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ADAPTIVE GRIDSTAT INFORMATION FLOW MECHANISMS AND MANAGEMENT

FOR POWER GRID CONTINGENCIES

Abstract

by Stian Fedje Abelsen, M.S.
Washington State University

August 2007

Chair: David E. Bakken

GridStat is designed to address the need for a flexible and robust communication system in the

electrical power grid, and provides a specialization of thepublisher-subscriber paradigm. GridStat

middleware enables reliable delivery of data to any point through a network of forwarding

engines called status routers, manages network resources and provides QoS (Quality of Service)

for data streams. Furthermore, GridStat hides the details of lower-level network capabilities from

application developers in order to enable the communication system to be deployed across

different network technologies, operating systems, programming languages and device types.

GridStat is divided into two planes; the management plane and the data plane. The management

plane consists of a hierarchy of QoS brokers which collectively manage resources (status router

network) and subscriptions in the data plane. The mode change mechanism is a feature

introduced by GridStat, and allows quick adaptation of subscription flows.

A mode contains the necessary forwarding rules for a set of subscriptions and allows the

status router network to quickly switch between bundles of subscriptions; an action called amode

change. The process of establishing individual subscriptions is aresource-intensive operation in

which the deallocation and allocation of subscription bundles in run-time is expensive and may

result in unsatisfactory subscription delays. GridStat enables subscription bundles to be allocated

and pre-loaded into routing tables whereoperating modescontrol which routing tables the status

v



router network will utilize. Previous GridStat versions had limited mode change capabilities.

Mode switches were limited to a single administrative domain (GridStatcloud) and the mode

namespace was shared between QoS brokers in the management plane. Additionally, the QoS

brokers did not support the appropriate mechanisms to defineand use modes in their respective

administrative domains. The global and hierarchical mode change mechanisms and management

implementation of this thesis supports these mechanisms and introduces the notion of global and

hierarchical modes.

This work enables the electrical power grid industry to quickly adapt information flow streams

to power grid contingencies, and provides control center operators the means to better understand

and quickly prepare responses to such threats.
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CHAPTER ONE

INTRODUCTION

The electrical power grid is highly dependent on data monitoring and control capabilities in order to

better understand and manage power transmissions over a highly complex network of transmission

lines and substations. SCADA (Supervisory Control and DataAccess) has in the last 40 years

served as the electrical power grid’s communication systemand incorporates the requirements and

network technologies back to when it was developed. The requirements for communication in

the electrical power grid are changing. Growing concerns about terrorist attacks, changes in the

power flow structure after the deregulation in 1996, new usesof technologies (IntelliGrid [2]) and

an increased overall load to capacity ratio of the transportation line system demand a more flexible

and adaptive communication network. The SCADA communication system features a centralized

star-topology, point to point communication, lack of multicast, severe bandwidth constraints and

proprietary protocols which are not sufficient to meet the requirements of today’s grid. [4] and [1]

discuss the limitations of SCADA in more detail.

GridStat is designed to address the need for a flexible and robust communication system in the

electrical power grid, and provides a specialization of thepublisher-subscriber paradigm. Grid-

Stat middleware manages network resources, enables reliable delivery of data to any point and

provides QoS (Quality of Service) for data streams. GridStat hides the details of lower-level net-

work capabilities from application developers in order to enable the communication system to be

deployed across different network technologies, operating systems, programming languages and

device types. GridStat is divided into two planes; themanagement planeand thedata plane. The

management plane consists of a hierarchy of QoS brokers which collectively manage resources and

subscriptions in the data plane. The data plane is a virtual message bus and lets publishers provide

data to the network and enables subscribers to establish subscriptions to status data through a status
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router network. The use of QoS, on a per-subscription basis,allows subscribers to specify mul-

tiple redundant delivery paths (spatial redundancy), subscription interval and delay. Furthermore,

GridStat provides status data delivery to multiple recipients at different rates through the multicast

property and the ability to control and switch routing tables in the status router network in run-time

through the use of modes.

A mode contains the necessary forwarding rules for a set of subscriptions and allows the status

router network to quickly switch between bundles of subscriptions; an action called amode change.

The process of establishing individual subscriptions is a resource-intensive operation in which the

deallocation and allocation of subscription bundles at run-time is expensive and may result in

unsatisfactory subscription delays. GridStat enables subscription bundles to be allocated and pre-

loaded into the status routers’ routing tables whereoperating modescontrol which routing tables

the status router network will utilize. Depending on the GridStat deployment, status routers can

utilize several routing tables corresponding to the operating modes, while inactive routing tables

lie dormant.

Previous GridStat versions had limited mode change capabilities. Mode switches were limited

to a single administrative domain (GridStatcloud) and the mode namespace was shared between

QoS brokers in the management plane. Additionally, the QoS brokers did not support the ap-

propriate mechanisms to define and use modes in a hierarchical or global context. The global

and hierarchical mode change mechanism and management implementation of this thesis supports

these mechanisms and introduces the notion of global and hierarchical modes. Global modes are

defined and used by the top-level QoS broker in the managementhierarchy and affect the entire

status router network, whereas hierarchical modes are managed by interior QoS brokers and affect

specific regions of the status router network, subject to theadministrative domains of the interior

QoS brokers that manage them.

The mode change mechanism will help utility companies (control centers), regional control

centers, ISOs and nation-wide monitoring centers in pre-contingency planning for communication

2



needs and to switch subscription bundles when contingencies do occur in the electrical power grid.

Furthermore, modes enable data load shedding in the communications infrastructure in a similar

manner as the electrical power grid utilizes power load shedding. For example, subscribers could

specify two QoS sets; desired QoS and least desirable QoS, and switch between them when the

network is congested.

The research contributions of this thesis are:

• Global and hierarchical modes: QoS brokers define and use modes to adapt communication

in their respective administrative domains.

• Multiple simultaneously active routing tables in the data plane and the ability to switch

between routing tables at run-time.

• The design and implementation of two mode change algorithmswith different tradeoffs.

• An experimental evaluation which compares the mode change algorithms in terms of per-

formance, resource usage and variance (time) in the presence of various temporal network

conditions.

The remainder of this thesis is organized as follows: The GridStat framework is presented in

Chapter 2. An explanation of modes, mode change operations and related mechanisms are pre-

sented in Chapter 3. The design of the hierarchical mode change algorithm is described in Chapter

4. The design of the flooding mode change algorithm is presented in Chapter 5. Experimental

results from both mode change algorithms are presented in Chapter 6, followed by related work in

Chapter 7, and conclusions and future work in Chapter 8.
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CHAPTER TWO

STATUS DISSEMINATION AND GRIDSTAT

This chapter gives an overview of the GridStat architecture, a detailed description of the various

GridStat applications and interaction models. More detailed information about GridStat and other

baseline mechanisms can be found in [3] and [1].

2.1 GridStat Architecture

Figure 2.1: Status dissemination middleware.
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GridStat is a publisher-subscriber framework that targetsapplication domains where the ma-

jority of data is made available at periodic time intervals.GridStat is mainly designed to serve as

a flexible and robust communication system in the electricalpower grid, but has other applicable

domains where the publisher-subscriber paradigm can be used. Figure 2.1 shows a small scale

GridStat deployment subdivided in a management plane and a data plane. The management plane

consists ofQoS brokermodules that collectively control and manage resources in the data plane.

The data plane is populated bystatus routers, publishersandsubscribers, where publishers pro-

vide data and subscribers can subscribe to data. The management hierarchy handles subscription

requests and establishes paths from the publisher to the subscriber through a sequence of status

routers.

2.1.1 Management Plane

The lowest level of the management plane consists ofleaf QoS brokers. A leaf QoS broker man-

ages and provides services to a set of status routers, publishers and subscribers. The leaf QoS

broker manages a flat collection of status routers, called acloud, where the leaf QoS broker has

complete control over all available resources and the corresponding resource usage. The resources

include event channels, status routers, publishers and subscribers. Event channels serve as com-

munication links between status routers, in which leaf QoS brokers must control and make sure

no allocated subscriptions exceed an event channel’s bandwidth constraints. Additionally, the leaf

QoS brokers must ensure that routing tables and computational resources are not overloaded in the

status routers. The main responsibility of a leaf QoS brokeris to control the allocation or deallo-

cation of subscription paths between publisher and subscriber pairs in its cloud, and to ensure that

the allocated path satisfies the QoS requirements specified by the subscriber.

Interior QoS brokersdenote all non-leaf QoS brokers in the managements hierarchy. Interior

QoS brokers manage multiple clouds and offer services to lower-level QoS brokers, and whose

main responsibility is to allocate and deallocate inter-cloud subscriptions.
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There is currently no limit on how many management levels themanagement plane can con-

sist of. In practice, even at a nation-wide deployment in theelectrical power grid or other critical

infrastructures, there would likely be no more than 6-10 levels. An interior QoS broker has an

abstract view on the details and population of the individual clouds, while lower-level QoS bro-

kers, and especially leaf QoS brokers, maintain and controlmore state information on the details

and available resources in the clouds. Interior QoS brokersrequire more computational resources

while lower-level QoS brokers are mostly responsible for processing simple subscription alloca-

tion and deallocation requests that affect a small scope of the data plane, and therefore require less

computational resources.

A subscription request initiated by a subscriber is first delivered to its leaf QoS broker, and then

forwarded up the management hierarchy until it reaches the interior QoS broker which has both

the publisher and subscriber in its hierarchical scope; theownerof the subscription. The owner

executes its routing algorithm that first verifies whether there exists a path from the publisher to

the subscriber. The clouds and inter-cloud event channels gathered from the routing algorithm are

delegated to its children QoS brokers, which collectively process the next recursive step of the

allocation algorithm. The distributed recursive algorithm continues until it reaches all the leaf QoS

brokers, which inform the involved status routers to populate their routing tables with the necessary

forwarding data for the inter-cloud path to be established.A local subscription request, with the

publisher and subscriber in the same cloud, is delivered to the leaf QoS broker which handles the

subscription request alone. From the perspective of a leaf QoS broker, a subscription request might

come from a subscriber in its cloud or from its parent QoS broker. In the latter case, an inter-cloud

subscription path is to be established, e.g., a subscription path that involves multiple clouds.

2.1.2 Data Plane

The data plane is a term used to describe a virtual message buswhere subscription data flows

between publishers and subscribers. The virtual message bus consists of status routers and event
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channels, whose main purpose is to forward status events from publishers to the subscriber appli-

cations that requested the data. A status router is in effecta router with additional functionality to

provide forwarding of status events when subscribed to and at the right rate (rate filtering). The

management plane controls the content of the routing tablesin the status routers, and leaf QoS

brokers inform status routers to add, remove or modify the content corresponding to a subscription

allocation or deallocation request. In order for a status router to communicate with the management

plane, it has a connection to the leaf QoS broker that controls it.

Publishers and subscribers interact with the management plane through the virtual message

bus. A publisher or subscriber registers with an edge statusrouter which serves as a proxy to the

management plane and as an entry point to the virtual messagebus. The status router establishes

an event channel to its publisher or subscriber, which enables the publisher to provide data to the

data plane or a subscriber to retrieve information off of thedata plane to.

There are three types of status routers in GridStat. The firsttype is theedge status router, which

serves as a connection point and proxy for publishers and subscribers. Additionally, it forwards

events like any other status router. The second type is theinternal status router, which simply

forwards events and is transparent to publishers and subscribers. The third status router type is

theborder status routerwhich serves as a cloud’s entry and exit point. Interior QoS brokers use

the inter-cloud event channel capacity to accommodate and allocate inter-cloud subscription paths,

where border status routers have an important role in the overall subscription allocation algorithm.

Leaf QoS brokers treat border and internal status routers equally in terms of allocating resources

within a cloud, and are therefore transparent to the roles ofthe border status router in an inter-cloud

subscription allocation.

The management plane manages and controls the resources provided by all status routers, event

channels and active subscriptions in the data plane. Since resources are monitored and controlled,

the latency from the publisher and the subscriber can be bound. When registering a subscription,

subscribers associate a set of QoS parameters with the subscription request, and among these are
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a subscription interval, a latency request and redundancy.The management hierarchy attempts to

find a path between the publisher and subscriber that is boundby the latency request parameter.

If no such path exists, the subscription request is rejected. Additionally, if the subscription redun-

dancy parameter is set, the management hierarchy attempts to find more than one path between the

publisher and subscriber. Subscription traffic is therefore bound by a specified delay and is able

to flow on several disjoint paths towards the subscriber, providing timeliness and reliability QoS

to subscriber applications. The necessary algorithms to establish disjoint paths in the data plane is

still under investigation and is not the focus of this thesis. More information can be found in [5].

2.1.3 Publisher Application and API

A publisher registers with GridStat through its edge statusrouter, which functions as a proxy for

communication with the management hierarchy. A publisher must first register the status variable

and the publication interval with its leaf QoS broker through the edge status router. If the leaf QoS

broker accepts the publication request, the publisher is permitted to publish status events at the

given publication interval.

Publishers provide status information fromstatus variablesthat change over time, and publish

snapshots (events) of these at specific time intervals to their publisher API. Events that are sent out

on the virtual message bus are calledstatus events. The publisher API provides a push interface to

the overlying publisher application. Whenever the overlying application uses the publisher API to

push an event, the API blocks the call until the event is forwarded to the edge status router. The API

supports many of the native Java types as well as user-definedtype containers, and marshalls the

event and produces a status event, which is sent out on the underlying communication layer. The

API returns an error back to the overlying application if some communication error was detected.

2.1.4 Subscriber Application and API

A subscriber registers with GridStat through its edge status router, which functions as a proxy

for communication with the management hierarchy. Subscribers can subscribe tostatus variables
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that have been registered in the management hierarchy by creating a subscription request with the

desired status variable name, publisher name and a set of QoSparameters. The QoS parameters

include the number of disjoint paths between the publisher and subscriber, a latency request and a

subscription interval. The management hierarchy checks ifthe publisher and status variable exist

and sets up one or more paths between the publisher and the subscriber that satisfy the given QoS

parameters. Once the paths have been established the subscriber is able to access the subscribed

status events through a specificinteraction model. The subscriber API provides both a pull and

push interaction model the overlying subscriber application can use to retrieve subscribed status

events. Additionally, a QoS push interaction model can be used by the subscriber application to be

notified whenever the timeliness requirements for any of itssubscriptions are violated.

• Push (Every subscribed status event is delivered to the subscriber application): The

subscriber application passes a notification object to the subscriber API which is used to

notify the overlying application when a subscribed status event has been received and is

ready to be accessed.

• Pull (The subscriber application retrieves the last statusevent when needed):The sub-

scriber application passes a locally instantiated cache object of the variable type it subscribes

to to the subscriber API. The read-only cache object will always contain the last seen status

event. The subscriber application can access the object whenever it requires access to the

subscribed variable.

• QoS Push (signals QoS violations):The QoS push interaction model can be used in com-

bination with either the push or pull interaction model. Thesubscriber application passes a

notification object to the subscriber API which is used to notify the overlying application if

the requested QoS for the subscription is violated.
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CHAPTER THREE

MODE CHANGE MECHANISMS AND MANAGEMENT

This chapter provides the foundation for global and hierarchical modes in order to fully understand

the hierarchical and flooding mode change algorithms. More specifically, this chapter discusses

mode terminology, mode definitions and the propagation and use of modes in the management

hierarchy and in the data plane. Further, an overview of the RPC mechanism and the support for

multiple active routing tables in the status router networkis presented.

The research outlined in the remainder of this thesis is partof GridStat v4, which is a continu-

ation of GridStat v3[3].

3.1 Assumptions and Limitations

The following assumptions have been made for global and hierarchical mode change mechanisms

and management in GridStat:

• Replicated QoS brokers- Simplifies the recovery mechanism (Section 3.6) in which itdoes

not need to circumvent failed QoS brokers. An overview regarding future work related to

QoS broker replication is provided in Section 8.2.6.

• No Byzantine failures - Status routers and QoS brokers can trust the correct behavior of

the mode change coordinator and other mediators. More details on Byzantine failures is

provided in Section 8.2.10.

• Synchronized clocks across all GridStat entities- The flooding mode change algorithm

(Chapter 5) relies on synchronized clocks in order to prevent subscription flows to temporar-

ily break. More details on clock synchronization is provided in Section 8.2.9.

• GridStat initialization - The current implementation assumes that GridStat is fullyinitial-

ized and ready to execute mode change operations.

10



3.2 Overview and Mode Terminology

Explaining a mode requires some insight into how a mode is defined and used in both the manage-

ment plane and the data plane. Amode definitionconsists of an ID, a name and a set of data plane

subscriptions, and is owned by a single QoS broker in the management hierarchy.

A mode definition can either bestaticor dynamic. When dynamic mode definitions are used,

subscribers specify what modes their subscriptions will operate in, and QoS brokers can reject

subscriptions if a subscription can potentially exhaust resources in the data plane. If a subscription

request is valid, it is added to all the mode definitions it wasset to operate in. Alternatively, a

static mode definition contains a set of subscriptions that will be utilized when the mode is active.

Subscription requests made in run-time can simply be rejected if they do not belong to the subscrip-

tions listed in the mode definition(s). A static mode definition scheme is likely the most suitable

scheme for the power grid industry, where a strict control environment managing subscriptions

through authentication is needed. The current implementation of GridStat only supports dynamic

mode definitions, but could be extended to support the requirements for a static mode definition

scheme. In that case, the management hierarchy would need topre-load information on subscrip-

tion requests, e.g., subscriber credentials, publicationvalue and QoS parameters. Additionally, the

management hierarchy must support the appropriate mechanisms to allow subscription requests

to be added, modified or even removed in run-time, for examplethrough XML. Finally, live sub-

scription requests (from subscribers) are matched againstthe pre-loaded subscription requests in

the management hierarchy, and possibly rejected if the subscriber is unable to provide the required

credentials.

Modes defined and owned by a QoS broker constitute amode set, and exactly one of the modes

in a mode set is active at any time. This means that every QoS broker always operates in one mode,

or in adefault modeif no modes are defined. A QoS broker that operates in a mode implies that

all subscriptions contained in the subscription set of thatmode should be active in the data plane.
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For example, envision a leaf QoS broker that controls a set ofstatus routers, a publisher and a

subscriber. The leaf QoS broker has defined three modes, Green, Yellow and Red, and is currently

operating in the Green mode. The publisher is configured to publish some data to the network, and

the subscriber wishes to subscribe to that set of data in modeGreen and Yellow. In the Red mode,

the published data is not forwarded through the data plane since the subscriber is not interested in

the information. More specifically, if the leaf QoS broker was to change its operating mode from

Green to Red, the subscriber would not see any data from the publisher as it otherwise would have

in Green and Yellow.

Status routers use modes to route status events that belong to the currently active set of operat-

ing modes. For example, a publisher is registered to publisha status event once every second. The

publisher makes this status event available to the network every second, and if no subscribers are

interested, the status event is discarded. Otherwise, the status event is forwarded along a path of

status routers towards the subscriber application. A status router will only forward a status event if

it belongs to a subscription that is to be utilized in at leastone of the modes the status routers are

currently operating in. Since every QoS broker in the management hierarchy always operates in a

mode, all status routers operate in as many modes as there arelevels in the management hierarchy

above them. For instance, withx levels in the management hierarchy, a status router hasx QoS

broker ancestors (ancestor scope), and will therefore always operate inx modes simultaneously.

This implication on the status router network enables coarse resource provisioning between mode

sets, e.g. a top level QoS broker controls 40% of the available resources in its hierarchical scope

while the QoS brokers beneath it must further provision the remaining resources between them.

Status routers have been extended to support and manage multiple routing tables (see Section

3.4). Each status router maintains a separate routing tablefor every mode defined in its ancestor

scope. For example, in a GridStat configuration with a management hierarchy consisting of three

levels, every status router will always operate in three modes, and therefore use three separate

routing tables for routing. However, status routers might have tens or even hundreds of routing
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tables pre-loaded, either in memory or on disk, but only the routing tables that correspond to the

active set of modes are used.

Subscribers use operating modes to determine what information is to be delivered to the user

application. A subscriber retrieves a set of operating modes from its edge status router when it

connects to the network or when a mode change is in progress. The subscriber delivers information

to the user application only if the information belongs to one of the operating modes. There

are exceptions, such as status alerts, which are delivered to the user application irrespective of

operating modes. Publishers, on the other hand, do not have any notion of modes. The reason for

this is that publishers only offer status events at certain time intervals irrespective of modes to the

status router network. If there are no subscriptions to a published status event in the current set of

operating modes, the edge status router will discard it.

3.2.1 Mode Structures

TheModeInfo structure is used in all communication where some information about modes is

required. Subscribers use theModeInfo structure to define in which modes their subscriptions

should be utilized. All QoS brokers use theModeInfo structure in mode change operations

and leaf QoS brokers inform status routers in which modes they should operate in when they

(re)connect to GridStat. The following list describes the purpose of each variable in theModeInfo

structure:

• modes: The sequence of mode identifiers is mainly used by leaf QoS broker to inform

recently connected status routers which modes to operate in. The sequence is otherwise

used wherever there is a need to deliver sets of operating modes between GridStat entities or

within the entities themselves.

• value: Thevalue variable is used to denote the new mode to switch to, and is used by

mode change operations. For example,value is the mode identifier of B, if a mode change

operation is initiated to change from mode A to B.
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• oldValue: TheoldValue variable is used to denote the current mode to switch from, and

is used by mode change operations. For example,oldValue is the mode identifier of A, if

a mode change operation is initiated to change from mode A to B.

• QBName: QBName is the name of the coordinator in a mode change operation.

• timestamp: Thetimestamp variable is the timestamp (in ms) at which status routers will

change mode, and is used by the flooding mode change algorithm.

• modeAction: The modeAction variable denotes which phase of the hierarchical mode

change algorithm theModeInfo structure represents.

• level: Thelevel variable denotes the location of the coordinator in the management hier-

archy, and is used by both mode change algorithms.

• index: Theindex variable is used internally in the routing tables to enable easy access to

the subscription intervals in different modes, and is primarily used when subscriptions are

allocated.

• changeID: ThechangeID variable is a unique identifier within the hierarchical scope of

the coordinator and is associated with each mode change operation. The variable enables

quick access to storedModeInfo structures throughHashtable and other derivations.

• created: Thecreated variable is the timestamp of the initiation of a mode change op-

eration, and is used by all QoS brokers and status routers to filter out redundant copies or

previously executed mode change operations.

3.2.2 Propagation of Modes

All QoS brokers read information on their role in the management hierarchy from configuration

files. Currently, QoS brokers read the mode definitions defined in their respective configuration

14



files and store the modes in aModeContainer. The ModeContainer is responsible for

maintaining the mode set of a QoS broker and contains an arrayof Mode instances. EachMode

represents a single mode and holds the name and integer representation (mode identifier) of that

mode.

The leaf QoS broker requires additional state information on the modes that are defined in its

ancestor scope. The leaf QoS broker requests all the modes that are defined in its ancestor scope

by contacting its parent QoS broker, which recursively repeats the process until the request reaches

the root QoS broker. When the request returns, interior QoS brokers add their respective mode

identifiers and operating mode. The leaf QoS broker stores the information returned from the

request in an array ofModeContainers, one for each ancestor QoS broker. The ancestor mode

set is used to inform status routers about all defined modes and operating modes they will operate

in when they connect, or fail and reconnect, to GridStat. Theleaf QoS broker is responsible for

updating the ancestor mode set during mode change operations to reflect the operating modes of

its parent QoS brokers. In this way, the leaf QoS broker is able to offer a consistent set of operating

modes to status routers that might fail and reconnect to GridStat.

The subscriber receives all modes that are defined in its ancestor scope from and after it has

registered with its edge status router. The set of modes allows the subscriber application to se-

lect in what modes a subscription will operate in and are sentwith subscription requests to the

management hierarchy. Additionally, the subscriber is informed about upcoming mode change

operations from its edge status router and always knows which modes are currently active in its

ancestor scope.

3.3 Mode Change Operations

A QoS broker can through modes quickly switch routing tablesin the data plane. This enables

the management plane to decide which status events are allowed to be forwarded through the data

plane and seen by subscriber applications. Figure 3.1 showshow operating modes are used in both
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Figure 3.1: Publisher-subscriber interaction in GridStat.

the management plane and in the data plane. Each QoS broker has its own mode set and operates

in a mode. All status routers in cloud B operate in Green and Stable as the QoS brokers in their

ancestor scope, QoS broker A and B, operate in Green and Stable, respectively. The inter-cloud

subscription can operate in all of QoS broker A’s three modesGreen, Yellow and Red since those

modes control and manage routing tables in both clouds. Notethat the inter-cloud subscription

is unaffected by whichever modes leaf QoS broker B and C operate in. If the subscription is

configured to operate in mode Yellow only, status router B1 does not forward status events to B2

as it is currently operating in mode Green’s routing table which contains no forwarding information

for the subscription.

A QoS broker can only change between modes that are defined in its mode set and acts as a
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coordinatorin a mode change operation. A mode change operation that isinitiated by a coordina-

tor affects all the status routers and QoS brokers in its hierarchical scope. The main purpose of a

mode change operation is to inform all status routers in the hierarchical scope of the coordinator

to switch to the routing table associated with the operation. The number of status routers involved

in a mode change operation varies with the population of status routers in the affected clouds and

at what level in the management hierarchy the mode change operation was initiated from. Local

mode change operations (within a cloud) might involve tens or hundreds of status routers, while a

mode change operation initiated at an interior QoS broker can potentially involve several thousand

status routers. One of the major challenges is to ensure thatall the status routers involved in a

mode change operation receive and switch to the corresponding routing table.

A mode change operation that switches the routing tables in all of the involved status routersat

the expected timeis called aconsistentmode change operation. Otherwise the operation is called

an inconsistentmode change operation, and additionalrecovery mechanisms(see Section 3.6)

must be utilized in order to restore the operating modes on the status routers that are considered

inconsistent. An inconsistent mode change operation will most likely result in some subscribers

not being able to see subscribed data, as they otherwise would have after a consistent mode change

operation. However, since subscription traffic is rate-based, the loss of some status events during

a mode change operation is tolerable as the next status update value for a particular subscription is

due to arrive within a short time period.

The following list describes the primary factors that mightlead to an inconsistent mode change

operation:

• Link failure and QoS broker failure in the management plane: In order for a mode

change operation to reach the involved status routers, the operation has to be forwarded

through the management hierarchy down towards the leaf QoS brokers. If a link failure or

QoS broker failure prevents the operation to be forwarded toa QoS broker child, the child
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and all the QoS brokers and status routers in its hierarchical scope will not see the operation.

• Link failure and status router failure in the data plane: The leaf QoS brokers are respon-

sible for contacting all the status routers in their hierarchical scope. When a status router is

considered offline due to a link failure or a status router failure, the leaf QoS broker will not

be able to forward the mode change operation to that status router. However, a link failure

might not necessarily mean that a status router is offline.

• Packet loss:Packet loss might prevent a mode change operation to reach its desired des-

tination. The management plane controls and manages the overall resources available in

GridStat, and rejects subscription requests that exceed resources in the status router network.

Thus, the management plane protects GridStat from resourceoverload.

• Delayed mode change operations: Some status routers might receive a mode change

operation later than expected due to one or more factors described above. In that case,

the mode change operation is deemed inconsistent until all status routers execute the mode

change.

Two mode change algorithms have been implemented in GridStat v4. The hierarchical mode

change algorithmuses the management hierarchy to disseminate mode change operations and

gather acknowledgements from status routers and QoS brokers. The hierarchical mode change

algorithm enables all subscriptions registered to operatein the coordinator’scurrentandnewmode

to flow during the entire mode change. Thus, subscribers withsubscriptions registered in both the

current and new mode continue to receive status events during hierarchical mode change operations

that switches between those modes. The hierarchical mode change algorithm is discussed in more

detail in Chapter 4.

Theflooding mode change algorithmdisseminates mode change operations directly out on the

data plane by using the limited flooding mechanism in GridStat. When a status router receives
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the operation it forwards the operation on all outgoing event channels, except the event channel

from which it received the operation. As status routers may receive multiple copies of the same

operation, redundant copies are discarded. Status routersare informed to change from the current

mode to the new mode at some future timestamp. The flooding mode change algorithm is discussed

in more detail in Chapter 5.

The two mode change algorithms provide different tradeoffs. The hierarchical mode change

algorithm is a resource intensive algorithm which is split into five message phases in order to

enabletransferredsubscriptions present in both modes in a mode change, e.g., from Green to

Yellow, to flow. A message phase means the coordinator has to initiate and and propagate a mode

change phase (message) down to all status routers in its hierarchical scope, and the next phase

cannot be initiated until the previous phase has completed.The flooding mode change algorithm,

on the other hand, is a best-effort algorithm, and disseminates mode change operations directly out

on the data plane where status routers are informed to switchat a predetermined future time. The

flooding mode change algorithm is efficient, in terms of resource usage and performance, but does

not guarantee any subscriptions to flow during the mode change operation. The flooding mode

change algorithm relies on the status routers’ ability to switch modes at the exact same time and

therefore requires all status routers to be time synchronized.

3.4 Multiple Routing Tables

A status router resides in a cloud that is collectively administered by abranchof QoS brokers in

the management hierarchy. Since a QoS broker always operates in a mode, a status router operates

in as many modes as there are QoS brokers in its management hierarchy branch. That is, if the

management hierarchy has a depth of three levels, each status router is administered by three QoS

brokers and will always operate in three modes, and therefore use three separate routing tables for

forwarding status events to the next downstream status router. Status event forwarding is performed

by a sequence of simple steps:

19



• The status router reads the header of the incoming status event and learns its ID and publisher

timestamp.

• The status router looks up the ID in a status event hash table and retrives a structure com-

monly referred to as a mode holder.

• The mode holder contains sets of forwarding data required toforward the status event to the

next downstream status router(s).

• As the status router can operate in several modes, it cycles through the forwarding data sets

per operating mode and processes all the forwarding data sets.

• A forwarding set contains an event channel and the forwarding rate for the particular status

event. If the status event does not conform to the forwardingrate, the status router filters it

and continues to process the next forwarding set, if any.

• A status event which passes the rate filtering test is sent to the next downstream status router

over the event channel given in the forwarding set.

• The status router repeats the process for all the forwardingsets that are located in all the

corresponding mode holders the status router is currently operating in.

The global and hierarchical mode change mechanism has addedsome complexity to the overall

forwarding algorithm employed by the status routers. Compared to the previous version of Grid-

Stat, status routers have to cycle through several mode holder structures instead of only one, and

therefore adds some complexity to the status routers and forwarding algorithm, both in terms of

resource usage and forwarding delay. Since status routers support multiple routing tables there

must be certain mechanisms in place to ensure that the multicast property of GridStat is preserved,

and is best illustrated by an example. For example, a status router operates in modes A and B,

and is responsible for fowarding status events that belong to two subscriptions that subscribe to
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the same published value. Subscription 1 subscribes in modeA, subscription 2 in mode B and the

status router must send the published status event to the same next downstream status router. The

status router processes the mode holder for mode A and forwards the status event downstream, and

continues to process the mode holder for mode B. Without any multicast preservation methods,

the status router would forward the same status event to the same next downstream status router,

which would clearly violate the multicast property in GridStat. This is overcome by associating an

incoming status event with asent-mapwhich holds information on which outgoing event channels

the status event has been forwarded.

3.5 The RPC Mechanism

The RPC mechanism is a newly added feature to GridStat v4 thatallows connection-oriented

communication to be conducted on top of GridStat’s publisher-subscriber architecture [7]. The

RPC mechanism in GridStat facilitates two-way communication between GridStat entities whereas

the standard publisher-subscriber paradigm does only support one-way communication between

publishers and subscribers.

In order to utilize the RPC mechanism, the two endpoints mustbe connected to an edge status

router and embed a publisher and a subscriber to be able to send and receive information off of

the GridStat network. As the RPC mechanism is built on top of the publisher-subscriber architec-

ture in GridStat, an RPC connection consists of two subscriptions: client-server and server-client.

In order to establish a connection, one of the two participants must act as the client. First, the

client attempts to force a subscription on the server. That is, the client requests the management

hierarchy to let the server subscribe to the client. A connection is initiated by the client which

creates a subscription request containing the service type, information about the forced subscrip-

tion and QoS requirements. More specifically, the subscription request contains the number of

redundant paths, maximum subscription interval, maximum publication interval, operating modes,

connection latency, temporal redundancy, the name of the client (publisher), the name of the server
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(subscriber) and the RPC status variable the server (subscriber) will subscribe to. The connection

request is sent to the client’s edge status router which forwards the request to the management

hierarchy. The management hierarchy checks whether there exists a path between the client and

server and that the path meets the specified QoS requirements. If so, the management hierarchy

establishes the path(s) in the data plane and informs the client that the connection has been estab-

lished. This means the server subscribes to the given RPC status variable and the client is therefore

able to communicate with the server by publishing status events. The client proceeds to publish

a connection request to the server along the recently established path and asks it to force a sub-

scription on the client. The server, if it accepts the connection, creates a connection request with

the QoS requirements passed to it by the client and forwards it to the management hierarchy. The

management hierarchy, similarly to the first subscription,forces a subscription on the client and

informs the server when the operation is completed. Since the client now subscribes to an RPC

status variable published by the server, the bi-directional connection is fully established when the

server publishes a connection accept to the client. Both theclient and the server store the RPC

connection in their state for future use.

The RPC mechanism offers several advantages compared to CORBA as it is built on top of the

publisher-subscriber paradigm in GridStat:

• RPC connections can utilize the spatial redundancy property in GridStat.

• RPC connections can easier utilize a temporal redundancy scheme.

• A flexible timeout-management scheme can be employed.

• Pre- and post-conditions on the client and server provide sufficient control mechanisms to

ensure that certain properties are in place prior to or afterthe RPC call has been executed

at the receiving end. For instance, a pre-condition on a substation actuator may employ a

security check to verify that a line has been de-energized prior to switching a circuit breaker.
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The management hierarchy has been extended to benefit from the advantages offered by the

RPC mechanism. QoS brokers and status routers have been configured to utilize the RPC mecha-

nism and embed both a publisher instance and a subscriber instance as an alternative to CORBA.

Control traffic is still conducted over CORBA, while communication related to mode change opera-

tions are implemented to utilize the RPC mechanism, and is thereby able to benefit from GridStat’s

QoS guarantees.

3.5.1 Initialization of The QoS Broker

The QoS broker attempts to connect both its publisher instance and subscriber instance to the same

edge status router in the data plane. The chosen edge status router is configurable in the QoS broker

startup scripts. Since the edge status router may be in a startup phase, the QoS broker is forced to

repeatedly attempt to connect to it. Once connected, the QoSbroker attempts to establish an RPC

connection to its parent QoS broker and employs the connection protocol explained in Section

3.5. The root QoS broker has no parent and remains idle until it receives any incoming RPC

requests from its direct QoS broker children. The management hierarchy might fail to establish

RPC connections due to several reasons:

• All QoS brokers that are involved in establishing the RPC connection might not have started

or they are not yet ready to handle any subscription requests.

• The server, either the QoS broker parent or its subscriber, might not have started or are not

yet ready to handle any subscription requests.

• During the startup phase of GridStat, the data plane can be scarcily populated with status

routers and might not satisfy the demanded QoS requirementsfor the RPC connection or

there might simply exist no path.

The management hierarchy returns an error message if it is unable to force a subscription on

the server and the QoS broker (client) must resend the subscription request at a later time. When
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the subscription has been established, the QoS broker continues to send a connection request to the

server (parent QoS broker) which results in a fully functioning two-way communication channel

between the two QoS brokers if the server successfully manages to force a subscription back on

the client. Both QoS brokers finalize the connection phase bystoring the RPC connection object

in their internal state for later use.

3.5.2 Initialization of The Status Router

A status router embeds both a publisher instance and a subscriber instance in order to utilize the

RPC mechanism and attempts to create an RPC connection to itsleaf QoS broker. The status router

connects the publisher instance and the subscriber instance to itself, thus eliminating any repeated

connection attempts which the QoS brokers face. Once the publisher and subscriber are connected,

a subscription request is created and sent to the managementhierarchy in a similar manner to that

of the QoS brokers. The leaf QoS broker and the status router finalize the connection phase by

storing the RPC connection object in their internal state for later use.

3.5.3 Spatial and Temporal Redundancy

Conducting communication over the RPC mechanism provides more flexible control of message

delivery. Since RPC connections utilize data plane resources one can associate QoS requirements

with any RPC connection as is possible with standard subscriptions. Temporal and spatial re-

dundancy allow RPCs to span several paths across the data plane and increases the probability

of message delivery. Subscription latency demands enable the client to take additional measures

when a delivery confirmation is not received when expected. In addition, the RPC mechanism

will benefit from further development of technologies in thedata plane as it completely utilizes

the publisher-subscriber paradigm and mechanisms in GridStat. An ongoing project, for instance,

investigates how to secure data plane communications through encryption, from which the RPC

mechanism will directly benefit through its reuse of GridStat technologies (see Section 8.2.8).
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Communication related to mode change operations utilize some of the overall properties pro-

vided by the RPC mechanism:

• Mode change communication over RPC within the management hierarchy or from the man-

agement hierarchy to the data plane can utilize spatial redundancy if and when needed

through the use of modes.

• RPC delivery confirmations provide the means for the client to resend a mode change mes-

sage, or schedule one for a later time, when a delivery confirmation is not received within

the expected time window.

An RPC connection can be configured to resend the call when a delivery confirmation is not

received within the expected time window. More specifically, the RPC mechanism resends the call

after a preconfigured timeout and employs the temporal redundancy scheme as many times as the

connection setup states. All QoS brokers add an additional layer on top of the temporal redundancy

scheme provided by the RPC mechanism, and thereby have the ability to queue outgoing mode

change messages and schedule them for sending by using the RPC mechanism at a later time. For

example, an RPC connection can be configured to resend a mode change message five times in a

row with a preconfigured timeout in between when the message is unable to reach the destinated

server (detected through missing delivery confirmations).If the message has not been successfully

sent after five retries, the QoS broker queues the message andschedules it for a later delivery

attempt. The send scheduler forwards the message to the appropriate RPC connection where the

message repeats the temporal redundancy scheme. If the RPC connection still experiences network

failures or server failure, the send scheduler is responsible for delivering the mode change message

when possible through the same steps outlined above. The QoSbroker’s send scheduler and the

RPC mechanism combined provide a flexible tool to make sure mode change messages and mode

change acknowledgementseventuallyget delivered to their respective destinations.
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3.6 Recovery Mechanisms and Acknowledgement Aggregation

In order to tolerate some degree of network failures and to eventually ensure consistent mode

change operations, a recovery mechanism was implemented toassist the hierarchical and flooding

mode change algorithms. The recovery mechanism is triggered by a QoS broker that detects miss-

ing mode change acknowledgements caused by failed QoS brokers, failed status routers or link

failures, and attempts to resolve these situations when possible.

An important part of a mode change operation is to gather acknowledgements from the par-

ticipants in the operation. Status routers which receive a mode change operation respond with a

mode change acknowledgement up to their leaf QoS broker. When a leaf QoS broker receives the

first acknowledgement for a particular mode change operation it immediately starts anaggregation

round to gather acknowledgements from its status routers. The leaf QoS broker stores the name

of the status router and the mode change identifier, and starts a timer which times out to stop the

aggregation round. The timeout value is subject to a pre-configured setting in the startup scripts.

Additional acknowledgements are registered in a similar manner. The leaf QoS broker stops the

aggregation round when all expected acknowledgements havebeen received; otherwise, it times

out. The leaf QoS broker finalizes the aggregation round and prepares a response to the coordinator

that initiated the mode change operation after the aggregation round has completed successfully. If

the leaf QoS broker is the coordinator, it updates the operating modes table in its state and marks

the mode change operation as complete. Otherwise, if the coordinator is located at a higher level

in the management hierarchy, the leaf QoS broker updates itsancestor modes table and prepares

an acknowledgement and sends it up to its parent QoS broker for further processing.

Interior QoS brokers go through the exact same sequence of steps as the leaf QoS brokers

and start aggregation rounds when the first acknowledgementfrom one of its direct children QoS

brokers are received. The process continues until the coordinator of the mode change operation

has finalized the aggregation round.
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An aggregation round that is terminated by the timer impliesthat one or more status routers,

or QoS broker children, did not respond with an acknowledgement. The QoS broker initiates the

recovery mechanism which attempts to contact the GridStat entities in question. The reasons why

some GridStat entities neglect to respond with an acknowledgement are (child is a QoS broker or

status router):

• The child is unable to send an acknowledgement up to its parent due to network failures, e.g.

link failures or lossy links.

• The child itself failed.

• The child did not receive the mode change operation, or any acknowledgements if a QoS

broker.

The QoS broker derives which children did not respond with anacknowledgement and attempts

to contact them. If an interior QoS broker, it first contacts the direct QoS broker children in question

and forces them to initiate the recovery mechanism on their own if necessary. The QoS broker

children check their state to determine if the aggregation round for the mode change operation in

question has started or is complete:

• If the QoS broker has no knowledge of the mode change operation in question it initiates the

recovery mechanism which includes all its children ( QoS brokers or status routers).

• If the QoS broker has an ongoing aggregation round for the mode change operation in ques-

tion it simply discards the recovery message and initiates the recovery mechanism on its own

if necessary. When the hierarchical mode change algorithm and the non-blocking scheme

(Section 3.6.1) are used, the queried QoS broker sends an acknowledgent to its parent QoS

broker. If the blocking scheme is employed, the queried QoS broker sends an acknowledge-

ment to its parent QoS broker first when it has received all awaiting acknowledgements.
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• The QoS broker has completed the aggregation round for the mode change operation and

might be unable to respond with an acknowledgement to the parent QoS broker due to net-

work failures. This scenario is probable, but less likely than the ones above, as the recovery

message from the parent QoS broker managed to get delivered.

The leaf QoS broker employs the same scheme as interior QoS brokers but will instead at-

tempt to contact the status routers that did not respond withan acknowledgement. The recovery

mechanism affects the data plane as follows:

• The status router first checks if the mode change operation ispending (waiting to be acti-

vated) or has already been registered (activated).

• If the mode change operation is not registered, the status router executes the operation and

responds with an acknowledgement.

• If the mode change operation is registered, the status router responds with an acknowledge-

ment.

The recovery mechanism is initiated when network failures,QoS broker failures or status router

failures prevent all participants from delivering and aggregating acknowledgements up towards the

coordinator in the management hierarchy. Therefore, querying participants for their acknowledge-

ments and status may be a time-consuming process, and not necessarily as straightforward as

outlined above. For instance, a QoS broker may be unable to send a recovery message to one of its

children because a link failure prevents the message to be delivered. The same child might have

completed its aggregation round, but is unable to send the acknowledgement to its parent because

of the same link failure. A similar scenario can be envisioned when a QoS broker or status router

fails. In such circumstances, the sender queues recovery messages in an outgoing pool and delivers

them when the QoS broker or status router rejoins the GridStat network (see Section 3.5.3).

28



3.6.1 Blocking and Non-Blocking Aggregation

The hierarchical mode change algorithm can employ a blocking or non-blocking scheme. A block-

ing scheme prevents the next mode change phase to commence until all status routers have executed

the previous mode change phase and delivered acknowledgements to the management hierarchy.

When the coordinator receives confirmation that all status routers and QoS brokers have seen and

processed the mode change phase it initiates the next phase.Alternatively, a non-blocking scheme

allows the coordinator to initiate the next mode change phase even though the previous mode

change phase has not completed. That is, if QoS broker failures, status router failures, link failures

or temporal network anomalies (e.g., link loss) prevent some status routers in executing the mode

change phase, the management hierarchy initiates the recovery mechanism and in parallel sends

acknowledgements up towards the coordinator. The coordinator assumes that lower-level QoS bro-

kers restore the modes at deemed inconsistent status routers when possible through the recovery

mechanism when it receives acknowledgements from its direct QoS broker children.
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CHAPTER FOUR

DESIGN OF THE HIERARCHICAL MODE CHANGE ALGORITHM

The hierarchical mode change algorithm is an extension of the mode change algorithm in GridStat

v3 and is modified to be utilized in a management hierarchy of any size and from any location. Cur-

rently, the application layer in the management plane is responsible for initiating a mode change

operation by using the QoS broker API. It is envisioned that in the future this process will be policy

driven, initiated as the implementation already supports or initiated from an authenticated applica-

tion in the data plane. A mode change operation is initiated by invocating the changeMode method

on either a QoSBroker or LeafQoSBroker instance. The hierarchical mode change algorithm is

divided into five distinct phases which enabletransferredsubscriptions present in both modes of a

mode change operation, e.g., from Green to Yellow, to flow. Furthermore, the five phases eliminate

any status router overload scenarios during a hierarchicalmode change operation. The following

list shows how the hierarchical algorithm affects the status routers in a mode change fromGreen

to Yellow.

1. The inform phase - Edge status routers inform their subscribers about the upcoming mode

change. This phase is a standalone phase in order to ensure that all subscribers have been

informed about potential QoS violations prior to switchingrouting tables.

2. The prepare phase- Edge status routers switch to the temporary routing tableGreen∩

Yellow. This phase ensures that subscription traffic that belongs in both modes (Greenand

Yellow) is forwarded through the status router network. Subscription traffic that belong to

eitherGreenor Yellow is dropped at the edge status routers. This step in the hierarchical

mode change algorithm eliminates any status router overload scenarios (incoming queues

and outgoing queues) as subscriptions are only removed.

3. The internal change phase- Internal status routers switch toYellow’s routing table. Since
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all edge status routers operate in a temporary routing tableand only forward a smaller set

of subscriptions (in modeGreenandYellow), the internal status routers can safely switch to

modeYellowwithout overloading any status routers downstream.

4. The edge change phase- Edge status routers switch from the temporary routing tableGreen

∩ Yellowto Yellow’s routing table. Since internal status routers operate inYellowand expect

to receive subscription traffic for modeYellow, it is safe for edge status routers to finally

switch.

5. The commit phase- Edge status routers inform their subscribers about the completed mode

change. This phase is a standalone phase in order to ensure that all modification to routing

tables in the status router network is complete and that subscribers will receive status events

conforming to the desired QoS.
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Figure 4.1: The hierarchical algorithm - hierarchical dissemination
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Common for all the phases in the hierarchical mode change algorithm is the propagation of the

operation down the management hierarchy towards the data plane. The coordinator of the mode

change operation sends the operation to all its children QoSbrokers, and they repeat the process

until the operation reaches the leaf QoS brokers. Figure 4.1shows how the root QoS broker uses its

RPC connections to send a mode change operation (phase) downto its children leaf QoS brokers

B and C. The leaf QoS brokers forward the operation to all the status routers in their administrative

domains.

Figure 4.2 depicts the leaf QoS brokers forwarding the mode change operation (phase) to the

status routers in their respective control domains. Both leaf QoS brokers forward four copies (four

status routers) of the mode change operation to their statusrouters. The operation is executed

by each status router which responds with an acknowledgement. The leaf QoS brokers gather

acknowledgements and send a single acknowledgement up to their parent QoS broker.
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Figure 4.2: The hierarchical algorithm - cloud dissemination
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The following detailed explanation of the individual mode change phases assumes a blocking

scheme (see Section 3.6.1) in which the management hierarchy blocks the execution of the next

phase until all participants have executed the current modechange phase.

4.1 Phase 1 - The Inform Phase

The first phase of the hierarchical mode change algorithm is the inform phase. The coordinator

propagates the mode change operation down the hierarchy andtowards all theedge status routers

in its hierarchical scope. The edge status routers inform all their subscribers about the upcoming

mode change. The inform message makes subscribers aware that subscription terminations are

due to the upcoming mode change operation, and will not deliver QoS violation callbacks to their

overlying application. Figure 4.3 shows edge status routers contacting their subscribers about the
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= Involved in hierarchical mode change phase = Subscriber embedded in SR
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Figure 4.3: The hierarchical algorithm - inform phase

upcoming mode change operation. When all subscribers have been informed, the edge status router
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sends an acknowledgement up to the management hierarchy.

4.2 Phase 2 - The Prepare Phase

The second phase of the hierarchical mode change algorithm is the prepare phase. The coordinator

propagates the mode change operation down the hierarchy andtowards all theedge status routers

in its hierarchical scope. The edge status routers create a temporary routing table with all the for-

warding information for subscriptions registered in both the old and the new mode (see Section

4.6). For example, the prepare phase of a mode change from A toB creates a temporary routing

table that contains those subscriptions registered in bothA and B. The subscriptions contained in

the temporary routing table are forwarded according to the highest subscription interval (lowest

rate) selected from the two modes. As subscriptions only canbe removed, no resources will be

exhausted during this phase of the algorithm. Figure 4.4 shows the operating modes of the status
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Figure 4.4: The hierarchical algorithm - prepare phase
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routers when the prepare phase is executed. When the temporary routing tables have been suc-

cessfully created, the edge status routers respond with an acknowledgement up to the management

hierarchy.

Assume the following subscriptions are in place prior to executing the prepare phase (see Figure

4.4): Subscriber A subscribes to value1 and value2 in modes Green and Yellow, and subscriber B

subscribes to value1 and value2 in mode Green. The routing tables at all status routers, B1 through

B5, are presented in Figure 4.5.
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Figure 4.5: The hierarchical algorithm - routing tables

The temporary routing tables Green∩ Yellow at all edge status routers, B1 through B4, are

presented in Figure 4.6. When all edge status routers operate in Green∩ Yellow, B1 forwards

value1 to B5 only as subscriber B does not subscribe to value1in mode Yellow. B5 still operates

in mode Green, and forwards value1 to B4 according to its routing table (see Figure 4.5) and B4

delivers value1 to subscriber A. The second publication, value2, is only subscribed to by subscriber

A, and is forwarded along the path from B3 to B4.
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Figure 4.6: The hierarchical algorithm - temporary routingtables

4.3 Phase 3 - Internal Change Phase

The third phase of the hierarchical mode change algorithm isthe internal change phase. The

coordinator propagates the mode change operation down the hierarchy and towards all theinternal

status routersin its hierarchical scope. All internal status routers willat this point in the entire

mode change operation switch to the routing table of the new mode. The internal status routers

will receive status events subject to the highest subscription interval (lowest rate) as edge status

routers are currently operating in the temporary routing table. Subscribers will observe one of the

following two scenarios:

• If the subscription interval in the new mode is higher than that of the old mode, the subscriber

receives status events belonging to this stream with the subscription interval of the new mode.

• If the subscription interval in the new mode is lower than that of the old mode, the subscriber

receives status events belonging to this stream with the subscription interval of the old mode.

No resources can be exhausted during this phase as the largest subscription interval from either

the old or the new mode is used. Furthermore, involved subscribers will not issue QoS violation

callbacks to the overlying applications as they have been informed about the mode change. Fig-

ure 4.7 shows the routing table compositions in the data plane after the internal change phase is

complete. When the internal status routers have switched tothe new mode, the status routers send

acknowledgements up to the management hierarchy.
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Figure 4.7: The hierarchical algorithm - internal change phase

4.4 Phase 4 - Edge Change Phase

The fourth phase of the hierarchical mode change algorithm is the edge change phase. The coor-

dinator propagates the mode change operation down the hierarchy and towards all theedge status

routersin its hierarchical scope. The edge status routers switch from the temporary routing table

created in the prepare phase to the routing table of the new mode. Hence, edge status routers for-

ward status events conforming to the subscription intervalof the new mode. Figure 4.8 shows that

all status routers operate in the new mode after the edge change phase is complete. The edge status

routers finalize the fourth phase of the hierarchical algorithm by sending acknowledgements up to

the management hierarchy.
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Figure 4.8: The hierarchical algorithm - edge change phase

4.5 Phase 5 - The Commit Phase

The fifth phase of the hierarchical mode change algorithm is the commit phase. The coordinator

propagated the mode change operation down the hierarchy andtowards all theedge status routers

in its hierarchical scope. The edge status routers inform their subscribers about the completed mode

change. Subscribers will at this time expect to receive subscribed status events at the subscription

interval of the newly activated mode if the overall mode change algorithm was consistent. Figure

4.9 shows edge status routers contacting their subscribersto inform about the completed mode

change operation. The edge status routers finalize the phaseby sending acknowledgements up to

the management hierarchy.

38



Leaf QoS Broker 

B

B4B3

B2

B1

Publisher A

Pub: value1

Publisher B

Pub: value2

Subscriber A

Subscriber B
B5

Mode Change Operation: Green to Yellow

Commit Phase (#5)

Y

Y

Y

Y

Y

B2 and B4 inform their subscribers about 

the completed mode change operation

= Involved in hierarchical mode change phase = Subscriber embedded in SR

Publisher
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4.6 Construction of Temporary Routing Tables

A crucial part of any hierarchical mode change operation is to create a temporary routing table that

consists of forwarding information for subscriptions present in the modes a mode change opera-

tion switches from and to. For example, a mode change operation switching from Green to Yellow

creates a temporary routing table Green∩ Yellow. Every edge status router that participates in a

hierarchical mode change operation has to create this routing table when informed to by the man-

agement hierarchy. A temporary routing table is created by retrieving the mode holders for the two

modes involved in a hierarchical mode change operation and adding the forwarding information

that is present in both modes to a new temporary mode holder. Note that a subscription config-

ured to operate in two or more modes utilize the same path through the data plane in both modes,

but may be forwarded at different rates. The status router selects the highest subscription interval
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(lowest rate) from the two modes for a particular subscription and uses it when the status router

operates in the temporary mode. The temporary routing tableis created during the prepare phase

of the hierarchical mode change algorithm and causes no resource exhaustion as subscriptions are

only removed.

4.7 Rate Filtering

This section investigates how the hierarchical mode changephases, prepare, internal change and

edge phase affect a subscription that is to operate in modes Green and Yellow. Figure 4.10 shows

that the edge status routers, B1 and B4, operate in mode Green∩ Yellow while B5 still operates

in mode Green. The subscriber subscribes to the publisher’sonly publication value1 every 100 ms

100ms 300ms 100ms 300ms
B4B1 B5

Publisher

Pub: value1

Subscriber

Sub: value1

Publisher interval: 100ms

Subscriber subscribes to value1 every 100ms in mode Green

Subscriber subscribes to value1 every 300ms in mode Yellow

G∩Y G∩YG

B5 expects a smaller subinterval

Prepare phase

Figure 4.10: The hierarchical algorithm - subscription rates after the prepare phase

in mode Green, and every 300 ms in mode Yellow. The publisher publishes status events (value1)

every 100 ms. Since B1 operates in Green∩ Yellow it will forward status events from the publisher

according to the highest subscription interval (lowest rate) from Green or Yellow, and will therefore

forward 1 out of 3 received status events to B5. B5, on the other hand, expects to receive status

events from B1 at a higher rate (100 ms), but will simply forward status events to B4 when it

receives them. That is, at an interval of 300 ms. B4 forwards every status event to the subscriber

as it receives them at the expected subscription interval and is not required to perform any rate

filtering. If the subscription intervals were reversed the subscriber would still receive status events

at the same interval as edge status routers pick the highest subscription interval (lowest rate) from
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the two modes involved in the mode change operation. The onlydifference is that B5 receives

status events at the expected subscription interval (300 ms).

Figure 4.11 illustrates how the next phase, the internal change phase, affects the subscription.

The internal status router B5 switches from Green to Yellow and forwards status events that belong

100ms 300ms 300ms 300ms
B4B1 B5

Publisher
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Subscriber

Sub: value1

Publisher interval: 100ms

Subscriber subscribes to value1 every 100ms in mode Green

Subscriber subscribes to value1 every 300ms in mode Yellow

G∩Y G∩YY

Internal Change Phase

Figure 4.11: The hierarchical algorithm - subscription rates after the internal change phase

to the single subscription downstream every 300 ms. As B5 receives those status events every 300

ms it is not forced to perform any rate filtering.

Figure 4.12 shows the operating modes and subscription intervals used after B1 and B4 change

from Green∩ Yellow to Yellow. Although none of the rates alter for this example, the edge status

100ms 300ms 300ms 300ms
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Subscriber
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Publisher interval: 100ms

Subscriber subscribes to value1 every 100ms in mode Green

Subscriber subscribes to value1 every 300ms in mode Yellow
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Figure 4.12: The hierarchical algorithm - subscription rates after the edge change phase

routers forward status events conforming to the subscription interval in mode Yellow.

The rationale for selecting the highest subscription interval (lowest rate) in the prepare phase

is not to overload any internal status routers with traffic during the edge change phase. Overload

scenarios at internal status routers in this section refer to incoming status router queues. Figure
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4.13 and 4.14 show what happens if edge status routers pick the subscription interval from mode

Green in a hierarchical mode change operation switching from Green to Yellow.
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Figure 4.13: Status router resource overload - internal phase

100ms

100ms

100ms 100ms
Value1: 300ms

Value2: 100ms

B4B1 B5

Publisher A

Pub: value1

Subscriber

Sub: value1, value2

B2

Publisher B

Pub: value2

Publisher A interval: 100ms

Subscriber subscribes to value1 every 100ms in mode Green

Subscriber subscribes to value1 every 300ms in mode Yellow

Publisher B interval: 100ms

Subscriber subscribes to value2 every 300ms in mode Green

Subscriber subscribes to value2 every 100ms in mode Yellow

G∩Y G∩Y

Y

Y

Overloading B5 – Edge Change Phase (Green subinterval)

B2 switches before B1 and overloads B5!

Figure 4.14: Status router resource overload - edge change phase

The subscriber subscribes to value1 at publisher A every 100ms in mode Green and 300 ms
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in mode Yellow. The secondary subscription is between the subscriber and publisher B with sub-

scription intervals 300 ms and 100 ms, in mode Green and Yellow, respectively. An assumption is

that B5 becomes overloaded with two incoming streams at 100 ms. Figure 4.13 shows that B1 and

B2 forward status events to B5 with rates 100 ms and 300 ms.

Figure 4.14 assumes that B2 switches from Green∩ Yellow to Yellow prior to B1 and causes

B5 to become overloaded as the subscriber subscribes to value2 every 100 ms in mode Yellow.

At this point, B5 remains overloaded until B1 changes to modeYellow. If the edge status routers

picked the highest subscription interval in the prepare phase, B5 would not become overloaded

when B2 switches mode prior to B1 in the edge change phase. Thereason is that B1 and B2 would

forward status events from publisher A and B at a subscription interval of 300 ms, and when B2

switches to mode Yellow prior to B1 in the edge change phase itwill not cause any problems for

B5.

4.8 Pseudo-Code for The Hierarchical Mode Change Algorithm

The following pseudo-code and explanations show how a mode change phase is propagated from

the coordinator and down through the management hierarchy towards a set of status routers. Fur-

thermore, the pseudo-code for each individual mode change phase is presented at the status router

level.

4.8.1 Coordinator Code

The following code outline shows the simple steps a coordinator (QoS broker) has to follow in or-

der to switch modes by using the hierarchical mode change algorithm. It first defines a ModeInfo

container (See Section 3.2.1) with the required parametersand sends it to its direct QoS broker

children. Then, it awaits acknowledgements from its directQoS broker children prior to initiating

the next mode change phase.
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for Each mode change phasedo

Define a ModeInfo container with the required parameters

Register the mode change phase as pending

for Each QoS broker childdo

Send the mode change phase over the established RPC connection

end for

Await acknowledgements from each direct QoS broker child

Mark the mode change phase as complete

end for

4.8.2 Interior QoS Broker Mediator Code

An interior QoS broker in the hierarchical scope of the coordinator simply forwards the mode

change phase to its direct QoS broker children.

for Each QoS broker childdo

Send the mode change phase over the established RPC connection

end for

4.8.3 Leaf QoS Broker Mediator Code

In a similar manner to an interior QoS broker, a leaf QoS broker forwards the mode change phase

to a set of status routers in its administrative cloud.

Retrieve all internal status routers from state

Retrieve all edge status routers from state

if Inform phasethen

Send the mode change phase to all edge status routers

end if
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if Prepare phasethen

Send the mode change phase to all edge status routers

end if

if Internal change phasethen

Send the mode change phase to all internal status routers

end if

if Edge change phasethen

Send the mode change phase to all edge status routers

end if

if Commit phasethen

Send the mode change phase to all edge status routers

end if

4.8.4 Inform Phase Code

The following code outline shows the process of informing subscribers about the upcoming mode

change operation from an edge status router. If the mode change phase has already been executed,

the edge status router responds with an acknowledgement to its leaf QoS broker. Otherwise, it

retrieves the list of all connected subscribers and informsthem about the upcoming mode change

operation. Finally, it responds with an acknowledgement toits leaf QoS broker.

if Mode change phase has previously been executedthen

Send an acknowledgement up to the management hierarchy

else

Register the mode change phase

for Each subscriberdo

Inform the subscriber about the upcoming mode change operation
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end for

Send an acknowledgement up to the management hierarchy

end if

4.8.5 Prepare Phase Code

The following code outline shows the process of creating thetemporary routing table Green∩

Yellow in a mode change from Green to Yellow at an edge status router. First, if the mode change

phase has previously been executed, the edge status router responds with an acknowledgement to

its leaf QoS broker. Otherwise, it locks the routing table(s) and creates a temporary routing table

(Green∩ Yellow). The edge status router adds forwarding rules for the subscriptions that are reg-

istered to operate in both modes to the temporary routing table and picks the highest subscription

interval. Finally, it switches from Green to Green∩ Yellow, unlocks the routing table(s) and sends

an acknowledgement to its leaf QoS broker.

if Mode change phase has previously been executedthen

Send an acknowledgement up to the management hierarchy

else

Register the mode change phase

Lock the routing table

Create an empty temporary routing table

for Each subscription in Greendo

if Subscription in Yellowthen

Add the forwarding rules for the subscription to the temporary routing table

Pick the highest subscription interval from Green or Yellow

end if

end for
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Change from Green’s routing table to the temporary routing table

Unlock the routing table

Send an acknowledgement up to the management hierarchy

end if

4.8.6 Internal Change Phase Code

The following code outline shows the process of switching from Green to Yellow in an internal

status router. First, if the mode change phase has previously been executed, the edge status router

responds with an acknowledgement to its leaf QoS broker. Otherwise, it lock the routing table(s)

and switches to the routing table for mode Yellow. Finally, it unlocks the routing table(s) and sends

an acknowledgement to its leaf QoS broker.

if Mode change phase has previously been executedthen

Send an acknowledgement up to the management hierarchy

else

Register the mode change phase

Lock the routing table

Change to Yellow’s routing table

Unlock the routing table

Send an acknowledgement up to the management hierarchy

end if

4.8.7 Edge Change Phase Code

The following code outline shows the process of switching from the temporary routing table Green

∩ Yellow to Yellow’s routing table. First, if the mode change phase has previously been executed,

the edge status router responds with an acknowledgement to its leaf QoS broker. Otherwise, it

locks the routing table(s) and switches from the temporary routing table created in the prepare
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phase to the routing table of mode Yellow. Finally, it unlocks the routing table(s) and sends an

acknowledgement to its leaf QoS broker.

if Mode change phase has previously been executedthen

Send an acknowledgement up to the management hierarchy

else

Register the mode change phase

Lock the routing table

Change from the temporary routing table to Yellow’s routingtable

Unlock the routing table

Send an acknowledgement up to the management hierarchy

end if

4.8.8 Commit Phase Code

The following code outline shows the process of informing subscribers about the completed mode

change operation from an edge status router. If the mode change phase has already been executed,

the edge status router responds with an acknowledgement to its leaf QoS broker. Otherwise, it

retrieves the list of all connected subscribers and informsthem about the completed mode change

operation. Finally, it responds with an acknowledgement toits leaf QoS broker.

if Mode change phase has previously been executedthen

Send an acknowledgement up to the management hierarchy

else

Register the mode change phase

for Each subscriberdo

Inform the subscriber about the completed mode change operation
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end for

Send an acknowledgement up to the management hierarchy

end if

4.8.9 Leaf QoS Broker Acknowledgement Aggregation Code

The following code outline shows the actions of a leaf QoS broker after all status routers have

acknowledged the pending mode change phase. If the coordinator resides higher up in the man-

agement hierarchy, the leaf QoS broker sends an acknowledgement up to its parent QoS broker.

Otherwise, it continues with the next mode change phase.

Retrieve the list of status routers from state

if Mode change phase is the commit phasethen

for Each status router in statedo

Update the modes table to reflect the operating modes of this status router

end for

Update the list of what modes all status router should operate in

end if

if The coordinator is higher up in the management hierarchythen

Send acknowledgement to parent QoS broker

else

if Commit phasethen

Update operating modes

else

Initiate next phase

end if

end if
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Mark the mode change phase as complete

4.8.10 Interior QoS Broker Acknowledgement Aggregation Code

The following code outline shows the actions of an interior QoS broker after all direct QoS broker

children have acknowledged the pending mode change phase. If the coordinator resides higher

up in the management hierarchy, the QoS broker sends an acknowledgement up to its parent QoS

broker. Otherwise, it continues with the next mode change phase.

if The coordinator is higher up in the management hierarchythen

Send acknowledgement to parent QoS broker

else

if Commit phasethen

Update operating modes

else

Initiate next phase

end if

end if

Mark the mode change phase as complete

4.9 Failure Scenarios

The hierarchical mode change algorithm is able to consistently change between modes and enables

transferredsubscriptions to flow under the assumption that all status routers execute the mode

change phases sequentially (blocking scheme) and in the correct timeframe. By using the non-

blocking scheme (see Section 3.6.1) in hierarchical mode change operations, QoS broker failures,

status router failures and network failures may interfere with hierarchical mode change operations

and lead to broken subscription flows until the failure is resolved.
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The hierarchical algorithm is divided into five distinct phases in order to preservetransferred

subscriptions during mode change operations and to avoid any overload scenarios. This means

transferred subscriptions are guaranteed to flow but the subscription interval may vary according

to the modes the participating status routers operate in. The following failure scenarios assume the

use of a non-blocking scheme in hierarchical mode change operations and overload scenarios refer

to incoming status router queues. A non-responsive status router refers to a status router which is

able to forward status events but unable to communicate withthe management hierarchy.

A status router which does not participate in any of the hierarchical mode change phases be-

comes inconsistent when the mode change operation is complete, e.g., from Green to Yellow.

During the mode change operation, however, the non-responsive status router is able to forward

status events that belong totransferredsubscriptions, but possibly at the wrong rate. After the

commit phase, the status router operates in the wrong mode and will either not be able to forward

any of the status events that belong to the new mode or will forward status events at the wrong rate

(transferred subscriptions).

If the non-responsive status router has failed, it is not able to forward any status events and

therefore breaks subscriptions flows that pass through it. The operating modes of a failed status

router will be restored by the leaf QoS broker whenever it reconnects to the GridStat network. If

a status router reconnects to GridStat and resumes its responsibilities during a hierarchical mode

change operation, it will first be restored to the mode the mode change operation is switching

from, and then updated with the mode change phases that have been executed. Status routers log

incoming mode change operations (and phases) and ensure a correct ordering of execution.

Additional causes for a non-responsive status router may benetwork partitions, link failures or

heavy link loss that affect communication between the management hierarchy and the data plane.

A network partition in the data plane, in nature, leads to an inconsistent hierarchical mode change

operation and forces the management hierarchy to restore the operating modes in the data plane

whenever communication to the partition is re-established. Link failures are tolerable, to some
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extent, under the assumption that RPC connections between status routers and leaf QoS brokers

utilize an appropriate number of redundant paths. A leaf QoSbroker may be unable to contact

one of its status routers if a set of failed links prevent any of the redundant paths to forward mode

change operations to the status router. In such circumstances, the leaf QoS broker can initiate

the recovery mechanism (Section 3.6) which will queue pending mode change operations (phases)

and continually retry the call at specific intervals. Thus, the recovery mechanism is able to deliver

queued mode change operations when the assumed failed status router restores contact with the

management hierarchy.

An alternative scheme, not yet implemented in GridStat, would be for the leaf QoS broker to

flood the mode change operation to its cloud by using the flooding mechanism instead of indi-

vidually contacting each status router. The flooding mechanism can utilize the maximum amount

of redundancy available in the cloud, and thereby increase the probability of delivering the mode

change operation to the assumed failed status router. However, there is still no guarantee that the

flooding mechanism is able to deliver the message to a non-responsive status router. The presence

of heavy link loss is closely related to link failures, but here the recovery mechanism has a chance

to deliver the mode change operation (phase) through the temporal reundancy property in the RPC

mechanism over the lossy link itself, or through a redundantpath, if any.

The hierarchical mode change algorithm eliminates overload issues during mode change oper-

ations when all status routers participate by selecting thehighest subscription interval (lowest rate)

in the prepare phase. However, there exists overload scenarios when one or more status routers

do not participate in a hierarchical mode change operation.Figure 4.15 shows three status routers

responsible for forwarding status events from publisher A and publisher B towards the subscriber.

Edge status routers B1 and B2 operate in modes Green, Green∩ Yellow and Yellow during a mode

change operation switching from Green to Yellow. Assume that B5 is overloaded when both B1

and B2 forwards status events at a rate of 100 ms, which can only occur when B1 operates in
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Green and B2 in Yellow. More specifically, if B1 does not participate in the mode change opera-

tion, but still forwards events, B5 becomes overloaded whenthe operation is complete (B2 operates

in Yellow).

100ms

100ms
B1 B5

Publisher A

Pub: value1

Subscriber

Sub: value1, value2

B2

Publisher B

Pub: value2

Publisher A, B interval: 100ms

Subscriber subscribes to value2 every 300ms in mode Green

Subscriber subscribes to value2 every 100ms in mode Yellow

Subscriber subscribes to value1 every 100ms in mode Green

Subscriber subscribes to value1 every 300ms in mode Yellow

G: 100

G∩Y: 300

Y: 300

Internal Status Router – Overload Scenarios

G: 300

G∩Y: 300

Y: 100

Figure 4.15: Status router overload - upstream inconsistent router

This issue can be solved by one of the following modificationsto GridStat:

• A resource management scheme collectively employed by the management hierarchy can

prevent overload scenarios, as depicted in Figure 4.15, by closely monitoring how subscrip-

tions affect hierarchical mode change operations. If a subscription request will cause a status

router to become overloaded in a mode change operation, e.g., switching from A to B, the

request is rejected.

• Leaf QoS brokers can block aggregation rounds until all status routers have acknowledged

a mode change phase. QoS brokers employ a similar blocking scheme, but awaits acknowl-

edgements from its direct QoS broker children. This scheme implies that a hierarchical mode

change phase has to be delivered, executed and acknowledgedby every status router and QoS

broker participant, and effectively solves any overload issues in the data plane. The disad-

vantage is that hierarchical mode change operations block and increase the overall execution

time in the presence of network or GridStat failures. See Section 3.6.1 for more details.
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CHAPTER FIVE

DESIGN OF THE FLOODING MODE CHANGE ALGORITHM

The flooding mode change algorithm is an alternative to the hierarchical mode change algorithm

and offers better statistical delivery guarantees to the data plane. The flooding mode change algo-

rithm delivers mode change operations directly to the status routers through the limited flooding

mechanism in GridStat. In order to utilize the limited flooding mechanism, the QoS brokers em-

bed a publisher instance that connects to some edge status router in the QoS broker’s hierarchical

scope. The QoS broker can publish mode change operations through the publisher instance, where

status routers forward the operation to all their status router neighbors, except the one they re-

ceived the operation from. The flooding mechanism will eventually stop when all status routers

have been informed. The limited flooding mechanism benefits from the amount of redundant paths

in the data plane and is thus more resilient to network failures than the hierarchical mode change

algorithm. Whereas the hierarchical mode change algorithmattempts to preserve the subscriptions

registered in the two involved modes, the flooding mode change algorithm switches directly to the

new mode. Figure 5.1 shows a flooding mode change initiated byQoS broker A which floods the

mode change operation directly out on the data plane throughits embedded publisher instance, and

is able to deliver the operation to all participants within five message rounds. The diagram assumes

an equal link delay, and the event channel labels refer to themessage round in which the operation

is flooded.

The flooding mode change algorithm assumes that all status routers in the hierarchical scope of

the coordinator have synchronized clocks. Synchronized clocks across the data plane in GridStat

can be achieved through GPS synchronization methods, and isdiscussed more in Section 8.2.9.
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Figure 5.1: The flooding mechanism

5.1 Preparation and Use of a Flooding Variable

A QoS broker continually attempts to connect its publisher instance to an edge status router in the

data plane during the startup phase. Once the publisher is connected, the QoS broker registers a

publication dedicated for disseminating flooded mode change operations. The publication request

is sent from the publisher to its edge status router, and thenforwarded to the leaf QoS broker that

holds the publisher in its hierarchical scope. The leaf QoS broker validates the publisher and the

publication variable, adds the publication information toits state and replies with a variable ID.

The QoS broker client registers the recent publication as a flooded publication by contacting all the

status routers in its hierarchical scope. The status routers mark the routing entry for the particular

publication as a flooding variable, and thereby forward any incoming status events belonging to

the publication to all their status router neighbors.

A QoS broker prepares a flooded mode change operation by initializing a container for the

information necessary for the status routers to execute theoperation (see Section 3.2.1). The
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flooded mode change operation utilizes a timestamp variableto inform status routers at what time

to execute the operation. The QoS broker determines the future execution timestamp based on

its own clock, and therefore illustrates the necessity of synchronized clocks across all GridStat

entities. The QoS broker serializes (Java) and delivers themode change operation to its embedded

publisher instance which publishes the mode change event toits edge status router. The edge

status router checks the embedded variable identifier in allincoming status events and determine

whether the status event is of a standard subscribed-to variable or a flooded variable. In the latter

case, the status router looks up the variable identifier in its routing table and determines at what

level the flooded status event is to be forwarded. The use oflevel in the flooding mechanism

refers to theflooding domainwhich corresponds to the hierarchical scope of the QoS broker that

initiated the flooding mode change operation. For example, the flooding domain of a specific

QoS broker in the management hierarchy corresponds to all the status routers that are contained

in the hierarchical scope of that QoS broker, and thelevelsetting is set to the location of the QoS

broker in the management hierarchy. Status routers will most likely receive redundant copies of a

flooded variable from their neighbors, but will quickly discard them not to over-utilize any network

resources. In addition, a status router will not forward a flooded status event to status routers it

has previously received the same status event from, therebypreserving network resources. More

information on the flooding mechanism can be found in [3].

5.2 Activation of Flooding Mode Change Operations

When a status router receives a flooded mode change operationit first registers the operation in

its state and deserializes the event stream in order to retrieve the mode change structure. The

status router checks if the mode change operation is registered (previously executed) or currently

pending. If so, the mode change operation is discarded as it is currently pending to be activated

at the desired timestamp or has already been activated. Prior to activating the timer, the status

router informs all its subscribers about the upcoming mode change operation. More specifically,
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subscribers are informed to be aware of potential QoS violations that may occur until the mode

change operation is committed. The next step of the flooding mode change algorithm is for the

status router to check the timestamp variable in the mode change structure and create a timer that

is scheduled to time out at that timestamp. If the timestamp has already passed the timer triggers

immediately; otherwise, the timer times out when the mode change operation is scheduled to be

activated. The status router ends with sending an acknowledgement up to its leaf QoS broker

to confirm that it received the operation. During the timeoutphase of a flooding mode change

operation the status router continues to forward any incoming status events and process additional

flooding mode change operations, if any. At the time a timer event is triggered the status router

exclusively locks the routing table and performs the mode switch. That is, the status router changes

from the previously activated mode to the new mode accordingto the information passed in the

mode change structure that belongs to the particular mode change operation. The mode switch

effectively means that the status router will forward subscription traffic for the new mode, while the

deactivatedmode prohibits any of its registered subscription traffic tobe forwarded. It is important

to mention that a subscription belonging to both the old and the new mode is continually forwarded,

whereas subscription traffic that belongs solely to the old mode is dropped at the publisher’s edge

manager. When the mode switch is complete the status router unlocks the routing table and informs

its subscribers that the particular mode change operation is completed.

5.3 Pseudo-Code for The Flooding Mode Change Algorithm

The following pseudo-code and explanations show how a mode change operation is delivered to a

set of status routers in the data plane. Furthermore, the pseudo-code shows in detail how a status

router uses and executes mode change operations.

5.3.1 Coordinator Code

The following code outline shows the process of flooding a mode change operation directly out on

to the data plane. The coordinator defines a ModeInfo container with the required parameters and
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registers the mode change operation as pending. Then, it serializes the ModeInfo container and

publishes the byte stream directly out on to the data plane. Finally, it marks the mode change op-

eration as complete when it receives mode change acknowledgements from its direct QoS broker

children.

Define a ModeInfo container with the required parameters

Register the mode change as pending

Serialize the ModeInfo container into a byte stream

Publish the byte stream

if All acknowledgements from direct QoS broker children are receivedthen

Mark the mode change as complete

end if

5.3.2 Status Router Processing Code

The following code outline shows the process of receiving a flooded mode change operation and

storing it for later activation at the status router level. First, the status router forwards the flooded

message on all outgoing links except the link it initially received the operation on. Then, it decodes

the message and checks if the mode change operation has previously been executed or is currently

pending. If so, it sends an acknowledgement to its leaf QoS broker. Otherwise, it registers the

mode change operation, marks it as pending and creates a timer which will trigger when the mode

change is to occur. Finally, the status router sends an acknowledgement to its leaf QoS broker.

Forward the flooded message on all outgoing links except the receiving link

Decode byte stream and retrieve the ModeInfo container

if The mode change operation has previously been executed or ispendingthen

Send an acknowledgement to the management hierarchy
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else

Register the mode change operation

Mark the mode change operation as pending

Create a Timer that will trigger when the mode is to be switched

Send an acknowledgement to the management hierarchy

end if

5.3.3 Status Router Activation Code

The following code outline shows the process of executing a mode change when the timer triggers

(in a mode change from Green to Yellow). If the status router is an edge status router, it locks

the routing table(s) and switches to the routing table of mode Yellow. Then, it unlocks the routing

table(s) and informs all connected subscribers about the completed mode change operation. If the

status router is an internal status router, it only switchesto the routing table of mode Yellow. Fi-

nally, the status router marks the mode change operation as completed and stops the timer.

if Status router type is an edge status routerthen

Lock the routing table(s)

Switch to the routing table of mode Yellow

Unlock the routing table(s)

Retrieve the list of connected subscribers

for Each connected subscriberdo

Inform subscriber about the completed mode change operation

end for

end if

if Status router type is an internal status routerthen

Lock the routing table(s)
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Switch to the routing table of mode Yellow

Unlock the routing table(s)

end if

Mark the mode change operation as completed

Stop the Timer

5.3.4 Leaf QoS Broker Acknowledgement Aggregation Code

The following code outline shows the actions of a leaf QoS broker after all status routers have

acknowledged the pending mode change operation. If the coordinator resides higher up in the

management hierarchy, the leaf QoS broker sends an acknowledgement up to its parent QoS bro-

ker. Otherwise, it marks the mode change operation as complete.

Retrieve the list of status routers from state

for Each status router in statedo

Update the modes table to reflect the operating modes of this status router

end for

Update the list of what modes all status router should operate in

if The coordinator is higher up in the management hierarchythen

Send acknowledgement to parent QoS broker

else

Update operating modes

end if

Mark the mode change phase as complete

5.3.5 Interior QoS Broker Acknowledgement Aggregation Code

The following code outline shows the actions of a QoS broker after direct QoS broker children

have acknowledged the pending mode change operation. If thecoordinator resides higher up in the
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management hierarchy, the QoS broker sends an acknowledgement up to its parent QoS broker.

Otherwise, it marks the mode change operation as complete.

if The coordinator is higher up in the management hierarchythen

Send acknowledgement to parent QoS broker

else

Update operating modes

end if

Mark the mode change phase as complete
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5.4 Failure Scenarios

This section investigates the limitations of the flooding mode change algorithm and how to better

tolerate or even overcome them in future versions of GridStat. In comparison with the hierarchical

mode change algorithm, the flooding mode change algorithm utilizes the flooding mechanism in

GridStat that efficiently disseminates a message to a group of status routers in the data plane. As

status routers forward the flooded message on all outgoing links, except the one they received

the operation from, the flooding mechanism is efficient in term of message roundsand is able to

tolerate link failures and link loss to some extent. Overload scenarios for the flooding mode change

algorithm is discussed in more detail in Section 5.4.1.

Tolerance of link failures and link loss in flooding mode change operations that involve several

clouds highly depend on the inter-connectivity between clouds. The flooding mechanism benefits

from the amount of redundancy within a cloud, and by flooding,a message can reach a specific

status router through several disjoint paths. However, thecase might not be that simple with

flooding mode change operations that span more than one cloud. A network topology with few

inter-cloud communication links might increase the risk ofinconsistent flooding mode change

operations as flooding mode change messages between clouds may not benefit from the same

redundancy as within a single cloud. This scenario stressesthe necessity of a well-connected

network topology, both within and between clouds, as well asa high degree of redundancy in the

data plane for a deployment of GridStat.

A flooding mode change operation that is disseminated acrossseveral clouds and is unable to

reach one or more clouds leaves the operating modes in the data plane inconsistent unless addi-

tional recovery mechanisms are in place. The status routersin the clouds that originally received

the mode change operation send acknowledgements to their leaf QoS broker and up towards the

coordinator. The clouds which have not received the floodingmode change operation remain

idle. The QoS brokers that manage the clouds that originallyreceived the mode change operation
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aggregate acknowledgements and forward a response up the management hierarchy towards the

coordinator. An aggregation round that is initiated at the QoS broker which contains one or more

of the clouds that did not receive the mode change operation in its hierarchical scope will discover

an inconsistent mode change operation when the aggregationround times out. The QoS broker

proceeds to initiate the recovery mechanism (Section 3.6),which hopefully, will be able to con-

tact the inconsistent status routers and QoS brokers beforethe status routers have been informed

to switch. Figure 5.2 depicts an inconsistent cloud that is recovered by the recovery mechanism.

Inconsistent clouds are cleanly handled by the recovery mechanism but might restore the modes at
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the operation

2. QoS Broker A’s aggregation 
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= SR switches at the right time
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wrong time

Figure 5.2: The recovery mechanism in flooding mode change operations

the inconsistent status routers later than the destined mode switch time. In that case, subscriptions

that go through the inconsistent status routers, and which belongs to the new mode, are cut-off

until the recovery mechanism restores the status routers. Otherwise, the previously inconsistent

status routers continue as planned to switch to the new mode at the destined timestamp. Figure
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5.3 shows an inconsistent status router which breaks the subscription that passes through it, and

the subscription remains broken until the status router executes the mode change operation or is

restored by the recovery mechanism. A flooding mode change operation is associated with a future
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Figure 5.3: Inconsistent status routers in flooding mode change operation

mode switch timestamp and, if chosen carefully, leaves roomfor the recovery mechanism to run.

Since the flooding mode change algorithm utilizes the flooding mechanism and benefits from the

amount of redundancy in the data plane, the recovery mechanism has a relatively low chance to

restore any inconsistent status routers. On the other hand,the recovery mechanism facilitates ser-

vices to continously query inconsistent status routers andrestore their operating modes whenever

they re-establish contact with the management hierarchy. The associated mode switch timestamp

can be tuned to quickly perform flooding mode changes with a short idle period or, alternatively,

incorporate a long idle period to make flooding mode changes more resilient to temporal network

anomalies through the use of the recovery mechanism. Depending on the situation, the ability to
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tune the mode switch timestamp in runtime can be useful undervarious network conditions.

A shortcoming of the flooding mechanism is when a flooding modechange operation is lost at

the first link to the data plane, e.g., between the coordinator’s publisher and its edge status router.

There are no mechanisms in place to acknowledge a successfulflooding, and the publisher is

therefore not able to convey that the flooding mechanism failed to the coordinating QoS broker. In

such a circumstance, none of the status routers will receivethe flooding mode change operation and

QoS brokers will not aggregate any acknowledgements up towards the coordinator. In short, the

flooding mode change operation is not executed and GridStat has no knowledge of it, except from

the coordinator. This shortcoming can be overcome by one or more of the following solutions:

• The coordinator can time out and initiate the recovery mechanism if it has not received any

acknowledgements from its direct QoS broker children (or status routers).

• The coordinator can flood the mode change operation out on thedata plane through several

edge status routers. This requires some modification to GridStat but can potentially make

the flooding mechanism more efficient. Although this is not a complete solution it will make

the flooding mechanism more resilient to link failures and link loss on the first link to the

data plane.

• The coordinator can receive an acknowledgement from the first edge status router that re-

ceives the mode change message, and enables the publisher toemploy a temporal redundancy

scheme.

5.4.1 Status Router Overload Scenarios

The flooding mode change algorithm is a best-effort algorithm and offers a high statistical delivery

guarantee to all status routers participating in a mode change operation. However, the flooding

mode change algorithm does not prevent overload scenarios.There are two ways status routers

can become overloaded. Incoming buffer queue overload scenarios can occur when one or more
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status routers, long-term or short-term, are left operating in an inconsistent mode (Figure 4.15 in

Section 4.9). Outgoing buffer queues can become overloadedwhen a status router switches directly

between two modes, e.g., Green to Yellow.

An example of overloading an outgoing buffer queue (status router) is illustrated in Figure 5.4.

The diagram shows a status router’s forwarding rate when operating in mode Green and Yellow and

Time

Green 

forwarding rate

Yellow 

forwarding rate

Outgoing queue

Queue full

Mode change: Green to Yellow

Figure 5.4: Status router - outgoing buffer queue overload.

the contents of its outgoing buffer queue (assume one outgoing link). The status router operates in

mode Green and is told to switch to mode Yellow. At that time, the outgoing queue is currently

full as the status router processes a burst of status events that belong to mode Green. With a full

outgoing buffer queue, the status router switches to Yellowand begins to process a burst of status

events which belongs to that mode. This causes the status router to drop many status events as the

outgoing buffer queue is full. More specifically, many of thestatus events that belong to the new

operating mode is lost due to an overloaded outgoing buffer queue.

The flooding mode change algorithm is affected by the above overload scenario as it switches
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directly between two modes. This issue, however, can be overcome by flushing every outgoing

buffer queue after the status router has switched modes. In that case, the outgoing buffer queues

are empty and status events belonging to the current mode areforwarded to the next downstream

status router. Unless the status router flushes its outgoingbuffer queues, the queued status events

that belong to the previous active mode would have been dropped at the next downstream status

router, and thus wasting network resources.

The flooding mode change algorithm is more liable to overloadscenarios than the hierarchi-

cal mode change algorithm as it switches directly between modes at a predetermined timestamp.

The hierarchical mode change algorithm, on the other hand, prevents overload of outgoing buffer

queues by creating the temporary routing table (Section 4.6). However, the hierarchical mode

change algorithm is just as liable to incoming buffer queue overload as the flooding mode change

algorithm when using the non-blocking scheme.
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CHAPTER SIX

EXPERIMENTAL RESULTS

This chapter evaluates the current global and hierarchicalmode change mechanisms and man-

agement implementation in GridStat. The same set of experiments are conducted by both mode

change algorithms, and the following list denotes points ofinterest:

• How well does the hierarchical mode change algorithm scale?How do the hierarchical scope

and the width of the management hierarchy affect the results?

• How well does the flooding mode change algorithm scale? How dothe hierarchical scope

and the width of the flooding domain affect the results?

• How well can both mode change algorithms tolerate link loss?How do various link loss

settings affect the results?

• How do various link latency settings affect the results?

6.1 Experiment Setup

The experiments were conducted on a 16-node cluster at the Electrical Engineering and Computer

Science department at Washington State University. The hardware and software specifications are

described in detail below:

Hardware and Software Specifications:

• 14 Intel Dual Xeon 3.06 GHz, 1 GB of RAM and 1 Gb network interface.

– Redhat 9 (2.4.20-8smp kernel)

• 1 Intel Pentium III (Coppermine) 1 GHz, 512 MB of RAM and 100Mbnetwork interface.
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– Ubuntu 6.10 (Edgy) Linux Distribution (2.6.17.10 kernel).

• Java Standard Edition 5.0 (build 1.5.011-b03).

The cluster nodes were used to run all the GridStat entities necessary to conduct the various

experiments. The Ubuntu system ran a link emulator which wasused to emulate link latency and

link loss on a per-link basis (data plane links) in GridStat.

Java Virtual Machine Arguments:

• -jar: The Java applications are wrapped inside jar files.

• -Xms128m -Xmx128m: Statically set the heap size of the java applications to prevent un-

necessary garbage collector runs.

GridStat Settings

Figure 6.1 shows the GridStat experimental setup with 7 QoS brokers and 20 status routers.

A cloud consists of five status routers: three edge status routers and two internal status routers.

Additional settings are listed below:

• QoS brokers communicate with other QoS brokers, and leaf QoSbrokers with status routers

through dedicated RPC connections that have been established prior to activating any mode

change operations.

• RPC connections between leaf QoS brokers and status routersare configured to utilize two

redundant paths.

• Inter-QoS broker RPC connections are configured to utilize one path only.

• Whenever a GridStat entity does not receive an RPC acknowledgement aftersometimeout,

it retries the RPC call. The RPC retry timeout value is subject to an experiment setup (Table

6.1).
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Figure 6.1: GridStat experimental setup

• All status routers are launched as edge status routers in order to utilize RPC connections

with their leaf QoS broker. A consequence is that the edge status routersconfiguredto act

as internal status routers are included in the inform- and commit phase of the hierarchical

mode change algorithm.

Link Emulator Settings

• A link is associated with a latency, a probability of packet loss and a burstiness setting. When

a packet loss triggers, the link will consecutively lose as many packets as the burstiness set-

ting suggests. If the burstiness setting is variable-sized, e.g. 3-5, the link will at a minimum

lose 3 consecutive packets, but no more than 5 (the actual number is subject to a uniform

distribution).

• The probability of triggering a packet loss is adjusted to the desired packet loss probability

setting divided by the mean burstiness setting. More specifically, with a packet loss proba-

bility setting of 8% and a burstiness setting of 3-5, the trigger probability is8%/4 = 2%.
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• A link will not trigger a new packet loss when in the middle of an ongoing loss sequence.

• Edge links, publisher to edge status router or subscriber tostatus router, do not lose packets.

Experiments were conducted over a wide range of link parameters:

• The same set of experiments were conducted with 0 ms, 1 ms, 2 ms, 4 ms and 8 ms link la-

tencies. These link latencies were chosen to reflect realistic values for a GridStat deployment

in a critical infrastructure.

• The same set of experiments were conducted on a GridStat deployment with 0%, 1%, 2%,

4% and 8% link loss. These link loss settings were chosen to show that the implementation

works under a range of network conditions.

6.2 RPC Retry Timeout Overview

In order to tolerate link loss the RPC retry timeout is a crucial setting to quickly adapt to packet

loss over RPC connections. When a distributed call is sent over an RPC connection the client

awaits an RPC acknowledgement. If an RPC acknowledgement has not been received after the

RPC connection times out, the client will reattempt to send the RPC call to the server. If the RPC

acknowledgement itself got lost, the server will discard redundant messages. The selected RPC

retry timeouts outlined in Table 6.1 are based on the highestobserved RPC round-trip times in the

conducted experiments. More specifically, several experiments, one per link latency and for each

level in the management hierarchy, were conducted in order to find the highest RPC round-trip

time for the particular experiment setup. The listed RPC retry timeout values will be used in mode

change operations initiated at one of the three possible levels in the management hierarchy at the

various link latency experiments.
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Link Latency Top Level Second Level Leaf Level
0 ms 10 10 10
1 ms 15 15 15
2 ms 30 25 20
4 ms 60 40 30
8 ms 120 70 55

Table 6.1: Experiment RPC retry timeouts.

6.3 Hierarchical Mode Change Experiments

This section includes the experimental results from hierarchical mode change operations conducted

at all the three levels in the management hierarchy. Mode change operations are initiated at either

QoS broker A, B1 or C1 in Figure 6.1. Table 6.2 lists all the various network conditions, link

latency, link loss and burstiness setting and the respective mode change times for hierarchical

mode change operations initiated at the top level (see Appendix A for results from second and leaf

level). The times presented in the experimental results throughout this section highly depend on

Experiment Loss % Min. burst Max. burst 0 ms link lat. 1 ms link lat. 2 ms link lat. 4 ms link lat. 8 ms link lat.
1 0% 0 0 162.66 279.16 402.69 671.01 1237.31
2 1% 1 1 168.48 309.41 447.49 762.43 1361.01
3 1% 1 2 171.64 316.34 454.93 772.63 1400.48
4 1% 1 4 180.18 327.95 474.30 815.79 1486.06
5 1% 3 5 182.51 344.88 468.94 791.05 1520.83

6 2% 1 1 178.59 332.95 483.59 826.37 1508.32
7 2% 1 2 188.50 355.85 508.06 861.13 1616.64
8 2% 1 4 205.35 381.12 556.37 927.13 1759.23
9 2% 3 5 221.86 432.62 537.45 948.64 1917.66

10 4% 1 1 213.71 417.41 576.95 1008.27 1916.58
11 4% 1 2 240.12 439.00 607.74 1059.65 1992.49
12 4% 1 4 252.57 454.35 652.78 1160.58 2154.97
13 4% 3 5 271.38 494.65 715.08 1179.67 2297.58

14 8% 1 1 361.18 577.15 841.95 1448.47 2659.82
15 8% 1 2 333.97 585.02 857.15 1551.41 2897.88
16 8% 1 4 382.76 673.30 920.42 1627.72 3018.97
17 8% 3 5 439.17 755.58 1035.97 1737.45 3245.15

Table 6.2: Hierarchical mode change experiments initiatedby the top-level QoS broker.

several factors:

• The RPC retry timeouts affect the overall mode change times in the presence of link loss.

That is, higher link latency settings increase the RPC retrytimeout values being used.
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• One-path RPC connections employed by interior QoS brokers are liable to link loss (espe-

cially bursty loss), whereas the established two-path RPC connections used for communica-

tion between the leaf-level QoS brokers and the data plane tolerate link loss to some extent.

• As RPC connections are established on top of subscriptions,mode change times depend

on the length of subscription paths. That is, the number of event channels a mode change

message has to traverse in order to reach its destination. The longestRPC connection (sub-

scription path) are: 5 event channels from top level QoS broker to middle level QoS broker,

4 event channels from middle level QoS broker to leaf level QoS broker and 3 event channels

from leaf level QoS broker to any status router. For example,the estimated round-trip time

to deliver a mode change operation to any status router from the top level QoS broker with

an 8 ms link latency setting is:((8ms∗5)+(8ms∗4)+(8ms∗3))∗2 = 192ms. QoS broker

(per level) and status router processing times and link emulator overhead come in addition.
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6.3.1 Top-level Experiment

Figure 6.2 depicts the average time per experiment (100 operations) for mode change operations

activated from the top level in the management hierarchy. Asexpected, the mode change times

increase when the overall probability of packet loss (per link) increases. When increasing the link

latency, the increase in mode change completion time is morenotable, which correlates to higher

RPC connection traversal latencies and RPC retry timeout values.
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Figure 6.2: Hierarchical mode change operations at the top level in the management hierarchy.

6.3.2 Second-level Experiment

Figure 6.3 depicts the average time per experiment (100 operations) for mode change operations

activated from the second level in the management hierarchy. The experiments conducted at the

second level in the management hierarchy share the same trends as the experiments conducted at

the top level. The experiments conducted with the same link loss and latency settings, but with

variable burstiness settings, are not subject to the same increase in overall mode change times as

is the case in Figure 6.2. The reason for this behavior is thatthe number of utilized one-path RPC
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connections have decreased, which makes mode change operations conducted at the second level

in the management hierarchy less vulnerable to link loss. The two one-path RPC connections are

between the coordinator of the mode change operations and its two leaf QoS broker children, while

communication between the leaf QoS broker and status routers go over two redundant paths.
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Figure 6.3: Hierarchical mode change operations at the second level in the management hierarchy.

6.3.3 Leaf-level Experiment

Figure 6.4 depicts the average time per experiment (100 operations) for mode change operations

activated from the leaf level in the management hierarchy. The experiments conducted at the

various link latency settings show a relatively flat trend, which suggests that the two redundant

paths utilized by the RPC connections between the leaf QoS broker and its status routers are able

to withstand link loss up to 4% without any significant implication on the mode change times. An

8% link loss setting increases the average mode change timeswhich clearly illustrates the impact

of having only two redundant paths between the leaf QoS broker and its status routers.
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Figure 6.4: Hierarchical mode change operations at the leaflevel in the management hierarchy.

6.4 Flooding Mode Change Operations

This section includes the experimental results from floodedmode change operations conducted

at all the three levels in the management hierarchy. Figure 6.5 illustrates the experimental setup

and shows which status routers the QoS brokers are connectedto. Furthermore, mode change

operations are initiated at either QoS broker A, B1 or C1 in Figure 6.5, and refer to top level,

middle level and leaf level, respectively. All results fromflooding mode change operations initiated

at the top level are listed in Table 6.3 (see Appendix A for results from second level and leaf level).

A total of 300 mode change operations are executed in sequential order per experiment setup.

Once all the status routers have switched to the new mode and the coordinator of the operation has

received acknowledgements from its descendants, the next operation follows.

Common for all flooded mode change operations is that the coordinatorfloodsthe mode change

message directly out on the data plane without propagating the message down through the hierar-

chy towards the status routers. The status routers forward the flooded mode change message to all
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Figure 6.5: GridStat flooding connection points

Experiment Loss % Min. burst Max. burst 0 ms link lat. 1 ms link lat. 2 ms link lat. 4 ms link lat. 8 ms link lat.
1 0% 0 0 11.35 18.57 21.50 28.00 44.27
2 1% 1 1 13.84 20.01 22.72 29.32 45.69
3 1% 1 2 13.72 19.73 22.19 29.34 45.87
4 1% 1 4 13.19 19.40 21.93 29.22 45.19
5 1% 3 5 13.07 19.21 22.03 28.46 45.17

6 2% 1 1 12.97 19.52 21.74 28.70 46.21
7 2% 1 2 13.52 19.29 21.73 28.08 45.16
8 2% 1 4 14.06 19.23 21.88 28.56 44.56
9 2% 3 5 13.04 19.30 22.28 28.58 45.06

10 4% 1 1 13.15 18.59 22.68 29.61 47.39
11 4% 1 2 13.20 18.79 21.31 29.00 46.09
12 4% 1 4 13.39 18.41 21.42 29.08 46.60
13 4% 3 5 13.71 19.04 21.43 29.17 46.08

14 8% 1 1 13.13 18.91 21.81 31.06 50.08
15 8% 1 2 13.27 19.11 22.38 30.58 48.98
16 8% 1 4 12.89 18.50 22.17 29.85 48.58
17 8% 3 5 13.62 18.55 21.20 29.94 47.80

Table 6.3: Flooding mode change experiments initiated by the top-level QoS broker.

their immediate neighbors except from the neighbor they received the mode change message from.

Thus, the flooded mode change algorithm benefits from the amount of redundancy present in the

data plane in order to reach all the target status routers forthe respective mode change operation.

The times presented in the following diagrams are the times when thelast status router received
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the message, averaged over 300 mode change operations.

The number of message rounds required by the flooding mechanism to deliver the mode change

operations to all status router participants, per level in the management hierarchy, are:

• QoS broker A needs four message rounds in order to deliver itsmode change operations to

all status router participants, according to the best flooding path.

• QoS broker B1 needs four message rounds.

• QoS broker C1 needs two message rounds.

6.4.1 Top-level Experiment

Figure 6.6 shows the average time per experiment (300 operations) for flooded mode change oper-

ations activated from the top level in the management hierarchy. As the mode change messages are
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Figure 6.6: Flooded mode change operations at the top level in the management hierarchy.

disseminated directly on to the data plane, the five graphs, one per latency setting, illustrate how

78



resilient the flooded mode change algorithm is against lossylinks with various burstiness settings.

With a link latency setting set to 8 ms, the flooded mode changereaches all the target status routers

after approximately 45 ms, whereas the hierarchical algorithm requires 1200-3200 ms (Figure 6.2)

depending on the link loss and burstiness setting. The experiments conducted with 8% link loss

passes a threshold where the redundancy available in the data plane is not able to propagate the

mode change message to the farthest away status router according to the best path, or close to the

best path, in which the average mode change time increases.

6.4.2 Second-level Experiment

Figure 6.7 shows the average time per experiment (300 operations) for flooded mode change op-

erations activated from the second level in the management hierarchy. A flooded mode change
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Figure 6.7: Flooded mode change operations at the second level in the management hierarchy.

disseminated from the second level in the management hierarchy involves 10 status routers, evenly

distributed among two clouds. The trend is similar to the results in Figure 6.6 across all the con-

ducted experiments, but shows slightly lower average mode change times. The lower mode change
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times are subject to fewer status routers involved in the experiments (less link emulator overhead)

and an additional best-case flooding path. Interestingly, the results from this experiment show a

better resilience against 8% link loss in comparison with flooding mode change operations initiated

by the top level QoS broker (Figure 6.6). Figure 6.5 shows that the best-case flooding path from

QoS broker A and QoS broker B1 require four message rounds in order to reach all status router

participants. However, QoS broker B1 has an additional best-case flooding path that only requires

four message rounds, whereas QoS broker A requires five message rounds when link loss prevents

the best-case path from delivering the mode change message to all status router participants.

6.4.3 Leaf-level Experiment

Figure 6.8 shows the average time per experiment (300 operations) for flooded mode change oper-

ations activated from the leaf level in the management hierarchy. A flooded mode change dissem-
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Figure 6.8: Flooded mode change operations at the leaf levelin the management hierarchy.

inated from the leaf level in the management hierarchy involves 5 status routers in a single cloud

controlled by the leaf QoS broker (coordinator). The experiments conducted with 8% link loss
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share the same trend as the experiments with the same networksettings conducted at the second

level in the management hierarchy, but are more efficient as the leaf QoS broker only requires two

message rounds, through the flooding mechanism, to reach allstatus router participants. Leaf QoS

broker C1 suffers from a single best-case flooding path, and requires three message rounds when

link loss prevents the best-case path from delivering the mode change message to all status router

participants. This explains the impact on the average mode change times under an 8% link loss

setting in comparison with the experiments conducted by QoSbroker B1 in Figure 6.7 which has

two best-case flooding paths.

6.5 Hierarchical vs. Flooding Algorithm Comparison

The following diagrams illustrate how the hierarchical andflooding mode change algorithms scale

when activating mode change operations at the three different levels in the management hierarchy.

Common for all diagrams is a representation of all the experiments conducted at the link latency

setting set to 0 ms, 1 ms and 8 ms for both the hierarchical and the flooding mode change algorithm.

6.5.1 Top-level Comparison

Figure 6.9 shows the average time per experiment, 100 operations for the hierarchical algorithm

and 300 operations for the flooding algorithm, for mode change operations activated from the top

level in the management hierarchy. The diagram clearly illustrates the impact of disseminating the

mode change operations and collecting mode change acknowledgements through the management

hierarchy for the hierarchical mode change algorithm. As inter-QoS broker RPC connections only

utilize a single path, the effect of increased link loss settings directly corresponds to a higher

overall mode change completion time caused by higher RPC retry delays. The flooding algorithm

does not suffer from the same propagation delays and RPC retry delays as the hierarchical mode

change algorithm since the operations are disseminated directly out on the data plane by using

the flooding mechanism in GridStat. The flooding algorithm solely depends on thewidth of the

flooding domain, the origin point of the flooding mechanism and the general level of redundancy
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Figure 6.9: Hierarchical vs. flooding mode change operations conducted at the top level (0, 1 and
8 ms link latencies).

available in the data plane. The results from the flooding algorithm conducted with 8 ms link

latency shows that the average mode change times are well below the hierarchical experiment

0:0-0 with a link latency setting set to 0 ms.

6.5.2 Second-level Comparison

Figure 6.10 shows the average time per experiment for mode change operations activated from

the second level in the management hierarchy. The flooding algorithm still outperforms the hier-

archical algorithm under all the different network conditions (note that the flooding experiments

conducted with 8 ms link latency are significantly lower thanthe hierarchical experiments con-

ducted with 0 ms link latency). The hierarchical results show a more flat outline than the exper-

iments conducted at the top level (Figure 6.9) as the number of one-path RPC connections have

decreased.
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Figure 6.10: Hierarchical vs. flooding mode change operations conducted at the second level (0, 1
and 8 ms link latencies).

6.5.3 Leaf-level Comparison

Figure 6.11 shows the average time per experiment for mode change operations activated from the

leaf level in the management hierarchy. Since the RPC connections utilize two redundant paths

in the hierarchical algorithm, the significance of higher system loss is negligible, while at 8% link

loss an increase in hierarchical mode change times is causedby the limitation of having only two

redundant paths between the leaf QoS broker and a status router. The flooding algorithm still

outperforms the hierarchical algorithm by almost an order of magnitude.

6.6 Link Traversals

Table 6.4 shows the number of links (event channels) traversed by both mode change algorithms.

The number of traversals is averaged over all the experiments conducted at a specific level in the

management hierarchy. For example, the hierarchical algorithm at the top level traverses a total of

2124 event channels, averaged over all experiments conducted at that level. The hierarchical mode
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Figure 6.11: Hierarchical vs. flooding mode change operations conducted at the leaf level (0, 1
and 8 ms link latencies).

change algorithm requires more link traversals since the coordinator disseminates mode change

operations through the management hierarchy and towards the data plane. The flooding mode

change algorithm, on the other hand,savesa trip through the management hierarchy and uses

it only for aggregating acknowledgements up towards the coordinator. In addition, the leaf QoS

brokers utilize the spatial redundancy property in GridStat through its established RPC connections

with the status routers it controls, which increases the number of link traversals for both algorithms.

Algorithm Top Level Second Level Leaf Level
Hierarchical 2124 833 340
Flooding 367 165 84

Table 6.4: Link traversals
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6.7 Scalability Results

The following diagrams compare the same experiments conducted at the three levels in the man-

agement hierarchy in order to see how the algorithms scale when increasing the hierarchical scope

of the hierarchical algorithm or the flooding domain of the flooding algorithm.

6.7.1 The Hierarchical Algorithm

Figure 6.12 depicts experiments conducted at the three levels in the management hierarchy with 1

ms link latency, and Figure 6.13 shows the experiments conducted with 8 ms link latency. Figure

6.12 depicts an increase in time between the experiments conducted at the leaf and second level

which is approximately the double of the mode change times achieved at the leaf level, and the

same results are seen between the experiments conducted at the second and top level at lower link

loss settings. Figure 6.12 also shows the impact of the one-path inter-QoS broker RPC connections

(top level experiments utilize more one-path RPC connections than the experiments at the second

level).
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Figure 6.12: Scalability results using the hierarchical algorithm (1 ms link latency).
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Figure 6.13 share the same trend as Figure 6.12, but the impact of the number of one-path

inter-QoS broker RPC connections is more clear.
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Figure 6.13: Scalability results using the hierarchical algorithm (8 ms link latency).

At first, one might expect that the linear increase is caused by the number of status routers

involved in the hierarchical mode change operations: 5 at the leaf level, 10 at the middle level and

20 at the top level. This is not necessarily true. The hierarchical mode change algorithm depends

on the number of levels in the management hierarchy, thelengthof the RPC connections between

the QoS brokers and the corresponding delays. The experimental layout for the hierarchical mode

change algorithm in Figure 6.1 shows a binary management tree, where the length of the RPC

connections are: 5 links between A and B1, 4 links between B1 and C1 and 3 links between C1

and each status router, and suggests that the paths become longer higher up in the management

hierarchy. However, the length of RPC connections depend onthe topology in the data plane and

at which status router the QoS broker’s publisher and subscriber are connected to. With a trinary

tree where each QoS broker has three direct children QoS brokers, the situation might be different
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depending on how the status router network is divided between the leaf QoS brokers. It is important

to mention that the status router network remains the same; the number of status routers and the

underlying network topology. The difference lies with a wider management hierarchy and slightly

less populated GridStat clouds. This suggests that a trinary tree has fewer levels than a binary tree

and that the length of RPC connections between QoS brokers are longer. In that case, a binary tree

and a trinary tree should yield approximately the same results.

6.7.2 The Flooding Algorithm

Figure 6.14 depicts experiments conducted at the three levels in the management hierarchy with

1 ms link latency, and Figure 6.15 shows the experiments conducted with 8 ms link latency. The

diagrams represent the average time at which all status routers have received the mode change

operation, and give a notion of how much time should be allocated for flooding a mode change

operation to all status router participants. For example, Figure 6.15 (8 ms link latency) shows that

flooding mode change operations initiated by the top level QoS broker require approximately 50

ms to deliver the operation to all status router participants, even under stringent network conditions.

This means that, in the average case, status routers can safely switch modes at any time after that.

However, some time variance must be taken into account, as shown in Section 6.9.2.

The experiments conducted at the three levels with 1 ms link latency (figure 6.14) show a mini-

mal increase in mode change times that is caused by larger flooding domains when the coordinator

resides higher up in the management hierarchy, and with a larger flooding domain increases the

number of message rounds for the mode change operation to reach all status router participants.

Another factor is the starting point of the flooding mechanism, e.g., flooding from themiddleof

the flooding domain is more efficient than initiating a flood from an edge in the flooding domain.

An example of this is shown in figure 6.15 which depicts a largegap between the experiments con-

ducted at the leaf and second level. Logically, one would argue that the experiments conducted at

the second level should be closer to the results achieved by mode change operations conducted at
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Figure 6.14: Scalability results using the flooding algorithm (1 ms link latency).

the leaf level. However, flooding mode change operations activated from the second level initiate

the flooding mechanism from an edge in the flooding domain, while the leaf QoS broker initiates

the flooding mechanism from the center status router in its single administrative cloud. This, in

effect, means that the leaf level requires two message rounds to disseminate the operation to all

the status router participants (one from the leaf QoS brokerto the cloud), while the second level

requires four message rounds. An optimization would be to let the second level initiate the flood-

ing mechanism from the center node in one of its two administrative clouds, which would reduce

the number of message rounds with one. Note that the actual topology in the involved clouds in

a flooding mode change operation and the degree of redundancybetween them have to be taken

into consideration when determining which status router should serve as the point of origin for the

operation.
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Figure 6.15: Scalability results using the flooding algorithm (8 ms link latency).

6.8 Flood Inconsistencies

The flooding algorithm has to some degree a limitation depending on the number of redundant

links (event channels) connecting clouds. For example, if two clouds are only connected through

one single link, there is a relatively high probability in the presence of link loss that one of the

clouds will not receive a mode change operation disseminated out on the data plane by using

the flooding mechanism. This scenario can potentially leavethe data plane inconsistent as one

cloud has no knowledge of any recent mode change operation. GridStat handles such scenarios

through the management hierarchy (see Section 3.6) where QoS brokers eventually, after some

timeout, attempt to correct the situation in the data plane by using the hierarchical mode change

algorithm. The recovery mechanism will only contact the status routers the management hierarchy

has not received any acknowledgements from and informs themto change to the new mode. It is

important to mention that the flooding mechanism is not affected much by bursty loss (triggered

by the link emulator) as a flooded message is only sent once perlink, but bursty loss might affect
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the next flooding mode change operation.

Table 6.5 shows the number of times such scenarios outlined above occur under various net-

work conditions by using the flooding algorithm where cloudsare inter-connected by three event

channels. All experiments are conducted at the top level in the management hierarchy and each

experiment represents 300 flooding mode changes (1 instancemeans 1/300 mode change opera-

tions).

Experiment Loss % Min. burst Max. burst 0 ms link lat. 1 ms link lat. 2 ms link lat. 4 ms link lat. 8 ms link lat.
1 0% 0 0 0 0 0 0 0
2 1% 1 1 0 0 0 0 0
3 1% 1 2 0 0 0 0 0
4 1% 1 4 0 0 0 0 0
5 1% 3 5 0 0 0 0 0

6 2% 1 1 0 0 0 0 0
7 2% 1 2 0 0 0 0 0
8 2% 1 4 1 0 0 0 0
9 2% 3 5 0 0 0 0 0

10 4% 1 1 0 1 0 1 0
11 4% 1 2 0 0 1 0 0
12 4% 1 4 1 0 0 0 0
13 4% 3 5 1 0 0 0 0

14 8% 1 1 5 4 3 0 1
15 8% 1 2 5 0 2 3 0
16 8% 1 4 4 0 0 1 2
17 8% 3 5 0 1 0 0 0

Table 6.5: Flood inconsistency occurrences.
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6.9 Mean and Standard Deviations

Figure 6.16, 6.17, 6.18 and 6.19 show the mean and standard deviation for experiments conducted

with 0 ms and 8 ms link latency at the top level by using both thehierarchical and the flooding

algorithm. The experiments conducted with link latency settings 1 ms, 2 ms and 4 ms are listed in

Appendix A.

6.9.1 The Hierarchical Algorithm

Figure 6.16 depicts the mean and standard deviation resultswith 0 ms link latency from hierarchical

mode change operations initiated by the top level QoS broker. Higher link loss probabilities do not
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Figure 6.16: Mean and standard deviation using the hierarchical algorithm (0 ms link latency).

affect the results significantly as QoS brokers can quickly respond to link loss through the temporal

redundancy property inherent in the RPC mechanism. RPC connections utilized by the top level

QoS broker await RPC acknowledgements for 10 ms (Table 6.1) after a mode change message has

been sent, and explains the deviations seen throughout all the experiments.
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Figure 6.17 depicts the mean and standard deviation resultswith 8 ms link latency from hier-

archical mode change operations initiated by the top level QoS broker. In comparison with Figure
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Figure 6.17: Mean and standard deviation using the hierarchical algorithm (8 ms link latency).

6.16, a higher link latency and RPC retry timeout (120 ms) clearly causes larger deviations. For

example, four sequential losses with an 8 ms link latency and120 ms RPC retry timeout result in

an added delay of 480 ms to a hierarchical mode change operation, but only 40 ms with 0 ms link

latency and 10 ms RPC retry timeout.

6.9.2 The Flooding Algorithm

Figure 6.18 shows the mean and standard deviation results with 0 ms link latency from flooding

mode change operations initiated by the top level QoS broker. The flooding domain contains 20

status routers evenly distributed in four clouds, where clouds are inter-connected by three event

channels. The standard deviations, for all experiments, are within the same range and do not

increase when the overall link loss setting increases. Linkloss during flooding mode change oper-

ations may cause a higher number of necessary message roundsfor all participants to receive the
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Figure 6.18: Mean and standard deviation using the flooding algorithm (0 ms link latency).

operation, and the standard deviation is caused by link traversal times and link emulator overhead.

Figure 6.19 shows the mean and standard deviation results with 8 ms link latency from flooding

mode change operations initiated by the top level QoS broker. The flooding domain contains 20

status routers evenly distributed in four clouds, where clouds are inter-connected by three event

channels. The standard deviations increase with a link latency of 8 ms as the number of necessary

message rounds may increase when the data plane is experiencing heavy link loss. For example,

one additional message round increases the flooding mode change time by 8 ms in comparison to

0 ms (plus link emulator overhead) in Figure 6.18. Furthermore, the diagram depicts the average

time at which all status router participants have received the mode change operation. For example,

with 8% link loss and a burstiness setting set to 1-1, all status router participants receive the mode

change operation after 50 ms (average). However, as seen from the time variance, the coordinator

should provide at least 55 ms for the flooding mechanism to runprior to switching modes. That

is, status routers, for this particular example, can safelyswitch modes 55 ms after the coordinator
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Figure 6.19: Mean and standard deviation using the flooding algorithm (8 ms link latency).

initiated the mode change operation.
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CHAPTER SEVEN

RELATED WORK

Given that both GridStat and the global and hierarchical mode change mechanism are novel, there

is not much related work that closely resembles the contributions of this thesis. Previous work has

been done in network routing using multiple routing tables,but this work has adressed multiple

simultaneously active routing tables for differentiated QoS routing[6][8]. More specifically, two

routing tables are used; one for QoS traffic and another for best-effort traffic. This allows for

differentiated routing strategies for the two traffic classes. For example, QoS traffic emphasizing

lower drop rates could be forwarded along less loaded paths reducing the probability of drops due

to congestion at the expense of longer paths and thus higher delay. The mechanisms proposed in

this thesis share the property of previous work in the area ofsupporting multiple routing tables,

but is novel in that a status router is collectively managed by a set of QoS brokers where each

QoS broker controls a distinct set of routing tables, and hasthe ability to switch between them in

run-time.
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CHAPTER EIGHT

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The implementation of global and hierarchical mode change mechanisms and management enables

GridStat to quickly switch between bundles of subscriptions in run-time. GridStat pre-loads and

populates routing tables in the status router network according to subscription modes where mode

change operations effectively switches between routing tables. The alternative approach to switch

between bundles of subscriptions would be for GridStat to replace subscription bundles through

allocation and de-allocation methods. The allocation and de-allocation of subscriptions are ex-

pensive operations and will delay data streams when they areneeded the most, and is undesirable

for contingency handling in the electrical power grid. The power grid industry can benefit from

this mechanism in GridStat by identifying and creating distinct mode holders for the information

that is needed during various critical situations in the electrical power grid. Furthermore, Grid-

Stat’s modes implementation enables load shedding for datastreams and corresponds to how load

shedding enables transmission adjustments in the electrical power grid.

This thesis has presented two mode change algorithms that offer different tradeoffs with respect

to consistency, resource usage and efficiency. The hierarchical mode change algorithm enables sub-

scriptions present in both the old and new modes to flow duringa mode change operation through

five execution phases. In addition, the hierarchical mode change algorithm prevents bandwidth,

status router computational resources and queues to becomeexhausted. The flooding mode change

algorithm is an efficient best-effort algorithm that informs status routers to change modes through

the flooding mechanism, and therefore provides a high statistical delivery guarantee. However, the

flooding mode change algorithm is not able to prevent computational resources and queues in the

status router network to become overloaded.
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Both mode change algorithms forward a mode change operationtowards a set of status routers,

either through the management hierarchy or by using the flooding mechanism, and are therefore

liable to network failures. The recovery mechanism is initiated when one or more status routers do

not respond to a pending mode change operation. In that case,the recovery mechanism attempts to

contact the non-responsive status routers with instructions to restore their operating modes when

the network failures are resolved.

Further, this thesis has presented the use and integration of the RPC mechanism in GridStat.

The RPC mechanism enables GridStat entities to communicateover allocated subscriptions and

will therefore benefit from the QoS GridStat provides. The RPC mechanism was primarily de-

signed for external applications, e.g., actuator control,but this thesis shows that it is also useful

internal to GridStat.

The experimental evaluation shows the mode change completion times for both mode change

algorithms under various network conditions. The experimental results show that the hierarchical

mode change algorithm scales linearly when increasing the hierarchical scope of a mode change

operation. However, the algorithm adds a significant delay to the overall mode change completion

time in the presence of link loss. The reason for this behavior is that QoS brokers do not utilize

redundant subscription paths in their established RPC connections. The hierarchical mode change

algorithm is expected to perform much better during poor network conditions with redundant com-

munication paths in the management hierarchy. The results show that the flooding mode change

algorithm completes a mode change operation more than an order of magnitude faster than the

corresponding experiment conducted with the hierarchicalmode change operation. Furthermore,

the flooding mode change algorithm is less prone to link loss and shows a minimal impact on the

overall mode change completion times. In term of scalability, the flooding mode change algorithm

scales linearly and clearly shows that the width of the flooding domain and the point at which QoS

brokers initiate the flooding mechanism from increases the mode change completion times.
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The experimental evaluation demonstrates that the global and hierarchical mode change mech-

anisms and management implementation in GridStat is a practical and feasible approach for con-

tingency adaptation in the electrical power grid. The experiments show that both algorithms scale

linearly in the management hierarchy, are resilient to linkloss through a well-connected status

router network, and together with the recovery mechanism and an assumed QoS broker replica-

tion scheme provide the necessary means to ensure consistent mode changes. The mode change

algorithm that is best suited for the electrical power grid will require investigation into standard

practices and in close coordination with representatives from the electrical power grid industry.

8.2 Future Work

8.2.1 Multiple Mode Sets Per QoS Broker

Currently, a QoS broker does only support the definition and use of a single mode set and will

always operate in one mode from its mode set. An improvement would be for QoS brokers to

define multiple mode sets, and therefore operate in several modes. For example, a utility company

might be interested in monitoring a common set of important power grid variables which will

never change independent of which contingencies or power grid failures the utility will face. By

supporting multiple mode sets, a utility can define abaselinemode which it will always operate in,

and use additional mode sets for contingency monitoring. Furthermore, the support for multiple

mode sets allows modes to be categorized. Utility companiescan, for instance, define several

modes, belonging to the same mode set, for detailed region-wise power line monitoring which can

be used in the presence of power line failures. In order to support multiple mode sets, the use and

storage of mode definitions at QoS brokers and status routersmust be altered, but the overall mode

change mechanisms can be utilized as is.
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8.2.2 Optimized Routing Table Construction

With the introduction of multiple active routing tables in the status routers is an associated overhead

in the forwarding algorithm. Status routers have to iteratethrough all forwarding data sets per pro-

cessed status event and obviously slows down the forwardingalgorithm. This section investigates

how this step can be eliminated from the forwarding algorithm through alternate constructions of

the routing table.

Status routers can, during mode change operations, calculate a single mode holder instance

that contains all the necessary forwarding information forstatus events that belong to the current

set of operating modes. This means, that for each mode changeoperation, the status routers have

to calculate and construct a new routing table. Furthermore, the status routers must be careful to

construct the new routing table such that the multicast mechanism is preserved. If subscriptions

are added in run-time the forwarding sets must be carefully placed in the already existing structure.

Alternatively, instead of constructing routing tables on the fly during mode change operations,

status routers can pre-calculate a single mode holder instance for all possible permutations of oper-

ating modes and have routing tables ready for use. This solution optimizes the current routing table

implementation, but at the cost of higher resource usage. Status routers must store all routing table

permutations and re-calculate them when subscriptions areadded in run-time, which necessitates

a large storage space for status routers that are envisionedto be run on light-weight hardware.

An optimization to the routing table permutations scheme would be for the management hi-

erarchy to pre-calculate all possible routing table permutations or calculate a single routing table

during mode change operations. This is a reasonable approach as QoS brokers will run on high-end

machines. However, the management hierarchy is responsible for sending routing tables down to

all status routers participating in a mode change operation, and may therefore increase the risk of

inconsistent mode change operations in the presence of network failures.

99



8.2.3 Link Delay and Noise Measurements

The RPC mechanism uses a pre-configured retry timeout value when awaiting RPC acknowledge-

ments and is common for all GridStat entities that utilize the RPC mechanism. When the RPC

retry timeout value is lower than the connection’s actual round-trip time, the sender might resend

unnecessary RPC calls. On the other hand, a high RPC retry timeout value adds additional delay

to the RPC calls in the presence of temporal network anomalies. Therefore, GridStat must provide

a scheme for measuring subscription path delays and noise per established RPC connection. Such

a measurement scheme can be incorporated into the RPC mechanism or provided as an additional

layer on top of the RPC mechanism. A measurement scheme provided by the RPC mechanism has

the sole benefit of being transparent to the overlying application, and the RPC mechanism itself is

responsible for monitoring its established connections. Alternatively, the overlying application can

provide the necessary means for implementing a measurementscheme on top of the RPC mecha-

nism and allows the client to perform its desired measurements. Which method best suits GridStat

is subject to the end-to-end argument and is a future design decision.

8.2.4 Alternative Flooding Mode Change Algorithm Design

The flooding mode change algorithm informs status routers toswitch between modes at a pre-

determined future timestamp. An optimization to, or an alternative design to, the flooding mode

change algorithm is for status routers to switch modes when needed to. A status event belongs

to a subscription established to operate in one or more modes, and has an associated published

timestamp and an estimated delivery deadline (subscriber). In this proposed design, a status router

switches modes when a status event belonging to the new mode with a delivery deadline after the

mode switch timestamp passes through it. The following observations are made in a flooding mode

change operation switching from Green to Yellow:

• Status events in Yellow: Status events published prior to the mode switch timestampbut

with a delivery deadline after the mode switch timestamp areforwarded through the status
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router network and delivered to the subscriber applications. Status routers on the path(s)

switch from Green to Yellow when processing the status event.

• Status events in Green: Status events with a delivery deadlineclose, but prior, to the mode

switch timestamp can not be guaranteed to reach the subscriber applications. The reason is

that some status routers on the paths towards the subscribers may already have switched to

mode Yellow, due to status events in Yellow with a delivery deadline after the mode switch

timestamp. This introduces a notion of uncertainty regarding status events in Green that

should be delivered prior to the mode switch timestamp.

• Status events in Green and Yellow: Status routers in the status router network can operate

in either Green or Yellow during the mode change operation and forwards status events in

Green and Yellow towards the subscriber applications, but possibly at the wrong rate.

The current implementation of the flooding mode change algorithm is used as is to deliver the

mode switch timestamp to the status router network, where status routers switch modes when sub-

scription traffic in the new mode with a delivery deadline after the mode switch timestamp passes

through them. Subscription traffic in the new mode with delivery deadlines after the mode switch

timestamp is guaranteed to be delivered to the subscriptionapplications, whereas subscription traf-

fic in the old mode with delivery deadlines just prior to the the mode switch timestamp might

become dropped. More specifically, subscription traffic in the old mode with a delivery deadline

prior to the mode switch timestamp might become droppedafter the first status event in the new

mode with a delivery deadline after the mode switch timestamp has caused some of the status

routers to switch modes. In this time period, status routersoperate in either the old or the new

mode, and status routers can receive subscription traffic inboth modes, which makes them liable

to overload scenarios. This can be overcome by discarding status events in the old mode after

the first status event in the new mode (with delivery deadlineafter the mode switch timestamp)

has been sent, thus creating a status router behavior which closely resembles the prepare phase
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(see Section 4.2) in the hierarchical mode change algorithm. However, during this time, the status

router network will drop status events in the old mode with a delivery deadline prior to the mode

switch timestamp.

8.2.5 The Hierarchical Mode Change Algorithm and Flooding

The flooding mode change algorithm provides high statistical delivery guarantees through the

flooding mechanism in GridStat. The current implementationof the hierarchical mode change

algorithm, on the other hand, is not able to benefit from the flooding mechanism as it disseminates

mode change operations (phases) through the management hierarchy by using the RPC mecha-

nism. The RPC mechanism benefits from GridStat’s QoS guarantees, most importantly spatial

redundancy, but can not meet the same statistical delivery guarantees as the flooding mechanism.

The flooding mechanism can be incorporated into the hierarchical mode change algorithm as fol-

lows:

• The leaf QoS brokers can, as an alternative to the RPC mechanism, flood the mode change

operations out in its respective clouds.

• The coordinator of a mode change operation can flood mode change phases directly out

on the status router network. Status routers will execute the mode change phase and send

acknowledgements up to the management hierarchy, where QoSbrokers collectively aggre-

gate and send acknowledgements up towards the coordinator by using the established RPC

connections.

• The recovery mechanism can utilize the flooding mechanism. For example, if a status router

does not respond with an acknowledgement, the leaf QoS broker can flood the mode change

phase to its cloud, and thereby be able to contact the assumedfailed status router with a high

statistical delivery guarantee, unless the status router is partitioned or offline.
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8.2.6 QoS Broker Replication

QoS broker replication has served as a major assumption for both mode change algorithms, and

thus no mechanisms have been implemented in order to circumvent failed QoS brokers. The recov-

ery and RPC mechanism provide the means to continue mode change operations once QoS brokers

resume operation through the assumed replication scheme. Active or passive replication serve as

two suitable replication strategies for GridStat.

8.2.7 Resource Management

The introduction of global and hierarchical modes in GridStat stresses the necessity of a resource

management scheme in GridStat. A resource management scheme is collectively employed by

the management hierarchy to control and manage resources inthe data plane and to make sure

resources do not become overloaded at any time during operation. Global and hierarchical modes

enable status routers to utilize several routing tables andincreases the complexity of any resource

management scheme. That is, the resource management schememust ensure that no resources

become overloaded with any set of operating modes.

8.2.8 Security

Security concerns have not been the focus of this thesis, butthe global and hierarchical mode

change mechanisms and management implementation might benefit from ongoing work on secur-

ing communication within the data plane and management plane. One project aims to secure data

plane communication (subscriptions) through encryption and verification methods, and as mode

change operations are disseminated through GridStat’s RPCmechanism, the current global and

hierarchical mode change implementation will directly leverage from the results of that project.

Another issue is for status routers and QoS brokers totrust the contents of a mode change op-

eration. For example, a misbehaving leaf QoS broker mediator might, by using the hierarchical

algorithm, change the mode change operation contents and inform its status routers to change to a

wrong mode. Therefore, appropriate mechanisms to detect ortolerate Byzantine failures, to some
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degree, need to be investigated for future versions of GridStat.

8.2.9 Clock Synchronization

The flooding mode change algorithm relies on synchronized clocks across all GridStat entities in

order to inform all status router participants to switch modes at a predetermined timestamp. The

Network Time Protocol (NTP) was used in order to synchronize(time) all the cluster nodes used

in the experimental evaluation (Chapter 6). However, NTP isnot suitable in a wide-area network

which spans several network technologies. The correctnessof the forwarding of status events

is proportional to the level of clock synchronization between status routers. To ensure a high

quality of forwarding, clock synchronization should be in the low milliseconds, or ideally within

microseconds, as this is well below publishing rates commonly used in power grid applications.

GPS synchronization products are available that provide accuracy of one microsecond to UTC.

8.2.10 Byzantine Failures

The hierarchical mode change algorithm and the flooding modechange algorithm rely on QoS

brokers and status routers to behave correctly. Byzantine failures with respect to a QoS broker can

affect the two mode change algorithms as follows:

• A QoS broker does not forward the mode change operation (phase) to its children QoS

brokers.

• A QoS broker tampers with the mode change operations, but forwards them to all QoS broker

children. This might cause all status routers in the hierarchical scope of the QoS brokers to

execute the wrong mode change phase, or switch to the wrong mode.

• A QoS broker might not send an acknowledgement up to its parent QoS broker during ag-

gregation rounds.

• A QoS broker might not initiate the recovery mechanism or execute a recovery request.
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The above list presents Byzantine failure scenarios for QoSbrokers. However, the same set

of problems might be caused by an exploited or misbehaving status router, but in that case, a

Byzantine failure will not cause much harm. In order to tolerate Byzantine failures, GridStat must

employ an extensive amount of security features and failuredetection mechanisms. Furthermore,

status routers might benefit from voting mechanisms in orderto detect exploited mode change

operations.
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APPENDIX ONE

EXPERIMENTS

This appendix presents additional experimental results from the hierarchical and flooding mode

change algorithms.

A.1 Hierarchical Algorithm Results

Table A.1 shows the average mode change times for all hierarchical mode change experiments

conducted at the second level in the management hierarchy, and Table A.2 for the leaf level, re-

spectively.

Experiment Loss % Min. burst Max. burst 0 ms link lat. 1 ms link lat. 2 ms link lat. 4 ms link lat. 8 ms link lat.
1 0% 0 0 67.51 164.73 227.14 351.05 634.18
2 1% 1 1 72.08 168.97 234.67 377.80 658.78
3 1% 1 2 70.66 179.14 234.85 376.17 671.62
4 1% 1 4 71.63 167.42 239.94 376.92 671.54
5 1% 3 5 78.19 171.93 236.05 387.24 667.40

6 2% 1 1 78.40 185.80 248.78 386.16 684.18
7 2% 1 2 77.96 187.52 246.50 402.41 693.76
8 2% 1 4 84.89 189.58 258.03 394.22 729.52
9 2% 3 5 74.43 192.61 262.96 391.97 693.98

10 4% 1 1 84.79 193.00 282.87 435.85 746.50
11 4% 1 2 90.24 191.94 298.39 443.70 760.55
12 4% 1 4 94.29 200.69 285.09 455.06 789.31
13 4% 3 5 91.68 211.96 297.23 462.91 814.52

14 8% 1 1 120.28 243.32 340.45 515.32 909.08
15 8% 1 2 129.12 247.57 352.74 520.43 920.50
16 8% 1 4 133.42 272.37 406.57 588.06 979.92
17 8% 3 5 139.10 280.36 383.82 620.49 958.07

Table A.1: Hierarchical mode change experiments initiatedby the second-level QoS broker.

Experiment Loss % Min. burst Max. burst 0 ms link lat. 1 ms link lat. 2 ms link lat. 4 ms link lat. 8 ms link lat.
1 0% 0 0 38.14 71.02 99.18 158.12 276.86
2 1% 1 1 38.11 71.44 99.48 158.73 279.24
3 1% 1 2 35.18 68.52 97.06 156.26 278.25
4 1% 1 4 33.26 67.11 95.93 155.36 276.11
5 1% 3 5 34.46 68.57 96.46 155.62 276.65

6 2% 1 1 37.96 71.54 100.05 159.78 281.72
7 2% 1 2 33.91 67.32 97.26 157.00 282.49
8 2% 1 4 32.01 67.29 96.97 156.25 280.46
9 2% 3 5 32.15 66.52 95.02 156.70 278.78

10 4% 1 1 31.90 67.03 98.38 160.67 285.71
11 4% 1 2 32.58 67.97 96.75 160.00 290.79
12 4% 1 4 32.95 68.82 98.02 159.27 288.33
13 4% 3 5 32.99 66.35 96.14 158.97 288.05

14 8% 1 1 36.53 77.00 109.86 177.16 318.39
15 8% 1 2 35.86 75.81 103.66 171.53 315.67
16 8% 1 4 37.07 75.94 106.80 170.94 307.54
17 8% 3 5 37.97 71.20 107.29 172.70 315.99

Table A.2: Hierarchical mode change experiments initiatedby the leaf-level QoS broker.
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A.2 Flooding Algorithm Results

Table A.3 shows the average mode change times for all floodingmode change experiments con-

ducted at the second level in the management hierarchy, and Table A.4 for the leaf level, respec-

tively.

Experiment Loss % Min. burst Max. burst 0 ms link lat. 1 ms link lat. 2 ms link lat. 4 ms link lat. 8 ms link lat.
1 0% 0 0 7.40 12.50 15.46 23.61 38.94
2 1% 1 1 9.79 13.58 16.58 24.31 39.64
3 1% 1 2 8.25 13.08 16.34 23.55 39.45
4 1% 1 4 7.93 11.96 16.42 24.00 39.70
5 1% 3 5 8.96 11.74 16.41 23.87 39.26

6 2% 1 1 8.01 11.83 16.58 24.11 39.88
7 2% 1 2 7.25 12.08 16.01 24.44 39.62
8 2% 1 4 6.97 11.73 16.25 24.08 38.95
9 2% 3 5 7.55 11.56 16.11 23.17 38.80

10 4% 1 1 7.85 12.21 15.65 23.85 39.15
11 4% 1 2 7.64 11.70 15.53 23.08 39.13
12 4% 1 4 9.04 12.03 15.42 23.43 39.80
13 4% 3 5 8.34 11.74 15.37 23.62 39.06

14 8% 1 1 7.10 12.18 16.22 24.40 40.55
15 8% 1 2 7.14 12.29 16.25 23.35 40.59
16 8% 1 4 7.05 11.86 16.59 23.24 40.01
17 8% 3 5 7.04 11.96 16.04 24.03 39.73

Table A.3: Flooding mode change experiments initiated by the second-level QoS broker.

Experiment Loss % Min. burst Max. burst 0 ms link lat. 1 ms link lat. 2 ms link lat. 4 ms link lat. 8 ms link lat.
1 0% 0 0 4.26 6.40 8.23 12.13 20.11
2 1% 1 1 3.49 6.03 8.43 12.62 20.39
3 1% 1 2 4.33 5.84 7.89 12.38 19.88
4 1% 1 4 3.51 5.79 8.17 12.26 19.57
5 1% 3 5 2.73 5.78 7.84 11.92 19.80

6 2% 1 1 2.91 5.55 8.07 12.20 20.17
7 2% 1 2 2.96 5.39 8.11 12.08 19.94
8 2% 1 4 3.58 5.49 7.86 11.77 19.80
9 2% 3 5 3.06 5.38 7.93 12.13 19.83

10 4% 1 1 2.77 5.34 8.52 12.41 20.79
11 4% 1 2 2.98 5.53 8.45 12.55 20.78
12 4% 1 4 2.95 5.23 8.07 12.64 20.42
13 4% 3 5 2.76 5.34 8.27 12.50 20.43

14 8% 1 1 3.10 5.53 8.94 13.49 22.47
15 8% 1 2 2.81 5.55 8.48 13.25 21.93
16 8% 1 4 2.92 5.28 8.51 13.49 21.56
17 8% 3 5 3.43 5.05 8.33 12.88 22.06

Table A.4: Flooding mode change experiments initiated by the leaf-level QoS broker.

A.3 Mean and Standard Deviations

A.3.1 The Hierarchical Algorithm

Figures A.1, A.2 and A.3 show the means and standard deviations for hierarchical mode change

experiments conducted at the top-level QoS broker with a link latency setting set to 1 ms, 2 ms and
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4 ms repectively.
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Figure A.1: Mean and standard deviation using the hierarchical algorithm (1 ms link latency).

A.3.2 The Flooding Algorithm

Figures A.4, A.5 and A.6 show the means and standard deviations for flooding mode change ex-

periments conducted at the top-level QoS broker with a link latency setting set to 1 ms, 2 ms and 4

ms repectively.
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Figure A.2: Mean and standard deviation using the hierarchical algorithm (2 ms link latency).
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Figure A.3: Mean and standard deviation using the hierarchical algorithm (4 ms link latency).
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Figure A.4: Mean and standard deviation using the flooding algorithm (1 ms link latency).
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Figure A.5: Mean and standard deviation using the flooding algorithm (2 ms link latency).
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Figure A.6: Mean and standard deviation using the flooding algorithm (4 ms link latency).
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