RATATOSKR: WIDE-AREA ACTUATOR RPC OVER GRIDSTAT WITH TIMEINESS,

REDUNDANCY, AND SAFETY

By

ERLEND SM@RGRAV VIDDAL

A thesis submitted in partial fulfilment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

DECEMBER 2007

To the Faculty of Washington State University:

The members of the Committee appointed to examine the tbe&ERLEND SMBRGRAV
VIDDAL find it satisfactory and recommend that it be accepted

Chair

ACKNOWLEDGEMENT

| would like to thank my advisor Dave Bakken for his advice giitlance throughout my
studies at WSU, and for taking an active interest in the Wweihg of his students beyond
professional obligations. | would also like to thank Carludar and Min Sik Kim for taking the
time to be on my committee, and especially Carl Hauser foh&lig with the work on my thesis.
Further, 1 would like to tank all past and current membersef®ridStat team for their great
work, and for valuable discussion and contributions on nsgaech.

A special thanks goes to my friends in Norway and in Pullmad, ay family for their
continuing support during my research, and for making my se&e much more enjoyable.

Finally, I would like to thank the organizations that haveyded financial support for educa-
tion and research. In particular, | have received a stipevr fThe Norwegian State Educational
Loan Fund and tuition reduction from Washington State Ursiég In addition, my research has
been supported in part by grants CNS 05-24695 (CT-CS: Tar#itye Cyber Infrastructure for the
Power Grid(TCIP)) and CCR-0326006 from the US National &oéeFoundation.

PUBLICATIONS

Erlend S. Viddal, Stian Abelsen, David Bakken and Carl Hauser, RatatoskdeV#irea Ac-
tuator RPC over GridStat with Timeliness, Redundancy, afdt$ in DSN '08: Proceedings of
the International Conference on Dependable Systems andoNet (DSN’08). To be submitted in
Fall 2007

RATATOSKR: WIDE-AREA ACTUATOR RPC OVER GRIDSTAT WITH TIMEINESS,
REDUNDANCY, AND SAFETY

Abstract

by Erlend Smgrgrav Viddal, M.S.
Washington State University
December 2007

Chair: David E. Bakken

The development of the communication infrastructure ferrtbrth-American electrical power
grid has failed to fully incorporate important developneeintthe field of computer science,
affecting the stability and efficiency of the power grid aslaole. The current power-grid
communication standard, SCADA, utilizes protocols spgemsd for centralized communication,
hampering communication between field sites key for enmeioimprovements of power grid
safety and efficiency. Further, a number of different prefany communication protocols are in
use, making communication between power utility compaweseyg difficult.

GridStat is a communication infrastructure designed foowgr grid environment that solves
many of the problems with the current situation. GridSta&isus specialization of the
publish-subscribe middleware paradigm, status dissd¢iomahat takes advantage of the
semantics of status data to provide flexible acquisitionov¥gr-grid data with multiple
dimensions of QoS semantics. The middleware approachesabmmunication between
utilities independent of proprietary network protocolsgdallows enhanced network features such
as forwarding data through multiple redundant paths. Waiie Stat provides excellent support
for data acquisition, the publish-subscribe architecsusgports only one-way communication and
provides syntax and semantics unsuitable for control comecations.

This thesis presents Ratatoskr, a novel scheme for corftaattoators using GridStat

communication. It constructs a two-way communication clehon top of GridStat
publish/subscribe paths, and utilizes the QoS semantiswaidleware properties GridStat
provides. For control communication Ratatoskr uses rempaeedure call (RPC), providing
programmer friendliness and familiarity. The QoS semarticGridStat are drawn upon to
provide the timeliness required for power-grid operati@eliability concerns are addressed by
providing three redundancy schemes, ACK/resend, tratisginultiple copies of a single
packet, and spatial redundancy through GridStat’s rechtrrdating paths feature. Additionally,
pre- and post-condition expressions over GridStat stattiales are built into call semantics.
The architecture and design of Ratatoskr is presentedg alith results from an evaluation of a

prototype implementation.

Vi

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS e s e e e e i
PUBLICATIONS e e s e e iV
ABSTRACT . . . e e e e i
LISTOF TABLES e s e e e X
LISTOFFIGURES e e e s e e e Xi
CHAPTER

1. INTRODUCTION e e e e e e e e e e e e e e

1.1 Current Power Grid Communication Infrastructure 1

1.2 GridStat 2
1.3 Ratatoskr 4
1.4 Contributionsof Thesis e 5
1.5 Organizationof Thesis e 6
2. BACKGROUND AND RELATEDWORK o ..
2.1 Middleware 7
2.2 RemoteProcedureCall 7
2.2.1 FailureSemantics 8
222 CORBA . . . e
2.3 Publish/Subscribe e 11
2.3.1 StatusDissemination 12

Vil

24 GridStat 12
2.4.1 Architecture. 12
3. THE RATATOSKR RPC MECHANISM o o . 61
3.1 Definitionofterms 16
3.2 Two-way Communication over a Publish-Subscribe Fraonkew. 18
3.2.1 Properties of the 2WoPS Protocol 19
3.2.2 Reliability Measures 21
3.3 TheRatatoskrRPC 26
3.4 RPCsemantiCs i e 26
3.4.1 Pre-and PostConditions 28
3.5 Limitations 29
3.6 ASSUMPLIONS e e e e 29
4. DESIGN OF RATATOSKR e e 13
4.1 Design of the 2WoPS Transport Protocol 31
4.1.1 Modules 31
4.1.2 SendingProcess 3 3
4.2 Designofthe RPC Mechanism 36
421 Modules 36
4.2.2 Use of Reflection and Serialization. 38
423 RPCFlow. e 39
4.2.4 Pre-andPost-conditions oo 42
5. EVALUATION o e 64
5.1 EvaluationProcedure 46
5.1.1 Topology e 46

viii

5.1.2 Network FaultModel 47

5.2 EvaluationTestbed e 48
5.2.1 ProCESSES o i i 48
5.2.2 Hardware 49
5.2.3 Garbage CollectionHandling 49
5.2.4 Java Virtual Machine Arguments w... 50

5.3 ExperimentProcedure 50
53.1 ResultData 52

54 ExpectedResults 53

5.5 ExperimentalResults e 54

5.5.1 Resiliency of TemporalRedundancy 54

5.5.2 Resiliency of Spatial Redundancy 55
5.5.3 Comparisonto TraditionalRPC 57

6. CONCLUSION AND FUTUREWORK 64
6.1 ConcludingRemarks e 64
6.2 Future Work 65
6.2.1 LongTermConnections 65
6.2.2 Fault Tolerance Level Calculation 66
6.2.3 Extensions to the 2WoPS Protocol 67
6.2.4 Extensionstothe RPC Mechanism. 68

6.2.5 Security e 70
6.2.6 Future Evaluations 71
BIBLIOGRAPHY e e T2

LIST OF TABLES

3.1 Comparison of Redundancy Techniques

5.1 Expected Failure Rates for Redundancy Techniques

5.2 Calculated End to End Loss Compared to per Link Loss

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7

LIST OF FIGURES

Page
Ratatoskr Module Stack 20
Sending Process for the 2WoPS Protocol 37
RPC Send Process o i i i i e e e e e 41
Call Process When Failing Pre-Condition 43
Call Process With Post-Condition 45
Evaluation Topology 48

Comparison of Performance With and Without GarbageeCtitin Compensation . 51

Early Success for Temporal Redundancy over Varying 6iond-ault Rates 56
Early Success for Spatial Redundancy over Varying Damdtaults 58
Early Success for Varying RedundancyandLoss 61
Average Calltimes for Various Redundancy with FullLoss 62
Cumulative distributions of number of timeoutspercall 63

Xi

CHAPTER ONE

INTRODUCTION

The North-American electric power-grid is among the latgesl most complex systems created
by man. Its critical mission of balancing changing demand ganeration of power involves
coordinating diverse sets of components over a very largasaiand in a large number of utility-
domains. This balancing process requires extensive congation between components in the
Grid for monitoring system state and controlling actuatevides. The development of the grid
communication infrastructure has failed to incorporatpantant developments in the field of com-
puter science, affecting the stability and efficiency of plogver grid as a whole, [2]. GridStat is a
communication infrastructure designed for a power gridremvnent that would solve many of the
problems with the current situation, but it does not coneetly control communication, [8]. This

thesis proposes a novel scheme for control of actuatorg @il Stat communication.

1.1 Current Power Grid Communication Infrastructure

In the 1960s, utilities started shifting from mainly usingldi personnel and telephone communica-
tion for control of the power grid to electronic schemes. 8pthe predominant Grid communica-
tion architecture is SCADA (Supervisory Control and Datayisition). The SCADA architecture
has not changed notably from its origins. It is a centralizpdroach, in which a manned regional
control center gathers data from and issues control sigoalsvices in geographically dispersed
field sites. Early systems were developed without any offgti@ndards, resulting in numerous
proprietary protocols. SCADA systems have since developaeémentally, and often incorporate
a blend of new and old communication technology. Topologregpredominately varieties of star-
shapes, and protocols are mostly designed solely for conuation between control center and

field sites, [12].

With increasing stress on the transmission network, distion models growing more com-
plex and looming threats of terrorism and cyber securitigsiishere is a pressing need for better
monitoring of grid dynamics and improved control schem2g, The inherent inflexibility of the
SCADA architecture is unable to accommodate this. Comnatioic between utilities is mostly
done by telephone between operators, making observatoariainment of grid-wide phenom-
ena such as rolling blackouts very difficult. Fast automatedrol schemes involving substation to
substation communication have yet to be standardized, r@nichplemented using expensive, spe-
cialized point-to-point links, [2]. The Intelligrid prog, a vision of a future power grid created by
an international consortium of power researchers, ingluspiresentatives, equipment manufactur-
ers and government representatives, argues for seveldaamms of communication substation
to substation, substation to field equipment, and field egaig to field equipment, yet it does not
propose a wide-area communication mechansism, [6]. IEG®8a widely accepted standard for
substation automation that includes standardized setfrigti®n of devices independent of brand
and an event-driven communication model, [17]. While IEG®1 holds great potential for im-
proved substation control, it does not specify a wide-astaork mechanism in itself. Continued
incremental development of the existing centralized arfiéxible communication structure will

severely inhibit potential growth in power-grid efficienagd stability.

1.2 GridStat

Gridstat is a framework for power-grid communication ceedearound a middleware network for
power-grid data acquisition, [8]. It provides a flexible aoomication scheme with the reliability
and timeliness required in a power-grid network. GridStaites traffic on top of existing com-
munications infrastructure through a series of applicatayer routers, overcoming the inherent

heterogeneity of legacy networking technology. The unidymiddleware framework creates a

flexible overlay topology on top of the centralized desighs»asting power-grid network infras-
tructures, allows for easy interoperability between poutdity companies despite use of propri-
etary transport protocols and offers abstractions to ndtwervices, in addition to several other
features well suited for a power-grid infrastructure thatlass relevant in context of this thesis.

GridStat follows the publish-subscribe (pub-sub) paradigA device can publish status in-
formation either directly to the GridStat framework, ordhgh an intermediary middleware pub-
lisher module, possibly located on another computer. ThdSEat framework makes the infor-
mation available as one or mos¢atus variablespublished values that are regularly updated .
Applications may retrieve status updates by subscribirsgatus variables through a GridStat sub-
scriber interface. The GridStat framework forwards stafoudates from the publisher through the
application-layer routers and finally to the subscriberisTverlay-network scheme allows Grid-
Stat to offer a wide range of network features independetiteotinderlying technology. The most
important of these are multicast and redundant forwardatlyg(for fault-tolerance). In addition to
offering functionality additional to that provided by thederlying network, GridStat improves the
network Quality of Service (QoS), the nonfunctional prdigsrof the network. QoS enhancments
provided by GridStat include bounded delay, reliabilityla®curity.

Currently GridStat forwards status updates in a one-way;qub fashion, addressing the data
acquisition needs of a grid operations infrastructure. l[éfhivould be possible to forward control
commands using the existing status update mechanism, saamgnication would be cumber-
some with the pub-sub interface and in many cases would neeqyuieration success feedback
which is impossible over the one-way paths. Use of SCADAgwols for control while restrict-
ing use of GridStat to data acquisition would require madijyinflexible proprietary legacy code
for each new control operation introduced, and would notlide o utilize the flexible topology
and interoperability introduced with GridStat. Use of atbristing QoS-enabled control schemes

would require implementing an overlay transport protocoaliow interoperability and flexible

topologies, which is redundant when GridStat already plesimiddleware routing. Further, ex-
isting solutions would not be designed with the capabdiageady found in GridStat in mind, and
mechanisms exploiting these would have to reside in thaecgijn layer voiding any advantages

that could be achieved by designing use of these featureshiatcontrol semantics.

1.3 Ratatoskr

This thesis proposes a power grid control scheme, Ratatosking GridStat publications and
subscriptions for communication. Ratatoskr is designéthamily for control of field sites from

a control center, but use between field sites is imaginabdéend®e Procedure Call (RPC) seman-
tics are used because of its programmer friendliness anifidaityg. Some of the traditional RPC
features, especially transparency towards local proeedaifs, are downplayed to better support
the reliability and timeliness aspects required of a powet gontrol scheme. Reliability con-
cerns are addressed by providing three redundancy sché&@&gresend, transmitting multiple
copies of a single packet, and spatial redundancy througtS@t’s redundant routing paths fea-
ture. ACK/resend represents a tradeoff between the tiesdiand the reliability of the call, and
multiple resends and redundant paths trades off religliditnetwork resources. Since the desired
tradeoff parameters might vary between applications, tBsita exposes these parameters to the
programmer, along with other QoS properties of the call.

Further, Ratatoskr allows pre- and post-conditions, wladoh predicate expressions, to be
placed on the procedure call®re-conditionsare evaluated before the execution of a call, and
will abort the call if the expression is not satisfieBost-conditionsare evaluated after the ex-
ectution of a call and the result returned back to the cligmiiaation to indicate system state.
Pre- and post-conditions in Ratatoskr may use status Vasigiblished to GridStat in the expres-
sions, accommodating usage of data from remote locatidmesselpredicates are built into the call

semantics, providing standardized usage patterns, $yimgjireuse and providing the option of

In norse mythology, Ratatoskr is a squirrel running arounedgreat life-tree Yddgarsil, carrying insults between
mythological creatures living on the branches.

delayed execution of post-conditions. Pre-conditionst@sted before a call is carried out on the
server side, aborting execution if the expression failslisGaay then verify a safe system state
before potentially dangerous operations, such as avorgiemergizing a line if manned mainte-
nance is scheduled in a endpoint substation at the time. déoslitions are carried out on the
server after a call has completed, possibly after a speaifedaly. This allows grid programmers
to verify the effects of operations. Power grid field sitefenfcontain various mechanical devices
which affect each other in complex ways, and the outcome afpemation could be unexpected

even if the operation itself was successful.

1.4 Contributions of Thesis

The research contributions of this thesis are:

e Design and implementation of a novel control scheme for antelal power grid environ-
ment where remote procedure calls are transported over aeQalded one-way publish

subscribe middleware network (GridStat).

e Design and implementation of three distinctive techniqaesedundancy, offering a tradeoff
between worst-case deadline, use of network resourceseail@mcy towards a variety of

network failure categories. Applications are allowed finatcol of redundancy semantics.

¢ Design and implementation of pre- and post- conditions meisdms designed into RPC se-
mantics provides additional functionality over applicatiievel implementation and allows

for a standardized mechanism for control signals betweéhas.

e An experimental evaluation quantifying the tradeoffs bedw the redundancy techniques

and their performance.

1.5 Organization of Thesis

The rest of this thesis is organized as follows: Chapter 2nsarizes related work and gives an
introduction to GridStat required for understanding thietdbutions of this work. An overview of

the Ratatoskr RPC mechanism and its underlying transpoto@ol is found in chapter 3. Chapter
4 details the design of a prototype implementation. Chapiaresents the findings of an experi-
mental evaluation of the prototype. Finally, chapter 6 ptes a summary of future work and the

conclusion.

CHAPTER TWO

BACKGROUND AND RELATED WORK

This chapter gives an overview of relevant technologiesy\aview of the GridStat framework
architecture and details on the GridStat design relatdtet®atatoskr mechanism. A more detailed

introduction to GridStat can be found in [8].

2.1 Middleware

Distributed computing involves processes on separate imesltooperating, commonly over a
network. If there are differences in the runtime environtaef the interacting processes, such
as data representation, some sort of translation must lberped between processes to ensure
correct interaction. Middleware is software layered betwéhe OS and the application offering
abstractions to inter-process interactions and providimg needed translation services between
process environments. Many different types of middlewateraction styles exist, accommodating

a wide range of distributed system architectures.

2.2 Remote Procedure Call

Remote Procedure Call (RPC), first presented in [4], is @ stiiniddleware providing abstractions
for remote execution of code in a client-server fashione@lapplications call remote procedures
through an interface similar in syntax to local procedurtetha client, and the RPC mechanism
handles packing the call with parameters and sending it theemetwork, executing the code
corresponding to the call at the server, and transmittiegréisult back to the client application.
Remote procedure calls allow for return values in spite efttladitional sense of procedure as
a returnless call. RPC calls are in nature synchronous amkiblg. A frequent design goal in

RPC systems has been to make remote calls indistinguisfrabidocal calls both in syntax and

semantics, although the latter has been shown to be impedsi0).

2.2.1 Failure Semantics

Opposed to local procedures, a remote procedure call mhygdeng remote operation while
the local client process remains operating correctly. Saittires could stem from errors during
network transfer or failure during server execution. Thieifa semantics of an RPC mechanism is
defined by the way remote failures are handled and the gwsmsof successful execution provided
to the client application. As any network in practice can tamreliable by resending messages
until an acknowledgment (ACK) is received, there are maihhge schools of thought for failure

semantics, [28]:

e At-least once Provides guarantee that an RPC procedure is successkabutd given
eventually reliable communication, but allows for repdaggecutions of the same call. This
may be achieved by having the client repeatedly send a ctllauresult is received. The
server executes all calls, no matter if they have been ezddgfore, and sends results upon
successful execution. This provides a strong guarantéatieast once is only practical for

idempotent procedures.

e At-most once Provides guarantee that execution of an RPC procedurteimptied exactly
once at server given eventually reliable communication dogs not guarantee that the at-
tempted execution is successful. A client retries sendingllauntil it receives a response
from the server. To ensure that the call is attempted at nmast cedundant calls are filtered
at the server, possibly using logs in stable storage torrditeering after server crash. The
server must respond negatively to filtered calls so the thkapws when to stop sending.

When the client receives a negative response, the exeaittrs of the call is uncertain.

e Exactly once Provides a guarantee that the RPC is executed exactly otioe server, and
so is the ideal case. This is impossible in the general RP&gan, as the RPC mechanism
is active only before and after application-level exeautid a call on the server, and thus

cannot infer about the success of execution if server fata/ben these, [29]. This can in

some cases be resolved through cooperation with the omgrbpplication, but this must
be at the expense of programmability, mechanism complaxityfrequent writes to stable

storage, and is seldom used in practice.

While the beforementioned paradigms ideally rely on an ewaly reliable network, it is often
not practical to resend messages for an infinite number afsiomtil success. The solution is
most often to utilize no-loss transport protocols, thatassport protocols performing sends using
ACK/retry schemes and that report back the delivery stdttreeossend. While this type of transport
protocol gives a high probability of delivery even over alfauetwork, the overhead and high
duration bound of such sends has given rise to a subdividiatrimost once semanticdlaybe
oncesemantics provide zero-or-once execution semantics,istmguishes from regular at-most
once in that the underlying network sends do not ACK and s® do¢ resend. This best-effort
communication scheme provides a lower bound for end-toealiimes, and has little overhead,

but at the cost of low reliability compared to regular atslieance.

2.2.2 CORBA

Common Object Request Broker Architecture (CORBA) is a c@hensive standard for inter-
operability between distributed object frameworks, [9]stilbuted objects are processes offering
remote execution that are treated as abstract objectsaoedephe remote execution interface from
the underlying implementation and platform. While CORBM strictly an RPC mechanism,
the most common mechanism for making calls to distributgdai is so close to RPC in both
syntax and semantics that it is relevant for this thesis. Meaxtensions to CORBA have been
proposed, among them extensions targeting real-time tperdll], and fault-tolerance [10].
CORBA allows for the use of any underlying transport protptmit dynamic configuration of

communication protocols are not standardized and left tepleeified by vendors, [24].

LIt should be noted that Fault Tolerant CORBA focuses on falé#rance through replication of services, while
Ratatoskr focuses on replication of communication.

2.2.2.1 Real-time CORBA
Real-time CORBA is an extension to CORBA for interoperapitietween frameworks accomo-
dating real-time distributed systems. The extensions @gsipl resource management in addition
to the introduction of extensive call prioritization sertias including mapping to OS thread prior-
itization. Real-time CORBA supports setting transporttpcol QoS properties upon object bind-
ing, [26]. This allows setting policies per invocation byirding for each invocation. Real-time
CORBA is a mature standard with several field-tested implgat®ns. For example, the TAO orb
is being used for operation flight programs by the Boing coapon, [27]. Two strategies for using
existing implementations of Real-time CORBA for actuatontrol in the power-grid would be to
route Real-time CORBA traffic directly on top of utility netrks, or to route Real-time CORBA
traffic over a middleware layer that overcomes incompagdit

An alternative to using Ratatoskr over a GridStat for actuabntrol is to employ real-time
CORBA on top of QoS aware networking technologies, such all AF diffserv IP. Such a
real-time CORBA approach would provide timely control naggss. Further, network level fault-
tolerance may be achieved by using multiple temporally neldint sends of each network packet.
In addition to temporal redundancy, Ratatoskr uses theStidedundant paths feature to pro-
vide fault tolerance against network faults. In chapterrbg@aluation of the performance of the
fault-tolerance capabilities of Ratatoskr shows that neldunt path routing provides fault tolerance
against certain fault categories that affect all tempgnatiundant sends along a single path. We
are not aware of any wide-area network technology providiging with redunant paths.

While this thesis presents an RPC mechanism designed spdégifor actuator control over
a GridStat connection, an alternative approach would benf@iement a transport protocol en-
abling Real-time CORBA to communicate over GridStat. WHeagatoskr is a pure RPC system,
CORBA provides the advantages of a distributed object techire, and compability to a large

set of existing third party software components. Since fe@ CORBA extends the complex

10

CORBA standard, it requires adherence to a set of stan@ardiegmantics. While some require-
ments are provided in [6] and [17], the desired functiogadita power-grid control system is still
largely unmapped and could potentially gain from mehcasiaot compatible the CORBA stan-
dard. The more minimalistic Ratatoskr design allows foidagxperimentation with features such
as pre- and post-conditions and fine grained QoS semanticthef, the communication subsys-
tem of Ratatoskr can easily be adapted to carry Real-timeB¥CRaffic instead of Ratatoskr RPC

calls, if Real-time CORBA is deemed desirable for a grid dgpient.

2.2.2.2 Fault-tolerance in CORBA

The distributed object paradigm architecture of CORBA tenskelf well to service replication. As
the distributed object interface is decoupled from the dgdey implementation and environment,
an object interface can be replicated into several imple¢atiems running in separate environments
with minimum impact on observed behavior. Several CORBAlanentations provide replicated
objects, [23, 25, 20]. A replicated distributed object soke coupled with a real-time CORBA
implementation, would provide timely delivery and faultérance. Such a scheme would still
have to rely on a the underlying network for network-levellfdaolerance, and would not be able
to reap the benefits of redundant path routing. Further,cobgplication has to rely on strong
multicast guarantees for synchronization between reqlivhich gives a high worst-case message

rounds in face of communication failures and thus scalefy/heith geographical distance.

2.3 Publish/Subscribe

The Publish/Subscribe middleware architecture centexsnar producers of information (publish-
ers) and information consumers (subscribers). Publignakse information events available to a
middleware network, and subscribers can request thateberforwarded to them by the network.
The network forwards only subscribed data and can oftemupsi delivery paths through multi-

cast, conserving bandwidth, [3]. The information flow is -avey; subscribers make subscription

11

requests to the middleware network itself rather than tHaighers, allowing a decoupling be-
tween data producers and consumers. Further, publishatsesen be stored in the network until
the subscribers are ready to consume them, allowing a deegupetween publishing time and

delivery to the subscriber, [7].

2.3.1 Status Dissemination

Status dissemination is a specialization of the publigigeribe paradigm where publishers main-
tain status variables[8]. Status variables are published values of a given typé are updated
by publishingstatus eventsStatus events are limited by a maximum rate, and thesectesis

in publication rate and type allow for additional QoS sern@ntompared to publish-subscribe

systems without such restrictions.

2.4 GridStat

This section presents an overview of GridStat’s architegtand details the design of modules
relevant to Ratatoskr. The purpose of this overview is twig®a background for the rest of the

thesis. A more complete introduction to gridstat can be ébnr{8] and [2].

2.4.1 Architecture

The GridStat architecture is separated into two main suesys thedata plang a middleware
databus where status updates supplied by publishers avarfted to subscribers, and th@nag-
ment planea set of servers that manages system resources and ogysuitigeriptions by receiving
subscription requests from subscribers and configuringléite plane towards forwarding accord-
ingly. GridStat uses two kinds of communication trafikata trafficis always forwarded through
the data plane message basntrol trafficbetween GridStat entities can be sent over any middle-
ware control mechanism. The current implementation of &tatluses CORBA and Ratatoskr as

control message mechanisms.

12

Forwarding in the data plane is perfomeddgtus routersmiddleware routers placed through-
out a wide area network. Status routers form an overlay mitimpforwarding status events from
router to router. The status routers retain implementatafrall protocols used in the wide area
network, and may function as bridges between the parts ofi¢hsork using different network-
ing technologies or with separate addressing spaces. Ketwanections in the data plane (from
publishers and subscribers to status routers and betw&sns souters) are representedeasnt
channelghat contain abstractions of data forwarding propertigsired for resource managment.
Each publisher and subscriber has event channels to onererstabus routers.

Whereas the data plane has a flat organization, the managtaaetconsists of a hierarchy of
servers calleoS brokersQoS brokers in the lowest level of the hierarchy leiaf QoS brokers
and are the only QoS brokers that directly communicate witties in the data plane. QoS brokers
above the leaf level are called internal QoS brokers andsatteasolgarent QoS Brokeof one or
morechild QoS brokersAll QoS brokers have a parent, with the exception ofrta QoS broker
and leaf QoS brokers do not have child QoS brokers. Each Qu&ibis associated with a set of
entities in the data plane, the QoS broketsud The data plane is divided up so each status router
belongs to the cloud of exactly one leaf QoS broker. Statutere that have event channels to the
same publisher or subscriber must be in the same cloud, @idipers and subscribers belong to
the same cloud as their status routers. The clouds of irt@wia brokers are defined as the union
of the clouds of their children, and thus the cloud of the kwoker is all entities in the data plane.
Entities are named according to their relationship to theaganent plane hierarchy. A GridStat
element must have a name unique within the scope of its patefitll name is the name within the
scope with an added prefix of the parent’s name. This hieyastblouds is meant to correspond
to a natural organization of managment domains in the powey such as levels of geographical
areas.

As the data plane provides bounded delay and other QoS deaasafor subscription data,

additional subscriptions must not overload network resesir The managment plane administers

13

the use of resources in the data plane, and so handles gilmscrequests. Subscription requests
are made by the subscriber to its leaf QoS broker. If both thdigher and the subscriber of a new
subscription are within the leaf level QoS broker’s cloug keaf-level QoS broker is responsible
for verifying that the connection will not overload netwadsources and update the status routers
with the new subscription. If the publisher and subscrilzgesin different leaf-level clouds, the
subscription request is propagated up in the hierarchyaditst QoS broker that has both within
its cloud.

Ratatoskr is build on top of GridStat subscription paths, thie most relevant GridStat modules

in the context of this thesis are the publisher and the siliescr

2.4.1.1 Publisher

A publisher is a GridStat entity in the form of a module resglin an application program for pub-
lishing data to a GridStat network. It retains two conneawito each of its status routers, an event
channel for forwarding published status updates, and alewdde control channel for control
messages that the status router forwards to the managnaert prhe application can announce
a new published variable through the module interface byigiog a string name as identifier, a
type, and the rate at which it is published. There is curyandlpolicing on the maximum and min-
imum rates of publish updates. The managment hierarchynsetu32-bit integer for identifying
the variable within the GridStat networkyariablelD. The application may update the value of a
status variable through the module interface by speciftiegvariablelD and the new value. The
types of variables provide semantics for subscribed eyentddition to additional functionality
outside the context of this thesis. The current types ar@wsuprimary types (integer, floating
point, bool...) and a user defined type, which is treated as\ple byte array by GridStat. The

user defined type contains semantics for division into firdubtypes, defined by the application.

14

2.4.1.2 Subscriber

The subscriber is a GridStat entity module used by apptinatio subscribe to data published over
the GridStat network by a publisher. Similar to the publistiee subscriber also retains two chan-
nels to each of its status routers: An event channel forvegesubscribed updates and a control
channel for subscribing or unsubscribing to status vaemblTo subscribe to a published status
variable, the application passes the variable name, the wathe publisher, QoS parameters and
aSubscriptionHolderan object that stores the status value and is updated buylbisersber when it
receives updated values from its status router. Applioat@an access the values directly through
the SubscriptionHolder interface, or can specify a cakiraethod that will be invoked when the
SubscriptonHolder is updated. There are several implnientaof SubscriptionHolders corre-
sponding to the types of status variables, and applicatangrovide additional implementations
for added functionality, or for semantics supporting spetyof user defined variables. GridStat
allows subscribers to specify that subscription data shbelsent overedundant pathsSubscrip-
tions over redundant paths are sent through more than ohdrptie GridStat network, where,
with the exceptions of Entry-point SRs, a status router enechannel present in one path is not

present in any other paths.

15

CHAPTER THREE

THE RATATOSKR RPC MECHANISM

GridStat’s mission is to provide a complete communicatiamfework for the power-grid. In ad-
dition to the existing publish-subscribe functionalitystandardized control-mechanism is needed
for allowing power-utilities to control field equipment thugh the GridStat infrastructure. Such a
mechanism will have to accommodate timely execution ant faglt tolerance due to the critical
nature of Grid operation. Ratatoskr is an RPC mechanisngudedito run on top of GridStat’s
publish-subscribe system, utilizing the QoS mechanismogiged by GridStat. Built into the RPC
semantics are pre- and post-conditions on calls, intendledrédicates over GridStat published
variables. Ratatoskr’s intended primary use is for contesiter operators and mechanisms to
send control-messages to actuators in substations, ditiketly accessing actuators or through an
intermediary RPC server that can communicate with actsdtwough legacy APIs. This chapter

gives an overview of the features of Ratatoskr.

3.1 Definition of terms
The parts of the text regarding the transport protocol userd as defined in [18]. Additional

terms are defined below.

e 2WOPS transport protocel2-Way over Publish Subscribe. Communication protocoldefi

ing two-way communication over two GridStat one-way suipgicn paths.

e 2WOoPS peer An application connected to a GridStat framework thatae¢gd the 2WoPS pro-
tocol for two-way communication using a GridStat publisfegrsending data and a GridStat

subscriber for receiving data.

o Ratatoskr peer A device connected to a GridStat framework that utilizesaReskr RPC for

communication.

16

e Entry-point SR- The GridStat status-router a publisher or subscriber ectsnto. When
used in relation to a 2WoPS peer, the entry-point SR sigrtifiegdge status-router used to
connect both the publisher and subscriber of the 2WoPS péercurrent implementation
of GridStat allows publishers and subscribers to conndgttora single status router, while
the architecture allows for multiple connections. The mghis thesis considers only the
case of a single entry-point SR per publisher or subscrisghe exact semantics of multiple

entry-point SRs are still undefined.

e TSDU- Transport Services Data Unit, a chunk of data from an ovglgpplication that is

sent through a transport layer connection.

e transport protocol control messagé&imilar to a TSDU, but data is for control of the 2WoPS

protocol, not for application use.

e TPDU - Transport Protocol Data Unit, a chunk of data from the tpantslayer that is sent
over a network layer connection. In this context, GridStdi/pub communication is seen as
a network layer. A TPDU can be a TSDU with added transportriagaders, or data used
exclusively for control information by the transport lay&everal TPDUs can duplicate the
same TSDU, and a single TPDU can be spread over multiple TSa8lth®ugh the latter is

not implemented in the prototype (see section 6.2.3.1).

e NSDU NPDU - Network Service Data Unit and Network Protocol Data Unimitar to
TSDU and TPDU but for the network layer (GridStat pub-sub).NADU is exactly the
same data as a corresponding TPDU, but viewed in contextohétwork protocol layer.

An NSDU with an added network-layer header is an NPDU.

17

3.2 Two-way Communication over a Publish-Subscribe Fraonkew

GridStat is a publish-subscribe system. Publishers inystes make data in form of status up-
dates available to the GridStat framework. Subscribers regyest subscriptions to these vari-
ables, and GridStat will forward subscribed informatioonfr publishers to subscribers according
to QoS properties specified at subscription time. Commuioicas strictly one-way; subscribers
have no way of sending information to publishers. RPC comoation requires a two-way com-
munication as procedure calls often will return values ®dhent, and acknowledgments on suc-
cessful calls are almost universally required even wherc#fichas no return value. To allow for
a two-way communication link to be established, Ratatoskres a transport protocol called the
2WOoPS protocobn top of GridStat. The 2WoPS protocol achieves two way comaoation by
instantiating both a publisher and a subscriber behindglesinterface. To set up a two-way data
path, two 2WOoPS peers each publish a data variable specifieetsession, and subscribe to the
other peer’s corresponding variable. Data is sent overdhaection by publishing a status update
containing the data, and received by the other peer thrduglsubscriber interface. The 2WoPS
interface masks the publisher and subscriber behavior.

Using a layered approach to communication allows for otlseisuhan Ratatoskr RPC traffic
of the 2WoPS protocol. For example, the 2WoPS protocol wasd @ control communication
between QoS Brokers in [1]. Figure 3.1 shows the relatignbbiween the modules of Ratatoskr
(light shade), the GridStat modules used by Ratatoskr (slzakle), and examples of potential other
applications using GridStat or Ratatoskr modules (whifEhe example shows the architecture
stack for a control center and a substation. The main inttnide of Ratatoskr is illustrated by
the control center control system using Ratatoskr RPC touggecontrol operations on an actuator
in the substation. Other uses of the 2WoPS protocol may bramsport legacy control messages
to actuators if the actuator APl remains to be fully impleteerfor Ratatoskr. The publisher and

subscriber used by the 2WoPS protocol may have other usgsasisending sensor data from the

18

substation to the control center, or publishing reportsavigr-grid state aggregated in the control
center to be used by protection schemes in the substatioallysiwhile GridStat requires control
of the underlying network resources, network technolotiias manage resource use may reserve
bandwidth for uses outside GridStat, such as transferiishgpfeeds from surveillance cameras in

the substation.

3.2.1 Properties of the 2WoPS Protocol

The 2WoPS protocol is designed specifically for the RatatB$¥C. While this does not block out
other uses for two-way communication over GridStat, caceikhbe taken in noting the properties
of the protocol, as these differ from the most common trartgpotocols, TCP and UDP. Some
suggested extensions to the protocol to enhance use faragpécations can be found in section

6.2.3. This section gives a summary the main propertieseo2WWoPS protocol.

e Connection oriented This was a necessary design decision as the underlying@tidom-
munication is connection-oriented. The 2WoPS protoc@rfate provides method to open

and close a connection.

e Controlled-loss An adjustable ACK/resend scheme similar to kn€MIT scheme found in
[21]. A TSDU will be retransmitted up t& times, wherek is a user specified number. No
ACK status is sent by the server on théh resend. This reduces the deadline for the sending
process by the time for sending the ACK, at the expense of lednye of the delivery status.

It should be noted that while a missing ACK suggests that teesage was not delivered,

it cannot guarantee a failed delivery, as the message maylet drrived while the ACK was
lost. Because delivery status is unclear, the overlying Ri&Chanism must still wait for

a return from the server. Wheais set to 0 the scheme has uncontrolled-loss properties.
The controlled loss scheme gives little indication of thecass of a call, which might be

impractical for non-RPC use, sca-lossscheme is also provided.

19

,,

| Control center | | Substation |
Control center system Actuator
Ratatoskr | Legacy 5 Ratatoskr | Legacy
|| Aggregated | RPC | control :tgtsgr ! || Substation| RPC | control | Protection 3
state report AWOPS monitor sensors ANOPS scheme
I : Gridstat || o : GridStat |
GridStat Publisher Subscriber | | GridStat Publisher Subscriber
| GridsStat Network Survetllance |
1 video 1
UDP/IP ATM

,,

Figure 3.1: Ratatoskr Module Stack

e No-loss- adjustable ACK/resend scheme. Similarly to controllesis| TSDUs are retrans-
mitted up tok times, only the no-loss scheme delivers an ACK even on théderad. For
no-loss, delivery of a TSDU is uncertain only if each sendratit experiences faults, while
for controlled-loss, delivery of a TSDU is uncertain evethiék-th send-attempt experiences
no faults. This gives weaker failure semantics for contialloss, and more so at a Idw
Controlled loss blockg « & — 1 trip-times per send and useg — 1 TSDU-transfers of

bandwidth where no-loss blocks 2k & trip-times and use®k TSDU-transfers per send.

e Timeliness GridStat provides delivery guarantees for subscriptidire delivery guarantees
of the underlying subscriptions are used to calculate tigi#out values for ack/resends, and

delivery guarantees for TSDU sends.

e Blocking- Execution of a sending thread is blocked until the send mspteted. A send is
completed either when delivery is confirmed by receiving &KArom the receiver, when
the k-th ack times out for no-loss, or after theth send for controlled-loss. Multiple threads

are still allowed to send in parallel.

20

Unordered delivery No message ordering is provided. Received NSDUs con@ain8DUs

are delivered to the application in the order they were dedig to the 2WoPS protocol by
GridStat.

No duplicates TPDUs duplicating the same TSDU are filtered so the TSDU isveted

only once to the server application.

Error control - A simplecyclic redundancy chedlCRC) is used to discard TPDUs contain-

ing bit errors.

Hierarchical naming- A naming scheme similar to the one for publishers and silEsrin
GridStat is used. A 2WoPS peer is identified within its Grad®ioud by a string with no
spaces. The peer registers the publisher and subscrilefarssommunication with names
based on this string, the publisher is nansBtUB and the subscribaSUB. The names of
the publishers and subscribers mustdmally unique that is no other 2WoPS peer may have
the same name within the leaf-level cloud of the entry-p@nt since clouds have unique
names the fully qualified name is globally unique. A leaf-Qu8&ker stores the names of all

elements in its cloud and prevents registry of locally naigue names.

e Message oriented TSDUs are bounded by the maximum size of GridStat statuatepd
which is again bounded by an underlying transport protdddIR for the research prototype

of GridStat).

3.2.2 Reliability Measures

A serious concern in any wide area network is that the numbeosmponents, geographical out-
stretch, and usage patterns of such networks inevitabtijttebowered reliability when compared
to local area networks. This is especially apparent in therhet, where most traffic uses the TCP
transport protocol which uses TPDU drops to indicate cotiyeso it can regulate bandwidth

usage. While GridStat controls network traffic at the netlwedges to avoid network overload

21

at least during normal operation, a GridStat deploymenttrbasxpected to share many of the
loss properties of the internet stemming from other souticas traffic overload. These include
hardware failure, maintenance, line damage or short-teisnommunication between routers. A
2002 study on an internet backbone found that with respectean failure rate, the median link
failed every ten days, [16]. The mean failure had a duratiosver one minute and 10% over 20
minutes. Such failure patterns are acceptable in the letdrecause routing protocols will dis-
cover link errors and reconfigure routing to direct traffioand the affected links in a manner of
seconds, and because few Internet applications dependgbmbtwork reliability. Also, while
network drop rates during to transfer are negligible in therfiand copper lines common in wide
area networks today, GridStat is an overlay network and nlyidg physical network technolo-
gies might display other properties. Connecting remoteststions to a utility network by fibre
is expensive, and alternatives include microwave siggahMiFi, power-line communications or
satellite, all suffering from various forms of signal ifemence. The 2WoPS protocol provides

several kinds of redundancy to overcome network failures.

3.2.2.1 Reliability Techniques in the 2WoPS Protocol

The 2WoPS protocol employs three techniques for overcométgork losses:

e ACK/resendallows specially marked TPDUs to be ACKed back to the serade&bling the
sender to resend the TPDU until it is confirmed successfelht.SACK/resend is allowed
for TPDUs containing TSDUs, enabling ACK/resend semartditsapplication messages.
If an ACK is lost the sender will not be aware of delivery sisxand resend the TSDU,
so redundant TSDUs must be filtered at the receiver. Thisitguk guarantees successful
delivery given an unlimited number of resends and an evéptoansistent network con-
nection. Further, the technique uses a very limited amofibanodwidth to achieve fault
tolerance. The main disadvantage with the technique ighleadender must wait a full RTT

before a packet is confirmed lost and resend is commencedsaatigk time for successful

22

delivery of a packet iRTT * losses. Because the intended use of Ratatoskr is for power-
grid actuator commands which are often time-sensitive, A€¢end by itself will often be
inadequate. The 2WoPS protocol also offers limitationdyeortumber of resends to allow
applications with strict deadlines to give up on unsucaegssnds after a deadline has been
missed. The number of resends is a parameter to a send conamdran be different for

each TSDU.

Temporal redundancy performs multiple network level sends for each TPDU andr§lte
redundant TPDUs at the receiver. While this technique islemented in 2WoPS mod-
ules, it is in practice a network layer technique: for eaclbURsent by the transport pro-
tocol with temporal redundancy, the network layer sendgipiaNPDUs carrying copies
of the TPDU. Temporal redundancy tolerates- 1 losses withn copies of the TPDU. The
technique consumes times more bandwidth than regular sends. The main problem wi
temporal redundancy is that network losses may be temgaraticentrated. For example,
network congestion will often lead to periods of high lostesawhen a router’s buffer for
an outgoing link is filled or maintenance on a router mighatle all connecting links for
several minutes. To add to this, by sending several copigeecfame TPDU in a short span,
the extra bandwidth use might add to existing congestiore 2ZWoPS protocol allows ap-
plications to specify a delay between sending each temposdundant copy of a TPDU.
Delays between sends will only be truly effective for oventog failures if the durations of
all periods of temporally related failures were known bef@and, but might help to relieve
the congestion aggravation effect of multiple sends. Thygeteof temporal redundancy is a

parameter to the send command.

Spatial redundancyThe 2WoPS protocol uses GridStat’s redundant path fumd¢taoffer

spatial redundancy: all NPDUs and thus TPDUs over a coroeutith spatial redundancy

23

are copied in the GridStat network and sent over multiplagaRedundant TPDUs are fil-
tered at the receiver. Spatial redundancy tolerate 1 losses withn redundant paths, and
is not affected by temporal concentration of errors. It $tidne noted that common mode
failures thoughout the network, such as very high traffielewduring attacks or crisis situa-
tions may affect components involved in all redundant pafine use of spatial redundancy
is heavily dependent on whether network topology allowséalundant paths, but it is ex-
pected that the high reliability requirements of a criticditastructure as the power-grid will
justify the expense of building a network with a high degréeedundancy. While spatially
redundant TPDUs are forwarded throughout the network ialfgra small delay overhead
is introduced by the routing mechanisms for multiple pathsrther, it is unlikely that all
redundant paths through the network will provide as lowwagli deadlines as the best path
achieved with single-path routing, and so use of redundatitspis likely to increase the
end-to-end delay deadline of a subscription. Spatial rédnay consumes, assuming that
redundant paths are of equal length to a single path commmeati- 1 times more bandwidth
than sends through a single path. It should be noted thatrtoesgs of allocating redundant
paths through the network is more complex than allocatinggles path, and so spatial re-
dundancy induces overhead to the network management. Tineedef spatial redundancy
is a property of the subscription used for sending data, anslset at connection setup time
and subsequently used for every TPDU sent over the conne@i@WoPS connection can
have different spatial redundancy parameters for eachtaire For purposes of analysis and
evaluation this thesis conciders only the case where bogtthns of a connection have the
same degree of spatial redundancy. The current implememtatt GridStat supports only
up to two redundant paths, and does not allow redundant peatiageen leaf-level clouds,

but work is done to eliminate these limitations.

A comparison of the various redundancy techniques can lreisé¢able 3.2.2.1.

24

ACK/resend Temporal redundancy Spatial redundancy
Overview | Receiver ACKs successful Each TPDU is sent times, | Each TPDU is sent through
sends, client retries uponwith & delay between sendsn physical paths
missing ACKS up ton
times
Failure tol- | n failures n — 1 failures n — 1 failures
erance
Bandwidth | f x (]TSDU| + |ACK]) | nx |[TSDU| nx|TSDU|, depending on
where f is min of n and # topology
of failures
Added de-| (f — 1)« RTT (n—1)xk routing overhead, more de-
lay pending on topology

Table 3.1: Comparison of Redundancy Techniques

3.2.2.2 Combining Redundancy Techniques

The 2WoPS protocol allows for combinations of the redungldaechniques. Temporal and spatial
redundancy measures are cumulative and as they reside metiverk layer affect all TPDUs,
including ACKs. For example, if a sending a TSDU with 3 tengllyr redundant sends and 4
ACK/resends over a connection with 2 spatially redundattigoa each direction, three NPDUs
containing copies of the TSDU will be sent. At the entry-gaimuter, each of the NPDUs will
be forwarded to the first routers of the redundant paths, asslyjming no network failures, six
NPDUs containing the same TPDU will arrive at the receivdre Teceiver will similarly send a
single ACK TPDU, which will be sent in three temporally rediamt NPDUs, which again will
be copied onto the redundant paths. If all ACKs are lost inrtbevork, the sender will resend
three new NPDUSs containing the TSDU, and so on. This giveBagtipn designers the ability to
tailor a connection to the exact needs of the applicatidowatg use of high spatial and temporal
redundancy where a low delay is required, or relying on A€k#nd for redundancy for less delay-

sensitive applications or where bandwidth is scarce.

25

3.3 The Ratatoskr RPC

Ratatoskr RPC is a remote procedure call protocol for payier-control communication built on
top of the 2WoPS protocol. The primary application for Ras&t is remote operation of power-
grid actuators, either to a gateway interfacing multipkeickes or by directly controlling intelligent
electronical devices (IEDs) with remote interfaces emleedd the acuator itself. The current grid
communication system is unable to support developmentseipower-grid stress levels and the
security threat picture, and propoposed solutions regaaktime, reliable control [6].

Ratatoskr draws extensively on the features provided b2WiePS protocol. Delivery guar-
antees for calls is achieved using GridStat's QoS enablédonke communications, and fault-
tolerance is provided through the redundancy techniquasdian the 2WoPS protocol. As the
use of redundancy trades off network resources, or worgt daky in the case of ACK/retry,
against safety, applications designers are allowed @etaibntrol over the level techniques used
for redundancy.

In addition to increased safety through fault-toleranae; pnd post-conditions on calls are
built into the RPC semantics. Pre-conditions are condifi@xpressions over GridStat variables
that are evaulated before execution of an RPC call, and iExpeession is negative, the call is
negated. Post-conditions are similar expressions ewluter the call has executed, and negative

results are reported back to the application, allowingueatibns of operation outcome.

3.4 RPC semantics

The RPC semantics are not meant as a final specification foplaysheent implementation, as a
full mapping of the requirements and additional functiagiyateeded for this is well beyond the
scope of a master’s thesis. It is rather a platform for furtbeearch on control communication in

GridStat, specifically to:

e Make practical an evaluation of the tradeoff space betweenparformance of the redun-

dancy techniques employed.

26

Create a platform for further exploration of the possilaitof the pre- and post-condition

mechanism.

lllustrate the QoS semantics available with the capaédigirovided by the 2WoPS protocol.

Provide a building block for future GridStat research pctgewhere timely and reliable

control communication is needed.

Function as a simple GridStat control mechanism in powiel-gimulations or test deploy-

ments, allowing the mapping of new requirements.

As follows, call semantics are designed to be simple anddlexwith extensive use of platform-
specific, generic serialization to allow rapid experiméntaat the cost of performance. The pro-
totype was implemented on the Java platform as Java was osadderlying GridStat elements.

Call semantics are use dynamic binding: the server expos#oais to remote invocation by
registering local calls with names and parameter types.cliet specifies the method name and
an array of objects representing the parameter values, hease tare serialized and transported
over the network where the name and parameter types are sisled identifier to the correct call.
Return types are unspecified, and so returned objects muasbtd the expected class at the client.
The RPC semantics will catch and serialize any exceptiohlsathe method when executed at
the server, and these will be wrapped in a special exceptidrcast again when deserialized at
the client. This is a brittle system and requires extensare curing application design, but the
dynamic semantics may easily be hidden behind a wrappes iclggementing some sort of static
interface, for example, Interface Description Langua@d.JIlsemantics.

Ordering is implemented on a per-thread-basis. The RPCslacking, and so if a single
thread makes two calls to the same server, the first call nithgtresucceed or time out before the
next can be attempted. An RPC call timeout includes the tonesdénding the return, and so for

the second call to reach the server before the first, the fitktwould have to be delayed to twice

27

i's maximum guaranteed delay. It is assumed this will natusas GridStat will use a router

scheduling algorithm that drops NPDUSs that exceed theayd§l5].

3.4.1 Pre-and Post Conditions

For many power-grid control-operations, placing pre-ébods on the execution may help in pre-
serving safety in face of unwarranted situations such aepgwd anomalies or unexpected me-
chanical operation. Because of the distances involvedpuamcation must be expected to suffer
from bandwidth and delay limitations. Thus one may assumgthie client-side information about
server state is limited and not fully updated, and followihig, pre-conditions should be placed
on the server-side of the call. Such conditions could begaldn application code using RPC
exceptions, but this could lead to variations in semantata/ben vendor implementations.

Ratatoskr incorporates pre-conditions in call semantithis gives standardized predicate
semantics, easing interoperability between equipmentlasnand inter-utility communication.
Predicate expressions are modules, accommodating redsayamg ground for future extensions
(see section 6.2.4.4).

Examples of pre-conditions in power-grid operation may be:

e Isolators are actuators that connect and disconnect dgieee power circuits. A precondi-

tion could be to verify that a line is de-energized beforeraftring isolation.

e High voltage equipment carries with it electocution hazardl another pre-condition could
be to verify that no manned maintenance is scheduled at asfteldvhen performing opera-

tions that might place maintenance personel in danger.

Ratatoskr further allows application designers to use dineespredicate modules used for pre-
conditions for placing post-conditions on calls. Powad@perations are complex, and actuator
operations may give unexpected results in face of situatsuch as mechanical malfunctions or
operator overrides. Server-side post-conditions will fdle & utilize the rich information environ-

ment local to the substation for analyzing the physical oume of an execution and return only a

28

brief report to the client. Thus client applications will Bble to review the results of calls with-
out having to retrieve large amounts of data from the suiostaBy allowing a delay before the
post-condition is evaluated, the effect of the operatioalliswed to stabilize. By designing the
post-conditions into the RPC semantics, the result of tle-pondition is transferred to the client
as a separate send, without affecting the duration of the ¢ @self.

Examples of post-conditions in power-grid operation may be

e Load tap changer are components of certain transformetrsliilbav adjustment to voltage
output during load. A post condition could be to verify theveltage level after load tap
changer operations, or even generate a status report ftaorasdected devices and send it

back to the client.

e Transformer protection is a scheme to detect internaldanlt transformer and isolate it
by braking all connected lines if a fault is detected. A paostdition could be to trigger a

transformer protection scheme after all transformer djmars.
3.5 Limitations
Ratatoskr has the following limitations:
o No restarts after failures in client or server are handldds s discussed in section 6.2.4.1
e Security is not adressed in a proper manner. See sectidn 6.2.

e Packet sizes in the 2WoPS protocol are restricted to thermaripacket size of the under-

lying network.

e The prototype design uses many mechanisms specific to Javapas platform dependent.

3.6 Assumptions

Ratatoskr makes the following assumptions:

29

e Applications are not subject to byzantine behavior.

e All NSDUs are delivered within two times their guaranteedkimaum latency or not deliv-

ered.

30

CHAPTER FOUR

DESIGN OF RATATOSKR

This chapter describes aspects of the design of an expeahpeatoype of Ratatoskr implemented
in Java. It is by no means meant as a final version for deploynien rather as a proof-of-

concept implementation, in addition to providing the meafsn evaluation of the fault tolerance
capabilities of Ratatoskr and as a platform for further aesle. The purpose of this chapter is to
give a proper understanding of the processes used in theatieal, and to detail the parts of the

design related to the key contributions of this thesis.

4.1 Design of the 2WoPS Transport Protocol

This section details aspects of the design of the 2WoPS poahBrotocol relevant to the evalua-

tion of Ratatoskr.

4.1.1 Modules

This section describes the main modules of the 2WoPS trainspaiocol. The term module here
designates a purely abstract collection of related behamm necessarily with a mapping to a
single class or package. Some modules are implementedtasf @ardStat, but are described here

as their use is essential for the 2WoPS protocol.

4.1.1.1 2WoPSPeer

The module containing the main interface for the 2WoPS paits the2WoPSPeer . An ap-
plication must instantiate aWHPSPeer and connected it to the GridStat network for 2WoPS
protocol use. Th@WbPSPeer module manages the publisher and subscriber used for commun
cating over the GridStat network, provides the interfageriaiating both sending and receiving
data, and maintains open connections. An application matdmtiate 2V WPSPeer and connect

it to a GridStat status router with a locally uniqgue name tmpunicate over the 2WoPS proto-

col. To receive data, an application registerseavice handlera callback function for incoming

31

connections requests, with a correspondiagvice identifie(a 32-bit integerigt) comparable to

a UDP/TCP port number). The service handler provideseasage handlea callback function
for receiving messages, for incoming connections of the@ated service type. An application
wishing to communicate with a remote application must reja@ew connection to the remote ap-
plication's2WPSPeer by specifying the full name (hierarchy position and locaithjque name)
of the remotWPSPeer , the desired QoS parameters for the connection, a desiradesgype
and a callback for incoming TSDUs. If the connection setwguiscessful, the application receives

a2WPSConnect i on object for sending data.

4.1.1.2 2WoPSConnection

A connection over the 2WoPS protocol is contained 2V@PSConnect i on at each peer. A
2WPSConnect i on connects exactly two end-poidWbPSPeer s and is associated with a pub-
lished variable for sending and a subscription for recgiaheach peer. TSDUs are delivered to
applications using the callback methods provided durimgnegtion setup, and each 2WoPS con-
nection serves only a single service type. Send delay gtemsand spatial redundancy charac-
teristics are specified at connection setup time and remad for the duration of the connection.
2WPSConnect i on provides methods for sending packets, closing the cororeatd verifying
wether the connection is open. A connection at one peer is ibfteknows that the other side has
set up the connection successfully, and if the connectigmbéstarted a closing procedure. Ap-
plication data can only be sent over a connection if it is o@send data, an application specifies
the TSDU to send, the number of retries for ACK/retry redurayaand the level of temporal re-
dundancy. For the prototype, an additional parameter fecifpng the timeout of the ACK/resend
was also included for overcoming delays induced by evalnanvironment timeliness inconsis-
tency. A release version of the protocol must have real-firoperties to accommodate power-grid
operations and the ACK/retry timeout could be derived fromdelay properties of the link. Two

methods for sending are provided; thend method provides controlled-loss semantics and the

32

sendAcked method provides no-loss semantics.

4.1.1.3 Publisher

See section 2.4.1.1. A GridStaubl i sher module is used by the 2WoPS protocol for sending
data. Outgoing connections register a user defined vanaittesubtype2WPS_TYPE, which
allows the publishing of byte arrays. A peer receiving datdhe outgoing connection subscribes
to the published variable. Data is sent by updating the statiable with a TPDU in the form of

a byte-array.

4.1.1.4 2WoPSSubscriptionHolder

See section 2.4.1.2. The subtypeSofbscri pti onHol der for the2WPS_TYPE implements
filtering of duplicate TPDUs, TPDU data validation and a cgeiag system for delivery of TP-
DUs to the 2WoPS transport layer. EaZWOPSConnect i on is associated with an underlying
2WPSSubscri pti onHol der that handles incoming NPDUs for the subscription used for re

ceiving data for that connection.

4.1.2 Sending Process

A diagram of the sending process is found in figure 4.1. Eachesteps are described below.

1. Application calls send oBWPSConnect i on with the TSDU and ACK/resend and tem-
poral redundancy levels as parameter2\bPSConnect i on, the TSDU size is verified
to be below max, a TPDU header is assigned to the TSDU. If the Gavameters dictate
ACK/resends, or if the send type is no-loss, a request for @K #s noted in the TPDU
header. The packet is forwarded2800PSPeer with temporal redundancy and the vari-
ablelD for the status variable used for send by the conneetsoparameters. The sending
thread is blocked until an ACK is received or until a timeootars if an ACK is requested,
else control is returned as soon as all temporally redurgtands are perfomed. The buffer
containing application data is the same for the whole sepdincess for performance rea-

sons. Blocking for sends is done so the application thregasented from editing the

33

buffer contents, and this must also be avoided by other egtpn threads.

2. The TPDU is inserted into a scheduler queue. Sends foopahexctions are scheduled into
the same queue. This is to allow scheduling between commscivhen several connections
are to send at similar times, and to allow a single sendiregthfor the whole system instead
of one per connection. For temporally redundant messagekipia sends for the same
TPDU are scheduled. If TPDUs have temporally redundantsesitt delays between each
redundant send, the scheduler allows for an earliest dess#ind time to be placed on each
send. Packets are sent in order of earliest possible seagiith FIFO access to the quéue
Sending of the TPDU is done by publishing the TPDU byte-aamg GridStat user defined
variable through the publisher kept in tA@bPSPeer .

3. Upon publishing, the publisher transfers the TPDU wragdpea NPDU to its status router.

4. The GridStat network forwards the NPDU to the receivarlssgriber. If spatial redundancy
is used, all NPDUs are copied onto all redundant paths, dvesetalready copied with
temporally redundant sends. That is, if temporal redungldhiee is over a connection
with spatial redundancy two, six copies of each TPDU will leéeered to the remote peer,

assuming no network losses.

5. The subscriber at the receiver reads the vaiablelD of tABW from its header and for-
wards it to the correspondingubscri pti onHol der. For 2WoPS TPDUSs, this is the
2WOPSSubscri pt i onHol der is associated with th2WwbPSConnect i on to which the
TPDU is addressed.

6. The2WwPSSubscri pt i onHol der unwraps the TPDU from the NPDU and verifies data

1This scheduling technique is inadequate for a deploymettieystem, and should take into account delivery
deadline and perhaps connection priority. A simple scheaseahosen as the prototype implementation is inherently
unreliable with respect to timeliness, and so the effectsroaliness from an improved scheduling system would be
of little value. Further, the selection of a proper schedis®utside the scope of this thesis, and left for future work
See section 6.2.1.1.

34

integrity. If the TPDU is redundant to an earlier TPDU it iodped, else it is delivered to
the2WPSConnect i on associated with theWbPSSubscri pt i onHol der for further
processing. Further processing is done in a separate thezadise the subscriber thread is

common to all connections. TSDUs are delivered for furthhecessing by a FIFO queue.

. The TPDU is processed according to its type. If the typ&atks that the TPDU should be
ACKed, the ACK is sent out on the network before other operati(7.1) so as to not extend
the round-trip time. Temporal redundancy parameters toslee tor sending the ACK are
noted in the TPDU header and are the same as for the origindl $ethe TPDU contains
a TSDU, the connection verifies that the TSDU has not beenatelil to the application
before and if so delivers the TSDU and records the deliver3)(7An eventual ACK is re-
turned to the sender before any TSDUs are delivered to thiicappn, so the sending of
the ACK is not delayed by application processing. PM®PSConnect i on executes the
callback method for application message receival in theesnead as is used for processing
of TPDUSs, and cannot process any TPDUs before control isrretls Together with FIFO
scheduling between th2WbPSSubscri pti onHol der and the2WwPSConnect i on,
this guarantees that TSDUs are delivered to the applicatiohe same order they are re-

ceived.
. Spatial redundancy is in effect also for the ACK TPDU.

. When the 2WoPSConnection processes an ACK, the threadahiathe packet is notified.
The thread should wait for an ACK unless it has timed out, Whwould mean the delivery
guarantee is broken. If the thread has timed out and stameskad, the ACK for this send
is still delivered as it still confirms that the TSDU was deligd. If the thread has timed out
and returned to the application, the received ACK is ignoiathen the receiver thread is
awakened, it returns a successful delivery notice to théigtipn. If a no-loss send times

out for all retries, an exception specifying that delivetgtss is uncertain is returned to the

35

application. As controlled-loss receives no ACK on the feghd, an uncertain delivery is
part of its intended behavior and no exception is cast. AIKA€sends are done with a new

TPDU so it is not filtered at theWbPSSubscr i pti onHol der in the receiving peer.

4.2 Design of the RPC Mechanism

The design of the Ratatoskr RPC mechanism centers aroumdilarsarchitecture to the 2WoPS
protocol2WPSPeer and2WPSConnect i on; an application creates a peer object to establish
use of the mechanism, which provides interfaces for both B @r and client tasks. The peer ob-
ject registers as a 2WoPS peer with the GridStat networkeauies itself for communication. An
application can take the role of either client, server ohb@b act as a server, the application regis-
ters Java methods with the peer object, which make theskableaior remote invocation. A client
must first obtain a connection to a Ratatoskr peer with reggstserver methods through the peer
interface, and when a connection is established may penfernote procedure calls through the
connection interface. An application can register as s¢\Ratatoskr peers allowing for multiple
interfaces, and each peer interface may establish senagctions with different QoS parameters

to the same server.
421 Modules

42.1.1 RPCClientSession

A client-side connection to a server for sending RPCs isasgrted by aRPCCl | ent Sessi on.
RPCCl i ent Sessi on provides methods to the applications for sending RPC calldasing
the connection. ArRPCCl i ent Sessi on contains a correspondi®ywPSConnect i on for

sending the RPC callRPCC i ent Sessi ons cannot share the same 2WoPS connection.

4.2.1.2 CallRepository

Cal | Reposi t ory is arepository of calls exposed to remote invocation. ki atsntains behavior

for executing the calls.

36

Sender Receiver
Application Application
A
|
| Transport
|
|
(1) 1 (9 (7.2)
2WoPSConnection 2WoPSConnection
‘ (7.1) :“‘
(2) v
2WoPSPeer 2WoPSPeer
V- o
3 | Network | 6
) 2WoPS e v ©) wops
Subscription Subscription
Holder Holder
GridStat GridStat
Publisher | Publisher |(5)
GridStat GridStat
Subscriber Subscriber

-—% ACK

=P \essage

GridStat
Status Router
Network

@)

Figure 4.1: Sending Process for the 2WoPS Protocol

37

4.2.1.3 RPCPeer

The main interface for Ratatoskr RPC usage isRR€Peer . TheRPCPeer contains and man-
ages the 2WoPSPeer used for communication and receivegathing messages, and provides
methods to the application for opening new sessions andkfmseng local calls for remote invo-

cation.

4.2.2 Use of Reflection and Serialization

Ratatoskr RPC draws extensively on the reflection and s&iain features of the Java language.
Reflection allows observation of the structure of the rugrnogram, and serialization allows
automatic conversion between bytestreams and Java olbjgstsl on class definitions. This is
counter to the interoperability goal of GridStat as a midaiee platform as these features may only
be used in Java environments, but it allows for very simpbkféaxible semantics for prototyping
before defining the requirements of a final, platform indejger implementation.

To register a method for remote invocation, the client mpsicgy the name by which the
method is identified among the remote methods, an object dadadet hod object correspond-
ing to a method implemented by the object. Jaw$ hod object contains an array dfype
objects corresponding to the types of parameters to theade#l parameter types to the method
and the type of the return value are required to be seridézdlhne name given to the method must
be unique within the peer, so no method overloading is aviala

To perform a remote invocation, the client specifies a nardeaararray of serializable objects
corresponding to the arguments to the call. The name andheteses are serialized and sent to the
server. At the server, the name and argument array is désedia The name is matched to the
names of remotely exposed methods, and the argument oygpest are checked to be the same as
the types of the parameters of the call. If the name and argtemeatch, reflection is used to call
the method with the arguments on the object the server atigicregistered with the method. If

the call is successful, the result is serialized back ovemitwork. If an exception is thrown it

38

is wrapped in adppl i cat i onExcept i on which is serialized instead of a result. If a method
with the client-specified name is not found, or if the paran#gtpes of the corresponding method
does not match the types of the arguments provid&greant i csExcept i onis serialized and
returned. When receiving the result TSDU, the client dasiegs the result. The result object’s
class is not specified, and so the client must typecast itrdiaadly. If the result is an exception, it
is thrown to the client.

This dynamic binding approach can be replaced with statidibgs. For example, it would
be possible to implement a program that takes XML interfazsgcdptions as input and generates
wrappers around RPC client and server. The server wrappddwloen create hook objects where
the application designer attached the code to be executddaigomatically register these hooks
with the RPCPeer . The client wrapper would generate an interface with metlemiresponding

to the server calls and typecast the return.

4.2.3 RPC Flow

A diagram of the process of sending an RPC call is outlinedgiaré 4.2. Before the RPC invo-
cation can be initiated, the client must have set up an RPSISeto a server that has registered

methods for remote invocation. Explanations for the paimtse figure are as follows:

1. The application initiates a remote method invocatiom&aRPCCl i ent Sessi on by pro-
viding the method’s remote name, an array of objects cooredipg to the call’'s parameters,
and the QoS parameters for sending the call. The QoS panamettude temporal redun-
dancy and ACK/retry settings and a maximum expected sewrgmuéion time. The name
and arguments of the method, the QoS parameters and a cadrsegnumber is inserted
into a struct representing the call, which is serialized mbytebuffer and sent to the server.
The thread waits on the sequence number using a timeout of wwttimes the maximum
delay guarantee for theWbPSConnect i on (for sending the invocation and the result,

substracting time spent waiting while sending) plus theesegxecution time, thus blocking

39

the application for the duration of the call.

. The RPCClientSession controls a 2WoPSConnection tcetiversover which the serialized
call is sent using the temporal redundancy and ACK/retrampaters specified by the appli-

cation. The thread then waits on the sequence number idsettethe call.

. TheRPCPeer receives all incoming messages. Receiving calls for aflieas at the same
place allows for easy prioritization in the future. As thdl aa TSDU with regards to the

2WOoPS protocol, any ACKs are sent before the call is processe

. The message is deserialized and typecast to the callstneoming calls are placed into a
gueue for asynchronous processing so the receiving thesackturn to the 2WoPS protocol
to receive new messages. A threadpool processes calls fr@gueue. A thread retrieves

the next call to be processed and forwards it to the CallRepgs

. The call retrieves the method corresponding to the calliavokes the call using Java re-

flection.

. The result or any exception is inserted into a struct segareng an RPC result. The struct is

returned to the call processing thread.

. The threadpool thread inserts the call serial number frantall struct into the result struct,
serializes the result struct and sends it back to the clignguhe QoS parameters stored in

the call struct.

. When theRPCPeer receives the result, it wakes the thread waiting on the semusumber

and passes the result as a parameter.

. Ifthe thread is awoken by a result, it unwraps the resililtevand returns it to the application.
If the thread is awoken by a timeout, it throws an exceptioecgping that the execution

status of the call is unknown.

40

Client Server
Application Application
i !
| RPC layer J
l l
! '
(1) 1 (9) v (5)
RPCClientSession CallRepository
A ©) |
' @® \ ta
RPCPeer RPCPeer
4 (7): (3)
(2) 2WOoPS layer

- = ¢ Return

===l RPC calll

GridStat

Status Router
Network

Figure 4.2: RPC Send Process

41

4.2.4 Pre- and Post-conditions

Application designers define pre- and post-conditions alélsses implementing tli@ndi t i on
interface. TheCondi ti on interface implements a single metha&y,al uat e() , that takes no
parameters and returns a voelzal uat e() should only return normally if the condition is satis-
fied. If the condition faileval uat e() should throw &Condi ti onExcept i on. Information
on why the condition failed can be added to the exception,thadipplication programmer can
implement subclasses for additional semantics. For theuprototype, pre- and post-conditions
are simple interfaces: Implementations must be providethbyapplication designer. A recom-
mended strategy for implementing conditions is to give dmdaccess to GridStat subscriptions,
and to use subscribed values in the implementatiavefl uat e() .

When registering a call for exposure to remote invocatibaserver may specify two
Condi ti ons, preCondi ti on andpost Condi ti on, and a delay. The delay allows post-
conditions to execute a duration after the call, to allowdtae of the system to settle before the
condition is evaluated. Pre- and post-conditions regst&rith a remote method are stored in the
Cal | Reposi t ory at the server, together with the call state. T& | Reposi t ory is also
responsible for the verification of the conditions during tall process.

If a call is registered with a precondition, the preconditioust be satisfied before the call
can be executed. If the pre-condition is violatedCandi t i onExcept i on is thrown to the
client application instead of a result. When &l | Reposi t or y receives a call request from
the RPCPeer , it will first check whether the call is registered with a meadition. If so, the
CallRepository will invoke theeval uat e() method of the pre-condition before executing the
call. If eval uat e() returns normally, the call is executed normally, bugvfal uat e() throws
aCondi ti onExcepti on, the call is aborted and the exception is inserted into theltrstruct
returned to the client. The client unwraps the exceptiontarmvs it back to the client application.

The sending process when failing a pre-condition is illatst in figure 4.3.

42

Client
Application

Server
Application

RPC layer

A
i
i
i

RPCClientSession
A

CallRepository

Pre-condtition

|
RPCPeer

RPCPeer

1

2\WoPS layer

GridStat
Status Router
Network

N—_~—"

— - =p Return (ConditionException)

m=fp RPC calll

Figure 4.3: Call Process When Failing Pre-Condition

43

Post-conditions are placed outside the regular call-ghaeeto prevent any delays before con-
dition evaluation to affect the end-to-end delay of the.c@le sending process with a registered
post-condition is illustrated in figure 4.4. The CallReposi checks whether a call has any post-
conditions only after executing the call. If so, the a stremhtaining theCondi t i on module,
addressing information to the client and the sequence nuaoflike call is inserted into a sched-
uler queue using the post-condition delay as the earliest &it which the structure can be re-
trieved from the queue. A pool of threads processes theqmustition structs. After a struct has
been retrieved from the queue, the thread-pool thread tee®theeval uat e() method on the
Condi ti on contained in the struct, and generateSoadi t i onSt r uct using the result. The
Condi ti onStruct isthe result sent back to the client. It contains a variaudécating the state
of the post condition (satisfied or violated), a@gndi t i onExcept i ons thrown, and the se-
guence number of the call. A ConditionStruct is returned madten the result of the expression, so
that the client will receive no post-condition results omyhe cases where no post-conditions are
present or when the post-condition is lost. The pool thresms theCondi ti onSt r uct with
the same level of redundancy used for the call. To obtaingasdtlition results, the client applica-
tion has the option to specify a callback handler for postetion results when it invokes a remote
call. If no such handlers are specified, any post-conditiatise ignored. The handler is associ-
ated with the sequence number of the call. When the RPCPe&ives aCondi ti onStruct,
it looks up the sequence number in the struct against itstexgd handlers, and delivers it if a

handler is present.

44

Client - Server
Application Posrt]'acr?(;}‘;'rt'on Application

RPC layer

——— -

RPCClientSession

*

Post- :
condition CallRepository

vt

RPCPeer RPCPeer

2\WoPS layer

>

GridStat
Status Router

Network

= = $ RPC Return

== RPC call

« « « P> Post-condition return (ConditionStruct)

Figure 4.4: Call Process With Post-Condition

45

CHAPTER FIVE

EVALUATION

Ratatoskr is evaluated with respect to performance in faceetwork faults. The purpose is to
understand the efficiency of the implemented fault toleear@chniques on RPCs over a faulty
network, not to evaluate the performance of the prototypglementation, as a real-time imple-

mentation is outside the scope of this thesis.

5.1 Evaluation Procedure

Evaluations were performed by connecting Ratatoskr chextserver processes to a small Grid-
Stat network and commencing a number of RPC calls from tleaicto the server. To introduce
network faults, event channels between status routersmated through a network link emulator
introducing delay and errors. Links going through the limkutator are referred to ammulated
links. This setup tries to emulate control traffic over a wide aretavork of status routers, where
both the client and server are either connected to theiy-gaint SR by LAN or running as pro-
cesses on the same computer. No delay or loss is induced dnkibetween Ratatoskr peers and
their entry-point SRs. This is based on the expectationaltployment of GridStat will include
a wide deployment of status routers throughout the powdrtgnprovide a high degree of network

redundancy, which makes it likely that sites using RPC atsdain a status router.

5.1.1 Topology

The topology of the evaluation setup is shown in figure 5.1.stE8us routers form two paths
between the client and the server, one of 7 links and one oftés i to allow for the fact that
when using spatial redundancy additional paths may oftdoroger than a single best path. The
current implementation of GridStat does not allow more tfvanredundant paths. Future versions
of GridStat will not have this limitation, which will allowraevaluation of more than two spatially

redundant paths, see 6.2.6. No additional links and statuiens outside the two paths were

46

employed as routing between the same two peers in a statvorie{as the current version of

GridStat is) will result in the same path no matter the errors

5.1.2 Network Fault Model

GridStat uses multiple underlying network technologipsys a wide area, and will sustain several
usage patterns (usage patterns to this point includes estedbstatus updates and bursty RPC
traffic). This makes for very complex behavior and it is diffido provide a good fault model for
GridStat without field testing. For this evaluation, twoltanodels were combined to account for

the rich diversity of potential fault patterns in a GridSdaployment.

e Omission-fault Each link is assigned a uniform probability of droppinglepacket passing
through it. The drop probability is the only variable for th@ission-fault model. Each drop
is completely isolated; no other link or later or earlier lggtcon the same link is affected
by a drop. Omission-fault attempts to model temporally gratially isolated drops in links
where the no retry-upon-failure is attempted below thedpant layer in the protocol stack.
Examples of unifrom drop rate errors are background noiseer short term physical in-
terference in links causing packet data corruption: pasghysical objects in the way of
the beam of a microwave beam, bursts of electromagneti@ rimsn power anomalies in
a substation wired with copper or frequency noise from gadices in a broadband over

power link.

e Duration-fault- Each link is in one of two states: disabled or enabled. kiblied, all packets
passing through the link is dropped. If enabled, the opemadf the link is not affected,
and all packets pass through the link unless omission &sloccur. Links are ordinarily
enabled, except for 1-second periods of disable state. bl@dastate periods occur by a
Poisson process, where the average number of occurrerrcgscpad {) is the only variable
for the duration-fault model. Duration-fault attempts toahel transient failures in network

components. Examples may include: router maintenance, dilts or local power-outs.

a7

,——— ——1
| |
I
Client @ @ . Server

I |
I B e - o _ B l
Q Status Router

Ratatoskr peer

Emulated WAN
link

Socket
connection

Figure 5.1: Evaluation Topology

Such failures may certainly have a duration of well over asdg¢but a one second disable
state duration is enough to notice the effects of duratibaress on communication. It should
be noted that dynamically routed networks quickly will atjgo signals will circumvent
duration faults, even nearly instantaneously [19]. Grad8tes static routing, and so paths
will not be adjusted even if faults are detected. A futur@iBoh for this in GridStat is for the
QoS hierarchy to create new paths around failures, butdhas iexpensive operation when
resource management calculations and communicationttsstauters is taken into concern,
and must be expected to be time consuming. The primary merhdor overcoming longer-

term failures in GridStat is spatial redundancy.

5.2 Evaluation Testbed

5.2.1 Processes

The processes used for testing were:

48

13 GridStat status routers

1 GridStat leaf QoS broker

1 evaluation program implementing a Ratatoskr client geleant)

1 evaluation program implementing a Ratatoskr server (segver)

1 Sun Java CORBA nameserver

1 Java program providing socket tunnels with loss and delaggsties(network link emu-

lator)

5.2.2 Hardware

The evaluation was tested on a single computer, running @3ro 2.13GHz dual-core processor
and 4 gigabytes of RAM. The operating system was Ubuntu lifkexnel 2.6.20-16 compiled
with 1 millisecond kernel tick intervals and full kernel praption. All evaluated programs were
implemented in Java, compiled and run with sun java2SE 6i@erl.6.0.00). All inter-process
communication was done over operating system UDP socketsridStat data traffic and Sun’s
Java 2 Platform CORBA Package for control. All tests werdquared in user mode with regular

process priority and with the graphical operating systeterface turned off.

5.2.3 Garbage Collection Handling

The Java platform used for evaluation does not support@kpkallocation of process memory.
Freeing memory is handled by a garbage collector (gc). Tt garbage collector locks process
execution during deallocation, which affects experimergaults. This behavior was especially
apparent in the client and server processes, mainly dueitdization and deserialization of call
arguments, which expends several kilobytes of memory fohiog. To compensate for this, a
mechanism was implemented to measure the impact of garleigeton and substract this from

call results. The mechanism queries the Java

49

j ava. | ang. managenent . Gar bageCol | ect or MXBean interface for recent garbage col-
lection operations and their durations, and if gc operatioeve occured, substracts the gc opera-
tion duration from the end-to-end duration of the affectalil ®lots of operation with and without
garbage collection compensation can be found in figure 5.ih §érbage collection compensa-
tion, four calls have an end-to-end duration of 25 millisett® or more, against 10 without the

compensation.

5.2.4 Java Virtual Machine Arguments

¢ Client, server and link emulator were run with arguments s266m -Xmx256m, allowing
up to 256 megabytes of process memory before commencinggadollection. No garbage

collection was observed for the link emulator during theleston.

e Status routers were run with -Xms128m -Xmx128m, providi2§ inegabytes of process

memory. No garbage collection in the SRs was observed dthigngvaluation.
IntelliGrid

5.3 Experiment Procedure

e For all experiments, the process running the Ratatoskntcdikso functioned as experiment

coordinator.

For each new experiment session, 10,000 RPC calls were madin up the system, and

then one or more experiments were run sequentially.

An experiment consists of 10,000 RPC calls with data gathizoen each call.

A new Ratatoskr connection was established for each expatimand closed at the end of

the experiment.

All calls were made with an unlimited number of ACK/retries.

50

End-to-end delay, 10,000 calls, no redundancy,
no failure, with gc compensation
60
*
50 .
g
£ 40
>
[
g *
.g 30
QIJ *
g L . L4 .
) . ® s * .
S Y - o o * o .
10
(0]
[0] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Call#
End-to-end delay, 10,000 calls, no redundancy,
no failure, without gc compensation
60
50
g .
£ 40
z . .
] .
o 30 . .
c
;3, 20 * : ’ i s oo
'LCE: . oo : . . . o * *
10
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Call#

Figure 5.2: Comparison of Performance With and Without @gebCollection Compensation

51

e Between calls, all links emulated in the link emulator wasete specifically by setting the
internal clock used for duration failugex (1/\) seconds into the future, in effect ending all

previous disabled states and allowing new ones to arrive.

e Alink delay of 1 millisecond was used unless specified otlh@wn the experiment descrip-

tion.

¢ When temporal redundancy was used, a two millisecond delayden redundant sends was

used.

e For all experiments without spatial redundancy, calls weagle over a 6 emulated link path.
For experiments using spatial redundancy, calls were magleome path of 6 emulated links

and one path of 7 emulated links.

e The timeout for the ACK/retry technique had a base of 25 satlibnds, allowing 12 ms
for transfer delay, 20 ms for garbage collector and 3 ms fd« @émulator and Ratatoskr
overhead. Higher timeouts were assigned by Ratatoskr tsseith temporal or spatial
redundancy due to the wait between redundant sends andttheheyp in the spatial paths.
Specifically, using spatial redundancy added 2 ms to theotitp@nd using temporal redun-

dancy added 2 ms for each redundant send.

5.3.1 Result Data

The following data was extracted from each call:
e Time was measured from when the call was made until the ragited end-to-end delgy

e The number of timeouts experienced was recorded. Thisdeslany timeouts the server
experienced while attempting to send the result. Spedifjahle number of timeouts for a

call is the number of timeouts for the first time of a call tongrat the servenot including

52

timeouts introduced by missed AClasd the number of timeouts for the result to reach the

client the first time, again not including timeouts introdddy missing ACKs.

e Early success rate for experiments is defined as the numlmadlsfwith no retries divided

by the total number of calls.

5.4 Expected Results

While Ratatoskr provides tolerance for network failuresids made with redundant network com-
munication will still fail if all redundant NPDUs fail. WhaRatatoskr provides is a much higher
tolerance for network failures than RPC mechanisms witreldevels of redundancy techniques.
This means that a Ratatoskr RPC call is more likely to suceedfewer timeouts. In the context
of real-time distributed systems, it is highly desirableotwiain a very high probability for calls
to succeed without any retries, in this evaluation refetceds arearly successWhile the exact
number of retries is difficult to predict without extensivata on network fault patterns from a
deployment, this evaluation attempts to establish a manted\faluating the level of redundancy
needed to achieve a desired level of early success rate. #lyseof failure probabilities related
to RPC calls can be found in table 5.4. It should be noted Hegptobability for failing two redun-
dant packets is the square of failing a single packet, antiesefficacy of redundancy increases
with the reliability of the network. For example, if a pathshedrop rate of 10% end-to-end, two
redundant sends over the link will have 1% drop rate, whiles fedundant sends will have 0.01%.
For a link with 1% drop rate, the drop rate with two resends@.% while with four resends it is
0.000001%.

For the purpose of analyzing the results of the experimentli® where error probability is
involved, some simplifications are made. As duration faafipear in 1-second durations with
an average: seconds between, the probability of a link being down on trst fiall attempt is
simplified toA = 1/n). Further, the probability of a link entering a disabledtetafter being

enabled at the beginning of a call is ignored. This is justifirethat experiments operate with a

53

Symbol Description Formula

l #of links in path constant
De Error probability for each link constant
t Temporally redundant sends constant
Psn(l, pe) Probability of successful delivery on a path withp,, (I, p.) = (1 — p.)’

[links and link error probability,., without re-
dundancy measures

pst(t, Psn) Probability of successful delivery on a path withys; (t, psn) = 1 — (1 — ps,)?
temporal redundancy
rt(Psys - Ds,.) | Probability of successfull delivery over | p.i(psy,Psys -y Ps,) =1 — (1 —
redundant paths with success probabilitys,) * (1 — ps,) * ... * (1 — ps,.)
Ps1yPsgy -5 Psy
prrc(Ds) Probability of early success for an RPC call (inprpc(ps) = p?
cluding return) over a connection with success-

ful delivery probabilityp,

Table 5.1: Expected Failure Rates for Redundancy Techsique

relatively highn, and calls are unlikely to span much over a few tens of a ragbsd, and so this
probability is very small. The one case where itis non-rigigle is when a call already experiences
a disable-duration as this may lead the call to having tg ffetra full second, although such cases

must be expected to be extremely rare except for very frdcqaremals of loss durations.

5.5 Experimental Results

5.5.1 Resiliency of Temporal Redundancy

To evaluate the resiliency of the temporal redundancy nreshg a series of experimental runs
was performed with increasing degrees of temporal redwyddn 2, 4 and 8 sends). Each of the
temporal redundancy levels was tested over a set of omissidinrates (1%, 2%, 4% and 8%)
applied to all emulated links. Duration loss was omittedrfrime evaluation, and is addressed in
a later experiment. The results are shown in figure 5.3, wathesponding expected results from
analysis. The experimental results match the analysis cesely. It should be noted that the
omission failure rate cited in the x-axis is per link, andse vverall omission failure rate for the

end-to-end path is higher than the cited number. A compaigahe full end-to-end failure rate

54

for varying link failure rates is found in table 5.2. The etodend loss for a single send (6 links
from client to server) is also included as the return send @ildetemporal redundancy no matter
the number of NPDUs carrying the call that are successfdlivered to the server.

Figure 5.3 shows that two temporally redundant sends arsuffitient to entirely overcome
a 1% loss rate, but with 99.2% early successes against 8®5#tef non-redundant calls it is still
a good improvement. With 4 resends, 99.92% early successeachieved at 4% failure rate.
For 8 resends, 99.92% of calls were early successfull ev8fodbss rate, where the end-to-end
early success rate without reliability was 36.5%. Evenryperiods of intensive network loss,
critical applications where the extra bandwidth for tengbeedundancy can be spared should be
able to perform RPC calls with very few retries, given tha libss patterns accomodate temporal

redundancy.

5.5.2 Resiliency of Spatial Redundancy

The efficiency of spatial redundancy was evaluated in a nrasinglar to temporal redundancy.
Runs were performed with spatial redundancy enabled oweeasingly higher occurrence fre-
guencies of duration faults (1 second failure every 100@0msas, 1s/1000s, 1s/500s, 1s/100s and
1s/50s). It should be noted that 1 second failure per 10060@nsks corresponds to 99.99% avail-
ability per link, and that 1 second failure per 50 secondsasponds to 98% availability, where a
minimum of 99.999% component availability is a common reguient for critical networks. The

fault rates used in the evaluation are lower than for theuataln of temporal redundancy as the

Per link failure rate 6-link end-to-end failure rate 12-link end-to-end failure rate
0.01% 0.06% 0.12%

0.1% 0.599% 1.193%

0.2% 1.194% 2.374%

1% 5.852% 11.362%

2% 11.416% 21.528%

4% 21.724% 38.729%

8% 39.364% 63.233%

Table 5.2: Calculated End to End Loss Compared to per LinlsLos

55

% of early success

Early success rate, temporal redundancy, 10,000 calls

100.00 % -@
20.00% \
80.00 % S
\ \- —— 1x Send
70.00 % N
\ —— 2x Send
60.00 % i

—_

—&— 4x Send
50.00 %
—@— 8x Send
40.00% O 1x Analysis
30.00 % — - — - 2x Analysis
20.00 % — — — ‘4x Analysis
10.00 % — - - — 8x Analysis
0.00 %

1% loss 2% loss 4% loss 8% loss

Figure 5.3: Early Success for Temporal Redundancy overiMa@mission Fault Rates

56

current version of GridStat only supports two redundanhgand as each duration failure results
in consecutive retries until the fault duration expires.

Values for expected results based on analysis are includinidiagram. Again, failure rates
are per link, and end-to-end failure rates are higher. Amedeé of the failure rates can be found
in table 5.2, when simplifying the arrival rates of fault dtions for links as fault percentages
(1s/50s=2%, 1s/100s=1%...). Calls without reliabilityaseres were not included in the test. A
comparison for calls with and without spatial redundanceyifeecond failure every 10000 seconds
is made in a later experiment.

For the experiments, 100% early successes was achievedtfodl§/10000s and 1/1000s fault
rates. As this is for 10,000 calls, this is encouraging astisfes at least a 99.99% end-to-end
reliability requirement. For 1s/500s fault durations, 9896 early success is achieved. This seems
like a high rate, but a single fault duration incurs seveetiies which could be catastrophic for a
real-time system, and so for moderately critical applaragi communicating over networks with
less than 99.9% component availability more than two sipatiedundant paths should be used.
The experment’s results follow the analysis closely extepat 1s/50s fault rate. This could stem
from the analysis simplifying the fault rate to a percentagleich might weaken the analysis for

high fault rates.

5.5.3 Comparison to Traditional RPC

A final experiment was made to compare the performance ofté&kiato a traditional RPC call
without other forms of reliability than ACK/retry, and to a&uate the effect of spatial and tem-
poral redundancy on the failure models used. Here, perfoceaefers to the ability to tolerate
network faults and end-to-end delay over a faulty networkpdtiment runs for no redundancy, 4
temporally redundant sends, spatial redundancy and théioation of the two were performed
over 1% omission fault rate, 1 second fault duration eve§0D0seconds, the combination of the

two and no failures. The early success rates are shown ireflggdr The average duration with

57

% of early success

Early success rate, spatial redundancy, 10,000 calls

100.00 % \g *
100.00 % 100.00 %

0, ~
9950 % ¢ 99.40 %

99.00 % \
98.50 % N
98.00 % \ N —e— Experime

nts
o e Analysis
97.50 % s

97.00 %

¥ 96.97 %
96.50 %
96.00 %
1s/10000s 1s/1000s 1s/500s 1s/100s 1s/50s

Figure 5.4: Early Success for Spatial Redundancy over Wgripuration Faults

58

standard deviation for all redundancy levels with both faubdels combined is shown in figure

5.6. Cumulative distributions of timeouts experiencedbetall success for all redundancy levels
for the combination of fault models is shown in figure 5.7 éntitat the percentage range on the
graphs are different to allow visible details). The highegttimes measured with the combina-
tion of losses are: 939 milliseconds for no redundancy, 9famspatial redundancy, 977 ms for

temporal redundancy and 24 ms for the combination of then@alucy techniques.

From figure 5.5, it is seen that for 1% omission loss, tempedundancy experiences very few
timeouts, but the spatial redundancy does not provide dnl@bility for the fault rate level and
0.81% of the calls experience timeouts. Without any redoogdess than 90% of the calls achieve
early success, which makes for very unstable calltimes.IBE0000s duration fault setting does
not affect the early success rate of any of the redundaneysiéso much, while the combination
of fault models has a pattern very similar to that of 1% onoissailure.

In figure 5.6, the effects of duration loss becomes apparbBsmporal redundancy, which is
ineffective against duration faults, has a considerablghrhigher standard deviation of end-to-
end delays than spatial redundancy. Together with the laly saccess rate, this signifies that
a few calls must retry several times before success is amthi@ven with four redundant sends.
The experiment run with no redundancy follows a similar grattwith high standard deviation
of end-to-end delays, and also the average end-to-end telagher. This is most likely from
the high percentage of calls that timed out. The end-to-ehalydvith both forms of redundancy
retain the same average as spatial and temporal redundarttyith a small standard deviation.
The standard deviation patterns are reflected in figure 5%859% all of the calls made with
temporal redundancy incurred no timeouts, but the diginbuhas a long tail, and 0.05% of the
calls incurred over 10 retries. The highest end-to-endydelaasured for temporal redundancy
was 977 milliseconds, and the highest number of retries Ras'Be cumulative distribution for

spatial redundancy compared to the temporal calls revieatsathile a relatively high number of

59

calls experience timeouts (over 0.8%), only a single cglleelences the highest number of time-
outs, 2, and 91 milliseconds was the highest measured eedetalelay. With both redundancy
techniques, no timeouts were experienced and the highesturezl end-to-end delay was 24 mil-
liseconds. Without redundancy, over 12% of the calls expeed timeouts and the highest number
of timeouts was 25, with the measured end-to-end delay 9B8eaionds. This is a higher number
of timeouts for a shorter measured end-to-end delay cordparte temporal redundancy call, as
the timeout is set higher for temporal redundancy due to tinéiBecond wait between redundant
sends. From this we can conclude that even if a control meésimaover a single-path network
uses a transport protocol with temporal redundancy, it ntikgsperience very high call durations
with longer-term failures in a single component on the p&bmpared to RPC calls without the
redundancy measures found in Ratatoskr, spatial redupdgeatly lowers the worst-case end-to-
end call duration, temporal redundancy improves the aeecaf] duration considerably, and the

combination improves reliability greatly.

60

% of early success

100.00 %

98.00 %

96.00 %

94.00 %

92.00 %

90.00 %

88.00 %

Early success rate, 10,000 packets

—

—— SR off 1x Send
—&— SR on 1x Send
—&— SR off 4x Send
—%— SR on 4x Send

v \

no loss 1% drop 1s/10,000s 1% & 1s/10,000s

Loss parameters

Figure 5.5: Early Success for Varying Redundancy and Loss

61

End-to-end delay in ms

50

40

30

20

10

-10

End-to-end call time, 10,000 calls, 1% omission and
1s/10,000s fault durations

SR off 1x Send SR on 1x Send SR off 4x Send SR on 4x Send

Experiment setup

Figure 5.6: Average Calltimes for Various Redundancy withl Eoss

62

CDF of #timeouts, 10,000 calls, 1% omission and 1s/10,000s fault durations, no CDF of #timeouts, 10,000 calls, 1% omission and 1s/10,000s fault
102% ! 100.05 % - durations, 4x send
100% |
[100.00 %
98% %
96 % -
] « 9995% /
S oy |]
s 5
- -
S 92% € 99.90% -
g g
£ £
& 90y% | 3
99.85%
88%
86%
99.80% -
84% -
82% 99.75%
0 1 23 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of timeouts before success Number of timeouts before success
CDF of #timeouts, 10,000 calls, 1% omission and 1s/10,000s fault durations, CDF of #timeouts, 10,000 calls, 1% omission and 1s/10,000s fault durations, 4x
100.20% - spatial redundancy send & spatial redundancy
100.00 % *
100.00 % | 90.00 %
/ 80.00 %
99.80 %
) / 70.00 % -
H K
M ®
W 99.60% S 60.00 % -
2 k3
M
€ -
g / H 50.00 % -|
o 99.40% g
e / & 40.00 %
99.20% 30.00 %
20.00 %
99.00 %
10.00 %
98.80 % 0.00%
0 1 2 0
Number of timeouts before success Number of timeouts before success

Figure 5.7: Cumulative distributions of number of timeopis call

63

CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Concluding Remarks

Existing power-grid control mechanisms are inflexible pimpatible across vendors, and designed
for highly centralized environments, and cannot providetfee next generation of power grid
communication. While much work is done in using web servames other existing control mech-
anisms, such control mechanisms built directly on top o$taxg network protocols will not over-
come the incompatibility issues with proprietary protecahd may have to compromise safety and
timeliness depending on the underlying network.

This thesis provides the architecture, design and evaluaii Ratatoskr, an extension to the
GridStat status dissemination system with the design apteimentation of a timely and reliable
remote procedure call mechanism running on top of two ong-@adStat subscription paths.
This extension complements GridStat’'s capabilities asddlaware data acquisition system with
the ability to send control messages to power-grid actsator

Ratatoskr is split into two subsystems, a transport protimedwo-way communication over
the GridStat network, the 2WoPS protocol, and an RPC mesheniiilt on top of the 2WoPS pro-
tocol, the Ratatoskr RPC mechanism. The 2WoPS protocdesithe QoS semantics provided by
the GridStat network to offer maximum delivery delay guéeas and spatially redundant network
paths for sends. Further, two additional redundancy tegles are used; temporally redundant
sends and ACK/retires. While the 2WoPS protocol was impleete specifically for the RPC
mechanism, it is also used in another GridStat project thgtagl from the timeliness and reliabil-
ity provided by the protocol. The Ratatoskr RPC mechanisoriges extensive customization of
the redundancy levels for each call, providing a tradedadtcebetween timeliness, use of network

resources, and reliability. Futher, pre- and post conadiitibuilt into the call semantics provides

64

additional safety mechanisms for application designerd caeates a building block for a uniform
middleware safety framework for inter-vendor operations.

The evaluation explores the effectiveness of the redundacbniques in the face of two fault-
models, omission faults with uniform drop probability andrations of total link failure. The
experiments show that both spatial and temporally redun@aends provide a polynomial reduc-
tion in end-to-end fault occurrence rates for omissiontiauwlith a a temporal redundancy of two
providing a square reduction, a temporal redundancy oétpreviding cube reduction and so on.
The spatial redundancy shows a similar pattern with two medat paths providing a square re-
duction, but as the current implementation of GridStat dagssupport more than two redundant
paths, a conclusion on the developments of the pattern watte ppaths could not be established
beyond the mathematical models. Temporally redundantsspraled of little value in the face
of link failure durations, but spatial redundancy providesquare reduction also here. The ex-
perimental results match the expected results from theysisatlosely. A comparison between
Ratatoskr and a simulated traditional RPC mechanism wittesaporal and spatial redundancy,
shows that Ratatoskr profits from the redundancy with a I@verage for end-to-end call times

and a considerably tighter call time distribution.

6.2 Future Work

6.2.1 Long Term Connections

GridStat is designed with a relatively stable network togglin mind, where most data is produced
by permanent, physical devices and consumed in a long ternitonimg fashion. GridStat uses
the stability to trade longer connection setup times fotdsetonnection QoS, and the connection
time is likely to be high and unpredictable. For Ratatodkis tmplies that connections must be
established well ahead of performing delay-sensitivescallhis further implies that many RPC
connections will be long term, and it is likely that permaneonnections will be established as

RPC channels between locations that frequently issueaaummands and field sites.

65

For many such longer term connections, utilization is ikl be relatively infrequent, and
traffic levels relatively bursty. Currently, the routinghmiques used in GridStat are optimized for
rate based traffic. It is undesirable to force bursty RPQitred follow a rate based traffic pattern,
as the rate would either have to be high enough to accommtreéfte bursts, which would waste
bandwidth between bursts, or the RPC call would have to sankigts at a low rate which could
cause delays. The handling of control and router sched@tingursty and rate based traffic in
GridStat requires further research.

No matter the solution chosen for handling bursty traffic nmdGtat, some sort of restrictions
is likely to be placed on the traffic patterns used in Ratatofke RPC mechanism must adhere
to these restraints to avoid packet loss due to traffic paict his will delay sends and thus affect
delivery deadlines. Further work is needed to reflect thectdfon deadlines into call semantics

and syntax.

6.2.1.1 Shared Connection

One strategy that could reduce some of the impact of trafficipg would be to establish a bulk
channel between client and server sites used by severabtpnbcesses issue commands. One
example of this would be several protection schemes in a@aregnter sharing a single RPC con-
nection to a substation, with a single server in the sulmstdtrwarding commands to individual
actuators. Such a bulk channel could reduce the maximumaadtidprovisioned for bursts when
compared to having separate RPC connections for each tpnbaess, based on the expectancy
that it is unlikely that all processes will invoke RPCs at fane time. If such a scheme is used,
some kind of prioritization scheme is required to handlectimses where so many RPCs are invoked

at the same time that the burst bandwidth limitations areesed.

6.2.2 Fault Tolerance Level Calculation

In the prototype implementation, the levels of fault totera for each call must be set by the

application using Ratatoskr. This is cumbersome, as itireguhat the programmer has some

66

knowledge of the network loss properties of the GridStah patthe server. Further, hard-coded
fault-tolerance parameters could become outdated withggsato network topology. Given ab-
stract network loss properties of the path and fault tolegarequirements for the call, Ratatoskr
would be able to periodically calculate the appropriateley redundancy, balance this to the net-
work resource consumption and adjust fault-tolerancerparars. Network loss properties could
be obtained by regular measuring, performed either by Bskaitself or by the GridStat manage-

ment hierarchy.

6.2.3 Extensions to the 2WoPS Protocol

While the 2WoPS protocol was designed especially for use thiie Ratatoskr RPC, there could be
several other uses for two-way traffic over a GridStat depleyt. This section lays out some of

the improvements that could support such other uses.

6.2.3.1 Packet Size

Packet sizes in GridStat are currently limited to the largese supported by the underlying net-
work. Ratatoskr was designed and implemented as a protétypvaluation and experimental
use, and no steps were taken to increase the packet size.cduic affect the usability of the
final version of Ratatoskr, and increased packet sizes i2WaPS protocol could open up new
uses. Larger packet sizes can be achieved by splitting TSDélsseveral TPDUSs, using sequence
numbers to identify the position of each TPDU in the TSDU anffdrsing each TSDU until all
corresponding TPDUs are received at the server. Anothetisnlwould be to implement TSDUs
as streams of data where each section of the stream is imtelgdilivered to the application
given that the previous section of the stream has been detiveefore, but this approach is unde-
sirable for RPC calls because of the mechanism’s messagaed nature and should be provided

as an addition to the existing message service.

67

6.2.3.2 Group Communication
GridStat supports delay-bounded multicast from a singldiglier to multiple subscribers using
spatially redundant paths to each receiver, [14]. This neayded to provide highly reliable group

communication in the 2WoPS protocol.

6.2.4 Extensions to the RPC Mechanism

Ratatoskr was implemented as a prototype for evaluationeapdrimentation, and many of the
features of a final version were omitted to limit the scopehefthesis. This section details some

of these omissions.

6.2.4.1 Peer Failure Handling

GridStat does not take note of failed peers, and the sulbseripaths for such peers will remain
open. This should be remedied by having 2WoPS peers ping &gy share a connection with,
and close a connection if the other peer is registered adféilr a long period. Further, failed
RPC peers that are restarted should be able to re-estabhsiections that were open before the
peer failed. To reuse existing GridStat paths, variablesatdcription IDs must be stored to stable
storage and loaded at restart, together with packet fijetata to retain the at-most once delivery
guarantees. A handshake protocol to establish the nexésegunumber and any undelivered calls
should be used. Further, the server call repository wowe i@ be stored so remote calls would

still be accessible upon reconnection.

6.2.4.2 Replicated actuators

Replication of servers in the client/server model is a commechnique for achieving fault toler-
ance against a variety of failures, including server sydatares. There are several approaches
towards how a service may be replicated and how failuresamdlbd. The two main distinctions
are active replication where calls are carried out by alliceap, and passive replication where a
single server actively carries out calls while replicateters remain passive until a failure in the

master is detected and a passive replica is activated asthenaster. The approaches to these

68

schemes and several hybrid schemes provide a tradeoff spaween performance, flexibility and
communication requirements.

As actuators in the grid are mechanical devices, one redwydapproach might not neces-
sarily fit all applications. For example, if replicating atisformer mechanism as two transformer
actuators in series, active replication would make botisti@amer actuators adjust the voltage, and
the actual voltage adjustment would be twice the intendedheSsort of passive replication would
correctly adjust a single transformer actuator. If refilica set of protective circuit breakers on
the same line, with passive replication the time to detectilare in the master and do a failure
passover to a replica may be too long for protective schearabso active replication might be
the only replication-style that allows for a quick enougbpense. To accommodate a variety of
such situations, replication in Ratatoskr should proveleesal replication techniques. Replication
would gain considerably from the reliable group-commutigcaprovided by GridStat, but the de-
livery guarantees provided may have to be strengthenedeiurResearch must be done into how
to strengthen guarantees while retaining real-time ptegserand which replication schemes are

appropriate for grid operation.

6.2.4.3 Caller replication

There is an increasing trend among electric utilities tougebackup control center facilities for
maintaining operation in the cases where disrupting e\adfést the main control center, [13]. Fu-
ture work might include researching how replication of ealipplications affect the RPC system,
how to synchronize call state, and how to handle failure @assin replicated caller programs

during call execution.

6.2.4.4 Extensions to Pre- and Post-conditions

The pre- and post condition semantics implemented in thiofy@e were designed to serve as a
proof-of-concept for the advantages of designing suchtfonality into the RPC semantics. Sev-

eral extensions are needed to provide the full potentiahe$e safety measures. One extension

69

that would greatly enhance their semantics would be shasatel Isetween the predicate modules,
across pre- and post conditions and across client and senaules. The need for such semantics
and their design is still a matter of future research. Anogx¢ension that would enhance modu-
larity and reusability would be to provide a mechanism foibaaries of conditional expressions,
where each expression contained a map of input variablésprétdefined roles in the expression
that could be connected to specific published GridStat blasaby application designers. An ex-
ample of this would be a pre-condition for determining wieeth transformer will overheat if it
is energized, with a standard input variable for sensoringadf the internal temperature of the
transformer. In addition to enhancing reuse, such libsac@uld provide a standard set of condi-

tional modules that would ensure uniform safety semantiosss vendor and power utility.

6.2.5 Security

The security requirements for Ratatoskr is outside the es@dhis thesis, but it is essential to
provide a high degree of security in a control mechanism usedcritical infrastructure such as
the power-grid, and security measures must be addressetlzefieployment. Ongoing work on
securing GridStat will eventually, among other featuregpdy data-plane communication paths
with integrity and confidentiality. These security meclsams will be administered from the man-
agement plane, and will require that entities accessingéarity management mechanism au-
thenticate themselves with keys pre-loaded by GridStahteaance personnel. While these prop-
erties will greatly help towards securing Ratatoskr, comization-level security will not protect
against misuse from compromised devices with pre-loadgd. kat the very least, some sort of
authentication mechanism should be built into the RPC m@sha Such an authentication mech-
anism could provide group and user policies on access to RRE Eurther, semantics could be
added for differentiating which pre- and post-conditions executed for each call for users or

groups. This would enable utilities to retain emergencyaaots that override safety mechanisms

70

that could interfere with critical operations that go odéshormal usage patterns. Finally, the pro-
totype was designed without considerations for byzantetetior. This must be addressed before
a final version, as at the very least malformed messages neseg number manipulations could

lead to unexpected behavior.

6.2.6 Future Evaluations

The current GridStat implementation is a prototype undestant development. Future versions
will extend current functionality used by Ratatoskr. Theséensions, in addition to access to
new computing resources, would allow a more extensive atialuof the capabilities of the fault-
tolerance techniques used in Ratatoskr. In addition touetizg a wider range of fault model
parameters, an extension to the maximum number of redumpddims$, which currently is limited
to two, would be able to verify the expected results put famtthis thesis. Further, additional
network fault models could be introduced, such as modeling dates on each link as a Markov
chain where the state of the link decides a uniform drop rateés model could represent periods
of interference for wireless links, while using a singletstéor multiple links could represent
common mode failures such as high levels of network trafftnguDDoS attacks on the network

and following congestion in bottleneck links.

71

BIBLIOGRAPHY

[1] S. F. Abelsen. Adaptive gridstat information flow mecisams and management for power
grid contingencies. Master’s thesis, Washington Statevéisity, Pullman, Washington,
USA, August 2007.

[2] D. E. Bakken, C. H. Hauser, H. Gjermundrgd, and A. Bosevards more flexible and robust
data delivery for monitoring and control of the electric owgrid. Technical report, School
of Electrical Engineering and Computer Science, Washm&tate University, 2007.

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajara&,.fStrom, and D. C. Sturman.

[4] A. D. Birrell and B. J. Nelson. Implementing remote prdaee calls.ACM Transactions on
Computer System2:39 59, 1984.

[5] G. F. Coulouris, J. Dollimore, and T. Kindberdpistributed systems: concepts and design,
fourth edition Addison-Wesley Longman Publishing Co., Inc., Boston, NUSA, 2005.

[6] EPRI/CEIDS. The integrated energy and communicaticsiesys architecture, volms i-iv,
July 2004.

[7] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kenee. The many faces of pub-
lish/subscribe ACM Comput. Sury35(2):114-131, 2003.

[8] K. H. Gjermundrgd.Flexible QoS-managed status dissemination middlewaradwaork for
the electric power grid PhD thesis, Washington State University, Pullman, Wagim,
USA, August 2006.

[9] O. M. Group. The common object request broker: Architeetand specification. Technical
report.

[10] O. M. Group. Fault tolerant corba specification v1.0cHAmcal report, Object Management
Group, April 2000.

[11] O. M. Group. Realtime corba specification 1.2. Techinieport, Object Management Group,
January 2005.

[12] C. Hauser, D. E. Bakken, and A. Bose. A failure to comroate: next generation commu-
nication requirements, technologies, and architecturéhf®electric power gridPower and
Energy Magazine, IEER3:47-55, March-April 2005.

[13] T. Heidrick, J. Mossing, and G. Ashfag. Calling for bapk the importance of, and key
design issues for, backup control centers in maintaininggpaystem reliabilityPower and
Energy Magazine, IEER2(1):114-131, 2004.

[14] J. N. Helkey. Low-cost delay-constrained multicast routing heuristesl their evaluation
PhD thesis, Washington State University, Pullman, WagbimdJSA, August 2006.

72

[15] J. N. Helkey. Achieving end-to-end delay bounds in &tmae status dissemination network.
Master's thesis, Washington State University, Pullmanshifagton, USA, May 2007.

[16] G. lannaccone, C.-n. Chuah, R. Mortier, S. Bhattacymrand C. Diot. Analysis of link
failures in an ip backboneProceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurmentpage 237 242, 2002.

[17] IEC. lec 61850 communication networks and systems bs&tions.

[18] S. Iren, P. D. Amer, and P. T. Conrad. The transport laggorial and surveyACM Com-
puting Surveys31(4):360—-404, 1999.

[19] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chu®&roactive vs reactive approaches
to failure resilient routing. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications Societies, IEEE INFOCQINL76 185, 2004.

[20] S. Maffeis. Adding group communication and fault-talece to corba. I€OOTS’95: Pro-
ceedings of the USENIX Conference on Object-Oriented téopies on USENIX Confer-
ence on Object-Oriented Technologies (COQTapes 10-10, Berkeley, CA, USA, 1995.
USENIX Association.

[21] R. Marasli, P. D. Amer, and P. T. Conrad. Retransmissiased partially reliable transport
service: An analytic model. INFOCOM (2) pages 621-629, 1996.

[22] A. D. McKinnon. Supporting fine-grained configurability with multiple gitglof service
properties in middleware for embedded systerRRD thesis, Washington State University,
Pullman, Washington, USA, December 2003.

[23] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. €igtent object replication in the
eternal systemTheor. Pract. Object Sys#(2):81-92, 1998.

[24] T. Nakajima. Dynamic transport protocol selection is@ba system. I©Object-Oriented
Real-Time Distributed Computing, 2000. (ISORC 20@@pes 42 — 51, march 2000.

[25] Y. J. Ren, D. E. Bakken, T. Courtney, M. Cukier, D. A. Kai Rubel, C. Sabnis, W. H.
Sanders, R. E. Schantz, and M. Seri. Aqua: An adaptive axthite that provides dependable
distributed objectslEEE Trans. Comput52(1):31-50, 2003.

[26] D. C. Schmidt and F. Kuhns. An overview of the real-tim@RBA specificationComputer
33(6):56—63, 2000.

[27] D. C. Schmidt, D. Levine, and S. Mungee. The design antbpeance of real-time object
request brokersComputer Communication21(4), 1998.

[28] A. Z. Spector. Performing remote operations efficigoth a local computer networkCom-
mun. ACM 25(4):246—260, 1982.

73

[29] A.S. Tanenbaum and M. Van Stedistributed Systems: Principles and ParadigrRsentice
Hall PTR, Upper Saddle River, NJ, USA, 2001.

[30] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A notedistributed computing. Technical
Report SMLI TR-94-29, Sun Microsystems Labs, November 1994

74

