
ACHIEVING END-TO-END DELAY BOUNDS IN

A REAL-TIME STATUS DISSEMINATION

NETWORK

By

JOEL NORIvIAN HELKEY

A thesis submitted in partial fulfilln1ent of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electricial Engineering and Computer Science

MAY 2007

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of JOEL

NORMAN HELKEY find it satisfactory and recommend that it be accepted.

Chair

//

ii

Acknowledgment

lowe the successful completion of this thesis to the excellent guidance that I have

received from my thesis chair, Dr. Carl Hauser. His encouragement and support have been

invaluable to me throughout this process. I would also like to thank both Dr. David

Bakken and Dr. Murali Medidi for serving 011 my thesis committee.

My research at Washington State University was funded in part by a Research

Assistant position, granted upon my arrival by the School of Electrical Engineering and

Computer Science, for which I am most grateful. I am also very appreciative of the helpful

EECS staff, especially Ruby Young, for guiding me through the many bureaucratic hurdles

I faced on my way to graduation.

I acknowledge all the members of the GridStat research group and especially want

to thank Venkata Irava and Kjell Harald Gjernlundr0d for familiarizing me with the Java

implementation of GridStat. I extend thanks to John Fisler, a friend from my days working

at Lattice Semiconductor Corporation, for his support of this research by sharing his

technical knowledge and engaging in many thought-provoking discussions.

This thesis would not have been possible without the unconditional love and

support from my wife, Arlene. I am grateful for the encouragement of my parents, George

and Carole, my sister Kirsten, my brother Roger and all the members of my extended

family for their wholehearted support. They make my life so much more meaningful, and I

am blessed to have them all in my life.

iii

Publications

Carl H. Hauser, David E. Bakken, Ioanna Diollysioll, K. Harald Gjermundr0d,

Venkata S. Irava, Joel Helkey, and Anjan Bose. "Security, trust and QoS in

next-generation control and communication for large power systems". International

Journal of Critical Infrastructures, to appear 2007.

iv

ACHIEVING END-TO-END DELAY BOUNDS IN

A REAL-TIME STATUS DISSEMINATION

NETWORK

Abstract

by Joel Nor11lan Helkey, M.S.
Washington State University

May 2007

Chair: Carl Hauser

Status dissemination networks are used in many critical infrastructures. Most

notably they can be found ill electric utilities, oil alld gas distribution systems, and water

distribution systems. The GridStat project is a status dissemination middleware

framework that is being developed for the electric power grid. GridStat is an event-based

application framework built on a publisher-subscriber paradigm. It has admission control

for new traffic flows and uses a multicast routing protocol in the routers. When the traffic

travels solely over a dedicated network, GridStat will provide the following Quality of

Service (QoS) properties: reliability and real-time performallce.

This thesis focuses on providing real-time perforlnance, sometimes referred to as

timeliness, for GridStat on a dedicated network. An analysis of current methods in

bounding end-to-end packet delay based on various Guaranteed Rate (GR) scheduling

algorithms is performed, witll the Delay Earliest Due Date (Delay-EDD) algorithm being

proposed as the most appropriate one to be used in this case. GR scheduling algorithms

can give a deadline, or delay guarantee, by which a packet of a flow will be transmitted.

GR scheduling algoritllms also provide a delay guarantee for a flow that is independent of

the behavior of other flows in the network.

v

The result of using dedicated network links, admission control, resource reservation,

and a guaranteed rate scheduling algorithm in the rOllters of a status dissemination

network, is the ability to provide deterministic guarantees on end-to-end packet delay.

Real-time performance for the GridStat framework is thereby achieved.

vi

Table of Contents

Acknowledgment

Publications

Abstract ..

List of Figures

List of Tables

Chapter

1 Introduction

1.1 Motivating Example

1.2 Thesis Contributions

1.3 Thesis Organization ..

2 Background

2.1 Motivation for QoS

2.2 Quality of Service

2.3 Real-time

2.4 Status Dissemination Network .

2.5 Discussion .

vii

Page

iii

iv

v

x

xii

1

2

2

4

5

6

8

11

12

15

3 Related work

3.4.2 Work-Conserving or Non-Work-Conserving .

3.4.3 Work-Conserving Scheduling Algorithms . . .

3.4.4 Non-Work-Conserving Scheduling Algorithms

3.4.5 End-to-End Considerations .

3.1.1 Integrated Services

3.1.2 Differentiated Services

3.2 Asynchronous Transfer Mode

3.3 Statistical Delay Guarantees ..

3.4 Scheduling Based Approaches

3.4.1 Basic Scheduling Algorithms . .

3.1 Internet .

...... 16

16

16

18

19

20

21

23

25

26

32

33

4 Conceptional Structure for Delay Guarantees .

4.1 Selection of a Scheduling Algorithm for GridStat ..

4.2 Admission Control

4.2.1 Request for Subscription

4.2.2 Path Selection. .

4.2.3 Path Evaluation.

4.2.4 Path Establishment . .

4.3 Schedulability Analysis for Delay-EDD

4.4 Delay-EDD Scheduling in the Status Routers ..

. 36

36

39

39

41

41

42

43

44

5 Implementation

5.1 GridStat architecture .

5.2 FIFO Status Router

5.3 Delay EDD Status Router

viii

.......... 45

45

46

48

5.3.1

5.3.2

5.3.3

Deadline assignment

Sorted Queue . . .

Packing of events

49

49

51

.• 536 Experimental Evaluation

6.1 Experimelltal Setup

6.2 Experiments and results

6.2.1 Experilnellt 1 - Reference and load systems without 3ms delay ..

6.2.2 Experimellt 2 - Reference system with 3ms delay, but without load

system .

6~2.3 Experiment 3 - Reference and load systems with 3ms delay ..

6.2.4 Experiment 4 - Local delay at status router i1 ..

6.2.5 Experiment 5 - Add an internal status router

6.3 Conclusions from tIle Experiments .

53

54

55

56

57

59

60

62

7 Conclusion .

7.1 Future Work .

. 64

65

Bibliography 66

A Actual sleep time

B SR i1 local delay bound derivation

ix

. 74

. 76

List of Figures

2.1 Middleware 12

2.2 GridStat architecture . 14

3.1 FIFO scheduling 23

3.2 Priority scheduling 24

3.3 Weighted Fair Queueing scheduling 28

3.4 Delay-EDD scheduling 31

3.5 Hierarchical Round Robin (HRR) scheduling. 33

4.1 Admission control

5.1 Encapsulation into UDP datagralTI

5.2 FIFO Status Router

5.3 Delay EDD Status Router

5.4 ExpectedDeadline class ...

5.5 Override SendHolder methods for correct ordering . .

6.1 Experimental topology

6.2 Experiment 1 Ref system, Delay-EDD and FIFO ..

6.3 Experiment 2 Ref system, Delay-EDD and FIFO.

6.4 Experiment 3 Ref system, Delay-EDD and FIFO.

40

46

47

48

50

51

54

56

57

58

6.5 Experiment 4 Ref system, Delay-EDD and FIFO, local SR i l . 59

6.6 Experimental topology . 60

6.7 Experiment 5 Ref system, Delay-EDD and FIFO, two internal status routers 61

x

A.I Actual sleep times for requested sleep(3) on SR il 74

xi

List of Tables

5.1 GridStat packet . 45

6.1 Experiment 1 Results summary 56

6.2 Experiment 2 Results summary 56

6.3 Experiment 3 Results summary 58

6.4 Experiment 4 Results summary 59

6.5 Experiment 4 Results summary 62

A.1 Actual sleep times for requested 3ms delay

B.1 SR i1 Local delay without 3ms delay ...

xii

75

77

Chapter 1

Introduction

The aim of this thesis is to provide real-time performance for the GridStat

framework, [BBH+02, GDB+03, HBB05]. The fundamental issue in real-time performance

is how to create a mechanislTI within the network that will provide guaranteed packet

end-to-end delay bounds. Bou11ded end-to-end delay for all packets cannot be satisfied by

current networks that only support best effort delivery and use a simple scheduling

algorithm, such as First In First Out (FIFO), in the routers.

GridStat is a middleware framework that provides a status dissemination service for

the electric power grid and is designed to overcome the limitations of the current electric

power grid communicatio11 infrastructure. Unlike many industries where the matching of

supply and demand are not so time dependent, the electric power industry is one where

instantaneously matching supply and demand is critical. Failure in balancing them can

result in a partial or complete shutdown of the grid system, [MA99]. Operators maintain

proper balance by getting grid status information in a timely manner. Therefore, real-time

status dissemination for the electric power grid is a critical component for maintaining

reliable power delivery a11d avoiding blackouts.

Due to the critical nature of status dissemination for the electric power industry, it

is more appropriate to characterize GridStat as requiring hard real-time as opposed to soft

real-time. Hence, a deterministic technique or approach should be used to guarantee

bounded end-to-end delay in GridStat.

1

1.1 Motivating Example

The following is a motivating example for providing end-to-end delay bounds for

grid status information. Consider a electric power substation that is networked to a data

center using T1 lines (1.5 Mbps) for the purpose of delivering status information. At the

substation, it is producing 5 Phasor Measurement Unit (PMU) flows (a flow is a stream of

packets being transmitted from the source) and 50 status variable (Pub) flows. The PMU

flows are producing 5 PMU measurements 60 times per second and the Pub flows are

producing 50 status variables each one time per second.

Further, assume that the PMU measurements are a part of a Special Protection

Scheme, [TBVB05] , used to protect the electric power grid. And each of the packets from

the PMU flows are required to have a maximum end-to-end delay of 10ms.

For the five PMU traffic flows, the packet size is 72 bytes and the interval between

packets is 16.67ms. For the 50 Pllb traffic flows, packet size is 50 bytes and the interval

between packets is 1000ms. In a worst case situation, over a network of routers using FIFO

scheduling, a PMU measurement could be delayed by as much as 15.6ms. This would

exceed the required maximum end-to-end delay by 5.6ms.

Now change the schedulillg algorithm in the routers from FIFO to one where the

scheduling is based on packet deadlines. Upon arrival at the router, each packet gets

stamped with a deadline and is gllaranteed to be sellt on the outgoing link before the

deadline expires. Under these conditions, all five PMU measurements could be scheduled to

meet alms deadline.

1.2 Thesis Contributions

The aim of this thesis is to provide real-time performance for GridStat. Providing

real-time performance for a large scale status dissemillation network is challenging. First of

2

all, if there was a need to exclusively use the Internet which has no limits on traffic

admission, it would not be possible to provide deterministic bounded delay guarantees.

However, by utilizing a dedicated network, appropriate scheduling, and traffic admission

control in the GridStat framework, the problem becomes amenable to a workable solution.

Under these constraints, for networks that employ scheduling algorithms belonging to the

class of algorithms known as Guaranteed Rate (GR), [GLV97], it is possible to determine

an upper bound on end-to-end delay.

To obtain delay guarantees, [GLV97], the routers on the path reserve a rate for a

flow of packets and use a rate-based scheduling algorithm. Based on the rate reservation,

many scheduling algorithms can guarantee a deadline, or delay guarantee, by which a

packet of a flow will be sent on the outgoing link. The class of rate-based scheduling

algorithms that provide such delay guarantees is known as Guaranteed Rate (GR)

scheduling algorithms. GR scheduling algorithllls also provide a delay guarantee for a flow

that is independent of the behavior of other flows in the network.

The primary contributions of this thesis are:

• An explanation of why FIFO or Priority scheduling algorithms are not sufficient to

provide bounded end-to-end delay in a large scale status dissemination network.

• The identification and analysis of existing guaranteed rate scheduling algorithms.

Selection of Delay-Earliest Due Date (Delay-EDD) as the most appropriate

guaranteed rate scheduling algorithm for GridStat.

• A basic conceptional structure for boullded end-to-end delay within GridStat is

outlined. It is a comprehensive solution and includes the necessary elements of

dedicated network, admission control, resource reservation, and guaranteed rate

scheduling algorithm (Delay-EDD) in the routers.

• The implementation of the Delay-EDD scheduling algorithm in a GridStat prototype.

3

Included is a detailed explanation of how the status rOllter java code was changed

from FIFO to Delay-EDD.

• Experimental evaluation of Delay-EDD as implemented in GridStat. The results

demonstate that a Delay-EDD router can deliver bounded end-to-end delay in cases

where a FIFO router cannot.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 explains the background

necessary to understand scheduling algorithms. A review of the related research for delay

guarantees is presented in chapter 3. Chapter 4 covers a conceptional structure for delay

guarantees in GridStat. Chapter 5 introduces a guaranteed rate scheduling algorithm

(Delay-EDD) implemented in the GridStat status routers. The experimental evaluation

and analysis of results are presented in chapter 6. The thesis ends with a conclusion and

presentation of potential future work in chapter 7.

4

Chapter 2

Background

This chapter explains the concepts of Quality of Service (QoS) and Real-Time. It

presents a specific Status Dissemillation Network called GridStat, the middleware

framework used for the experiments conducted in this thesis. Then it is shown how an

event or message travels from source to destination within this framework. The last section

of this chapter discusses what level of service applies to GridStat.

Throughout this thesis Internet Protocol networking and packet-switching is

assumed, with traffic being statically routed over a Wide Area Network. A Wide Area

Network (WAN) is a data commUllications network that covers a relatively broad

geographic area, up to worldwide locations. In contrast to a local area network, a WAN is

not contained within a limited geographical location. A WAN could be assembled from

transmission lilles leased from a commercial telecommunication carrier or assembled from

dedicated transmission lines constructed by the organization itself.

The unit of data transmission at the network level is the packet. The sequence of

packets transmitted by a source is refered to as a flow. Networks consist of two

components: transmission lines (links) and switching elements (nodes). Thansmission lines

transfer a stream of packets from one end of the line to the other at a certain rate and with

a fixed propagation time. Typical media used for transmission lines are copper coaxial

cable, fiber optic, and microwave or radio wireless links.

Switching elemellts are specialized computers that connect transmission lines. The

functions performed by switches are to multiplex and demultiplex packets belonging to

different computer to computer flows, and to determine the link(s) along which to forward

5

any given packet. This task is essential because a given transmission line will usually be

shared by several concurrent sessions between different computers. These switching

elements have had different names in the past, but now router is most commonly used.

Packet-switching is the basis for the Internet Protocol (IP). Since there are many

possible paths through the network providing connections for many computers,

packet-switching networks provide any computer to any computer connections. IP solves

the problem of connecting different networks together and packet-switching improves link

utilization and network throughput.

In packet-switching, the packets are sent, to the nearest router, which looks up the

destination address and forwards it to the next hop. This process is repeated until the

packet reaches its destination. This forwarding mechanism is called store-and-forward

because IP packets are completely received and stored in the router while being processed,

and then transmitted. Also, packets may need to be buffered in a queue at the router while

waiting for an outgoing link.

2.1 Motivation for QoS

Local and wide area computer communication networks are now ordinarily

packet-switched networks, replacing the earlier telephone-based circuit-switched networks.

In circuit-switched networks, a dedicated path known as a circuit is established

between the communication end points and resources needed along this path (for example

buffers and bandwidth) are reserved for the entire duration of the communication session.

The network is responsible for allocating sufficient resources to allow the sender to transmit

data as a continuous data flow, only limited by its peak transmission rate. The Public

Switched Telephone Network (PSTN) is an example of a circuit-switched network.

Circuit-switching is not very efficiellt because the dedicated circuits are idle during

6

times when the sender and receiver are not exchanging any messages. This results in poor

utilization of the link bandwidths.

To address t11is problem, packet-switched 11etworks were introduced as an alternative

to circuit-switching. This technique allows packets from different sources to share the links

resulting in a more efficient utilization of the link capacities. However, as a consequence of

using a packet-switched network and finite buffer space, a new way of dropping packets is

introduced. If one of the links is congested because multiple packets need to be transmitted

over the same link at the same time, the11 one of the packets is chosen for transmission and

the rest have to be stored in a buffer. As a result, buffering is required to absorb traffic

bursts and prevent possible packet losses due to limited buffer space.

There are basically two motivations for implementing QoS capability in a network.

The most obvious motivator is that different applications require different service from the

network in order to function properly. Many data oriented applications can live with best

effort networking, no QoS other than almost reliable delivery. On the other hand, real time

applications such as VoIP or video-conferencing generally have QoS requirements. For

example, to support an application that carries voice traffic as a 64 Kbps stream, the

network must provide a minimum of 64 Kbps bandwidth on the path from end-to-end. In

addition, VoIP typically requires 200 ms or less one way delay. Consequently, this

application and others of its kind, demand a guarantee of some minimum level of service

from the network.

Another motivation behind enabling QoS guarantees is to achieve service

differentiation for different flows belonging to different users of the network. This second

motivator is an economic one: if an ISP, for example, is able to provide quality of service

differentiation, it can charge tl1e customers differently depending on what level of service

they are willing to pay for. On the Internet, traffic may consist of real-time traffic for

applications such as VoIP or multimedia. A second class of service may be for applications

7

such as transaction processing that require reliable data delivery. Another class of service

to be carried on the network is best-effort traffic froin applications SUCll as file transfer and

e-mail.

Different applications have varying traffic characteristics with different requirements,

and rely on the ability of the network to provide QoS guarantees with respect to several

measures, such as throughput, packet loss, delay, and jitter. However, network resources

such as link bandwidth and buffers are shared by multiple users or services, some or all of

which may try to access a resource silnuitaneously. Resource contention arises because of

this sharing. A QoS mechanism is needed to efficiently allocate and manage limited

network resources among competing users.

2.2 Quality of Service

QoS refers to network performance measures for a flow (stream of packets from a

source to a destination) such as throughput, packet loss, delay, and jitter, as seen by users

and applications. Throughput is effective data transfer rate and is measured in bits per

second. Packet loss is the percentage of packets lost or dropped in the network over a given

time period. Delay (or latency) is the time taken by the data packet to travel from source

to destination, typically measured in seconds. And finally, jitter is the variation in the

packet arrival times at the destinatioll, measured in seconds.

QoS is a measure of how quickly and reliably the network does its job of delivering

data from source to destination. In simpler terms, QoS could be thought of as providing a

predictable data delivery service, [Puz02].

The end-to-end delay for a packet is the sUlnmation of transmission, processing and

queuing delays in routers; propagation delays in the links; and end-system processing

delays along a path from source to destination, [KR05].

8

The processing delay is the time required to examine the packet header and assign

the packet to an outgoing link queue. For example, the processing delay in a router could

include timestamping a packet upon arrival, calculatillg the deadline to attach to the

packet, and then placing the packet in the right place in a sorted queue.

The queuing delay is the time from whell the packet is assigned to a queue for

transmission and the time it starts getting transmitted onto the link. The length of the

queue will depend on the number of packets that have already arrived and are waiting for

transmission across the link. If the queue is empty, then the queuing delay will be zero.

However, if there are many packets already ill the queue, then the queuing delay could be

relatively long.

The transmission delay is the amount of time required to transmit all of the

packet's bits into the link. DelaYtrans == ~, where L is the length of the packet in bits and

R is the transmission rate of the link ill bits per second.

The propagation delay is the amount of time it takes for a bit to travel on the link.

The bit propagates at the propagation speed of the link, which depends on the physical

medium of the link (for example, fiber optics, copper wire, etc.). DelaYprop == ~, where d is

the length of the physical link and s is the propagatioll speed in the medium. For example,

with copper wire as the medium, s ~ 2.3 X 108 meters/sec.

Depending on the application, QoS needs can vary and different levels of service

could be required. While best effort can work at times, video and audio are examples of

applications that typically need QoS guarantees. Delay and jitter must be upper-bounded

to ensure real-time delivery. In general, the QoS guarantee required for an application

could be best effort, deterministic, or statistical.

A best effort level of service is basic service without explicit QoS guarantees. This

level of service is best characterized by a network of routers with FIFO queues, which have

no differentiation between flows.

9

Deterministic QoS guarantees provide each packet on the traffic flow with an

absolute guarantee on the worst-case end to elld delay and are based on a worst case

analysis of the network delays at each router on the path. One approach uses what is

called network calculus, [Cru91a, Cru91b], for characterizing the data flow through

packet-switching networks. By analyzing the potential burstiness of traffic flows, network

calculus identifies the possible worst case packet delay queuing up at various points in a

network. This was an important work in the field because prior mathematical analyses of

queuing delays were mostly limited to statistical approaches that addressed only a single

queue.

In their paper "Determining End-to-End Delay Bounds in Heterogeneous

Networks" , Goyal et aI., [GLV97], have extended the work of Cruz. They define a class of

Guaranteed Rate (GR) scheduling algorithms and use it to determine an upper bound on

end-to-end delay for a variety of sources. They observe that the end-to-end delay of a

packet depends on the source traffic characteristics and the scheduling algorithm at the

network routers or switches.

Statistical QoS guarantees allow a fraction of tIle traffic to violate QoS

specifications. A statistical delay bound is defined as, [Fer90]:

where D i is the delay with which the i-th packet sent by the source is delivered to the

destination and Dmax is the upper bounded delay as specified by the source at admission

time and Zmin is the lower bound of the probability for successful and timely packet

delivery. Lack of a measurement time interval specification is the main problem with this

equation. No matter how many packets on a flow have been delayed beyond their bound, it

is always possible for the router to correct the situation in the future and meet the given

10

statistical requirements. A possibly more verifiable definition for a statistical bound would

be a fractional one. For example, a statistical bound could be specified as follows: out of

any 100 consecutive packets on the flow, no less than 97 will be on time.

While the statistical approach is not explored in this thesis, it is not completely out

of the question for use in a Status Dissemination Network in the general case. It just

depends on how critical timely delivery is for the application of interest. For an application

that can tolerate a fraction of lost or delayed packets, this can be a reasonable alternative

to the deterministic approach because it can lead to a higher utilization of the network

links. Unfortunately, the statistical approach opens up the possibility of important

messages being delayed to the point where they miss their deadline or are dropped due to a

buffer overflow.

2.3 Real-time

A real-time system is a system where the correctness of the system depends not only

upon the logical result of the computation, but also on the time at which the results are

produced, [Mok83, Sta88]. This dependence on times is frequently inherent in the problem.

An example is a system for updating an airplane cockpit display, where the system is only

correct if the displayed values are less than one hundred milliseconds old.

It is common to classify real-time systems into hard or soft real-time systems. Hard

real-time systems are those in which any failure to satisfy a timing constraint by any

amount is considered a system failure. An example of a hard real-time system might be the

flight software of a spacecraft. Firing a motor even a millisecond late could result in failure

to achieve orbit on a long space voyage.

Soft real-time systems are those where satisfying timing constraints are important,

but the system will still function correctly if missed deadlines only lead to less throughput

11

or an acceptable reduced QoS. An example of a soft real-time system is a multimedia

application in which there is a relatively high tolerance for missing deadlines related to the

transferring of sound or video. Such failures might result in temporary degradation of

quality, but the presentation itself remains largely intact. Users of such an application are

often willing to tolerate a few dropped sound bites or video frames, as long as the glitches

occur rarely and are of relatively short lengths of time.

2.4 Status Dissemination Network

GridStat, [BBH+02, GDB+03, HBB05], is a status dissemillation middleware

framework that is being developed for the electric power grid. It is an event-based

application framework built on publisher-subscriber communication, [OPSS93], which is a

variant of a generative communication model, [CG89]. Middleware, see figure 2.1, are the

services layered between the applications and an operating system that provide specialized

services and interoperability between distributed applications.

APls

Middleware
(distributed system services)

I
Platform interface

Platfonn

Operating System
Hardware

I

Platform interface

Platfonn

Operating System
Hardware

Figure 2.1: Middleware

12

Applications that communicate through a publisher-subscriber paradigm require the

sending applications, or publishers, to publisl1 messages without specifying recipients or

having knowledge of the intended recipients. In a similar fashion, receiving applications, or

subscribers, receive only those messages that the subscriber has registered for. This

anonymous behavior provides a loosely coupled communication model between distributed

applications.

In the publisher-subscriber communication scheme, applications can either be

publishers, subscribers or both. The publisher and subscriber interaction is handled by the

GridStat middleware, which acts as a forwarding agent to disseminate the events to the

subscribers. The publishers and subscribers do not need to know each other, or need to

actively participate in the interaction at the same time and neither entity is blocked while

producing or consuming events.

The GridSt architecture, see figure 2.2, has two planes: a data plane and a

management plane. The data pla11e consists of clouds of status routers and the

management plane consists of a hierarchy of QoS brokers. The function of the data plane is

to forward status events from the publishers to the subscribers. The function of the

management plane is to manage resources in the data plane in order to provide QoS

guarantees to admitted traffic flows.

Entities in GridStat include status variables, status events, publishers, subscribers,

status routers edge status routers, and QoS brokers. A status variable represents some

physical quantity (current, voltage, etc.) or state (breaker position open/closed, generator

on/off, etc.) Each periodic measurement of the status variable is called a status event.

Status events are placed into event messages, or GridStat packets, at a given rate and flow

through the communication illfrastructure from publishers to subscribers.

Publishers are the sources of status events and subscribers are the destinations of

status events in the publisher-subscriber comlTIunication scheme. Status routers make up

13

MANA EMENT PLANE

111\•...... '

Publisher •Subscriber

......... _--_ .. -

•Subscriber •Subscriber

Figure 2.2: GridStat architecture, [Gje06]

the communication infrastructure and are connected to each other through point-to-point

or overlay links. They serve as smart rOllters that store and forward status events, perform

rate filtering (on the basis of timestamps contained in the packets), and support multicast

routing. Edge status routers are just like status routers, but differ in that publishers and

subscribers can only directly connect to edge status routers.

QoS brokers manage the operation of the data plane by making admission control,

path establishment, and fault tolerance decisions. The lowest level QoS brokers are called

leaf QoS brokers. Each leaf QoS broker manages one cloud, maintains the current state of

the cloud network topology and available network resources.

14

2.5 Discussion

The aim of this research is to provide the appropriate level of QoS performance for

the GridStat framework. It is clear that status dissemination for the electric power grid is

a critical component for maintaining reliable power delivery and avoiding blackouts. It is

consequently appropriate to classify GridStat as a hard real-time application due to the

nature of what could happen in the event of failure to deliver status information by their

time constraints.

An analysis by Hauser, et al., [HBD+07], determines that the fundamental

requirements for the performance of the control center are:

1. Control center displays for operators must accurately reflect the current system state

so that all control decisions made by the operators are appropriate.

2. Substatioll equipment must carry out legitimate commands only, within specified

time delays.

The implications of this analysis are that GridStat should be designed to support

delay requirements ranging from a few tens of milliseconds for automated dynamic

stabilization applications to a few seconds for conventional control center applications.

As a result, the approach presented in the remainder of this thesis is that GridStat

should have a deterministic level of service due to the fact that it is best characterized as a

hard real-time application. Fortunately, in GridStat admission of all flows allowed onto the

network can be controlled and the scheduling algorithm used at the routers can be defined.

Hence, we can determine if a flow will satisfy its Quality of Service delay requirement prior

to network admission.

15

Chapter 3

Related work

The bulk of the related work has focused on providing QoS for the Internet.

However these efforts have been less than successful mainly because the Internet was not

originally designed to support QoS and is best-effort in nature.

3.1 Internet

The two highest profile efforts are IntServ and DiffServ resulting from

standardization work within the Internet Engineering Task Force (IETF). The IETF

divides the issue of providing QoS on the Internet into two areas: integrated and

differentiated service.

3.1.1 Integrated Services

Integrated Services (IntServ), [BCS94], is a reservation based scheme intended to

transform the Internet into all integrated-service communications infrastructure capable of

supporting the transport of audio, video, real-time, and best-effort data traffic. The

application frames its request within the Resource Reservation Protocol (RSVP), [Wro97b],

and then passes this request to the network. Each router in the flow's path then performs

an admission control test to determine if there are sufficient resources to meet the

requested service without affecting the existing flows. The flow is only admitted if all the

routers along the path have sufficient resources to meet the flow's requirements. That being

the case, these resources are reserved for the life of the application or until renegotiated.

In addition to best-effort service, IntServ defines two other classes of service,

16

Guaranteed Service and Predictive Service. The Guaranteed Service, [SPG97], provides a

perfectly reliable upper bound on delay to support real-time applications. The Predictive

Service, [Wro97a], supplies a fairly reliable, but not perfectly reliable, delay bound to

applications that can tolerate some late packets.

The RSVP/Intserv approach suffers from some major problems identified by Y.

Bernet et aI., in RFC 2998, [BFY+OO]:

1. The use of per-flow state and per-flow processing raises the possibility of scalability

concerns for extremely large networks like the Internet.

2. Deployment in the routers must be widespread. For this scheme to be capable of

producing the desired result from end-to-end, every router on each path to be used,

must implement RSVP, admission control, classification and packet scheduling.

3. Deployment in applications must also be widespread. Each application that requires

guaranteed service must make a reservation. Currently only a small number of

applications have the ability to generate RSVP signaling. While that number could

grow in the future, it is expected that many applications may never generate RSVP

signaling.

Christin and Liebeherr, [CL02], contend that due to the unresolved issues regarding

its scalability for large networks like the Internet, IntServ has not gained wide acceptance.

In spite of these problems, at a high level the IntServ framework describes very closely

what is needed to provide GridStat with real-time performance guarantees. The Intserv

framework describes four components: the packet scheduler, the admission control routine,

the classifier, and the resource reservation setup protocol.

The classifier idea from IntServ cannot be used in GridStat. At every IntServ

router, each incoming packet gets mapped illto a class. A class might correspond to a

broad category of flows or a class Inight hold only a single flow. Then all packets in the

17

same class get the same treatment from the packet scheduler. This is a priority based

scheduling algorithm and cannot work to obtain delay guarantees for all packets in the

Guaranteed Service level of service, as will be shown in section 3.4.1 of this chapter, if all

packets in a class get the same treatment from the packet scheduler.

The component descriptive names that are capable of being transferred from the

IntServ framework to GridStat are resource reservation, admission control, and packet

scheduling. It should be noted that just the ideas of what needs to be done at a high level

is transferred, not the actual IntServ components. To provide GridStat traffic flows with

delay guarantees, the functions these three components provide will have to be

implemented in the appropriate GridStat network elements.

3.1.2 Differentiated Services

Differentiated Services (DiffServ), [BBC+98], is a prioritization based approach to

QoS on the Internet. DiffServ aims to provide QoS to a customer based on the customers

aggregated traffic. The customer and provider negotiate a quantitative agreement (for

example, 200 kbps, 10 kb burst) or qualitative agreeme11t (for example, traffic treated as

higher priority than normal traffic) for service and the provider provisions their network to

offer such service. Each packet gets marked with a code to indicate the desired level of

service.

Obviously, with this approach, the customer or application user is left with the

responsibility of ensuring multiple applications originating from their network do not

interfere because traffic characteristics are exceeding their specifications. DiffServ does not

solve the QoS for Internet problem; it merely pushes the problem of managing

time-sensitive traffic onto the user, where it still must be resolved.

18

3.2 Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) is a connection-oriented approach to

networking that uses a circuit switching design to guarantee QoS to constant bit rate and

variable bit rate traffic flows. ATM attempts to combine the advantages of both circuit and

packet switched techniques. Circuit switched networks offer guaranteed delivery and packet

switched networks provide improved link utilization.

In ATM, a connection is known as a virtual circuit. Each virtual circuit is identified

by a Virtual Circuit Identifier (VCI). A group of virtual circuits form a virtual path

identified by a Virtual Path Identifier (VPI). Data is trallsmitted in fixed size cells that

consist of a 48 byte payload and a 5 byte header. The header contains the VPI and VCI

values of the connection on which the cell is sent.

When a request is made in ATM to establish a connection, a set of minimum

acceptable QoS parameters is also specified. Typical parameters are cell rate, cell loss

ratio, cell transfer delay, and cell delay variation. A connection is established only if the

network can guarantee the requested QOS parameters.

Network Express (NetEx), [SLDZ97], is a communication software package,

developed by the Real-Time Systems Group in the Department of Computer Science at

Texas A&M University, that can provide connection-oriented delay guaranteed

communication services at application level. With NetEx, user applications request a

connection set-up by specifying their traffic, using some standard traffic descriptors, and

Quality of Service. NetEx runs a connection admission control algorithm to check if the

connection can be accepted. NetEx also has run-time traffic control to monitor for

misbehaving traffic flows.

The OIlly Quality of Service property that NetEx is setup to provide is end-to-end

delay bound. In their paper, the only performance metric they test for is admission

19

probability. They report findings on the relationship between admission probability and

the number of connections generated per host. Therefore, it is impossible to measure

precisely what NetEx can achieve in QoS performance.

While NetEx provides a service that is similiar to what is needed for GridStat, it is

not an exact match for several reasons. Most importantly, NetEx does not support a

multicast routing protocol. Also, Asynchronous Transfer Mode (ATM) is used in NetEx,

whereas the current GridStat prototype uses User Datagram Protocol (UDP) packets over

Internet Protocol (IP). And finally, NetEx has an internal route generation that finds one

shortest path and each GridStat traffic flow each runs on two disjoint paths from source to

destination with route found by shortest delay on the path.

3.3 Statistical Delay Guarantees

Considerable research has been done in the area of providing statistical delay

guarantees. In this approach, the delay bounds are statistically guaranteed, in other words

they are guaranteed with a reasonably high probability. This is expected to allow the links

to operate at a higher utilization than if deterministically guaranteed QoS was used and

still meet the QoS requirements for most of the traffic. However, the use of statistical delay

guarantees has the obvious disadvantage of allowing a small fraction of the traffic to violate

its QoS specifications. This is the reason GridStat does not use the statistical delay

guarantees approach. GridStat is best characterized as a hard real-time application and

cannot tolerate even a small fraction of its traffic to violate its QoS specifications.

Kurose, [Kur92], derived probabilistic bounds on delay and buffer occupancy of

flows using the concept of stochastic ordering for network nodes that use FIFO scheduling.

Reisslein et aI., [RRR98, RRR99, RRR02], have derived statistical delay bounds for traffic

flows in single node and multiple node settings. They approximate the loss probability at a

20

link using independent Bernoulli random variables, with a fluid traffic model as opposed to

a packetized model.

Elwalid and Mitra, [EM99], have developed a framework for Generalized Processor

Sharing (GPS) scheduling which is based on statistical QoS guarantees and statistical

multiplexing, using a fluid traffic model. The problem with GPS scheduling is that it is

designed to allocate a fair share of the bandwidth to each flow source on a bit by bit basis

and at the network level the smallest unit is a packet, not a bit.

Schemes for providing statistical QoS in networks using EDF scheduling were

proposed by Sivaraman and Chiussi, [SC99], and Andrews, [AndOO]. And finally, Liebeherr

et aI., [LPY01], have proposed two network designs for statistical end-to-end delay

guarantees, referred to as class-level aggregation and pat11-level aggregation.

3.4 Scheduling Based Approaches

The choice of a scheduling algorithm (or service discipline) is a critical decision

when designing a real-time packet-switched network. The scheduling algorithm used in the

router defines the order in which arriving packets gain access to the shared output link.

Although packet scheduling is closely related to queuing theory, it is distinguished by the

goal of minimizing worst case rather than average case delay within a real-time

deterministic packet-switched network.

The First In First Out (FIFO), [DKSS9], and Priority based, [Zha95], scheduling

algorithms are simple and easy to implement, but in the presence of congestion at the

routers unprotected flows can suffer starvation resulting in late packets or dropped packets

due to finite buffer space. Many scheduling disciplines have been proposed recently that

provide protection to well behaving flows and bound maximum delay, including Virtual

Clock, [Zha90], Fair Queuing, [DKS89], along with Weighted Fair Queuing also called

21

Packetized Generalized Processor Sharing, [PG92, PG93], Worst-case Fair Weighted Fair

Queuing, [BZ96], Self-Clocked Fair Queuing, [Go194], Delay-Earliest Due Date,

[FV90, KSF91, ZS94] , Jitter-Earliest Due Date, [VZF91], Stop and Go, [Go190], and

Hierarchical Round Robin, [KKK90]. A comparison of several disciplines is given in,

[ZK91, Zha95, ZK96].

To design new scheduling algorithms and to compare the existing ones with each

other, it is helpful to define what are the desirable properties of a scheduling algorithm. In

[Zha95]' Zhang says for all scheduling disciplines, it is desirable that they are flexible and

simple:

• Flexibility: The scheduling algorithm should be able to accommodate applications

with varying traffic characteristics and performance requirements.

• Simplicity: The scheduling algorithm should be simple both conceptually and

mechanically. Conceptual simplicity enables tractable analysis of the scheduling

algorithm such that distributions or worst case bounds for performance parameters,

such as delay, can be derived. Mechanical simplicity is desired to allow efficient

implementation of the scheduling algorithm at high speed.

When Quality of Service performance guarantees in the 11etwork are needed, such as

bounded delay, the following two scheduling algorithm properties are desirable:

• Protection: The scheduling algorithm should be able to protect the well behaving

flows from different sources of variability, such as ill behaving flows and network load

fluctuations. III behaving flows refer to flows that send more packets than their traffic

profile allows. Network load fluctuations are caused by traffic bursts at a router.

These bursts may happen even if the users meet their traffic constraints at the

entrance of the network. Ideally the scheduling algorithm should be able to satisfy

22

the performance requiremeI1ts of all well behaving users even in the presence of these

factors .

• Efficiency: A scheduling algorithm is ll10re efficient than another one if it can meet

the same end-to-end QoS performaI1ce guarantees under a heavier traffic load. To

provide a meaningful comparison between scheduling algorithms, the concept of a

schedulable region was formulated in [HLP91]. The schedulable region contains all

possible combinations of flows that can be accepted onto the network without

violating the end-to-end QoS performance guarantee of any other flow. A scheduling

algorithm is more efficient than another if it has a larger schedulable region.

Consequently, the use of a more efficient scheduling algorithm results in higher

I1etwork utilization.

3.4.1 Basic Scheduling Algorithms

FIFO

The simplest scheduling algorithm is First In First Out (FIFO), see figure 3.1,

sometimes called First Come First Served (FCFS). As packets arrive at a router, they are

placed in an output queue and serviced froln this queue based on their order of arrival.

However, since the traffic flows are not classified in any way and the scheduling decisions

FIFO Queue
Transmission

Link

Packet
Arrivals

Packet
Departures

Figure 3.1: First In First Out (FIFO) scheduling

are based only on the arrival times, FIFO is not able to provide protection.

23

Priority based

In a priority scheduling algorithm, see figure 3.2, a higher priority traffic flow always

has precedence over a lower priority flow. Upon arrival, packets are classified by priority

depending on what flow they came from and placed into the appropriate queue. A priority

scheduler will serve packets from the queue that is assigned with the highest priority.

Queues with a lower priority are served only when all the queues with higher priority are

empty. Among packets in the same priority class, the order ill which they are served is

typically FIFO.

Packet
Arrivals

High-Priority
Queue

Low-Priority
Queue

Figure 3.2: Priority scheduling

Packet
Departures

At a given priority level all flows are equivalent, just as in FIFO. Therefore, within

priority levels and in general, priority scheduling is not able to provide protection.

Summary of FIFO and Priority Scheduling Algorithms

Both of the basic scheduling algorithms, FIFO and Priority, do not provide

protection to existing flows in the presence of ill bellaving flows and/or network load

fluctuations. In the case of FIFO, a single misbehaving flow, sending packets at a

24

sufficiently high speed, can capture an arbitrarily high fraction of the bandwidth of the

outgoing link, [DKSS9]. Priority scheduling suffers from the same lack of protection, due to

FIFO scheduling being used within each priority.

If all well behaving flows in the network cannot be protected in the presence of ill

behaving flows and/or network load fluctuations, then those flows cannot receive a

guaranteed delay bound. With no protectioll, there can be no guarantee or bound on

packet delay. Hence, the FIFO and Priority scheduling algorithms will not be further

considered for use in providing per-connection end-to-end performance guarantees in a

packet-switched network.

3.4.2 Work-Conserving or Non-Work-Conserving

Scheduling algorithms are classified as either work-conserving or

non-work-conserving, depending on how they handle traffic distortions. Work-conserving

scheduling algorithms accomodate traffic distortions while the non-work-conserving seek to

control the distortions. With a work-conserving scheduling algorithm, a router is never idle

when there is a packet to send.

In a router with a non-work-conserving (sometimes called rate-controlled) scheduling

algorithm, the router may remain idle even if there are packets waiting to be sent.

However, because these non-work-conserving scheduling algorithms may be forced to hold

packets even when the output link is idle, they can increase the average end-to-end delay of

all flows in the network and consequently have a lower utilization of network resources.

25

3.4.3 Work-Conserving Scheduling Algorithms

Virtual Clock

The Virtual Clock (VC) scheduling algorithm, [Zha90], is based on a priority queue.

In this scheme, the ordering of packets in the priority queue is based on the time at which

packets would have been sent if the router were using Time Division Multiplexing (TDM)

to schedule packets. In TDM, time is divided into frames of fixed length. Each frame has a

fixed number of constant-sized slots and each flow obtains one or more slots per frame.

VC protects flows from the effects of other flows, similar to TDM, but unlike TDM,

the queue is work conserving since the TDM is only llsed to determine the order of service

not when packets are allowed to be sent. VC takes advantage of any excess bandwidth

which may be available whenever flows do not use their full time allotment.

The scheduling algorithm works by maintaining a real-time clock and two virtual

timers for each flow, Virtual Clock (VC) and auxiliary Virtual Clock (auxVC), which are

used to provide flow monitoring and packet scheduling. A flow is specified by its average

rate (AR) and averaging interval (AI). Over each AI time period, dividing the total amount

of data transmitted by AI should result in AR. Whenever a packet arrives the timers are

advanced by the minimum packet spacing that maintains the average rate. Effectively this

sets the timers to the earliest time that the 11ext packet is eligible for sending. The packets

are stamped with the auxVC time and placed in a sorted priority queue for sending.

Every AI * AR packets, VC is compared to the real-time clock. If the VC is running

ahead of the real-time clock, then the packets are arriving faster than agreed and action is

taken to restrict the misbehaving flow. If it is running behind the real-time clock, then VC

is set to the current real-time to prevent the flow from sending at a lower rate than AR in

one interval followed by a higher rate than AR in the next without being detected.

The reason a separate virtual timer auxVC is needed is that a flow could send no

26

packets for a long time and then send a large burst towards the end of AI and still meet its

average rate when considered over the whole interval. Since the VC of the flow would not

have advanced, it would be small compared to other flows that llad been sending more

regularly. The bursty flow would gain priority over the other flows since its packets would

be sent first. It has effectively gained credit for not using its resources earlier. Since those

resources can not be saved up, this scheduling algorithm must prevent such events. The

auxVC timer prevents this by resetting itself to the real-time clock if this is greater than its

current value at each packet arrival, thereby ensuring a bursty flow will not be serviced

before other flows of equal or greater rate allocations.

When Virtual Clock was first proposed, no method was provided for determining the

bounds on end-to-end delay. Since then, elld-to-end delay bounds have been determined in

[GLV97] and [FP95]. Extensions to VC have been proposed to allow for flows with variable

rates in both non-work conserving, [LX95], and work conserving, [GV97], versions.

Fair Queuing and Weighted Fair Queuing

Fair Queuing (FQ), [DKS89] , was introduced to allocate a fair share of the

bandwidth to each flow source. FQ services each flow for a set amount of transmission time

in a round robin fashion. Any unused transmission time is fairly distributed among all of

the flows. One major problem is that FQ can not be implemented at the packet level

unless all packets are the same length. Otherwise, a flow with long packets will again

receive a disproportionate amount of the link bandwidth. Servicing packets on a bit by bit

basis, which would be fair, is generally not practical.

FQ, as originally proposed, only provides a minilTIum guaranteed service. No bounds

on delay or packet loss were derived. BOUllds were derived for the rate-based source model

by Parekh, [Par92], called Packet by Packet Generalized Processor Sharing (PGPS). Bit by

bit fair queuing is also known as Gelleralized Processor Sharing (GPS).

27

Packet
Arrivals

Packet....._~
Departures

Figure 3.3: Weighted Fair Queueing scheduling

The approach in Weighted Fair Queueillg (WFQ) sclleduling, see figure 3.3, is to

emulate the GPS system as much as possible. Arriving packets are classified and placed

into their appropriate flow queue. In a round robin type fashion, the WFQ scheduler serves

them - first flow 1, then flow 2, up to flow n. WFQ is work-conserving so it is never idle;

the scheduler will immediately move to the next class in the sequence upon finding an

empty flow queue.

In WFQ, each flow may receive a differential amount of service. Each flow i, is

assigned a weight Wi. Even if all flows are queuing, flow i is still guaranteed to receive its

share of the bandwidth.

[Kes97] provides an example. Let a leaky bucket constrained source i with

parameters (o-(i), p(i)) pass through K schedulers, where the kth scheduler, 1 ::; k ::; K, has

link rate r(k). Where o-(i) is the maximum burst size on flow i and p(i) is the average data

rate of flow i. Let g(i, k) be the service rate assigned to the connection at the kth scheduler,

where:

g(i, k) == ¢(i, k)r(k)/ L ¢(j, k)

Let g(i) be the smallest of the g(i, k)'s over all the schedulers. Assume that

28

g(i) 2:: p(i); otherwise the queue at one of the schedulers would increase without bound. If

the largest packet allowed on the flow is of size Pmax(i) and the largest packet allowed on

the network is Pmax, then independent of the number of schedulers traversed and

independent of the behavior of tIle other flows sharing the path, the worst-case end-to-end

queuing and transmission delay Di is bounded by:

(.) K-l P K P
D

a 1 ~ maxi ~ max
. <-+L...J +L...J--
1 - g(i) k==l g(i, k) k==l r(k)

Worst-case Fair Weighted Fair Queuing

Worst-case Fair Weighted Pair Queuing (WP2Q), [BZ96], is the same as WPQ,

except that the scheduler chooses the packet with the slnallest finish time among all the

packets that would have already started service in the corresponding GPS emulation. It

was shown by Zhang, [Zha95], that the service order of packets under WPQ and Wp2Q

systeln can be different for the same traffic arrival pattern.

At any given time, the accumulated service provided for each flow by either Wp2Q

or WFQ never falls behind GPS by more than one packet size. It can be shown, [Zha95],

that the difference between services provided by Wp2Q and GPS is always less than one

packet size. Also, in the worst case both Wp2Q and WPQ can fall behind GPS by the

same amount, so they provide the same end-to-end delay bounds.

Self-Clocked Fair Queuing

Self-Clocked Fair Queuing (SCPQ), [GoI94], is the same as WPQ, except virtual

time computation. The schelne in SCPQ is to simpl'ify the computation by estimating the

systeln virtual time V(t) with the virtual service time of the packet that is currently being

served in GPS.

The SCFQ algorithm has the following steps:

29

1. Each arriving packet pL is tagged with a service tag FL before it is placed in the

queue. The packets in the queue are then picked up for service in increasing order of

the associated service tags.

2. For each flow k, the service tags of the arriving packets are computed as:

pi _ 10 + max (Fi - 1 v(ai))
k - rk k k' k

where F~ == o.

3. v(t), the system's virtual time at time t, is defined as being equal to the service tag of

the packet receiving service at that time.

4. Once a busy period is over and the router is free (no more packets in the queue), the

algorithm is reinitialized by setting v(t) to zero and the packet counts i to zero for

each flow k .

Delay-Earliest Due Date

Delay-Earliest Due Date (Delay-EDD), [FV90], is an extension of the Earliest Due

Date (EDD) scheduling algorithm. In EDD, each packet is assigned a deadline and the

scheduler servers packets in order of their deadlines.

In Delay-EDD, see figure 3.4, each traffic flow must negotiate a service contract with

each scheduler on its path from source to destillatioll. The contract states that if a source

obeys some peak rate, then every packet on that flow receives a worst case delay smaller

than some bound. For admission to the network two conditions must be satisfied, the sum

of the peak rates is smaller than the link capacity for all links on the path and that even in

the worst case, with all flows sending at their peak rates, the delay bound is still met at

each router (schedulability test).

30

Delay-EDD scheduling algorithm assigns deadlines to packets in the following

manner. It sets a packet's deadline to the tinle at which it should have been sent had it

been received according to the flow's contract, which is slower than its peak rate. By

reserving bandwidth at the connection's peak rate, a Delay-EDD scheduler can ensure it

has served the previous packet from that flow before the next packet arrives. So, every

packet from a flow obeying its peak rate constraint receives a hard delay bound.

The Delay-EDD expected deadline state variable for flow i, ExDf, is stored at router

k and is calculated as follows:

ExDf == max(ATf + df, ExDf + Xmini)

Where ATf is the arrival time of tIle packet and Xmini is the minimum packet inter

arrival time and df is the local delay bound for flow i at router k.

Deadline Assignment

Packet
Arrivals

Stamp Packet
with Arrival
Time

Calculate
Deadline

Transmission
Link

Packet
Departures

Figure 3.4: Delay-EDD scheduling

Since the assignment of deadlines in delay-EDD is based on the two parameters,

Xmini and df, delay requirements are decoupled from bandwidth requirements. For

example, a flow reserving a small bandwidth could obtain a small delay bound. In

summary, Delay EDD decouples the delay and bandwidth bounds, but at the cost of

reserving bandwidth at the peak rate.

31

3.4.4 Non-Work-Conserving Scheduling Algorithms

Jitter-Earliest Due Date

The Jitter-EDD scheduling algorithm, [VZF91], extends Delay-EDD to provide delay

jitter bounds (a bound on both the minimum and the maximum delay). In Jitter-EDD, a

delay jitter regulator is installed before the EDD scheduler. With the regulator, all packets

receive the same delay at each hop (except for the last hop), so the delay jitter along the

path from source to destination is reduced to the delay jitter on the last hop. The

Jitter-EDD approach reduces the overall buffering required at each router by reducing the

number of packets which could potentially arrive early (reduces the worst case scenario).

Stop and Go

The Stop and Go, [GoI90], scheduling algorithm bounds flow delays by dividing a

links sending time into fixed size frames and assigning flows to frames whose sending rate

matches the delay bound requirements of the flow. In each frame, only packets that arrive

at the router in the previous frame are sent out. Within frames, the service order of

packets is arbitrary. It can be shown, with this scheduling algorithm, that packets on a

flow receive both a minimum and a maximum delay as they go from source to destination.

Hierarchical Round Robin

In Hierarchical Round Robin (HRR), [KKK90], there exists a hierarchy of service

levels, with each level having a fixed number of slots. The levels are numbered 1 ... N,

with the highest rate flows at level 1. A flow is allocated a given nllmber of slots at a

selected level. The scheduler cycles through the slots at each level, see figure 3.5, in a

round robin fashion. The time to service all the slots at a given level is called the Frame

Time (FT) at that level. The total link bandwidth is partitioned in among these levels.

32

Levell frame Round robin service

~~

Level 2 frame

Level N frame

Figure 3.5: Hierarchical Round Robin (HRR) scheduling, [ZK91]

The HRR scheduling algorithm can provide guaranteed bandwidth to rate controlled

flows. The bandwidth received by flow j at level i is ~ slots/sec. Where aj is the service

quantum for flow j. Since HRR always completes one round through its slots once every

frame time, it can provide a maximum delay bound to the flows allocated to that level.

3.4.5 End-to-End Considerations

One method for determining end-to-end delay bounds is to consider each server in

isolation, and then compute the summation of the maximum delay at each server along the

path from the source to the destination, [Cru91a, Cru91b]. However, this method has the

following disadvantages:

• Due to varying queue sizes, the delay experienced by packets at a router will vary.

Consequently, the shape of the traffic flow can become distorted as it travels through

the network. Therefore, even if a source traffic specification is known at the first

router on the path of the flow, it is difficult to determine the exact specification at a

router further down on the path. This makes determining the delay at each of the

routers on the path difficult.

33

• In many scheduling algorithms, if a packet experiences a high delay at a router, it

may experience a lower delay at the next router along the path. If each router is

considered by itself, the dependence between the delay experienced by packets at

different routers is not accounted for, and the bound on the delay at that router will

probably be very conservative.

Goyal, et aI., [GLV97], generalize the previous approach to a heterogeneous network

of servers each of which uses a scheduling algorithm in GR for any source specification.

They derive a delay guarantee for a network of routers and reduce the problem of

determining the end-to-end delay to that of determining delay at a single router.

To determine an upper bound on the end-to-end delay of packets of a flow, [GLV97],

consider a flow which is served by K servers. Let server 0 be the source and server K + 1 be

the destination. Let dj be the delay experienced by the jth packet of a flow. Since server K

guarantees that packet pi will be transmitted by time GRCK(pi, rj,K) + (3K and the packet

arrives at the first node at time A1(pi), the result is:

where QK :=: (3K + T K ,K+l. Note that GRCK(,-J rj) - GRCK(,-J rj,K) > ~ _ .lj •.v , p , - rJ IJ:K

Therefore,

If each router on the path of the flow uses a scheduling algorithm in GR, then given

the path configuration, GRCK(pi, rj) can be related to GRC1 (pi, fj). When packet

34

fragmentation and reassembly does not occur, then using results derived by Goyal, et al.:

Therefore, the end-to-end delay of a packet consists of the following three

components:

1. E~~f all: Since all == {3ll + 7 ll,ll+1, this term is knowll because it is completely

characterized by the scheduling algorithm used in the routers and the propagation

delay in the network.

2. E~11 maxnE[l..j] r~i - (t - rl:K): This term depends on the length of the packets and

the rate allocated to it at the routers. Therefore, this term is known if the length of

the packets transmitted and the rate assignments are both known.

3. GRC1(pj,rj) - A1(pi): This term depends on arrival process characteristics of a flow.

Only the third term depends on arrival process characteristics of a flow. If fixed rate

is assigned to all the packets of a flow, then this term is the queuing delay at server with

capacity r where f is the bottleneck rate for the flow. Therefore, the network can be

abstracted as a single server, with either fixed or variable capacity.

Determining end-to-end delay is reduced to determining the delay at a single router.

If a flow is characterized using a deterministic traffic specification, then single server

queuing analysis can be used to determine an upper bound on the delay of packets of a flow.

35

Chapter 4

Conceptional Structure for Delay Guarantees

Any framework that provides delay guarantees needs an admission control policy or

mechanism on the control path and an appropriate packet scheduling algorithm on the

data path. The admission control admits a flow only if enough resources are available in

the network, while the scheduling algorithm assures that all guarantees will be met for well

behaved flows as their packets travel from source to destination. In GridStat, the QoS

brokers manage the admission control process and related sub-tasks.

4.1 Selection of a Scheduling Algorithm for GridStat

GridStat has a number of unique characteristics that make it easier to provide

real-time guarantees:

• Static route packet switching is used, as opposed to dynamic routing.

• Jitter does not need to be bounded. The only concern in this case is guaranteeing

that an end-to-end delay bound is never exceeded.

• It presumes the use of a dedicated network for real-time traffic, so traffic allowed onto

the network is tightly controlled.

• Rate-filtering is performed in the routers, so the possibility of ill behaving flows on

the network is greatly reduced.

First of all, the scheduling algorithm should belong to tIle Guaranteed Rate (GR)

class, [GV97], in order for all packets to obtain delay guarantees when used in conjunction

36

with the necessary elements of a dedicated network, the use of admission control, and

resource reservation. In addition, work-conserving scheduling algorithms are preferred over

non-work-conserving scheduling algorithms for GridStat because they deliver better

average case end-to-end delay bounds.

Work-conserving scheduling algorithms that belong to GR, include Virtual Clock

(VC), WFQ, WF2Q, Self-Clocked Fair Queuing (SCFQ), and Delay-EDD. Although it

would be possible to use any of these five scheduling algorithms for GridStat, it is desirable

that the one selected be efficient, protective, flexible, and simple (mechanically and

conceptually) as described in the previous chapter.

Efficient: For VC, WFQ, WF2Q, and SCFQ the equation to update the priority

index has only one rate paralneter. Having only one rate parameter introduces the problem

of coupling between the allocation of delay bound and bandwidth.

For exanlple, when VC, WFQ and WF2Q are leaky-bucket constrainted with burst

size lTj and rate Pj for flow j, the end-to-end delay bound is o"j+n;jLmax + E1=1 LC~x, where n is

the number of routers traversed by the flow, rj is the guaranteed rate for the flow, Ci is the

link speed of the ith router and Lmax is the largest packet size. Notice that the end-to-end

delay bound is inversely proportiollal to the guaranteed rate. Therefore, in order for a flow

to get a low delay bOUlld, high bandwidth needs to be allocated.

It has been shown that a strategy that decouples delay and rate allocation, such as

in Delay-EDD, can result in higher utilization of the network, [Zha95]. Therefore,

Delay-EDD is rated as efficient and the other four are rated as not efficient.

Protective: All five scheduling algorithms provide protection to admitted flows. For

them to provide guaranteed performance, resources are reserved for a flow prior to

admission and a scheduling algorithm belonging to GR is used. Based on this, all five

scheduling algorithms can guarantee a deadline, or delay guarantee, by which a packet of a

flow will be transmitted and consequelltly protection as well.

37

Flexible: Due to the specialized nature of GridStat, all five scheduling algorithms

are rated the same. This is because all traffic flows on the data plane need bounded

end-to-end delay guarantees. Different levels of QoS do not need to be supported as other

applications may require.

Mechanically Simple: All five of the scheduling algorithms use a sorted priority

queue. The insertion operation being O(logN), where N is the number of packets in the

queue. This means that none of the scheduling algorithlns can be considered mechanically

simple. However, some are more simple than others.

For VC and Delay-EDD that use real time to compute their priority index, the

computation is relatively straightforward and they are rated moderately mechanically

simple. For WFQ and WF2Q, which use virtual times from an emulated reference system,

the computation is more complex and for that reason they are rated the least mechanically

simple. For SCFQ, the virtual time is defined as being eqllal to the service tag of the

packet receiving service at that time. Although SCFQ uses virtual time, it has a

straightforward determination of virtual time and is therefore rated as being moderate in

terms of mechanical simplicity.

Conceptually Simple: Conceptually, there is l10t one that stands out as being very

simple or very complex relative to the others. So, all are rated as moderate il1 this property.

In the final analysis, WFQ and WF2Q can be ruled out as being too mechanically

complex relative to the other scheduling algorithms. For flexibility and conceptual

simplicity, there is no significant difference between the scheduling algorithms. With the

same guaranteed rate, the delay bound provided by SCFQ is larger than the one provided

by VC, [Zha95]. Therefore, SCFQ can be ruled out as a possibility.

The two remaining choices are VC and Delay-EDD. With VC and Delay-EDD

roughly the same in terms of mechanical simplicity, it then is left to efficiency to determine

which is the better one to use. Delay-EDD is better in terms of efficiency due to the

38

decoupling of delay and rate allocation. Hence, Delay-EDD is best suited to be used in the

GridStat routers, because the use of Delay-EDD will result in a higher utilization of the

network.

4.2 Admission Control

Admission control is required to regulate the number of traffic flows in the system so

the delay guarantees of all properly admitted flows will be satisfied. The procedure, as

shown in figure 4.1, for admission of a new traffic flow is based on the admission control

module proposed by Gjermundr¢d et aL, [GDB+03]. The admission control procedure in

GridStat is administered by the QoS brokers and has four main steps: Request for

Subscription, Path Selection, Path Evaluation, and Path Establishment.

4.2.1 Request for Subscription

In the GridStat model, the subscription interval is decoupled from the publication

intervaL However, when requesting a subscription, the subscriber needs to declare the

desired interval so the edge status router doing the rate filtering for that publisher will

perform correctly.

In the request for subscription, tIle Subscriber asks for subscription to some

Publisher and provides the following information:

1. Traffic flow characteristics:

(a) X min - minimal packet interarrival time

(b) X ave - average packet interarrival time

(c) I - interval over which X ave is computed

2. Requested maximum end-to-end delay (D).

39

Request for
Subscription

Path Selection

Path Evaluation

Path Establishment

Confirm
Admission

No

No

No Deny
Admission

Figure 4.1: Admission control flowchart

40

4.2.2 Path Selection

To convey status data in a reliable manner and to provide a measure of fault

tolerance, GridStat uses two disjoint paths from source to destination. Therefore, Path

Selection deals with finding two disjoint paths in the network.

The problem of finding a delay-constrained minimum cost path is NP-complete, so

the common approach is to use a heuristic in order to keep the computational cost low. A

method for finding at least two paths from the source to each destination in the network,

called Dynamic Weight Heuristic (DWH), was proposed by Irava, [Ira06], in his PhD

thesis. DWH produces low cost, delay-constrained multicast trees and was specifically

designed to be used in GridStat. Evaluations contained in his thesis show that DWH can

construct multicast graphs with 10-15% lower costs than the node-priority based heuristics

used in QDMR.

4.2.3 Path Evaluation

Before the two disjoint paths can be established, there needs to be a determination

if there exists sufficient resources available at eacll router on the paths, for the new flow. A

message must be sent to the QoS Brokers assigned to the routers along the proposed paths,

checking that each router has sufficient available resources.

This is a two round process for each disjoint path. On the first round, the new flow

is given the lowest available local delay bound at each router as returned by schedulability

analysis, see section 4.3. Then sufficient bandwidth and buffer space for the new flow are

tentatively reserved. At any router on the path, if the sum of local delays exceeds the

requested maximum end-to-end delay, the path evaluation will fail and there will be an

opportunity for the requested maximunl end-to-end delay to be increased and the path

evaluation will restart with tIle new request. If the requested maximum end-to-end delay is

41

not increased, the admission for this new flow will be denied.

The second round is used to apportion the delay slack, if there is any. Slack is

defined by the following eqllation:

n

Slack ~ D - Ldi
i=l

where D is requested end-to-end delay, n is the total number of routers on the path, and di

is the tentatively reserved local delay bound at the ith router.

The responsibility of the second round is to distribute the slack among all the

routers on the path. Apportioning of the slack could be done in many different ways, for

example: straight percentage division to each router, percentage at each router could be

determined by how loaded the router was relative to the other routers on the path, or the

slack could be distributed in a linear fashion (with a smaller percentage close to the source

and becoming larger approaching the destination).

To keep the implementation simple, a straight percentage division is used. Just

divide total slack by the number of routers on the path.

slack
j

= Slack
n

where Slack is the total slack on the path and n is the number of routers on the path.

Therefore slacki is the amount of Slack to be distributed to the ith router.

4.2.4 Path Establishlllent

Now that sufficient resources are determined to be available at each router along the

entire path, commit the reserved resources at each router to the new traffic flow. By

ensuring the local delay requirements are met at each router, the end-to-end delay bounds

42

are guaranteed to be satisfied. At the conclusion of this step, all routers on the path are

notified so they can adjust their rate filtering parameter for this flow.

4.3 Schedulability Analysis for Delay-EDD

Schedulability analysis determines whether the performance which can be offered at

a particular router is sufficient to meet all delay requiremellts based on the traffic flow

characteristics of the incoming traffic, both existing and new.

A set of n channels Ti == (Ti, C i , d i), i == 1,2, ... ,n, is said to be ordered if

d1 ::; d2 ::; · · · ::; dn.

The following theorem, [ZS94], provides a means of checking the schedulability of

flows through a router under a nOll-preemptive deadline scheduling policy, such as

Delay-EDD. It answers the problem: Suppose a set of n - 1 ordered channels,

Ti == (Ti, Ci, di), i == 1,2, ... ,n - 1, are strongly schedulable over a link. Given a new

channel Tn with minimum packet interarrival time T n and maximum packet transmission

time Cn, what is the minimum value of dn, such that all Ti == (Ti, C i , d i), i == 1,2, ... ,n are

still strongly schedulable?

Theorem: Let dn == Cn + Cpo If for i == 0, ... ,n, k == 1, ... ,n,

6k(i) == L (1 + (dk - dj)/Tj)Cj + Ci - dk ::; 0,
dj ~min{di,dk}

then dn == Cn + Cp is the solution to the problem. Otherwise, let Kb == {k : 6k(i) > 0. The

solution to the problem is:

dn == m~x {max{d~ (i) : k E K~}},
O~l~n

43

where d~(i) == Cn + (Tn/Cn)<5"k(i) if Cn + (Tn/Cn)<5"k(i) < dk, otherwise,

d~ == dk + (Cn - dk + (Tn/Cn)<5"k(i))/(l + (1- Edi~dk Ci/Ti)(Tn/Cn)).

4.4 Delay-EDD Scheduling in the Status Routers

The details of how Delay-EDD Scheduling in the status routers was implemented is

presented in the next chapter. The key parts include time-stamping the packet upon

arrival at the router, calculating the local deadline for that packet by updating the flows

state variable for its expected deadline, and placing the packet into a sorted queue at the

output link, such that the packet with the earliest deadline due gets sent first.

44

Chapter 5

Implementation

This chapter presents the implementation of the Delay EDD scheduling algorithm in

the status routers of the GridStat framework. The first and second sections describe in

more detail exactly how the packet scheduling fits into GridStat. The third section

describes how the status router Java code was changed from FIFO to Delay EDD.

5.1 GridStat architecture

GridStat uses the User Datagram Protocol (RFC 768) and Internet Protocol (RFC

791) to communicate between GridStat data plane entities such as publishers, subscribers,

and routers. A GridStat packet, see table 4.1, has the following elements:

I Bytes I Description

8 timestamp
4 pubID
1 number of optional fields
3 padding
8 user data

oto 96 oto 4 24-byte optional user data fields

Table 5.1: GridStat packet

Internally, in the current Java implementation of GridStat, the class

DatagramChannel (java.nio.channels.DatagramChannel) is used for input and output of

UDP packets. The class DatagramChannel extends AbstractSelectableChannel and

implements ByteChannel, ScatteringByteChannel, GatheringByteChannel. First the

DatagramSocket class is used to bind a channel to a port. Then to use the

45

GridStat
data

UDP UDP
header data

I
;?•........ i

"'sIP IP data:,

.... .l ':::'-.:J .i.•....

I: '

...... ,

..•...•.. ire
11""'1' Frame.!rra~!~ Frame data'1~''- _, footer
",,<,.,Cc· :

Application layer

Transport layer

Network layer

Data link layer

Figure 5.1: Encapsulation into UDP datagram

DatagramChannel the program reads and writes ByteBuffers, in the same way as is done

with a SocketChannel.

Figure 5.1 shows the encapsulation of a GridStat packet illto a UDP datagram. On

the wire the total packet size (with zero added optional user data fields) is 78 bytes, with

IP header and Ethernet preamble, header and footer. This includes 24 bytes for the

GridStat data, 8 bytes for UDP header, 20 bytes for IP header, and 26 bytes for the

Ethernet preamble, header and footer.

5.2 FIFO Status Router

The data flow through the FIFO status router, see figure 5.2, is as follows. The

EventChannelSR gets a buffer from the BufferCache and uses the read() method of

DatagramChannel to read in a packet from the packet arrivals. The packet is then sent to

tbe RoutingTbl using routeEvent(), which places a reference to the buffer into each

46

SendingThread that the packet is to be routed to. The packet is then stored by

SendingThread in a ring buffer (FIFO queue) until its turn.

Packet
Arrivals

EventChannelSR in EyentChannelSR out

~ read() write() -...

Sendin2Thread
"

Routin2TbI

pushEvent()
Ring getFrontRef()

Buffer !
sendPacketO

Packet
Departures

Legend
------t~~ Packet flow on wire

-------1~. Reading thread

------.. Writing thread

Figure 5.2: FIFO Status Router

In SendingThread.eventThreadDirect() a new Thread is created and started to get

packets from the ring buffer and send t11em on the outgoing channel. This Thread uses

getFrontRef() to get a reference for the packet from the ring buffer and forwards the

packet, using sendPacket(), to the EventChannelSR which uses the write() method of

DatagramChannel to write the packet to the appropriate outgoing channel. Then the

packet is removed and recycled from the buffer by removeFront().

47

5.3 Delay EDD Status Router

Four key modifications are needed to change the status router from FIFO queuing

to Delay EDD queueing, see figure 5.3. The incoming packet gets time stamped upon

arrival at the router. The state variable that holds the expected deadline for this flow is

updated according to the Delay EDD formula as described in Cllapter 3. Then packets are

added to the queue in sorted order by their updated expected deadline, ExD. With packets

being sent on the outgoing link by order of earliest deadline in the queue goes first. The

packing of multiple events into one packet was el~minated due to the work conserving

nature of Delay EDD.

Packet
Arrivals

EventChannelSR in EventChannelSR
out

read()
Stamp packet with I

write()_Arrival Time f-""'"

Sendin2Thread
"

ROlltingTbl

pushEvent() ... Calculate I Queue II takeO
.... 1_l)eadline (Sorted) .. :

sendPacketO ---- - --- -~

Packet
Departures

Legend

-------II~~ Packet flow on wire

------I~~ Reading thread

...........__ _ ~ Writing thread

Figure 5.3: Delay EDD Status Router

48

5.3.1 Deadline assignment

At each router there is a state variable for tIle Expected Deadline (ExD) associated

with each flow. A hash table data structure was used to store the state variables, with the

packet flow identifier being used as the key into the hash table. The advantage of using a

hash table is that it will provide constallt-time, or 0(1), lookup on average.

The Java collection class ConcurrentHashMap was used to store the state variable,

ExD, necessary for the Delay-EDD scheduling algorithm. The class ExpectedDeadline was

created for the state variable ExD, see figure 5.4. ConcurrentHashMap is thread-safe and

provides its own synchronization for concurrent access or updates.

When a packet arrives at the status router, it is time stamped with Arrival Time.

The Arrival Time used is the time returned by the Java System call nanoTime(). Then its

Expected Deadline is looked up in the hash table using the packet flow identifier as the key

into the table. Then using the packet Arrival Time, tIle ExD is updated. The updated

ExD is stored into the hash table and attached to the packet. Note that the deadline is not

stored in the packet, it just goes along with the packet until the packet is sent on the

appropriate outgoing physical link.

5.3.2 Sorted Queue

The Java collection class PriorityBlockingQueue was used for the class for the Delay

EDD queue. This is a thread safe version of the Java collection class PriorityQueue. The

implementation for PriorityQueue provides O(log(n)) time for the insertion method add()

and constant time for the take() method.

To specify correct ordering when using the SendHolder objects in the collection, it

was necessary for SendHolder to implement Comparable and override the compareTo(),

equals(), and hashCode() methods, see figure 5.5. In a PriorityBlockingQueue the head is

49

public final class ExpectedDeadline
{

/**
* The <code>ExpectedDeadline</code> default constructor for this class.
*/

public ExpectedDeadline()
{

this.m_variableld 0;
this.m_ExD = 0;
this.m_delay = 0;
this.m_Xmin = 0;

/**
* The <code>ExpectedDeadline</code> constructor for this class.
*/

public ExpectedDeadline(long variableld, long delay, long Xmin)
{

this.m_variableld = variableld;
this.m_ExD = 0;
this.m_delay = delay;
this.m_Xmin = Xmin;

/**
* The <code>updateDeadline</code> method is used to update this state variable.
*

* @param arrivalTime The arrival time for the packet at this status router.
* @return Returns m_ExD, the updated expected deadline.
*/

public long updateDeadline(long arrivalTime)
{

if (arrivalTime + m_delay) > (m_ExD + m_Xmin))
{

m_ExD = arrivalTime + m_delay;
}
else
{

/**
* The <code>getVariableld</code> method is used to get the variableld.
*

* @return Returns m_variableld.
*/

public long getVariableld()
{

return m_variableld;

/**
* The <code>getExpectedDeadline</code> method is used to get the ExpectedDeadline.
*

* @return Returns m_ExD.
*/

public long getExpectedDeadline()
{

//
// Attributes
private long m_variableld;
private long m_ExD;
private long m_delay;
private long m_Xmin;

Figure 5.4: ExpectedDeadline class

50

the least element with respect to the specified ordering.

public int compareTo(Object 0)
{

if (!(o instanceof SendHolder))
(

throw new ClassCastException();
}
if (((SendHolder)o).m_deadline < this.m_deadline)
{

return 1;
}
if (((SendHolder)o).m_deadline > this.m_deadline)
(

return -1;

return 0;

public boolean equals(Object 0)
{

if (!(o instanceof SendHolder))
{

return false;
}
if (((SendHolder)o).m_deadline == this.m_deadline)
{

return true;

return false;

public int hashCode()
{

return (int)(this.m_deadline~(this.m_deadline»>32));

Figure 5.5: Override SendHolder methods for correct ordering

In this way the add() and take() methods of PriorityBlockingQueue to work

correctly. When a SendHolder object is added to the queue, it is inserted into the sorted

queue ordered by the expected deadline, ExD. And when take() is invoked, it retrieves and

removes the head of the queue, waiting if no elements are present on the queue.

5.3.3 Packing of events

Delay EDD is a work conserving discipline and as such packing of multiple events

into one packet at the status router is contrary to that objective. It only remains work

conserving if an output link is kept busy as long as there are packets addressed to the

output, in the sorted queue. Each packet needs to be treated individually as it arrives at

the status router, gets stalllped with a deadline, and placed into the sorted queue for its

51

outgoing link. Therefore, in the constants.java file,

MAX_EVENT_ELEMENT_PER_PACKET is set equal to 1.

52

Chapter 6

Experimental Evaluation

In this chapter experimental results are obtained on the performance of the

GridStat prototype, as currently implemented in Java. The main purpose of the

experiments is to compare the end-to-elld delay characteristics of the two scheduling

algorithms, Delay-Earliest Due Date (Delay EDD) and First In First Out (FIFO). A

secondary and related purpose is to compare the local delay of the two scheduling

algorithms, within an individual status router.

6.1 Experimental Setup

The testbed used for these experiments is located in the Engineering

Research/Teaching Laboratory (ETRL) network infrastructure lab, or "niflab", at

Washingtion State University. The experiments were conducted on five identical HP Vectra

VE computers, with the following specifications:

• 650 MHz Pentium III processor

• 512 MB SDRAM

• 8.4 GB Hard Drive

• Linux operating system, kernel 2.6.9

• Java Virtual Machine jdkl.5.0_06, with Java HotSpot Server VM enabled

The Linux nodes are all connected via a HP Procurve 2424M switch, providing 100

Mbps bandwidth between nodes.

53

6.2 Experiments and results

The experimental topology for the first four experiments is shown in Figure 6.1.

Ref system, 1 flow

3ms delay on
output link

1 publisher 1 subscriber

Load system, 40 flows

40 publishers 40 subscribers

Figure 6.1: Experimental topology

The reference (ref) system is a 1-1 system. T11at means there is one publisher and

one subscriber in the system. The publis11er publishes at 50ms intervals and the subscriber

has a 50ms interval subscription rate.

The load system is a 40-40 system. That means tllere are 40 publishers a11d 40

54

subscribers in the system. All 40 publishers publish at a 200ms interval and each of the 40

subscribers have a 200ms interval subscription rate.

When in Delay EDD mode for status router iI, d i the local delay bound is set to

4ms for the ref system and lOOms for the load system. See Appendix B for a derivation of

why the local delay bound was set to 4ms for the ref system.

Each experiment was run for 45 minutes. The packets received during the first 15

minutes were not recorded to allow sufficient time for initialization of the Java VM. The

Java HotSpot VM is used and its dynamic compilers adaptively compile frequently

executed Java bytecodes, or "hot spots" , into optimized machine instructions. Therefore,

the effective data collection time interval for each experiment is 30 minutes.

On the output link of the internal status router, iI, a 3ms delay was inserted after

each packet sent. The objective of this was to simulate a congested link and to cause

queuing in the router to occur. To obtain a 3ms delay, the Thread sleep() method was

used. Unfortunately this Inethod was highly inaccurate and at times the actual delay

ranged from less than 3ms to more than double the 3ms requested delay (see Appendix A).

6.2.1 Experiment 1 - Reference and load systems without 3rns

delay

Experiment number one, see figure 6.2, was run to obtain some baseline

performance results. Both the reference and load systems were run at the same time, but

without the 3ms delay time added after each packet was sent from status router i 1.

Results: The end-to-end delay results for both scheduling algorithms are basically

the same. This is not surprising due to the lack of queuing in the status routers. See table

6.1 for a summary of the results.

55

Delay-EDD, 1-1 ref, without 3ms delay FIFO, I-I ref, without 3ms delay

50 50

40 40
] ~
.~ .~

~ ~
3030

c c
u 'l,)
;. ::>

(.IJ (.IJ... ...
0 0

~ 20 0 2000

~ ~

~ ~
~ ~

10 10

0 ~~. 0 !l
0 4 10 0 10

End-to-end delay (ms) End-to-end delay (ms)

Figure 6.2: Experiment 1 Ref system, Delay-EDD and FIFO

Scheduling Standard
Algorithm System Min Mean Max Mode Deviation

Delay-EDD ref 0.4 0.66 9.1 0.5 (47.9%) 0.58
FIFO ref 0.4 0.67 10.6 0.5 (46.5%) 0.60

Table 6.1: Experiment 1 Results summary, in milliseconds

6.2.2 Experiment 2 - Reference system with 3ms delay, but

without load system

Experiment number two, see figure 6.3, was run to obtain performance results with

the reference system, but without the 40-40 load system added. The 3ms delay time was

added after each packet was sent from status router il.

Results: The end-to-end delay results for both scheduling algorithms are basically

the same. See table 6.2 for a summary of the results. The reason the Delay EDD results

Scheduling Standard
Algorithm System Min Mean Max Mode Deviation
Delay-EDD ref 2.6 4.15 7.5 4.0 (10.68%) 0.33
FIFO ref 2.7 4.15 7.6 4.0 (10.52%) 0.33

Table 6.2: Experiment 2 Results summary, in milliseconds

56

10

Delay-EDD, 1-1 ref, with 3ms delay and without 40-40 load

10

FIFO, 1-1 ref, with 3ms delay and without 40-40 load

End-to-end delay (ms) End-to-end delay (ms)

Figure 6.3: Experiment 2 Ref system, Delay-EDD and FIFO

are similiar to the FIFO results is because as the 1-1 ref packets go through the Delay EDD

status router they queue up and are serviced in order just as in the FIFO status router.

Therefore, the result is as expected that tIle Delay EDD delays are similiar to the FIFO

delays.

6.2.3 Experiment 3 - Reference and load systems with 3ms delay

Experiment number three, see figure 6.4, was run to obtain performance results with

the 3ms delay time added after each packet was sent and with the 40-40 load system

added. The delay was added to force queuing in the status router and to observe the direct

effect of queuing on the end-to-end delay for packets ill the 1-1 ref system depending on

which scheduling algorithm was being used.

For status router iI, d i the local delay is increased from 4ms to 17ms for the ref

system. This is due to adding a 3ms delay on the output link for each packet sent. Using

results from experiment three that max actual sleep time was 6.5ms and a ref packet would

have to wait for at most one other packet to be sent before itself being sent, 13ms was

added to 4ms (4ms being tIle max delay in the router without the 3ms delay on the output

57

Delay-EDD, 1-1 ref, with 3ms delay and with 40-40 load FIFO, 1- I ref, with 3ms delay and with 40-40 load

~
.~ 2.5

0::

c:u
:>

lJJ
'-
0

1.5!b
S
5
~

~

0.5

End-to-end delay (ms)

3.5

0.5

20

End-to-end delay (ms)

25 30

Figure 6.4: Experiment 3 Ref system, Delay-EDD a11d FIFO

link, see Appendix B) to get the total of 17ms for local delay die

For Delay EDD, both edge status routers local delay bounds were set to 4ms and

internal status router set to 17ms. Therefore the end-to-end delay bound for this

experiment equals 25ms.

Results: The result was clearly lower end-to-end delays for packets traveling through

the Delay EDD router as opposed to the FIFO router. See table 6.3 for a summary of the

results. All ref system packets through the Delay EDD status routers achieved their

Scheduling Standard
Algorithm System Min Mean Max Mode Deviation

Delay-EDD ref 2.7 5.99 15.0 4.5 (3.47%) 1.45
FIFO ref 2.8 11.76 34.1 4.0 (2.09%) 6.15

Table 6.3: Experiment 3 Results summary, in milliseconds

end-to-end delay requirements of 25ms or less. The Inaximum time taken by a ref packet

going through Delay-EDD routers was 15ms. It is observed that with FIFO scheduling,

31.62% of the ref system packets were delivered end-to-end in over 15ms.

58

6.2.4 Experiment 4 - Local delay at status router il

Experiment number four, see figure 6.5, was performed to investigate the local delay

times experienced at status router i1 under both scheduling algorithms. Both the reference

and load systems were run at the same time and the 3ms delay time was added to output

of status router i 1 . This was an effort to better understand the performance of the internal

status router with added delay of 3ms after each packet sent.

Local delay for SR ii, with 3ms delay, with 4040 load, Delay-EDD Local delay for SR ii, with 3ms delay, with 40-40 load, FIFO

10 15

time (ms)

20 25 30 10 15

time (ms)

20 25 30

Figure 6.5: Experiment 4 Ref system, Delay-EDD and FIFO, for local SR i 1

Results: Most importantly, with the local delay bound set to 17ms, all ref system

packets going through the Delay EDD status router i 1 were sent out before their deadline.

See table 6.4 for a summary of the results. The maximum time taken by a ref packet going

Scheduling Standard
Algorithm System Mill Mean Max Mode Deviation

Delay-EDD ref 2.1 5.46 10.6 4.0 (3.02%) 1.42
FIFO ref 2.2 11.13 33.5 3.9 (2.46%) 6.12

Table 6.4: Experiment 4 Results summary, in milliseconds

through Delay-EDD routers was 10.6ms. It is observed that with FIFO scheduling through

the status router, 50.47% of the ref system packets were sent out in over 10.6ms.

59

6.2.5 Experiment 5 - Add an internal status router

The topology for experiment number five, see Figure 6.6, was changed to add one

internal status router on the ref system path. To force queuing in status router i2 , edge

Ref system, 1 flow

1 publisher 1 subscriber

Load systeln

20 publishers

20 publishers

Load
1

Load
2

20 subscribers'

20 subscribers

....................... 20 publishers Load
3

20 subscribers ~14-•• '._"'-"'-"'-"'-"'_••• "-"'~

Figure 6.6: Experimental topology

status router e2 was added to channel 20 (bursty) Pllb flows to i2 and edge status router e4

was added to remove 20 (not bursty) pub flows from i2 • Without this configuration the

60

packets that arrive at i2 are not bursty, due to status router il sending out one packet every

3ms when there is a packet in the outgoing queue and therefore queuing will not take place

in status router i2 under these conditions.

Both internal status routers experience a 40-40 load system, because at status

router il there is incoming Load2 plus Load3 and at status router i2 there is incoming

Loadl plus Load3 .

This experiment, see figure 6.7, was done to compare the end-to-end delays under

both scheduling algorithms, with all additional status router on the path of the reference

system packets. Both the reference and load systems were run at the same time and the

3ms delay time was added to output of both status router il and status router i2 .

For Delay EDD, both edge status routers local delay bounds were set to 4ms and

internal status routers set to 17ms. Therefore the end-to-end delay bound for this

experiment equals 42ms.

Delay-EDD, 1-1 ref, two SR's with 3ms delay and with 40-40 load FIFO, 1-1 ref, two SR's with 3ms delay and with 40-40 load

c
v
>

l.I.l....
o

t
e
~

0.5

o
o 10 20 30 40 50 60 70 80

End-to-end delay (ms)

o L--- _

o 10 20 30 40 50 60 70 80

End-to-end delay (ms)

Figure 6.7: Experimellt 5 Ref system, Delay-EDD and FIFO, two internal status routers

Results: The result was lower end-to-end delays for packets traveling through the

Delay EDD router as opposed to the FIFO router. See table 6.5 for a summary of the

results. All ref systelTI packets through the Delay EDD status routers achieved their

end-to-end delay requirements of 42ms or less. The maximum time taken by a ref packet

61

Scheduling Standard
Algorithm System Min Mean Max Mode Deviation

Delay-EDD ref 6.2 12.40 22.9 13.0 (2.32 %) 2.52
FIFO ref 6.8 31.09 83.1 8.0 (0.64 %) 16.83

Table 6.5: Experiment 4 Results summary, in milliseconds

going end-to-end through Delay-EDD routers was 22.9ms. It is observed that when FIFO

scheduling is employed, 63.05% of the ref system packets were delivered end-to-end in over

22.9ms.

6.3 Conclusions from the Experiments

The experiments were performed to compare the end-to-end delay characteristics of

the two scheduling algorithms, Delay EDD and FIFO. However, some limitations of the

experimental methodology should be noted. It is a limitation of the current status router

that queuing due to the network is not actually manageable in Java, as a consequence it

was necessary to insert artificial delays to cause queuing to occur. The large variations in

inserted delay were not controllable and yet not realistic either.

The results show that overall Delay-EDD performed better than FIFO, under these

experimental conditions. With queuing at the router, Delay-EDD will use currently

updated deadlines and a sorted queue to always send out the packet with the earliest

deadline first.

Experiment three showed a situation where all ref packets through the Delay-EDD

status routers were able to achieve their end-to-end delay requirements of 25ms with a

maximum of 15ms. Whereas in the same situation, under FIFO scheduling, many ref

system packets were delivered end-to-end in over 25ms with a maximum of 34.1 ms. When

more than one packet is in the queue, Delay-EDD can make a distinction between packets

62

in the queue and send the one with the earliest deadline first. Even with end-to-end delay

requirements of 25ms, the Delay-EDD status routers delivered all packets in less than

15ms. This demonstrates that although worst-case bounds are allowed for at each hop, it is

unlikely that a packet would ever experience a sequence of worst-case delay events at all

hops on the path from source to destination.

By factoring in the actual sleep times from Appendix A, the local delay times

experienced at status router i 1 can be better ullderstood. As packets are being added to

the sorted queue, eacll packet from the ref system is delayed not only when it gets sent on

the outgoing channel, but also in waiting for the current packet undergoing transmission to

be sent.

Experiment five showed that when adding one additional internal status router on

the ref system path, all of the ref packets going through the Delay-EDD status routers were

able to achieve their end-to-end delay requirements of 42ms with a maximum of 22.9ms.

This was 110t unexpected because adding the maximum end-to-end delay seen in

experiment three of 15ms to tIle maximum local delay of lO.6ms from experiment four,

equals 25.6ms. So, it would be expected for the Inaximum end-to-end delay for a ref packet

to be less than 25.6ms in experiment five and indeed the maximum end-to-end delay for

the ref packets through Delay-EDD was 22.9ms.

The problem with FIFO scheduling, as can be observed most easily on the 1-1

reference system, is that packets that arrive on a congested link must wait in line to be

serviced no matter what. No distinction between packets is made and therefore packets

needillg a short delay can be held up by packets that could take a longer delay.

63

Chapter 7

Conclusion

In this thesis, the problem of bounding end-to-end delay in a real-time status

dissemination network, specifically GridStat, for multiple traffic flows routed over

dedicated lines was addressed. GridStat is a status dissemination middleware framework

that is being developed for the electric power grid. It llas a number of features that make it

easier to provide delay guarantees. Static route packet switching, as opposed to dynamic

routing, is used exclusively. Jitter is not an issue, only that end-to-end delay is bounded. It

makes use of a dedicated network for real-time traffic, so traffic allowed onto the network

can be tightly controlled.

It was shown that simple scheduling algorithms ill the routers, like first in first out

or priority are not adequate, because they do not protect well behaving flows from different

sources of variability inside the network. Existing guaranteed rate scheduling algorithms,

that do offer protection, were identificated and analysis was done to determine the most

appropriate one to use for GridStat. Although the use of any guaranteed rate scheduling

algorithm in the status routers would have sufficed to attain the desired aim of bounded

end-to-end delay.

After evaluating the pros and cons of all the work-conserving scheduling algorithms,

it was determined that the most appropriate scheduling algorithm for GridStat is

Delay-Earliest Due Date (Delay-EDD). Implementation of the Delay-EDD scheduling

algorithm in a GridStat prototype was done as a proof of concept. Based on the

experimental results obtained it can be shown that a Delay-EDD router can deliver

bounded end-to-end delay in cases where a FIFO router cannot.

64

In summary, in a status dissemination network like GridStat, with traffic flows that

travel on a dedicated network, the use of admission control, resource reservation, and

guaranteed rate scheduling algorithm will achieve bounded end-to-end delay for admitted

traffic flows that obey their traffic specifications.

7.1 Future Work

Since two disjoint paths are used for every publisher-subscriber pair, do both of

them really l1eed real-time performance guarantees? It might be possible that a hybrid

approach could be set up to accommodate split performance guarantees. One disjoint path

could be real-time and the other best effort, for example. The advantage would be

increased network utilization, but at the expense of opening up the possibility for lost or

delayed packets on the backup path.

Even though GridStat makes use of a dedicated network and rate control in the

routers, misbehaving traffic flows could still occur within the network. In the event of a

cyber attack on the system, it is conceivable that status routers could be overloaded with

manufactured status or alert packets that are not genuine. This could compromise the

end-to-end delay guarantees of existing well-behaving flows. Therefore, a Run-Time

Monitoring System to monitor for bogus packets and misbehaving flows could be added to

GridStat.

65

[BZ96]

Bibliography

[AndOO] Matthew Andrews. Probabilistic End-to-Elld Delay Bounds for Earliest

Deadline First Scheduling. In INFOCOM 2000. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies, volume 2,

pages 603-612, 2000.

[BBC+98] Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng Wang, and

Walter Weiss. An Architecture for Differentiated Service. IETF RFC 2475,

December 1998.

[BBH+02] David Bakken, Anjan Bose, Carl Hauser, Ioanna Dionysiou, Harald

Gjermundr¢d, Lin Xu, and Sudipto Bhowmik. Towards More Extensible and

Resilient Real-Time Information Dissemination for tIle Electric Power Grid. In

Power Systems and Communications Systems for the Future, International

Institute for Critical Infrastructures, Beijillg, September 2002.

[BCS94] Robert Braden, David Clark, and Scott Shenker. Integrated Services in the

Internet Architecture: an Overview. IETF RFC 1633, June 1994.

[BFY+OO] Yoram Bernet, Peter Ford, Raj Yavatkar, Fred Baker, Lixia Zhang, Michael

Speer, Robert Braden, Bruce Davie, John Wroclawski, and Eyal Felstaine. A

Framework for Integrated Services Operation over Diffserv Networks. IETF

RFC 2998, November 2000.

Jon C. R. Bennett and Hui Zhang. WF2Q: Worst-Case Fair Weighted Fair

Queueing. In Proceedings of IEEE INFOCOM '96, pages 120-128, March 1996.

66

[CG89] Nicholas Carriero and David Gelerllter. Linda in context. Communications of

the ACM, 32(4):444-458, 1989.

[CL02] Nicolas Christin and Jorg Liebeherr. Providillg Strong Service Guarantees with

a Scalable Service Arcllitecture. In Scalability and Traffic Control in IP

networks II. Proceedings of SPIE, volume 4868, pages 31-42, Boston, MA, 2002.

[Cru91a] Rene L. Cruz. A Calculus for Network Delay. I. Network Elements in Isolation.

IEEE Transactions on Information Theory, 37:114-131, 1991.

[Cru91b] Rene L. Cruz. A Calculus for Network Delay. II. Network Analysis. IEEE

Transactions on Information Theory, 37:132-141, 1991.

[DKS89] Alan Demers, Srillivasan Kesllav, and Scott Shenker. Analysis and Simulation

of a Fair Queueing Algorithm. In SIGCOMM '89: Symposium Proceedings on

Communications Architectures £3 Protocols, pages 1-12. ACM Press, 1989.

[EM99] Anwar Elwalid and Debasis Mitra. Design of Generalized Processor Sharing

Schedulers Which Statistically Multiplex Heterogeneous QoS Classes. In

INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer

and Communications Societies, volume 3, pages 1220-1230, 1999.

[Fer90] Domenico Ferrari. Client Requirements for Real-Time Communication Services.

IEEE Communications Magazine, 28(11):65-72, 1990.

[FP95] Norival R. Figueira and Joseph Pasquale. An Upper Bound on Delay for the

VirtualClock Service Discipline. IEEE/ACM Transactions on Networking,

3(4):399-408, 1995.

67

[FV90] Domenico Ferrari and Dinesh C. Verma. A Scheme for Real-Time Channel

Establishment in Wide-Area Networks. IEEE Journal on Selected Areas in

Communications, 8(3):368-379, 1990.

[GDB+03] Kjell Harald Gjermundr0d, Joanna Dionysiou, David Bakken, Carl Hauser, and

Anjan Bose. Flexible and Robust Status Dissemination Middleware for the

Electric Power Grid. Technical report, Washingtoll State University, 2003.

[Gje06] Kjell Harald Gjermundr0d. Flexible QoS-Managed Status Dissemination

Middleware Framework for the Electric Power Grid. PhD thesis, Washington

State University (WSU), 2006.

[GLV97] Pawan Goyal, Simon S. Lam, and Harrick M. Vine Determining End-to-End

Delay Bounds in Heterogeneous Networks. Multimedia Syst., 5(3):157-163,

1997.

[Go190] S. Jamaloddin Golestani. A Stop-and-Go Queueing Framework for Congestion

Management. In SIGCOMM '90: Proceedings of the ACM symposium on

Communications Architectures &J Protocols, pages 8-18, 1990.

[Go194] S. Jamaloddin Golestani. A Self-Clocked Fair Queueing Scheme for Broadband

Applications. In Proceedings of the IEEE INFOCOM '94, pages 636-646, June

1994.

[GV97] Pawan Goyal and Harrick M. Vine Generalized Guaranteed Rate Scheduling

Algorithms: A Framework. IEEE/ACM Transactions on Networking,

5(4):561-571, 1997.

[HBB05] Carl H. Hauser, David E. Bakkell, and Anjan Bose. A Failure to Communicate:

Next Generation Communication Requirements, Technologies, and Architecture

for the Electric Power Grid. IEEE Power and Energy Magazine, 3:47-55, 2005.

68

[HBD+07] Carl H. Hauser, David E. Bakken, Ioanna Dionysiou, K. Harald Gjermundr0d,

Venkata S. Irava, Joel Helkey, and Anjan Bose. Security, trust and QoS in

next-generation control and communication for large power systems.

International Journal of Critical Infrastructures, to appear 2007.

[HLP91] Jay M. Hyman, Aurel A. Lazar, and Giovanni Pacifici. Real-Time Scheduling

with Quality of Service Constraints. IEEE Journal of Selected Areas in

Communications, 9(7):1052-1063, 1991.

[Ira06] Venkata S. Irava. Low-cost delay-constrained multicast routing heuristics and

their evaluation. PhD thesis, Washington State University (WSU), 2006.

[Kes97] Srinivsan Keshav. An Engineering Approach to Computer Networking: ATM

Networks, the Internet, and the Telephone Network. Addison-Wesley

Professional, 1st edition, 1997.

[KKK90] Charles R. Kalmanek, Hemant Kanakia, and Srinivasan Keshav. Rate

Controlled Servers for Very High-Speed Networks. In Proceedings of the

Conference on Global Communications (GLOBECOM), December 1990.

[KR05] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down

Approach Featuring the Internet. Addison Wesley, third edition, 2005.

[KSF91] Dilip D. Kandlur, Kang G. Shin, and Domenico Ferrari. Real-Time

Communication in Multi-Hop Networks. In Proceedings of the 11th

International Conference on Distributed Computing Systems, Arlington, TX,

May 1991.

[Kur92] Jim Kurose. On computing per-session performance bounds in high-speed

multi-hop computer l1etworks. In SIGMETRICS '92/PERFORMANCE '92:

69

Proceedings of the 1992 ACM SIGMETRICS joint international conference on

Measurement and modeling of computer systems, pages 128-139, New York,

NY, USA, 1992. ACM Press.

[LPY01] Jorg Liebeherr, Stephen D. Patek, and Erhan Yilmaz. Thadeoffs in Designing

Networks with End-to-End Statistical QoS Guarantees. Technical Report

CS-2001-11, University of Virginia, Department of Computer Science, February

2001.

[LX95] Simon S. Lam and Geoffrey G. Xie. Burst Scheduling: Architecture and

Algorithm for Switching Packet Video. In Proceedings of INFOCOM '95, pages

940-950, 1995.

[MA99] John Mountford and Ricardo Austria. Keeping the lights on [power system

reliability]. IEEE Spectrum, 36:34-39, 1999.

[Mok83] Aloysius K. Mok. Fundamental design problems of distributed systems for the

hard real-time environment. PhD thesis, Massachusetts Institute of Technology

(MIT), 1983.

[OPSS93] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The informatioll bus:

an architecture for extensible distributed systems. In SOSP '93: Proceedings of

the fourteenth A CM symposium on Operating Systems principles, pages 58-68.

ACM Press, 1993.

[Par92] Abhay K. Parekh. A Generalized Processor Sharing Approach to Flow Control

in Integrated Services Networks. PhD thesis, Massachusetts Institute of

Technology, Dept. of Electrical Engineering and Computer Science, 1992.

70

[PG92] Abhay K. Parekh and Robert G. Gallager. A Generalized Processor Sharing

Approach to Flow Control in Integrated Services Networks - The Single Node

Case. In Proceedings of the INFOCOM '92, pages 915-924, 1992.

[PG93] Abhay K. Parekh and Robert G. Gallager. A Generalized Processor Sharing

Approach to Flow COlltrol in Integrated Services Networks: The Multiple Node

Case. In Proceedings of the INFOCOM '93, pages 521-530, 1993.

[Puz02] Rita Puzmanova. Routing and Switching: Time of Convergence?

Addison-Wesley, 2002.

[RRR98] Martin Reisslein, Keith W. Ross, and Srinivas Rajagopal. Guaranteeing

Statistical QoS to Regulated 'fraffic: The Multiple Node Case. In IEEE

Conference on Decision and Control, 1998, volume 1, pages 531-538, 1998.

[RRR99] Martin Reisslein, Keith W. Ross, and Srinivas Rajagopal. Guaranteeing

Statistical QoS to Regulated 'fraffic: The Single Node Case. In INFOCOM '99.

Eighteenth Annual Joint Conference of the IEEE Computer and

Communications Societies, volulne 3, pages 1061-1072, 1999.

[RRR02] Martin Reisslein, Keith W. Ross, and Srinivas Rajagopal. A framework for

guaranteeing statistical qos. IEEE/ACM Trans. Netw., 10(1):27-42, 2002.

[SC99] Vijay Sivaraman and Fabio M. Chiussi. Statistical Analysis of Delay Bound

Violations at an Earliest Deadline First (EDF) Scheduler. Performance

Evaluation, 36-37(1-4):457-470, 1999.

[SLDZ97] Anirudh Sahoo, Chengzhi Li, Badari Devalla, and Wei Zhao. Design and

Implementation of NetEx: A Toolkit for Delay Guaranteed Communications. In

Proceedings of Military Communications Conference (MIL COM), November

1997.

71

[SPG97] Scott Shenker, Craig Partridge, and Roch Guerin. Specification of Guaranteed

Quality of Service. IETF RFC 2212, September 1997.

[Sta88] John A. Stankovic. Misconceptions About Real-Time Computing: A Serious

Problem for Next-Generation Systems. Computer, 21(10):10-19, 1988.

[TBVB05] Kevin Tomsovic, David Bakken, Vaithianathan Venkatasubramanian, and

Anjan Bose. Designing the Next Generation of Real-Time Control,

Communication and Computations for Large Power Systems. In Proceedings of

the IEEE (Special Issue on Energy Infrastructure Systems), volume 93, pages

965-979, 2005.

[VZF91] Dinesh Verma, Hui Zhang, and Domenico Ferrari. Guaranteeing Delay Jitter

Bounds in Packet Switching Networks. In Proceedings of TriComm '91, pages

35-46, Chapel Hill, North Carolina, April 1991.

[Wro97a] John Wroclawski. Specification of the Controlled-Load Network Element

Service. IETF RFC 2211, September 1997.

[Wro97b] John Wroclawski. The Use of RSVP with IETF Integrated Services. IETF RFC

2210, September 1997.

[Zha90]

[Zha95]

[ZK91]

Lixia Zhang. Virtual Clock: ANew Thaffic Control Algorithm for

Packet-Switched Networks. SIGCOMM ACM Sumposium, pages 19-29, 1990.

Hui Zhang. Service Disciplines for Guaranteed Performance Service in

Packet-Switching Networks. In IEEE, volume 83, pages 1374-1396, Oct 1995.

Hui Zhang and Srinivasan Keshav. Comparison of Rate-Based Service

Disciplines. In SIGCOMM, pages 113-121, 1991.

72

[ZK96]

[ZS94]

Hui Zhang and Edward W. Knightly. RCSP and Stop-and-Go: A Comparison

of Two Non-Work-Conserving Disciplines for Supporting Multimedia

Communication. Multimedia Systems, 4(6):346-356, 1996.

Qin Zheng and Kang G. Shin. On the Ability of Establishing Real-Time

Channels in Point-to-Point Packet-Switched Networks. IEEE Transactions on

Communications, pages 1096-1105, March 1994.

73

Appendix A

Actual sleep time

In modifying the GridStat prototype, to obtain a 3ms delay on the output link of

status router il, the Java Thread sleep() method was used to cause the current thread to

suspend execution for a specified 3ms. However, the TIlread sleep() times are not

guaranteed to be precise, therefore it cannot be assurned that invoking sleep() will suspend

the thread for precisely the time period specified.

Actual sleep times for sleep(3)

..:

80

70

CI:l

60a,)
u
~

~
:3 50uu
0

4-l
0 40a,)
OJ)
~

~
30<U

U
~
a,)

~

20

10

r-I-f
~

f-t-,0
2 2.5 3 3.5 4 4.5 5

time (ms)

5.5 6 6.5

Figure A.I: Actual sleep times for requested sleep(3) on SR il

This experiment was run to cllaracterize the actual sleep times returned by sleep(3),

a requested 3 millisecond sleep. Figure A.I shows a graph of tIle actual sleep times

obtained. The time duration for data logging was 30 Ininutes and all Thread.sleep()

method calls were recorded during that time period.

74

I IMin IMax IMean I~::~:~~~ I
I Actual recorded sleep times (ms) I 2.0 I 6.5 I 3.84 I 0.19 I

Table A.I: Actual sleep times for requested 3ms delay

Results: See table A.I for a summary of the results. The actual sleep times are

profiled in table A.I. The mode was 3.9ms (83.62%). Total number of sleep() method calls

during the data logging time was ~ 456,000. % Appendix

75

Appendix B

SR i1 local delay bound derivation

The local delay bound derivation for SR il was based on ref system experimental

data without 3ms delay of packet departures from SR il minus packet arrivals at SR il.

First, the 3ms delay on the output link of SR i l was removed. Then, the reference system

was run both without and with the 40-40 load system for 45 minutes each (15 minutes for

settle down time and then 30 minutes duration for data recording), see table B.1. Each test

run had a total of 40,394 reference packets travel through the status router.

The packet that was delayed the most without the load system had a 2.9ms delay.

The packet that was delayed the most with the load system had a 3.3ms delay. The

maximum of the two (3.3ms) was rounded up to the nearest Inillisecond. Therefore, the

experimentally derived local delay bound for SR il was determinded to be 4 ms.

The data distribution exhibits a long tail both with and without the load system.

Consequently, the 4ms local delay bound represents an explicit worst case as greater than

98% of the packets are handled in less thaI1 O.2ms.

76

I time (ms) Iwithout 40-40 load Iwith 40-40 load I
0.0 79.1578% 95.0488%
0.1 19.0127% 4.4833%
0.2 1.5844% 0.2451%
0.3 0.0421% 0.0124%
0.4 0.0173% 0.0149%
0.5 0.1139% 0.0891%
0.6 0.0124% 0.0272%
0.7 0.0000% 0.0050%
0.8 0.0050% 0.0000%
0.9 0.0050% 0.0099%
1.0 0.0025% 0.0074%
1.1 0.0000% 0.0000%
1.2 0.0000% 0.0000%
1.3 0.0000% 0.0000%
1.4 0.0000% 0.0000%
1.5 0.0000% 0.0000%
1.6 0.0000% 0.0000%
1.7 0.0000% 0.0000%
1.8 0.0000% 0.0000%
1.9 0.0000% 0.0000%
2.0 0.0000% 0.0000%
2.1 0.0000% 0.0000%
2.2 0.0000% 0.0000%
2.3 0.0000% 0.0000%
2.4 0.0000% 0.0000%
2.5 0.0000% 0.0000%
2.6 0.0000% 0.0000%
2.7 0.0099% 0.0025%
2.8 0.0297% 0.0198%
2.9 0.0074% 0.0198%
3.0 0.0000% 0.0124%
3.1 0.0000% 0.0000%
3.2 0.0000% 0.0000%
3.3 0.0000% 0.0025%
3.4 0.0000% 0.0000%
3.5 0.0000% 0.0000%

Table B.I: SR i1 Local delay without 3ms delay

77

	Title Page
	Acknowledgement
	Publications
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Related Work
	Chapter 4: Conceptual Structure for Delay Guarantees
	Chapter 5: Implementation
	Chapter 6: Experimental Evaluation
	Chapter 7: Conclusion
	Bibliography
	Appendix A: Actual sleep time
	Appendix B: SR i1 local delay bound derivation

