding to the arguments to the call. The name and parameters are serialized and sent to the

server. At the server, the name and argument array is deserialized. The name is matched to the

names of remotely exposed methods, and the argument object types are checked to be the same as

the types of the parameters of the call. If the name and arguments match, reflection is used to call

the method with the arguments on the object the server application registered with the method. If

the call is successful, the result is serialized back over the network. If an exception is thrown it
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is wrapped in anApplicationExceptionwhich is serialized instead of a result. If a method

with the client-specified name is not found, or if the parameter types of the corresponding method

does not match the types of the arguments provided, aSemanticsException is serialized and

returned. When receiving the result TSDU, the client deserializes the result. The result object’s

class is not specified, and so the client must typecast it dynamically. If the result is an exception, it

is thrown to the client.

This dynamic binding approach can be replaced with static bindings. For example, it would

be possible to implement a program that takes XML interface descriptions as input and generates

wrappers around RPC client and server. The server wrapper would then create hook objects where

the application designer attached the code to be executed, and automatically register these hooks

with theRPCPeer. The client wrapper would generate an interface with methods corresponding

to the server calls and typecast the return.

4.2.3 RPC Flow

A diagram of the process of sending an RPC call is outlined in figure 4.2. Before the RPC invo-

cation can be initiated, the client must have set up an RPCSession to a server that has registered

methods for remote invocation. Explanations for the pointsin the figure are as follows:

1. The application initiates a remote method invocation to theRPCClientSession by pro-

viding the method’s remote name, an array of objects corresponding to the call’s parameters,

and the QoS parameters for sending the call. The QoS parameters include temporal redun-

dancy and ACK/retry settings and a maximum expected server execution time. The name

and arguments of the method, the QoS parameters and a call sequence number is inserted

into a struct representing the call, which is serialized into a bytebuffer and sent to the server.

The thread waits on the sequence number using a timeout of up to two times the maximum

delay guarantee for the2WoPSConnection (for sending the invocation and the result,

substracting time spent waiting while sending) plus the server execution time, thus blocking
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the application for the duration of the call.

2. The RPCClientSession controls a 2WoPSConnection to the server over which the serialized

call is sent using the temporal redundancy and ACK/retry parameters specified by the appli-

cation. The thread then waits on the sequence number inserted into the call.

3. TheRPCPeer receives all incoming messages. Receiving calls for all sessions at the same

place allows for easy prioritization in the future. As the call is a TSDU with regards to the

2WoPS protocol, any ACKs are sent before the call is processed.

4. The message is deserialized and typecast to the callstruct. Incoming calls are placed into a

queue for asynchronous processing so the receiving thread can return to the 2WoPS protocol

to receive new messages. A threadpool processes calls from the queue. A thread retrieves

the next call to be processed and forwards it to the CallRepository.

5. The call retrieves the method corresponding to the call and invokes the call using Java re-

flection.

6. The result or any exception is inserted into a struct representing an RPC result. The struct is

returned to the call processing thread.

7. The threadpool thread inserts the call serial number fromthe call struct into the result struct,

serializes the result struct and sends it back to the client using the QoS parameters stored in

the call struct.

8. When theRPCPeer receives the result, it wakes the thread waiting on the sequence number

and passes the result as a parameter.

9. If the thread is awoken by a result, it unwraps the result value and returns it to the application.

If the thread is awoken by a timeout, it throws an exception specifying that the execution

status of the call is unknown.
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Figure 4.2: RPC Send Process

41



4.2.4 Pre- and Post-conditions

Application designers define pre- and post-conditions withclasses implementing theCondition

interface. TheCondition interface implements a single method,evaluate(), that takes no

parameters and returns a void.evaluate() should only return normally if the condition is satis-

fied. If the condition failsevaluate() should throw aConditionException. Information

on why the condition failed can be added to the exception, andthe application programmer can

implement subclasses for additional semantics. For the current prototype, pre- and post-conditions

are simple interfaces: Implementations must be provided bythe application designer. A recom-

mended strategy for implementing conditions is to give condition access to GridStat subscriptions,

and to use subscribed values in the implementation ofevaluate().

When registering a call for exposure to remote invocation, the server may specify two

Conditions, preCondition andpostCondition, and a delay. The delay allows post-

conditions to execute a duration after the call, to allow thestate of the system to settle before the

condition is evaluated. Pre- and post-conditions registered with a remote method are stored in the

CallRepository at the server, together with the call state. TheCallRepository is also

responsible for the verification of the conditions during the call process.

If a call is registered with a precondition, the precondition must be satisfied before the call

can be executed. If the pre-condition is violated, aConditionException is thrown to the

client application instead of a result. When theCallRepository receives a call request from

the RPCPeer, it will first check whether the call is registered with a pre-condition. If so, the

CallRepository will invoke theevaluate() method of the pre-condition before executing the

call. If evaluate() returns normally, the call is executed normally, but ifevaluate() throws

aConditionException, the call is aborted and the exception is inserted into the result struct

returned to the client. The client unwraps the exception andthrows it back to the client application.

The sending process when failing a pre-condition is illustrated in figure 4.3.
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Figure 4.3: Call Process When Failing Pre-Condition
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Post-conditions are placed outside the regular call-procedure to prevent any delays before con-

dition evaluation to affect the end-to-end delay of the call. The sending process with a registered

post-condition is illustrated in figure 4.4. The CallRepository checks whether a call has any post-

conditions only after executing the call. If so, the a structcontaining theCondition module,

addressing information to the client and the sequence number of the call is inserted into a sched-

uler queue using the post-condition delay as the earliest time at which the structure can be re-

trieved from the queue. A pool of threads processes the post-condition structs. After a struct has

been retrieved from the queue, the thread-pool thread executes theevaluate() method on the

Condition contained in the struct, and generates aConditionStruct using the result. The

ConditionStruct is the result sent back to the client. It contains a variable indicating the state

of the post condition (satisfied or violated), anyConditionExceptions thrown, and the se-

quence number of the call. A ConditionStruct is returned no matter the result of the expression, so

that the client will receive no post-condition results onlyin the cases where no post-conditions are

present or when the post-condition is lost. The pool thread sends theConditionStruct with

the same level of redundancy used for the call. To obtain post-condition results, the client applica-

tion has the option to specify a callback handler for post-condition results when it invokes a remote

call. If no such handlers are specified, any post-conditionswill be ignored. The handler is associ-

ated with the sequence number of the call. When the RPCPeer receives aConditionStruct,

it looks up the sequence number in the struct against its registered handlers, and delivers it if a

handler is present.
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Figure 4.4: Call Process With Post-Condition
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CHAPTER FIVE

EVALUATION

Ratatoskr is evaluated with respect to performance in face of network faults. The purpose is to

understand the efficiency of the implemented fault tolerance techniques on RPCs over a faulty

network, not to evaluate the performance of the prototype implementation, as a real-time imple-

mentation is outside the scope of this thesis.

5.1 Evaluation Procedure

Evaluations were performed by connecting Ratatoskr clientand server processes to a small Grid-

Stat network and commencing a number of RPC calls from the client to the server. To introduce

network faults, event channels between status routers wererouted through a network link emulator

introducing delay and errors. Links going through the link emulator are referred to asemulated

links. This setup tries to emulate control traffic over a wide area network of status routers, where

both the client and server are either connected to their entry-point SR by LAN or running as pro-

cesses on the same computer. No delay or loss is induced on thelink between Ratatoskr peers and

their entry-point SRs. This is based on the expectation thata deployment of GridStat will include

a wide deployment of status routers throughout the power grid to provide a high degree of network

redundancy, which makes it likely that sites using RPC also contain a status router.

5.1.1 Topology

The topology of the evaluation setup is shown in figure 5.1. 13status routers form two paths

between the client and the server, one of 7 links and one of 6. This is to allow for the fact that

when using spatial redundancy additional paths may often belonger than a single best path. The

current implementation of GridStat does not allow more thantwo redundant paths. Future versions

of GridStat will not have this limitation, which will allow an evaluation of more than two spatially

redundant paths, see 6.2.6. No additional links and status routers outside the two paths were
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employed as routing between the same two peers in a static network (as the current version of

GridStat is) will result in the same path no matter the errors.

5.1.2 Network Fault Model

GridStat uses multiple underlying network technologies, spans a wide area, and will sustain several

usage patterns (usage patterns to this point includes rate based status updates and bursty RPC

traffic). This makes for very complex behavior and it is difficult to provide a good fault model for

GridStat without field testing. For this evaluation, two fault models were combined to account for

the rich diversity of potential fault patterns in a GridStatdeployment.

• Omission-fault- Each link is assigned a uniform probability of dropping each packet passing

through it. The drop probability is the only variable for theomission-fault model. Each drop

is completely isolated; no other link or later or earlier packet on the same link is affected

by a drop. Omission-fault attempts to model temporally and spatially isolated drops in links

where the no retry-upon-failure is attempted below the transport layer in the protocol stack.

Examples of unifrom drop rate errors are background noise orvery short term physical in-

terference in links causing packet data corruption: passing physical objects in the way of

the beam of a microwave beam, bursts of electromagnetic noise from power anomalies in

a substation wired with copper or frequency noise from grid devices in a broadband over

power link.

• Duration-fault- Each link is in one of two states: disabled or enabled. If disabled, all packets

passing through the link is dropped. If enabled, the operation of the link is not affected,

and all packets pass through the link unless omission failures occur. Links are ordinarily

enabled, except for 1-second periods of disable state. Disabled state periods occur by a

Poisson process, where the average number of occurrences per second (λ) is the only variable

for the duration-fault model. Duration-fault attempts to model transient failures in network

components. Examples may include: router maintenance, fiber cuts or local power-outs.
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Figure 5.1: Evaluation Topology

Such failures may certainly have a duration of well over a second, but a one second disable

state duration is enough to notice the effects of duration failures on communication. It should

be noted that dynamically routed networks quickly will adjust so signals will circumvent

duration faults, even nearly instantaneously [19]. GridStat uses static routing, and so paths

will not be adjusted even if faults are detected. A future solution for this in GridStat is for the

QoS hierarchy to create new paths around failures, but this is an expensive operation when

resource management calculations and communication to status routers is taken into concern,

and must be expected to be time consuming. The primary mechanism for overcoming longer-

term failures in GridStat is spatial redundancy.

5.2 Evaluation Testbed

5.2.1 Processes

The processes used for testing were:
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• 13 GridStat status routers

• 1 GridStat leaf QoS broker

• 1 evaluation program implementing a Ratatoskr client peer(client)

• 1 evaluation program implementing a Ratatoskr server peer(server)

• 1 Sun Java CORBA nameserver

• 1 Java program providing socket tunnels with loss and delay properties(network link emu-

lator)

5.2.2 Hardware

The evaluation was tested on a single computer, running a Core2 duo 2.13GHz dual-core processor

and 4 gigabytes of RAM. The operating system was Ubuntu linux, kernel 2.6.20-16 compiled

with 1 millisecond kernel tick intervals and full kernel preemption. All evaluated programs were

implemented in Java, compiled and run with sun java2SE 6 (version 1.6.0.00). All inter-process

communication was done over operating system UDP sockets for GridStat data traffic and Sun’s

Java 2 Platform CORBA Package for control. All tests were performed in user mode with regular

process priority and with the graphical operating system interface turned off.

5.2.3 Garbage Collection Handling

The Java platform used for evaluation does not support explicit deallocation of process memory.

Freeing memory is handled by a garbage collector (gc). The Java garbage collector locks process

execution during deallocation, which affects experimental results. This behavior was especially

apparent in the client and server processes, mainly due to serialization and deserialization of call

arguments, which expends several kilobytes of memory for caching. To compensate for this, a

mechanism was implemented to measure the impact of garbage collection and substract this from

call results. The mechanism queries the Java
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java.lang.management.GarbageCollectorMXBean interface for recent garbage col-

lection operations and their durations, and if gc operations have occured, substracts the gc opera-

tion duration from the end-to-end duration of the affected call. Plots of operation with and without

garbage collection compensation can be found in figure 5.2. With garbage collection compensa-

tion, four calls have an end-to-end duration of 25 milliseconds or more, against 10 without the

compensation.

5.2.4 Java Virtual Machine Arguments

• Client, server and link emulator were run with arguments -Xms256m -Xmx256m, allowing

up to 256 megabytes of process memory before commencing garbage collection. No garbage

collection was observed for the link emulator during the evaluation.

• Status routers were run with -Xms128m -Xmx128m, providing 128 megabytes of process

memory. No garbage collection in the SRs was observed duringthe evaluation.

IntelliGrid

5.3 Experiment Procedure

• For all experiments, the process running the Ratatoskr client also functioned as experiment

coordinator.

• For each new experiment session, 10,000 RPC calls were made to warm up the system, and

then one or more experiments were run sequentially.

• An experiment consists of 10,000 RPC calls with data gathered from each call.

• A new Ratatoskr connection was established for each experiment, and closed at the end of

the experiment.

• All calls were made with an unlimited number of ACK/retries.
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Figure 5.2: Comparison of Performance With and Without Garbage Collection Compensation
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• Between calls, all links emulated in the link emulator was reset, specifically by setting the

internal clock used for duration failure2 ∗ (1/λ) seconds into the future, in effect ending all

previous disabled states and allowing new ones to arrive.

• A link delay of 1 millisecond was used unless specified otherwise in the experiment descrip-

tion.

• When temporal redundancy was used, a two millisecond delay between redundant sends was

used.

• For all experiments without spatial redundancy, calls weremade over a 6 emulated link path.

For experiments using spatial redundancy, calls were made over one path of 6 emulated links

and one path of 7 emulated links.

• The timeout for the ACK/retry technique had a base of 25 milliseconds, allowing 12 ms

for transfer delay, 20 ms for garbage collector and 3 ms for link emulator and Ratatoskr

overhead. Higher timeouts were assigned by Ratatoskr to sends with temporal or spatial

redundancy due to the wait between redundant sends and the extra hop in the spatial paths.

Specifically, using spatial redundancy added 2 ms to the timeout, and using temporal redun-

dancy added 2 ms for each redundant send.

5.3.1 Result Data

The following data was extracted from each call:

• Time was measured from when the call was made until the resultarrived (end-to-end delay).

• The number of timeouts experienced was recorded. This includes any timeouts the server

experienced while attempting to send the result. Specifically, the number of timeouts for a

call is the number of timeouts for the first time of a call to arrive at the servernot including
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timeouts introduced by missed ACKs, and the number of timeouts for the result to reach the

client the first time, again not including timeouts introduced by missing ACKs.

• Early success rate for experiments is defined as the number ofcalls with no retries divided

by the total number of calls.

5.4 Expected Results

While Ratatoskr provides tolerance for network failures, sends made with redundant network com-

munication will still fail if all redundant NPDUs fail. WhatRatatoskr provides is a much higher

tolerance for network failures than RPC mechanisms with lower levels of redundancy techniques.

This means that a Ratatoskr RPC call is more likely to succeedwith fewer timeouts. In the context

of real-time distributed systems, it is highly desirable toobtain a very high probability for calls

to succeed without any retries, in this evaluation referredto as anearly success. While the exact

number of retries is difficult to predict without extensive data on network fault patterns from a

deployment, this evaluation attempts to establish a model for evaluating the level of redundancy

needed to achieve a desired level of early success rate. An analysis of failure probabilities related

to RPC calls can be found in table 5.4. It should be noted that the probability for failing two redun-

dant packets is the square of failing a single packet, and so the efficacy of redundancy increases

with the reliability of the network. For example, if a path has a drop rate of 10% end-to-end, two

redundant sends over the link will have 1% drop rate, while four redundant sends will have 0.01%.

For a link with 1% drop rate, the drop rate with two resends is 0.01% while with four resends it is

0.000001%.

For the purpose of analyzing the results of the experiment results, where error probability is

involved, some simplifications are made. As duration faultsappear in 1-second durations with

an averagen seconds between, the probability of a link being down on the first call attempt is

simplified toλ = 1/n). Further, the probability of a link entering a disabled state after being

enabled at the beginning of a call is ignored. This is justified in that experiments operate with a
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Symbol Description Formula
l #of links in path constant
pe Error probability for each link constant
t Temporally redundant sends constant
psn(l, pe) Probability of successful delivery on a path with

l links and link error probabilitype, without re-
dundancy measures

psn(l, pe) = (1 − pe)
l

pst(t, psn) Probability of successful delivery on a path with
temporal redundancyt

pst(t, psn) = 1 − (1 − psn)t

prt(ps1
, ..., psr

) Probability of successfull delivery overr
redundant paths with success probability
ps1

, ps2
, ..., psr

prt(ps1
, ps2

, ..., psr
) = 1− (1−

ps1
) ∗ (1 − ps2

) ∗ ... ∗ (1 − psr
)

pRPC(ps) Probability of early success for an RPC call (in-
cluding return) over a connection with success-
ful delivery probabilityps

pRPC(ps) = p2
s

Table 5.1: Expected Failure Rates for Redundancy Techniques

relatively highn, and calls are unlikely to span much over a few tens of a millisecond, and so this

probability is very small. The one case where it is non-negligible is when a call already experiences

a disable-duration as this may lead the call to having to retry for a full second, although such cases

must be expected to be extremely rare except for very frequent arrivals of loss durations.

5.5 Experimental Results

5.5.1 Resiliency of Temporal Redundancy

To evaluate the resiliency of the temporal redundancy mechanism, a series of experimental runs

was performed with increasing degrees of temporal redundancy (1, 2, 4 and 8 sends). Each of the

temporal redundancy levels was tested over a set of omissionfault rates (1%, 2%, 4% and 8%)

applied to all emulated links. Duration loss was omitted from the evaluation, and is addressed in

a later experiment. The results are shown in figure 5.3, with corresponding expected results from

analysis. The experimental results match the analysis veryclosely. It should be noted that the

omission failure rate cited in the x-axis is per link, and so the overall omission failure rate for the

end-to-end path is higher than the cited number. A comparison of the full end-to-end failure rate
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for varying link failure rates is found in table 5.2. The end-to-end loss for a single send (6 links

from client to server) is also included as the return send uses full temporal redundancy no matter

the number of NPDUs carrying the call that are successfully delivered to the server.

Figure 5.3 shows that two temporally redundant sends are notsufficient to entirely overcome

a 1% loss rate, but with 99.2% early successes against 88.5% for the non-redundant calls it is still

a good improvement. With 4 resends, 99.92% early successes are achieved at 4% failure rate.

For 8 resends, 99.92% of calls were early successfull even at8% loss rate, where the end-to-end

early success rate without reliability was 36.5%. Even during periods of intensive network loss,

critical applications where the extra bandwidth for temporal redundancy can be spared should be

able to perform RPC calls with very few retries, given that the loss patterns accomodate temporal

redundancy.

5.5.2 Resiliency of Spatial Redundancy

The efficiency of spatial redundancy was evaluated in a manner similar to temporal redundancy.

Runs were performed with spatial redundancy enabled over increasingly higher occurrence fre-

quencies of duration faults (1 second failure every 10000 seconds, 1s/1000s, 1s/500s, 1s/100s and

1s/50s). It should be noted that 1 second failure per 10000 seconds corresponds to 99.99% avail-

ability per link, and that 1 second failure per 50 seconds corresponds to 98% availability, where a

minimum of 99.999% component availability is a common requirement for critical networks. The

fault rates used in the evaluation are lower than for the evaluation of temporal redundancy as the

Per link failure rate 6-link end-to-end failure rate 12-link end-to-end failure rate
0.01% 0.06% 0.12%
0.1% 0.599% 1.193%
0.2% 1.194% 2.374%
1% 5.852% 11.362%
2% 11.416% 21.528%
4% 21.724% 38.729%
8% 39.364% 63.233%

Table 5.2: Calculated End to End Loss Compared to per Link Loss
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Figure 5.3: Early Success for Temporal Redundancy over Varying Omission Fault Rates
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current version of GridStat only supports two redundant paths and as each duration failure results

in consecutive retries until the fault duration expires.

Values for expected results based on analysis are included in the diagram. Again, failure rates

are per link, and end-to-end failure rates are higher. An estimate of the failure rates can be found

in table 5.2, when simplifying the arrival rates of fault durations for links as fault percentages

(1s/50s=2%, 1s/100s=1%...). Calls without reliability measures were not included in the test. A

comparison for calls with and without spatial redundancy for 1 second failure every 10000 seconds

is made in a later experiment.

For the experiments, 100% early successes was achieved for both 1s/10000s and 1/1000s fault

rates. As this is for 10,000 calls, this is encouraging as it satisfies at least a 99.99% end-to-end

reliability requirement. For 1s/500s fault durations, 99.96% early success is achieved. This seems

like a high rate, but a single fault duration incurs several retries which could be catastrophic for a

real-time system, and so for moderately critical applications communicating over networks with

less than 99.9% component availability more than two spatially redundant paths should be used.

The experment’s results follow the analysis closely exceptfor at 1s/50s fault rate. This could stem

from the analysis simplifying the fault rate to a percentage, which might weaken the analysis for

high fault rates.

5.5.3 Comparison to Traditional RPC

A final experiment was made to compare the performance of Ratatoskr to a traditional RPC call

without other forms of reliability than ACK/retry, and to evaluate the effect of spatial and tem-

poral redundancy on the failure models used. Here, performance refers to the ability to tolerate

network faults and end-to-end delay over a faulty network. Experiment runs for no redundancy, 4

temporally redundant sends, spatial redundancy and the combination of the two were performed

over 1% omission fault rate, 1 second fault duration every 10000 seconds, the combination of the

two and no failures. The early success rates are shown in figure 5.5. The average duration with
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Figure 5.4: Early Success for Spatial Redundancy over Varying Duration Faults
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standard deviation for all redundancy levels with both fault models combined is shown in figure

5.6. Cumulative distributions of timeouts experienced before call success for all redundancy levels

for the combination of fault models is shown in figure 5.7 (note that the percentage range on the

graphs are different to allow visible details). The highestcalltimes measured with the combina-

tion of losses are: 939 milliseconds for no redundancy, 91 msfor spatial redundancy, 977 ms for

temporal redundancy and 24 ms for the combination of the redundancy techniques.

From figure 5.5, it is seen that for 1% omission loss, temporalredundancy experiences very few

timeouts, but the spatial redundancy does not provide enough reliability for the fault rate level and

0.81% of the calls experience timeouts. Without any redundancy, less than 90% of the calls achieve

early success, which makes for very unstable calltimes. The1s/10000s duration fault setting does

not affect the early success rate of any of the redundancy levels too much, while the combination

of fault models has a pattern very similar to that of 1% omission failure.

In figure 5.6, the effects of duration loss becomes apparent.Temporal redundancy, which is

ineffective against duration faults, has a considerably much higher standard deviation of end-to-

end delays than spatial redundancy. Together with the low early success rate, this signifies that

a few calls must retry several times before success is achieved, even with four redundant sends.

The experiment run with no redundancy follows a similar pattern with high standard deviation

of end-to-end delays, and also the average end-to-end delayis higher. This is most likely from

the high percentage of calls that timed out. The end-to-end delay with both forms of redundancy

retain the same average as spatial and temporal redundancy,and with a small standard deviation.

The standard deviation patterns are reflected in figure 5.7. 99.85% all of the calls made with

temporal redundancy incurred no timeouts, but the distribution has a long tail, and 0.05% of the

calls incurred over 10 retries. The highest end-to-end delay measured for temporal redundancy

was 977 milliseconds, and the highest number of retries was 22. The cumulative distribution for

spatial redundancy compared to the temporal calls reveals that while a relatively high number of

59



calls experience timeouts (over 0.8%), only a single call experiences the highest number of time-

outs, 2, and 91 milliseconds was the highest measured end-to-end delay. With both redundancy

techniques, no timeouts were experienced and the highest measured end-to-end delay was 24 mil-

liseconds. Without redundancy, over 12% of the calls experienced timeouts and the highest number

of timeouts was 25, with the measured end-to-end delay 939 milliseconds. This is a higher number

of timeouts for a shorter measured end-to-end delay compared to the temporal redundancy call, as

the timeout is set higher for temporal redundancy due to the 2millisecond wait between redundant

sends. From this we can conclude that even if a control mechanism over a single-path network

uses a transport protocol with temporal redundancy, it may still experience very high call durations

with longer-term failures in a single component on the path.Compared to RPC calls without the

redundancy measures found in Ratatoskr, spatial redundancy greatly lowers the worst-case end-to-

end call duration, temporal redundancy improves the average call duration considerably, and the

combination improves reliability greatly.
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Figure 5.5: Early Success for Varying Redundancy and Loss
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Figure 5.6: Average Calltimes for Various Redundancy with Full Loss
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CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Concluding Remarks

Existing power-grid control mechanisms are inflexible, incompatible across vendors, and designed

for highly centralized environments, and cannot provide for the next generation of power grid

communication. While much work is done in using web servicesand other existing control mech-

anisms, such control mechanisms built directly on top of existing network protocols will not over-

come the incompatibility issues with proprietary protocols and may have to compromise safety and

timeliness depending on the underlying network.

This thesis provides the architecture, design and evaluation of Ratatoskr, an extension to the

GridStat status dissemination system with the design and implementation of a timely and reliable

remote procedure call mechanism running on top of two one-way GridStat subscription paths.

This extension complements GridStat’s capabilities as a middleware data acquisition system with

the ability to send control messages to power-grid actuators.

Ratatoskr is split into two subsystems, a transport protocol for two-way communication over

the GridStat network, the 2WoPS protocol, and an RPC mechanism built on top of the 2WoPS pro-

tocol, the Ratatoskr RPC mechanism. The 2WoPS protocol utilizes the QoS semantics provided by

the GridStat network to offer maximum delivery delay guarantees and spatially redundant network

paths for sends. Further, two additional redundancy techniques are used; temporally redundant

sends and ACK/retires. While the 2WoPS protocol was implemented specifically for the RPC

mechanism, it is also used in another GridStat project that gained from the timeliness and reliabil-

ity provided by the protocol. The Ratatoskr RPC mechanism provides extensive customization of

the redundancy levels for each call, providing a tradeoff space between timeliness, use of network

resources, and reliability. Futher, pre- and post conditions built into the call semantics provides
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additional safety mechanisms for application designers, and creates a building block for a uniform

middleware safety framework for inter-vendor operations.

The evaluation explores the effectiveness of the redundancy techniques in the face of two fault-

models, omission faults with uniform drop probability and durations of total link failure. The

experiments show that both spatial and temporally redundant resends provide a polynomial reduc-

tion in end-to-end fault occurrence rates for omission faults, with a a temporal redundancy of two

providing a square reduction, a temporal redundancy of three providing cube reduction and so on.

The spatial redundancy shows a similar pattern with two redundant paths providing a square re-

duction, but as the current implementation of GridStat doesnot support more than two redundant

paths, a conclusion on the developments of the pattern with more paths could not be established

beyond the mathematical models. Temporally redundant sends proved of little value in the face

of link failure durations, but spatial redundancy providesa square reduction also here. The ex-

perimental results match the expected results from the analysis closely. A comparison between

Ratatoskr and a simulated traditional RPC mechanism without temporal and spatial redundancy,

shows that Ratatoskr profits from the redundancy with a loweraverage for end-to-end call times

and a considerably tighter call time distribution.

6.2 Future Work

6.2.1 Long Term Connections

GridStat is designed with a relatively stable network topology in mind, where most data is produced

by permanent, physical devices and consumed in a long term monitoring fashion. GridStat uses

the stability to trade longer connection setup times for better connection QoS, and the connection

time is likely to be high and unpredictable. For Ratatoskr, this implies that connections must be

established well ahead of performing delay-sensitive calls. This further implies that many RPC

connections will be long term, and it is likely that permanent connections will be established as

RPC channels between locations that frequently issue control commands and field sites.
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For many such longer term connections, utilization is likely to be relatively infrequent, and

traffic levels relatively bursty. Currently, the routing techniques used in GridStat are optimized for

rate based traffic. It is undesirable to force bursty RPC traffic to follow a rate based traffic pattern,

as the rate would either have to be high enough to accommodatetraffic bursts, which would waste

bandwidth between bursts, or the RPC call would have to send packets at a low rate which could

cause delays. The handling of control and router schedulingfor bursty and rate based traffic in

GridStat requires further research.

No matter the solution chosen for handling bursty traffic in GridStat, some sort of restrictions

is likely to be placed on the traffic patterns used in Ratatoskr. The RPC mechanism must adhere

to these restraints to avoid packet loss due to traffic policing. This will delay sends and thus affect

delivery deadlines. Further work is needed to reflect the effects on deadlines into call semantics

and syntax.

6.2.1.1 Shared Connection

One strategy that could reduce some of the impact of traffic policing would be to establish a bulk

channel between client and server sites used by several control processes issue commands. One

example of this would be several protection schemes in a control center sharing a single RPC con-

nection to a substation, with a single server in the substation forwarding commands to individual

actuators. Such a bulk channel could reduce the maximum bandwidth provisioned for bursts when

compared to having separate RPC connections for each control process, based on the expectancy

that it is unlikely that all processes will invoke RPCs at thesame time. If such a scheme is used,

some kind of prioritization scheme is required to handle thecases where so many RPCs are invoked

at the same time that the burst bandwidth limitations are exceeded.

6.2.2 Fault Tolerance Level Calculation

In the prototype implementation, the levels of fault tolerance for each call must be set by the

application using Ratatoskr. This is cumbersome, as it requires that the programmer has some
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knowledge of the network loss properties of the GridStat path to the server. Further, hard-coded

fault-tolerance parameters could become outdated with changes to network topology. Given ab-

stract network loss properties of the path and fault tolerance requirements for the call, Ratatoskr

would be able to periodically calculate the appropriate level of redundancy, balance this to the net-

work resource consumption and adjust fault-tolerance parameters. Network loss properties could

be obtained by regular measuring, performed either by Ratatoskr itself or by the GridStat manage-

ment hierarchy.

6.2.3 Extensions to the 2WoPS Protocol

While the 2WoPS protocol was designed especially for use with the Ratatoskr RPC, there could be

several other uses for two-way traffic over a GridStat deployment. This section lays out some of

the improvements that could support such other uses.

6.2.3.1 Packet Size

Packet sizes in GridStat are currently limited to the largest size supported by the underlying net-

work. Ratatoskr was designed and implemented as a prototypefor evaluation and experimental

use, and no steps were taken to increase the packet size. Thiscould affect the usability of the

final version of Ratatoskr, and increased packet sizes in the2WoPS protocol could open up new

uses. Larger packet sizes can be achieved by splitting TSDUsover several TPDUs, using sequence

numbers to identify the position of each TPDU in the TSDU and buffering each TSDU until all

corresponding TPDUs are received at the server. Another solution would be to implement TSDUs

as streams of data where each section of the stream is immediately delivered to the application

given that the previous section of the stream has been delivered before, but this approach is unde-

sirable for RPC calls because of the mechanism’s message-oriented nature and should be provided

as an addition to the existing message service.
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6.2.3.2 Group Communication

GridStat supports delay-bounded multicast from a single publisher to multiple subscribers using

spatially redundant paths to each receiver, [14]. This may be used to provide highly reliable group

communication in the 2WoPS protocol.

6.2.4 Extensions to the RPC Mechanism

Ratatoskr was implemented as a prototype for evaluation andexperimentation, and many of the

features of a final version were omitted to limit the scope of the thesis. This section details some

of these omissions.

6.2.4.1 Peer Failure Handling

GridStat does not take note of failed peers, and the subscription paths for such peers will remain

open. This should be remedied by having 2WoPS peers ping peers they share a connection with,

and close a connection if the other peer is registered as failed for a long period. Further, failed

RPC peers that are restarted should be able to re-establish connections that were open before the

peer failed. To reuse existing GridStat paths, variable andsubscription IDs must be stored to stable

storage and loaded at restart, together with packet filtering data to retain the at-most once delivery

guarantees. A handshake protocol to establish the next sequence number and any undelivered calls

should be used. Further, the server call repository would have to be stored so remote calls would

still be accessible upon reconnection.

6.2.4.2 Replicated actuators

Replication of servers in the client/server model is a common technique for achieving fault toler-

ance against a variety of failures, including server systemfailures. There are several approaches

towards how a service may be replicated and how failures are handled. The two main distinctions

are active replication where calls are carried out by all replicas, and passive replication where a

single server actively carries out calls while replicated servers remain passive until a failure in the

master is detected and a passive replica is activated as the new master. The approaches to these
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schemes and several hybrid schemes provide a tradeoff spacebetween performance, flexibility and

communication requirements.

As actuators in the grid are mechanical devices, one redundancy approach might not neces-

sarily fit all applications. For example, if replicating a transformer mechanism as two transformer

actuators in series, active replication would make both transformer actuators adjust the voltage, and

the actual voltage adjustment would be twice the intended. Some sort of passive replication would

correctly adjust a single transformer actuator. If replicating a set of protective circuit breakers on

the same line, with passive replication the time to detect a failure in the master and do a failure

passover to a replica may be too long for protective schemes,and so active replication might be

the only replication-style that allows for a quick enough response. To accommodate a variety of

such situations, replication in Ratatoskr should provide several replication techniques. Replication

would gain considerably from the reliable group-communication provided by GridStat, but the de-

livery guarantees provided may have to be strengthened further. Research must be done into how

to strengthen guarantees while retaining real-time properties, and which replication schemes are

appropriate for grid operation.

6.2.4.3 Caller replication

There is an increasing trend among electric utilities to setup backup control center facilities for

maintaining operation in the cases where disrupting eventsaffect the main control center, [13]. Fu-

ture work might include researching how replication of caller applications affect the RPC system,

how to synchronize call state, and how to handle failure passover in replicated caller programs

during call execution.

6.2.4.4 Extensions to Pre- and Post-conditions

The pre- and post condition semantics implemented in the prototype were designed to serve as a

proof-of-concept for the advantages of designing such functionality into the RPC semantics. Sev-

eral extensions are needed to provide the full potential of these safety measures. One extension
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that would greatly enhance their semantics would be shared state between the predicate modules,

across pre- and post conditions and across client and servermodules. The need for such semantics

and their design is still a matter of future research. Another extension that would enhance modu-

larity and reusability would be to provide a mechanism for a libraries of conditional expressions,

where each expression contained a map of input variables with predefined roles in the expression

that could be connected to specific published GridStat variables by application designers. An ex-

ample of this would be a pre-condition for determining whether a transformer will overheat if it

is energized, with a standard input variable for sensor readings of the internal temperature of the

transformer. In addition to enhancing reuse, such libraries could provide a standard set of condi-

tional modules that would ensure uniform safety semantics across vendor and power utility.

6.2.5 Security

The security requirements for Ratatoskr is outside the scope of this thesis, but it is essential to

provide a high degree of security in a control mechanism usedin a critical infrastructure such as

the power-grid, and security measures must be addressed before a deployment. Ongoing work on

securing GridStat will eventually, among other features, supply data-plane communication paths

with integrity and confidentiality. These security mechanisms will be administered from the man-

agement plane, and will require that entities accessing thesecurity management mechanism au-

thenticate themselves with keys pre-loaded by GridStat maintenance personnel. While these prop-

erties will greatly help towards securing Ratatoskr, communication-level security will not protect

against misuse from compromised devices with pre-loaded keys. At the very least, some sort of

authentication mechanism should be built into the RPC mechanism. Such an authentication mech-

anism could provide group and user policies on access to RPC calls. Further, semantics could be

added for differentiating which pre- and post-conditions are executed for each call for users or

groups. This would enable utilities to retain emergency accounts that override safety mechanisms
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that could interfere with critical operations that go outside normal usage patterns. Finally, the pro-

totype was designed without considerations for byzantine behavior. This must be addressed before

a final version, as at the very least malformed messages or sequence number manipulations could

lead to unexpected behavior.

6.2.6 Future Evaluations

The current GridStat implementation is a prototype under constant development. Future versions

will extend current functionality used by Ratatoskr. Theseextensions, in addition to access to

new computing resources, would allow a more extensive evaluation of the capabilities of the fault-

tolerance techniques used in Ratatoskr. In addition to evaluating a wider range of fault model

parameters, an extension to the maximum number of redundantpaths, which currently is limited

to two, would be able to verify the expected results put forthin this thesis. Further, additional

network fault models could be introduced, such as modeling drop rates on each link as a Markov

chain where the state of the link decides a uniform drop rate.This model could represent periods

of interference for wireless links, while using a single state for multiple links could represent

common mode failures such as high levels of network traffic during DDoS attacks on the network

and following congestion in bottleneck links.
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