ADAPTIVE GRIDSTAT INFORMATION FLOW MECHANISMS AND MANAGEMENT

FOR POWER GRID CONTINGENCIES

By

STIAN FEDJE ABELSEN

A thesis submitted in partial fulfilment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2007



To the Faculty of Washington State University:

The members of the Committee appointed to examine the tbESiSIAN FEDJE ABELSEN
find it satisfactory and recommend that it be accepted.

Chair




ACKNOWLEDGEMENT

| would like to thank my advisor Dave Bakken for his guidanod advice throughout my
studies here at Washington State University. | would als®to thank the entire GridStat team
for valuable input and comments on my research, and to my étite@members Carl Hauser and
Min Sik Kim. A special thanks goes to Carl Hauser for his aztiole in my research and his
willingness to help during the most frustrating times. A lg#served thanks goes out to my
friends in Pullman and Norway, who have made my stay much mjeyable and socially
acceptable.

Finally, I would like to thank all the organizations that lkedfunded me throughout my studies.
In particular, | have received a stipend from The NorwegitateSEducational Loan Fund and
tuition reduction from Washington State University. In ditoh, my research has been supported in
part by grants CNS 05-24695 (CT-CS: Trustworthy Cyber btfiacture for the Power Grid(TCIP))
and CCR-0326006 from the US National Science Foundation.



PUBLICATIONS

Stian F. Abelsen Erlend S. Viddal, David Bakken and Carl Hauser, Adaptivierdmation
Flow Mechanisms and Management for Power Grid ContingsnaieDSN '08: Proceedings of
the International Conference on Dependable Systems andoNet (DSN’08). To be submitted in
Fall 2007.
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Abstract
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August 2007

Chair: David E. Bakken

GridStat is designed to address the need for a flexible angst@ommunication system in the
electrical power grid, and provides a specialization ofghblisher-subscriber paradigm. GridStat
middleware enables reliable delivery of data to any poirdulgh a network of forwarding
engines called status routers, manages network resourdgs@ides QoS (Quality of Service)
for data streams. Furthermore, GridStat hides the detdlitsver-level network capabilities from
application developers in order to enable the communicatystem to be deployed across
different network technologies, operating systems, @ogning languages and device types.
GridStat is divided into two planes; the management placktia@ data plane. The management
plane consists of a hierarchy of QoS brokers which collettimanage resources (status router
network) and subscriptions in the data plane. The mode ehareghanism is a feature
introduced by GridStat, and allows quick adaptation of stiption flows.

A mode contains the necessary forwarding rules for a setlidiptions and allows the
status router network to quickly switch between bundlesubksriptions; an action callednaode
change The process of establishing individual subscriptionsrssaurce-intensive operation in
which the deallocation and allocation of subscription Haadh run-time is expensive and may
result in unsatisfactory subscription delays. GridStatxes subscription bundles to be allocated

and pre-loaded into routing tables wheigerating modesontrol which routing tables the status



router network will utilize. Previous GridStat versionsiHanited mode change capabilities.
Mode switches were limited to a single administrative don{@ridStatcloud) and the mode
namespace was shared between QoS brokers in the managéamnentialditionally, the QoS
brokers did not support the appropriate mechanisms to dafideise modes in their respective
administrative domains. The global and hierarchical mddage mechanisms and management
implementation of this thesis supports these mechanischgwnoduces the notion of global and
hierarchical modes.

This work enables the electrical power grid industry to glyi@dapt information flow streams
to power grid contingencies, and provides control centerafors the means to better understand

and quickly prepare responses to such threats.
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CHAPTER ONE

INTRODUCTION

The electrical power grid is highly dependent on data meimigpand control capabilities in order to
better understand and manage power transmissions overlg bamplex network of transmission
lines and substations. SCADA (Supervisory Control and Dateess) has in the last 40 years
served as the electrical power grid’s communication systediincorporates the requirements and
network technologies back to when it was developed. Their@gents for communication in
the electrical power grid are changing. Growing concerrsutikerrorist attacks, changes in the
power flow structure after the deregulation in 1996, new o$éschnologies (IntelliGrid [2]) and
an increased overall load to capacity ratio of the transpiort line system demand a more flexible
and adaptive communication network. The SCADA communicesystem features a centralized
star-topology, point to point communication, lack of medtst, severe bandwidth constraints and
proprietary protocols which are not sufficient to meet trgureements of today’s grid. [4] and [1]
discuss the limitations of SCADA in more detalil.

GridStat is designed to address the need for a flexible angst@ommunication system in the
electrical power grid, and provides a specialization of phblisher-subscriber paradigm. Grid-
Stat middleware manages network resources, enablesleetialivery of data to any point and
provides QoS (Quality of Service) for data streams. GritlSitdes the details of lower-level net-
work capabilities from application developers in order balele the communication system to be
deployed across different network technologies, opagatystems, programming languages and
device types. GridStat is divided into two planes; thenagement planand thedata plane The
management plane consists of a hierarchy of QoS brokerdwhblitectively manage resources and
subscriptions in the data plane. The data plane is a virteabage bus and lets publishers provide

data to the network and enables subscribers to establiskrgpiions to status data through a status



router network. The use of Qo0S, on a per-subscription bamys subscribers to specify mul-

tiple redundant delivery paths (spatial redundancy), atgson interval and delay. Furthermore,

GridStat provides status data delivery to multiple reciset different rates through the multicast
property and the ability to control and switch routing tadlethe status router network in run-time
through the use of modes.

A mode contains the necessary forwarding rules for a setligfgiptions and allows the status
router network to quickly switch between bundles of sulpgimns; an action calledrmode change
The process of establishing individual subscriptions issurce-intensive operation in which the
deallocation and allocation of subscription bundles attime is expensive and may result in
unsatisfactory subscription delays. GridStat enablesaigiion bundles to be allocated and pre-
loaded into the status routers’ routing tables whgerating modesontrol which routing tables
the status router network will utilize. Depending on thedStiat deployment, status routers can
utilize several routing tables corresponding to the opeganodes, while inactive routing tables
lie dormant.

Previous GridStat versions had limited mode change capebilMode switches were limited
to a single administrative domain (GridStadud) and the mode namespace was shared between
QoS brokers in the management plane. Additionally, the Qa®drs did not support the ap-
propriate mechanisms to define and use modes in a hierarchmicgobal context. The global
and hierarchical mode change mechanism and managemeeti@piation of this thesis supports
these mechanisms and introduces the notion of global amdrbiécal modes. Global modes are
defined and used by the top-level QoS broker in the managemenatrchy and affect the entire
status router network, whereas hierarchical modes aregedray interior QoS brokers and affect
specific regions of the status router network, subject tatmainistrative domains of the interior
QoS brokers that manage them.

The mode change mechanism will help utility companies (@brdenters), regional control

centers, ISOs and nation-wide monitoring centers in pregiegency planning for communication



needs and to switch subscription bundles when contingeda®ccur in the electrical power grid.

Furthermore, modes enable data load shedding in the corngatignis infrastructure in a similar

manner as the electrical power grid utilizes power load dimegd For example, subscribers could
specify two QoS sets; desired QoS and least desirable QdSsvaitch between them when the
network is congested.

The research contributions of this thesis are:

e Global and hierarchical modes: QoS brokers define and usesitocadapt communication

in their respective administrative domains.

e Multiple simultaneously active routing tables in the datane and the ability to switch

between routing tables at run-time.
e The design and implementation of two mode change algorithitisdifferent tradeoffs.

e An experimental evaluation which compares the mode chalygeitams in terms of per-
formance, resource usage and variance (time) in the presgn@rious temporal network

conditions.

The remainder of this thesis is organized as follows: Thel&at framework is presented in
Chapter 2. An explanation of modes, mode change operatimhsedated mechanisms are pre-
sented in Chapter 3. The design of the hierarchical modegehalgorithm is described in Chapter
4. The design of the flooding mode change algorithm is preseimt Chapter 5. Experimental
results from both mode change algorithms are presentedapt€n6, followed by related work in

Chapter 7, and conclusions and future work in Chapter 8.



CHAPTER TWO

STATUS DISSEMINATION AND GRIDSTAT

This chapter gives an overview of the GridStat architectardetailed description of the various
GridStat applications and interaction models. More dethihformation about GridStat and other

baseline mechanisms can be found in [3] and [1].

2.1 GridStat Architecture

Management Plane

QoS Broker

QoS Broker QoS Broker

QoS Broker QoS Broker QoS Broker

Data Plane

Subscriber  Publisher Subscriber  Publisher Subscriber

Figure 2.1: Status dissemination middleware.



GridStat is a publisher-subscriber framework that targetgication domains where the ma-
jority of data is made available at periodic time intervasidStat is mainly designed to serve as
a flexible and robust communication system in the electpoaler grid, but has other applicable
domains where the publisher-subscriber paradigm can ket USgure 2.1 shows a small scale
GridStat deployment subdivided in a management plane aatbgpthne. The management plane
consists 0fQoS brokemodules that collectively control and manage resourcelardata plane.
The data plane is populated Byatus routerspublishersand subscriberswhere publishers pro-
vide data and subscribers can subscribe to data. The maragbmrarchy handles subscription
requests and establishes paths from the publisher to tleesiodr through a sequence of status

routers.

2.1.1 Management Plane

The lowest level of the management plane consisteaifQoS brokersA leaf QoS broker man-
ages and provides services to a set of status routers, petdiand subscribers. The leaf QoS
broker manages a flat collection of status routers, calleldad where the leaf QoS broker has
complete control over all available resources and the spaeding resource usage. The resources
include event channels, status routers, publishers amnstghbrs. Event channels serve as com-
munication links between status routers, in which leaf Qoikdérs must control and make sure
no allocated subscriptions exceed an event channel’s hdtideonstraints. Additionally, the leaf
QoS brokers must ensure that routing tables and compushtiesources are not overloaded in the
status routers. The main responsibility of a leaf QoS brakéw control the allocation or deallo-
cation of subscription paths between publisher and sutesgpiairs in its cloud, and to ensure that
the allocated path satisfies the QoS requirements specifigeelsubscriber.

Interior QoS brokerslenote all non-leaf QoS brokers in the managements higrahaterior
QoS brokers manage multiple clouds and offer services tendavel QoS brokers, and whose

main responsibility is to allocate and deallocate intewd subscriptions.



There is currently no limit on how many management levelshla@magement plane can con-
sist of. In practice, even at a nation-wide deployment inaleetrical power grid or other critical
infrastructures, there would likely be no more than 6-1@&lev An interior QoS broker has an
abstract view on the details and population of the individilauds, while lower-level QoS bro-
kers, and especially leaf QoS brokers, maintain and contorke state information on the details
and available resources in the clouds. Interior QoS bralegrgire more computational resources
while lower-level QoS brokers are mostly responsible farcesssing simple subscription alloca-
tion and deallocation requests that affect a small scopeeadiata plane, and therefore require less
computational resources.

A subscription request initiated by a subscriber is firsiveéd to its leaf QoS broker, and then
forwarded up the management hierarchy until it reachesntegior QoS broker which has both
the publisher and subscriber in its hierarchical scopeptheer of the subscription. The owner
executes its routing algorithm that first verifies wheth@r¢hexists a path from the publisher to
the subscriber. The clouds and inter-cloud event changfeged from the routing algorithm are
delegated to its children QoS brokers, which collectivelggess the next recursive step of the
allocation algorithm. The distributed recursive algamthontinues until it reaches all the leaf QoS
brokers, which inform the involved status routers to pofaulaeir routing tables with the necessary
forwarding data for the inter-cloud path to be establishedocal subscription request, with the
publisher and subscriber in the same cloud, is deliveredddetaf QoS broker which handles the
subscription request alone. From the perspective of a le&flgpoker, a subscription request might
come from a subscriber in its cloud or from its parent QoS érok the latter case, an inter-cloud

subscription path is to be established, e.g., a subsaniptth that involves multiple clouds.

2.1.2 Data Plane

The data plane is a term used to describe a virtual messagetmre subscription data flows

between publishers and subscribers. The virtual messagednsists of status routers and event



channels, whose main purpose is to forward status evemtsgtilishers to the subscriber appli-
cations that requested the data. A status router is in edfeatiter with additional functionality to
provide forwarding of status events when subscribed to anldearight rate (rate filtering). The
management plane controls the content of the routing tablése status routers, and leaf QoS
brokers inform status routers to add, remove or modify thgertt corresponding to a subscription
allocation or deallocation request. In order for a statusacto communicate with the management
plane, it has a connection to the leaf QoS broker that canitrol

Publishers and subscribers interact with the managemanteghrough the virtual message
bus. A publisher or subscriber registers with an edge statuter which serves as a proxy to the
management plane and as an entry point to the virtual messasgel he status router establishes
an event channel to its publisher or subscriber, which esatble publisher to provide data to the
data plane or a subscriber to retrieve information off ofda&a plane to.

There are three types of status routers in GridStat. Theypstis theedge status routewhich
serves as a connection point and proxy for publishers anscsibers. Additionally, it forwards
events like any other status router. The second type isntieenal status routerwhich simply
forwards events and is transparent to publishers and shbsxr The third status router type is
the border status routewhich serves as a cloud’s entry and exit point. Interior Qoikérs use
the inter-cloud event channel capacity to accommodate léowhte inter-cloud subscription paths,
where border status routers have an important role in theathweibscription allocation algorithm.
Leaf QoS brokers treat border and internal status routerallggn terms of allocating resources
within a cloud, and are therefore transparent to the roléssborder status router in an inter-cloud
subscription allocation.

The management plane manages and controls the resoureeteprby all status routers, event
channels and active subscriptions in the data plane. Sasoeirces are monitored and controlled,
the latency from the publisher and the subscriber can beddihen registering a subscription,

subscribers associate a set of QoS parameters with therguioscrequest, and among these are



a subscription interval, a latency request and redundartoy.management hierarchy attempts to
find a path between the publisher and subscriber that is bbyrikde latency request parameter.
If no such path exists, the subscription request is rejededitionally, if the subscription redun-

dancy parameter is set, the management hierarchy atteorfptd tnore than one path between the
publisher and subscriber. Subscription traffic is thetoound by a specified delay and is able
to flow on several disjoint paths towards the subscribewignog timeliness and reliability QoS

to subscriber applications. The necessary algorithmstatksh disjoint paths in the data plane is

still under investigation and is not the focus of this theMsre information can be found in [5].

2.1.3 Publisher Application and API

A publisher registers with GridStat through its edge statwger, which functions as a proxy for
communication with the management hierarchy. A publishastrfirst register the status variable
and the publication interval with its leaf QoS broker thrbulge edge status router. If the leaf QoS
broker accepts the publication request, the publishernsitted to publish status events at the
given publication interval.

Publishers provide status information fratatus variableshat change over time, and publish
snapshotsdventy of these at specific time intervals to their publisher ARlefts that are sent out
on the virtual message bus are caliatus eventsThe publisher API provides a push interface to
the overlying publisher application. Whenever the overdyapplication uses the publisher API to
push an event, the API blocks the call until the event is fodsd to the edge status router. The API
supports many of the native Java types as well as user-ddfipectontainers, and marshalls the
event and produces a status event, which is sent out on theglyind communication layer. The

API returns an error back to the overlying application if ®oommunication error was detected.

2.1.4 Subscriber Application and API

A subscriber registers with GridStat through its edge statwter, which functions as a proxy

for communication with the management hierarchy. Subscsiban subscribe &iatus variables



that have been registered in the management hierarchy afrggea subscription request with the
desired status variable name, publisher name and a set op&a$eters. The QoS parameters
include the number of disjoint paths between the publishdrsubscriber, a latency request and a
subscription interval. The management hierarchy checlkeipublisher and status variable exist
and sets up one or more paths between the publisher and therifeln that satisfy the given QoS
parameters. Once the paths have been established theiksab&able to access the subscribed
status events through a specifiteraction model The subscriber API provides both a pull and
push interaction model the overlying subscriber applicatan use to retrieve subscribed status
events. Additionally, a QoS push interaction model can leel iy the subscriber application to be

notified whenever the timeliness requirements for any dutsscriptions are violated.

e Push (Every subscribed status event is delivered to the sutxsber application): The
subscriber application passes a notification object to tisaiber APl which is used to
notify the overlying application when a subscribed statusné has been received and is

ready to be accessed.

e Pull (The subscriber application retrieves the last statusevent when needed)The sub-
scriber application passes a locally instantiated cacjexbbf the variable type it subscribes
to to the subscriber API. The read-only cache object willeglgsvcontain the last seen status
event. The subscriber application can access the objeatevke it requires access to the

subscribed variable.

e QoS Push (signals QoS violations)The QoS push interaction model can be used in com-
bination with either the push or pull interaction model. Budbscriber application passes a
notification object to the subscriber APl which is used tafgdhe overlying application if

the requested QoS for the subscription is violated.



CHAPTER THREE

MODE CHANGE MECHANISMS AND MANAGEMENT

This chapter provides the foundation for global and hidraad modes in order to fully understand
the hierarchical and flooding mode change algorithms. Mpeeifically, this chapter discusses
mode terminology, mode definitions and the propagation a®dai modes in the management
hierarchy and in the data plane. Further, an overview of tR€ Rhechanism and the support for
multiple active routing tables in the status router netwenresented.

The research outlined in the remainder of this thesis isqfdgridStat v4, which is a continu-

ation of GridStat v3][3].

3.1 Assumptions and Limitations

The following assumptions have been made for global andidkical mode change mechanisms

and management in GridStat:

¢ Replicated QoS brokers- Simplifies the recovery mechanism (Section 3.6) in whiclois
not need to circumvent failed QoS brokers. An overview rémay future work related to

QoS broker replication is provided in Section 8.2.6.

¢ No Byzantine failures - Status routers and QoS brokers can trust the correct bwhafvi
the mode change coordinator and other mediators. MorelsletaiByzantine failures is

provided in Section 8.2.10.

e Synchronized clocks across all GridStat entities The flooding mode change algorithm
(Chapter 5) relies on synchronized clocks in order to presebscription flows to temporar-

ily break. More details on clock synchronization is prodde Section 8.2.9.

e GridStat initialization - The current implementation assumes that GridStat is faltial-

ized and ready to execute mode change operations.
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3.2 Overview and Mode Terminology

Explaining a mode requires some insight into how a mode isééfand used in both the manage-
ment plane and the data planenfde definitiortonsists of an ID, a name and a set of data plane
subscriptions, and is owned by a single QoS broker in the gemnant hierarchy.

A mode definition can either b&taticor dynamic When dynamic mode definitions are used,
subscribers specify what modes their subscriptions widrage in, and QoS brokers can reject
subscriptions if a subscription can potentially exhausbueces in the data plane. If a subscription
request is valid, it is added to all the mode definitions it wasto operate in. Alternatively, a
static mode definition contains a set of subscriptions thiabe utilized when the mode is active.
Subscription requests made in run-time can simply be mje€they do not belong to the subscrip-
tions listed in the mode definition(s). A static mode defamntscheme is likely the most suitable
scheme for the power grid industry, where a strict contreirenment managing subscriptions
through authentication is needed. The current implemientaf GridStat only supports dynamic
mode definitions, but could be extended to support the remqénts for a static mode definition
scheme. In that case, the management hierarchy would nged-toad information on subscrip-
tion requests, e.g., subscriber credentials, publicatidune and QoS parameters. Additionally, the
management hierarchy must support the appropriate messharo allow subscription requests
to be added, modified or even removed in run-time, for exarttptaugh XML. Finally, live sub-
scription requests (from subscribers) are matched agdiagire-loaded subscription requests in
the management hierarchy, and possibly rejected if thecsiles is unable to provide the required
credentials.

Modes defined and owned by a QoS broker constitut@de setand exactly one of the modes
in a mode set is active at any time. This means that every Qu&balways operates in one mode,
or in adefault modef no modes are defined. A QoS broker that operates in a modiéesrpat

all subscriptions contained in the subscription set of thatle should be active in the data plane.
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For example, envision a leaf QoS broker that controls a setaifis routers, a publisher and a
subscriber. The leaf QoS broker has defined three modesnGfelow and Red, and is currently
operating in the Green mode. The publisher is configured itigfusome data to the network, and
the subscriber wishes to subscribe to that set of data in iGoelen and Yellow. In the Red mode,
the published data is not forwarded through the data plaroe she subscriber is not interested in
the information. More specifically, if the leaf QoS brokersata change its operating mode from
Green to Red, the subscriber would not see any data from thiesper as it otherwise would have
in Green and Yellow.

Status routers use modes to route status events that beltimg ¢urrently active set of operat-
ing modes. For example, a publisher is registered to publstatus event once every second. The
publisher makes this status event available to the netwarkyesecond, and if no subscribers are
interested, the status event is discarded. Otherwise tdhessevent is forwarded along a path of
status routers towards the subscriber application. Astauwter will only forward a status event if
it belongs to a subscription that is to be utilized in at leas of the modes the status routers are
currently operating in. Since every QoS broker in the mamege hierarchy always operates in a
mode, all status routers operate in as many modes as thdevelein the management hierarchy
above them. For instance, withlevels in the management hierarchy, a status router:H@eS
broker ancestorsaicestor scope and will therefore always operate inmodes simultaneously.
This implication on the status router network enables @egsource provisioning between mode
sets, e.g. a top level QoS broker controls 40% of the availeddources in its hierarchical scope
while the QoS brokers beneath it must further provision #meaining resources between them.

Status routers have been extended to support and managdglewdtiting tables (see Section
3.4). Each status router maintains a separate routing tabtvery mode defined in its ancestor
scope. For example, in a GridStat configuration with a mamag hierarchy consisting of three
levels, every status router will always operate in three @so@nd therefore use three separate

routing tables for routing. However, status routers migitentens or even hundreds of routing
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tables pre-loaded, either in memory or on disk, but only theing tables that correspond to the
active set of modes are used.

Subscribers use operating modes to determine what infamiatto be delivered to the user
application. A subscriber retrieves a set of operating raddan its edge status router when it
connects to the network or when a mode change is in progrésssubscriber delivers information
to the user application only if the information belongs teeaf the operating modes. There
are exceptions, such as status alerts, which are deliverdtetuser application irrespective of
operating modes. Publishers, on the other hand, do not mgveation of modes. The reason for
this is that publishers only offer status events at ceriaie intervals irrespective of modes to the
status router network. If there are no subscriptions to dighdd status event in the current set of

operating modes, the edge status router will discard it.

3.2.1 Mode Structures

The Model nf o structure is used in all communication where some inforomasibout modes is
required. Subscribers use thbdel nf o structure to define in which modes their subscriptions
should be utilized. All QoS brokers use tMddel nf o structure in mode change operations
and leaf QoS brokers inform status routers in which modeg $hwuld operate in when they
(re)connect to GridStat. The following list describes theggmse of each variable in tidel nf o

structure:

e modes: The sequence of mode identifiers is mainly used by leaf Qo&ebrtm inform
recently connected status routers which modes to operatd@hie sequence is otherwise
used wherever there is a need to deliver sets of operatingsrimetween GridStat entities or

within the entities themselves.

e value: Theval ue variable is used to denote the new mode to switch to, and i$ lge
mode change operations. For examplel ue is the mode identifier of B, if a mode change

operation is initiated to change from mode A to B.
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e oldValue: Theol dVal ue variable is used to denote the current mode to switch from, an
is used by mode change operations. For exangbldVal ue is the mode identifier of A, if

a mode change operation is initiated to change from mode A to B
e QBName: @BNane is the name of the coordinator in a mode change operation.

e timestamp: Thet i mest anp variable is the timestamp (in ms) at which status routerk wil

change mode, and is used by the flooding mode change algorithm

e modeAction: ThenodeAct i on variable denotes which phase of the hierarchical mode

change algorithm thebdel nf o structure represents.

e level: Thel evel variable denotes the location of the coordinator in the rganeent hier-

archy, and is used by both mode change algorithms.

e index: Thei ndex variable is used internally in the routing tables to enallgyeaccess to
the subscription intervals in different modes, and is primaised when subscriptions are

allocated.

e changelD: Thechangel D variable is a unique identifier within the hierarchical seas
the coordinator and is associated with each mode changataper The variable enables

quick access to stordebdel nf o structures throughlasht abl e and other derivations.

e created: Thecr eat ed variable is the timestamp of the initiation of a mode change o
eration, and is used by all QoS brokers and status routerdetlodut redundant copies or

previously executed mode change operations.

3.2.2 Propagation of Modes

All QoS brokers read information on their role in the managetrhierarchy from configuration

files. Currently, QoS brokers read the mode definitions défingheir respective configuration

14



files and store the modes inMbdeCont ai ner. The ModeCont ai ner is responsible for
maintaining the mode set of a QoS broker and contains an afrlgde instances. Eachbde
represents a single mode and holds the name and integeseapgon (mode identifier) of that
mode.

The leaf QoS broker requires additional state informationih@ modes that are defined in its
ancestor scope. The leaf QoS broker requests all the modearthdefined in its ancestor scope
by contacting its parent QoS broker, which recursively eépéhe process until the request reaches
the root QoS broker. When the request returns, interior Qo&es add their respective mode
identifiers and operating mode. The leaf QoS broker storesrformation returned from the
request in an array dfbdeCont ai ner s, one for each ancestor QoS broker. The ancestor mode
set is used to inform status routers about all defined modésperating modes they will operate
in when they connect, or fail and reconnect, to GridStat. [Baé QoS broker is responsible for
updating the ancestor mode set during mode change opeyatioaflect the operating modes of
its parent QoS brokers. In this way, the leaf QoS broker is thbffer a consistent set of operating
modes to status routers that might fail and reconnect toStaitd

The subscriber receives all modes that are defined in itsstorcgcope from and after it has
registered with its edge status router. The set of modewsiltbe subscriber application to se-
lect in what modes a subscription will operate in and are wsaifit subscription requests to the
management hierarchy. Additionally, the subscriber isnmfed about upcoming mode change
operations from its edge status router and always knowshamiades are currently active in its

ancestor scope.

3.3 Mode Change Operations

A QoS broker can through modes quickly switch routing talohethe data plane. This enables
the management plane to decide which status events aresdllimbe forwarded through the data

plane and seen by subscriber applications. Figure 3.1 show®perating modes are used in both
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Modes: Green, Yellow, Red
Operates in: Green

QoS Broker A

Modes: Normal, Warning, Critical
Operates in: Normal

Modes: Stable, Unstable

Operates in: Stable QoS Broker B QoS Broker C

Publisher

B* status routers operate in C* status routers operate in
Green and Stable Green and Normal

Figure 3.1: Publisher-subscriber interaction in GridStat

the management plane and in the data plane. Each QoS brakis loavn mode set and operates
in a mode. All status routers in cloud B operate in Green aathl8tas the QoS brokers in their
ancestor scope, QoS broker A and B, operate in Green anceStabpectively. The inter-cloud
subscription can operate in all of QoS broker A's three mdglie=en, Yellow and Red since those
modes control and manage routing tables in both clouds. thatethe inter-cloud subscription
is unaffected by whichever modes leaf QoS broker B and C ¢pana If the subscription is
configured to operate in mode Yellow only, status router Bésdoot forward status events to B2
as itis currently operating in mode Green’s routing tabléWlcontains no forwarding information
for the subscription.

A QoS broker can only change between modes that are definéslnmode set and acts as a
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coordinatorin a mode change operation. A mode change operation thatigged by a coordina-
tor affects all the status routers and QoS brokers in itahttical scope. The main purpose of a
mode change operation is to inform all status routers in teelchical scope of the coordinator
to switch to the routing table associated with the operafidre number of status routers involved
in a mode change operation varies with the population ofistatuters in the affected clouds and
at what level in the management hierarchy the mode changatapewas initiated from. Local
mode change operations (within a cloud) might involve tansumdreds of status routers, while a
mode change operation initiated at an interior QoS brokepodentially involve several thousand
status routers. One of the major challenges is to ensureathtite status routers involved in a
mode change operation receive and switch to the correspgnaliiting table.

A mode change operation that switches the routing tablels ah the involved status routeiest
the expected timis called aconsistentmode change operation. Otherwise the operation is called
an inconsistentmode change operation, and additioredovery mechanismee Section 3.6)
must be utilized in order to restore the operating modes erstatus routers that are considered
inconsistent. An inconsistent mode change operation watntikely result in some subscribers
not being able to see subscribed data, as they otherwisel\waué after a consistent mode change
operation. However, since subscription traffic is rateeblashe loss of some status events during
a mode change operation is tolerable as the next statusanmlae for a particular subscription is
due to arrive within a short time period.

The following list describes the primary factors that milglatd to an inconsistent mode change

operation:

e Link failure and QoS broker failure in the management plane: In order for a mode
change operation to reach the involved status routers, pleeattion has to be forwarded
through the management hierarchy down towards the leaf Qui&is. If a link failure or

QoS broker failure prevents the operation to be forwardeal @S broker child, the child
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and all the QoS brokers and status routers in its hieraricbocge will not see the operation.

Link failure and status router failure in the data plane: The leaf QoS brokers are respon-
sible for contacting all the status routers in their hiehégal scope. When a status router is
considered offline due to a link failure or a status routdufai the leaf QoS broker will not
be able to forward the mode change operation to that statusrraHowever, a link failure

might not necessarily mean that a status router is offline.

Packet loss: Packet loss might prevent a mode change operation to reaclesired des-
tination. The management plane controls and manages thalloresources available in
GridStat, and rejects subscription requests that exceedrees in the status router network.

Thus, the management plane protects GridStat from resouveréoad.

Delayed mode change operations: Some status routers might receive a mode change
operation later than expected due to one or more factorgibdedcabove. In that case,
the mode change operation is deemed inconsistent untiladillssrouters execute the mode

change.

Two mode change algorithms have been implemented in Gtig8tal he hierarchical mode

change algorithmuses the management hierarchy to disseminate mode chaegaiops and

gather acknowledgements from status routers and QoS IstoHdre hierarchical mode change

algorithm enables all subscriptions registered to opeandtee coordinator'surrentandnewmode

to flow during the entire mode change. Thus, subscriberssulbiscriptions registered in both the

current and new mode continue to receive status eventsghignarchical mode change operations

that switches between those modes. The hierarchical maigehalgorithm is discussed in more

detail in Chapter 4.

Theflooding mode change algorithdisseminates mode change operations directly out on the

data plane by using the limited flooding mechanism in GridS¥ehen a status router receives
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the operation it forwards the operation on all outgoing ¢wrannels, except the event channel
from which it received the operation. As status routers negive multiple copies of the same
operation, redundant copies are discarded. Status rareisformed to change from the current
mode to the new mode at some future timestamp. The flooding iwahge algorithm is discussed
in more detail in Chapter 5.

The two mode change algorithms provide different tradeoffise hierarchical mode change
algorithm is a resource intensive algorithm which is spiibifive message phases in order to
enabletransferredsubscriptions present in both modes in a mode change, e, Green to
Yellow, to flow. A message phase means the coordinator hamti@té and and propagate a mode
change phase (message) down to all status routers in i@rttéral scope, and the next phase
cannot be initiated until the previous phase has compléikd.flooding mode change algorithm,
on the other hand, is a best-effort algorithm, and disset@staode change operations directly out
on the data plane where status routers are informed to safitalpredetermined future time. The
flooding mode change algorithm is efficient, in terms of resewsage and performance, but does
not guarantee any subscriptions to flow during the mode ahapgration. The flooding mode
change algorithm relies on the status routers’ ability td@cdwmodes at the exact same time and

therefore requires all status routers to be time syncheahiz

3.4 Multiple Routing Tables

A status router resides in a cloud that is collectively adsténed by aranchof QoS brokers in
the management hierarchy. Since a QoS broker always opé@naanode, a status router operates
in as many modes as there are QoS brokers in its managemeaichiebranch. That is, if the
management hierarchy has a depth of three levels, eack statier is administered by three QoS
brokers and will always operate in three modes, and thexefse three separate routing tables for
forwarding status events to the next downstream statusmndsitatus event forwarding is performed

by a sequence of simple steps:

19



e The status router reads the header of the incoming statasave learns its ID and publisher

timestamp.

e The status router looks up the ID in a status event hash tableedrives a structure com-

monly referred to as a mode holder.

e The mode holder contains sets of forwarding data requiréorteard the status event to the

next downstream status router(s).

e As the status router can operate in several modes, it cyuleadh the forwarding data sets

per operating mode and processes all the forwarding data set

e A forwarding set contains an event channel and the forwgrdhte for the particular status
event. If the status event does not conform to the forwardabg, the status router filters it

and continues to process the next forwarding set, if any.

e A status event which passes the rate filtering test is sehetoext downstream status router

over the event channel given in the forwarding set.

e The status router repeats the process for all the forwarsktg that are located in all the

corresponding mode holders the status router is currepiyating in.

The global and hierarchical mode change mechanism has addesicomplexity to the overall
forwarding algorithm employed by the status routers. Caegbéo the previous version of Grid-
Stat, status routers have to cycle through several modehstdictures instead of only one, and
therefore adds some complexity to the status routers améafding algorithm, both in terms of
resource usage and forwarding delay. Since status rouippod multiple routing tables there
must be certain mechanisms in place to ensure that the estlfpcoperty of GridStat is preserved,
and is best illustrated by an example. For example, a statiterroperates in modes A and B,

and is responsible for fowarding status events that belortgvd subscriptions that subscribe to

20



the same published value. Subscription 1 subscribes in Apsgebscription 2 in mode B and the

status router must send the published status event to the rsaxh downstream status router. The
status router processes the mode holder for mode A and fdswlae status event downstream, and
continues to process the mode holder for mode B. Without amficast preservation methods,

the status router would forward the same status event toatine siext downstream status router,
which would clearly violate the multicast property in Grtd8 This is overcome by associating an
incoming status event withsent-mapwvhich holds information on which outgoing event channels

the status event has been forwarded.

3.5 The RPC Mechanism

The RPC mechanism is a newly added feature to GridStat v4all@ats connection-oriented
communication to be conducted on top of GridStat’s publishiscriber architecture [7]. The
RPC mechanism in GridStat facilitates two-way communaraietween GridStat entities whereas
the standard publisher-subscriber paradigm does onlyostippe-way communication between
publishers and subscribers.

In order to utilize the RPC mechanism, the two endpoints hestonnected to an edge status
router and embed a publisher and a subscriber to be able doasehreceive information off of
the GridStat network. As the RPC mechanism is built on topefgublisher-subscriber architec-
ture in GridStat, an RPC connection consists of two subsarnip: client-server and server-client.
In order to establish a connection, one of the two partidpamust act as the client. First, the
client attempts to force a subscription on the server. Thahe client requests the management
hierarchy to let the server subscribe to the client. A cotiords initiated by the client which
creates a subscription request containing the service igfsgmation about the forced subscrip-
tion and QoS requirements. More specifically, the subsonptequest contains the number of
redundant paths, maximum subscription interval, maximublipation interval, operating modes,

connection latency, temporal redundancy, the name of tet¢publisher), the name of the server
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(subscriber) and the RPC status variable the server (shbscwill subscribe to. The connection
request is sent to the client’s edge status router whichdadw/the request to the management
hierarchy. The management hierarchy checks whether thests @ path between the client and
server and that the path meets the specified QoS requirenmésts the management hierarchy
establishes the path(s) in the data plane and informs tlett¢hat the connection has been estab-
lished. This means the server subscribes to the given RR( stariable and the client is therefore
able to communicate with the server by publishing statusitsveThe client proceeds to publish
a connection request to the server along the recently estedl path and asks it to force a sub-
scription on the client. The server, if it accepts the cotinag creates a connection request with
the QoS requirements passed to it by the client and forwatdghe management hierarchy. The
management hierarchy, similarly to the first subscriptionces a subscription on the client and
informs the server when the operation is completed. Sineelibnt now subscribes to an RPC
status variable published by the server, the bi-directiooanection is fully established when the
server publishes a connection accept to the client. Botltlibat and the server store the RPC
connection in their state for future use.

The RPC mechanism offers several advantages compared t8&£ @it is built on top of the

publisher-subscriber paradigm in GridStat:
¢ RPC connections can utilize the spatial redundancy prppefbridStat.
e RPC connections can easier utilize a temporal redundamense.
¢ A flexible timeout-management scheme can be employed.

e Pre- and post-conditions on the client and server proviffecent control mechanisms to
ensure that certain properties are in place prior to or #fteRPC call has been executed
at the receiving end. For instance, a pre-condition on atatibs actuator may employ a

security check to verify that a line has been de-energizied fr switching a circuit breaker.
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The management hierarchy has been extended to benefit f@adifantages offered by the
RPC mechanism. QoS brokers and status routers have beeguredfto utilize the RPC mecha-
nism and embed both a publisher instance and a subscrilten@esas an alternative to CORBA.
Control traffic is still conducted over CORBA, while commaation related to mode change opera-
tions are implemented to utilize the RPC mechanism, anciely able to benefit from GridStat’s

QoS guarantees.

3.5.1 Initialization of The QoS Broker

The QoS broker attempts to connect both its publisher iestand subscriber instance to the same
edge status router in the data plane. The chosen edge statesis configurable in the QoS broker
startup scripts. Since the edge status router may be inta{ainase, the QoS broker is forced to
repeatedly attempt to connect to it. Once connected, thel@u&r attempts to establish an RPC
connection to its parent QoS broker and employs the cororegtiotocol explained in Section
3.5. The root QoS broker has no parent and remains idle unticeives any incoming RPC
requests from its direct QoS broker children. The managémenarchy might fail to establish

RPC connections due to several reasons:

e All QoS brokers that are involved in establishing the RPCnemtion might not have started

or they are not yet ready to handle any subscription requests

e The server, either the QoS broker parent or its subscribightmot have started or are not

yet ready to handle any subscription requests.

e During the startup phase of GridStat, the data plane can dreilscpopulated with status
routers and might not satisfy the demanded QoS requirenfi@entee RPC connection or

there might simply exist no path.

The management hierarchy returns an error message if itailsleimo force a subscription on

the server and the QoS broker (client) must resend the spbsarrequest at a later time. When
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the subscription has been established, the QoS brokencestto send a connection request to the
server (parent QoS broker) which results in a fully funamgntwo-way communication channel
between the two QoS brokers if the server successfully memtgforce a subscription back on
the client. Both QoS brokers finalize the connection phassttnyng the RPC connection object

in their internal state for later use.

3.5.2 Initialization of The Status Router

A status router embeds both a publisher instance and a #udrsicrstance in order to utilize the
RPC mechanism and attempts to create an RPC connectiondafi€@oS broker. The status router
connects the publisher instance and the subscriber irestantself, thus eliminating any repeated
connection attempts which the QoS brokers face. Once thespaband subscriber are connected,
a subscription request is created and sent to the managémeearichy in a similar manner to that
of the QoS brokers. The leaf QoS broker and the status rountdize the connection phase by

storing the RPC connection object in their internal statddter use.

3.5.3 Spatial and Temporal Redundancy

Conducting communication over the RPC mechanism provida® ritexible control of message
delivery. Since RPC connections utilize data plane regsuone can associate QoS requirements
with any RPC connection as is possible with standard syfismns. Temporal and spatial re-
dundancy allow RPCs to span several paths across the dai@ gal increases the probability
of message delivery. Subscription latency demands enhélelient to take additional measures
when a delivery confirmation is not received when expectedaddition, the RPC mechanism
will benefit from further development of technologies in theta plane as it completely utilizes
the publisher-subscriber paradigm and mechanisms in @tid&n ongoing project, for instance,
investigates how to secure data plane communicationsdhreuacryption, from which the RPC

mechanism will directly benefit through its reuse of Grids¢ghnologies (see Section 8.2.8).
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Communication related to mode change operations utilingesof the overall properties pro-

vided by the RPC mechanism:

e Mode change communication over RPC within the managemenrdichy or from the man-
agement hierarchy to the data plane can utilize spatialndahcy if and when needed

through the use of modes.

e RPC delivery confirmations provide the means for the cliemesend a mode change mes-
sage, or schedule one for a later time, when a delivery coafiom is not received within

the expected time window.

An RPC connection can be configured to resend the call whetiveedeconfirmation is not
received within the expected time window. More specificahg RPC mechanism resends the call
after a preconfigured timeout and employs the temporal ahey scheme as many times as the
connection setup states. All QoS brokers add an additiagatlon top of the temporal redundancy
scheme provided by the RPC mechanism, and thereby have ithg tbqueue outgoing mode
change messages and schedule them for sending by using thenBéhanism at a later time. For
example, an RPC connection can be configured to resend a rhadgemessage five times in a
row with a preconfigured timeout in between when the messageable to reach the destinated
server (detected through missing delivery confirmatiotisiie message has not been successfully
sent after five retries, the QoS broker queues the messagschedules it for a later delivery
attempt. The send scheduler forwards the message to thepajgipe RPC connection where the
message repeats the temporal redundancy scheme. If thedRR€Ection still experiences network
failures or server failure, the send scheduler is resptabdelivering the mode change message
when possible through the same steps outlined above. Theb€@b8r's send scheduler and the
RPC mechanism combined provide a flexible tool to make suidensbhange messages and mode

change acknowledgemermgentuallyget delivered to their respective destinations.
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3.6 Recovery Mechanisms and Acknowledgement Aggregation

In order to tolerate some degree of network failures and tmially ensure consistent mode
change operations, a recovery mechanism was implemenéssitt the hierarchical and flooding
mode change algorithms. The recovery mechanism is trigggrea QoS broker that detects miss-
ing mode change acknowledgements caused by failed QoSrbrdkéed status routers or link
failures, and attempts to resolve these situations whesilges

An important part of a mode change operation is to gather@gledgements from the par-
ticipants in the operation. Status routers which receiveodarchange operation respond with a
mode change acknowledgement up to their leaf QoS brokerneaf QoS broker receives the
first acknowledgement for a particular mode change operétimmediately starts aaggregation
roundto gather acknowledgements from its status routers. THeJe& broker stores the name
of the status router and the mode change identifier, ang stdiner which times out to stop the
aggregation round. The timeout value is subject to a préignamed setting in the startup scripts.
Additional acknowledgements are registered in a similanmea The leaf QoS broker stops the
aggregation round when all expected acknowledgementsheem received; otherwise, it times
out. The leaf QoS broker finalizes the aggregation round egphpes a response to the coordinator
that initiated the mode change operation after the aggmyaiund has completed successfully. If
the leaf QoS broker is the coordinator, it updates the opgratodes table in its state and marks
the mode change operation as complete. Otherwise, if thelic@dor is located at a higher level
in the management hierarchy, the leaf QoS broker updatesdsstor modes table and prepares
an acknowledgement and sends it up to its parent QoS brok&rrther processing.

Interior QoS brokers go through the exact same sequencesp$ sts the leaf QoS brokers
and start aggregation rounds when the first acknowledgefrentone of its direct children QoS
brokers are received. The process continues until the ocwdal of the mode change operation

has finalized the aggregation round.
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An aggregation round that is terminated by the timer impieg one or more status routers,
or QoS broker children, did not respond with an acknowledg@mThe QoS broker initiates the
recovery mechanism which attempts to contact the Grid$tétes in question. The reasons why
some GridStat entities neglect to respond with an acknayeleent are (child is a QoS broker or

status router):

e The child is unable to send an acknowledgement up to its pdtento network failures, e.g.

link failures or lossy links.
e The child itself failed.

e The child did not receive the mode change operation, or akgavdedgements if a QoS

broker.

The QoS broker derives which children did not respond with@mowledgement and attempts
to contact them. If an interior QoS broker, it first contabesdirect QoS broker children in question
and forces them to initiate the recovery mechanism on their ib necessary. The QoS broker
children check their state to determine if the aggregatiumd for the mode change operation in

guestion has started or is complete:

¢ If the QoS broker has no knowledge of the mode change opeiatiguestion it initiates the

recovery mechanism which includes all its children ( QoSkbrse or status routers).

¢ If the QoS broker has an ongoing aggregation round for theenacbdnge operation in ques-
tion it simply discards the recovery message and initidtesecovery mechanism on its own
if necessary. When the hierarchical mode change algoritiointlae non-blocking scheme
(Section 3.6.1) are used, the queried QoS broker sends anwlgdgent to its parent QoS
broker. If the blocking scheme is employed, the queried Qo&dr sends an acknowledge-

ment to its parent QoS broker first when it has received alitavggacknowledgements.
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e The QoS broker has completed the aggregation round for therolbbange operation and
might be unable to respond with an acknowledgement to thenp&oS broker due to net-
work failures. This scenario is probable, but less likelrttthe ones above, as the recovery

message from the parent QoS broker managed to get delivered.

The leaf QoS broker employs the same scheme as interior Qukersrbut will instead at-
tempt to contact the status routers that did not respond antacknowledgement. The recovery

mechanism affects the data plane as follows:

e The status router first checks if the mode change operatipanding (waiting to be acti-

vated) or has already been registered (activated).

¢ If the mode change operation is not registered, the statusmrexecutes the operation and

responds with an acknowledgement.

¢ If the mode change operation is registered, the statusrrmgponds with an acknowledge-

ment.

The recovery mechanism is initiated when network failug@esS broker failures or status router
failures prevent all participants from delivering and aggating acknowledgements up towards the
coordinator in the management hierarchy. Therefore, dgogparticipants for their acknowledge-
ments and status may be a time-consuming process, and regsaety as straightforward as
outlined above. For instance, a QoS broker may be unabletbaseecovery message to one of its
children because a link failure prevents the message to lbeid®. The same child might have
completed its aggregation round, but is unable to send tkeomdedgement to its parent because
of the same link failure. A similar scenario can be envistbndnen a QoS broker or status router
fails. In such circumstances, the sender queues recovesyages in an outgoing pool and delivers

them when the QoS broker or status router rejoins the Grigi®tavork (see Section 3.5.3).
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3.6.1 Blocking and Non-Blocking Aggregation

The hierarchical mode change algorithm can employ a blgoimon-blocking scheme. A block-
ing scheme prevents the next mode change phase to commeihe# status routers have executed
the previous mode change phase and delivered acknowledg¢etoehe management hierarchy.
When the coordinator receives confirmation that all statusars and QoS brokers have seen and
processed the mode change phase it initiates the next phiéesatively, a non-blocking scheme
allows the coordinator to initiate the next mode change @l@®&n though the previous mode
change phase has not completed. That s, if QoS brokeréailgtatus router failures, link failures
or temporal network anomalies (e.g., link loss) preventestatus routers in executing the mode
change phase, the management hierarchy initiates theengcmechanism and in parallel sends
acknowledgements up towards the coordinator. The codatiaasumes that lower-level QoS bro-
kers restore the modes at deemed inconsistent statusgavten possible through the recovery

mechanism when it receives acknowledgements from itstd@e& broker children.
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CHAPTER FOUR

DESIGN OF THE HIERARCHICAL MODE CHANGE ALGORITHM

The hierarchical mode change algorithm is an extensioneoftbde change algorithm in GridStat
v3 and is modified to be utilized in a management hierarchygpaze and from any location. Cur-
rently, the application layer in the management plane igarsible for initiating a mode change
operation by using the QoS broker API. It is envisioned thalhe future this process will be policy
driven, initiated as the implementation already supparisitated from an authenticated applica-
tion in the data plane. A mode change operation is initiateiehocating the changeMode method
on either a QoSBroker or LeafQoSBroker instance. The hibreal mode change algorithm is
divided into five distinct phases which enabl@nsferredsubscriptions present in both modes of a
mode change operation, e.g., from Green to Yellow, to flowtHfeumore, the five phases eliminate
any status router overload scenarios during a hierarchoale change operation. The following
list shows how the hierarchical algorithm affects the statwters in a mode change fra@reen

to Yellow

1. The inform phase- Edge status routers inform their subscribers about themptw mode
change. This phase is a standalone phase in order to enatii@ltbubscribers have been

informed about potential QoS violations prior to switchnogiting tables.

2. The prepare phase- Edge status routers switch to the temporary routing t&enn
Yellow This phase ensures that subscription traffic that belamg®ih modesGreenand
Yellow) is forwarded through the status router network. Subdongptraffic that belong to
either Greenor Yellowis dropped at the edge status routers. This step in the biecat
mode change algorithm eliminates any status router owdoanarios (incoming queues

and outgoing queues) as subscriptions are only removed.

3. The internal change phase Internal status routers switch ¥ellows routing table. Since
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all edge status routers operate in a temporary routing tatdeonly forward a smaller set
of subscriptions (in mod&reenandYellow), the internal status routers can safely switch to

modeYellowwithout overloading any status routers downstream.

. The edge change phaseEdge status routers switch from the temporary routinget&loken
N Yellowto Yellows routing table. Since internal status routers operatéeitowand expect
to receive subscription traffic for modéellow it is safe for edge status routers to finally

switch.

. The commit phase- Edge status routers inform their subscribers about thepteted mode
change. This phase is a standalone phase in order to enatig! tthodification to routing
tables in the status router network is complete and thatcsilless will receive status events

conforming to the desired QoS.

QoS Broker A

Publisher {’
Subscriber Leaf Qog Broker Leaf Qog Broker g’ Subscriber

Msg #1 to B
Msg#2to C
Msg #1 Msg #2

Figure 4.1: The hierarchical algorithm - hierarchical dissnation
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Common for all the phases in the hierarchical mode changeitig is the propagation of the
operation down the management hierarchy towards the date plThe coordinator of the mode
change operation sends the operation to all its children okers, and they repeat the process
until the operation reaches the leaf QoS brokers. Figursibivs how the root QoS broker uses its
RPC connections to send a mode change operation (phase)tddsrchildren leaf QoS brokers
B and C. The leaf QoS brokers forward the operation to all thieis routers in their administrative
domains.

Figure 4.2 depicts the leaf QoS brokers forwarding the md@amge operation (phase) to the
status routers in their respective control domains. Bah@»S brokers forward four copies (four
status routers) of the mode change operation to their statusrs. The operation is executed
by each status router which responds with an acknowledgeniére leaf QoS brokers gather

acknowledgements and send a single acknowledgement ugitgp#rent QoS broker.

QoS Broker A

Msg #1 to B1 Msg #1 to C2

Publisher ’ Leaf QoS Broker | Msg #2 to B2 Msg #2 to C1| Leaf QoS Broker ’ Publisher
\ B Msg #3to B3  Msg #3 to C4 c

Msg #4 to B4  Msg #4 to C3

1,2,3,4 1,2,3,4
B1 c2
@ 2 B2 C1 2
2 >

Figure 4.2: The hierarchical algorithm - cloud dissemioati
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The following detailed explanation of the individual modeage phases assumes a blocking
scheme (see Section 3.6.1) in which the management higrhtobks the execution of the next

phase until all participants have executed the current mbhdage phase.

4.1 Phase 1 - The Inform Phase

The first phase of the hierarchical mode change algorithrhadriform phase. The coordinator
propagates the mode change operation down the hierarchypaadlds all theedge status routers
in its hierarchical scope. The edge status routers infotinalr subscribers about the upcoming
mode change. The inform message makes subscribers awamilisgription terminations are
due to the upcoming mode change operation, and will not elef@oS violation callbacks to their
overlying application. Figure 4.3 shows edge status rsutentacting their subscribers about the

Mode Change Operation: Green to Yellow
Inform Phase (#1)

Leaf QoS Broker
Publisher B

Publisher A Subscriber B
Pub: value1

B2 and B4 inform their subscribers about
the current mode change operation

Publisher B
Pub: value2 Subscriber A

Figure 4.3: The hierarchical algorithm - inform phase

upcoming mode change operation. When all subscribers lemreibformed, the edge status router
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sends an acknowledgement up to the management hierarchy.

4.2 Phase 2 - The Prepare Phase

The second phase of the hierarchical mode change algosttime prepare phase. The coordinator
propagates the mode change operation down the hierarchypaadds all theedge status routers
in its hierarchical scope. The edge status routers creampdrary routing table with all the for-
warding information for subscriptions registered in bdtik tld and the new mode (see Section
4.6). For example, the prepare phase of a mode change fronBActeates a temporary routing
table that contains those subscriptions registered in Aahd B. The subscriptions contained in
the temporary routing table are forwarded according to igbadst subscription interval (lowest
rate) selected from the two modes. As subscriptions onlybsaremoved, no resources will be
exhausted during this phase of the algorithm. Figure 4.4vshbe operating modes of the status

Mode Change Operation: Green to Yellow
Prepare Phase (#2)

Leaf QoS Broker
Publisher B

Publisher A Subscriber B
Pub: value1

B1,B2,B3 and B4 switch to the temporary
routing table Green N Yellow

Publisher B
Pub: value2

Figure 4.4: The hierarchical algorithm - prepare phase
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routers when the prepare phase is executed. When the tempouding tables have been suc-
cessfully created, the edge status routers respond witbkaroaledgement up to the management
hierarchy.

Assume the following subscriptions are in place prior taoeximg the prepare phase (see Figure
4.4): Subscriber A subscribes to valuel and value2 in modesrGand Yellow, and subscriber B
subscribes to valuel and value2 in mode Green. The routihgstat all status routers, B1 through

B5, are presented in Figure 4.5.

Green  Yellow Green  Yellow
Value1: B2, B5 B5 Value1: B4 B4
Green  Yellow Green  Yellow
Value1: SubB None Value1: Sub A Sub A
Value2: SubB None Value2: Sub A, B2 Sub A
Green  Yellow

Value2:

B4

B4

Figure 4.5: The hierarchical algorithm - routing tables

The temporary routing tables GreenYellow at all edge status routers, B1 through B4, are
presented in Figure 4.6. When all edge status routers @pardbreenn Yellow, B1 forwards
valuel to B5 only as subscriber B does not subscribe to valuefode Yellow. B5 still operates
in mode Green, and forwards valuel to B4 according to itamgugable (see Figure 4.5) and B4
delivers valuel to subscriber A. The second publicatioluez is only subscribed to by subscriber

A, and is forwarded along the path from B3 to B4.
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Green N Yellow Routing Tables

B1 B2 B3 B4
Value1: B5 None None Sub A
Value2: None B4 Sub A

Figure 4.6: The hierarchical algorithm - temporary routiaples

4.3 Phase 3 - Internal Change Phase

The third phase of the hierarchical mode change algoriththasinternal change phase. The
coordinator propagates the mode change operation downetst¢hy and towards all theternal
status routersn its hierarchical scope. All internal status routers \aillthis point in the entire
mode change operation switch to the routing table of the nedean The internal status routers
will receive status events subject to the highest subsonphterval (lowest rate) as edge status
routers are currently operating in the temporary routifetaSubscribers will observe one of the

following two scenarios:

¢ If the subscription interval in the new mode is higher thaat tif the old mode, the subscriber

receives status events belonging to this stream with thecsigition interval of the new mode.

e If the subscription interval in the new mode is lower thart tifdhe old mode, the subscriber

receives status events belonging to this stream with thecsipition interval of the old mode.

No resources can be exhausted during this phase as the lksugssription interval from either
the old or the new mode is used. Furthermore, involved siliEsrwill not issue QoS violation
callbacks to the overlying applications as they have betmrred about the mode change. Fig-
ure 4.7 shows the routing table compositions in the datagpddter the internal change phase is
complete. When the internal status routers have switchdtetoew mode, the status routers send

acknowledgements up to the management hierarchy.
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Mode Change Operation: Green to Yellow
Internal Change Phase (#3)

. Leaf QoS Broker
Publisher B

Publisher A Subscriber B
Pub: value1

B5 switches to Y’s routing table

Publisher B
Pub: value2 Subscriber A

Figure 4.7: The hierarchical algorithm - internal changaggh

4.4 Phase 4 - Edge Change Phase

The fourth phase of the hierarchical mode change algoriththe edge change phase. The coor-
dinator propagates the mode change operation down thedhgrand towards all thedge status
routersin its hierarchical scope. The edge status routers switwh the temporary routing table
created in the prepare phase to the routing table of the nesdemdence, edge status routers for-
ward status events conforming to the subscription intesf/the new mode. Figure 4.8 shows that
all status routers operate in the new mode after the edggehadrase is complete. The edge status
routers finalize the fourth phase of the hierarchical athariby sending acknowledgements up to

the management hierarchy.
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Mode Change Operation: Green to Yellow
Edge Change Phase (#4)

Leaf QoS Broker
Publisher B

Publisher A Subscriber B
Pub: value1

B1,B2,B3 and B4 switch to Y’s routing
table

Publisher B
Pub: value2 Subscriber A

Figure 4.8: The hierarchical algorithm - edge change phase

4.5 Phase 5 -The Commit Phase

The fifth phase of the hierarchical mode change algorithrheéscommit phase. The coordinator
propagated the mode change operation down the hierarchipaadds all theedge status routers
inits hierarchical scope. The edge status routers infoain subscribers about the completed mode
change. Subscribers will at this time expect to receive @iltesd status events at the subscription
interval of the newly activated mode if the overall mode ad®algorithm was consistent. Figure
4.9 shows edge status routers contacting their subscriberdorm about the completed mode
change operation. The edge status routers finalize the plyasending acknowledgements up to

the management hierarchy.
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Mode Change Operation: Green to Yellow
Commit Phase (#5)

Leaf QoS Broker
Publisher B

Publisher A Subscriber B
Pub: value1

B2 and B4 inform their subscribers about
the completed mode change operation

Publisher B
Pub: value2

Figure 4.9: The hierarchical algorithm - commit phase

4.6 Construction of Temporary Routing Tables

A crucial part of any hierarchical mode change operation g¢ate a temporary routing table that
consists of forwarding information for subscriptions nessin the modes a mode change opera-
tion switches from and to. For example, a mode change oparsaivitching from Green to Yellow
creates a temporary routing table Greeiyellow. Every edge status router that participates in a
hierarchical mode change operation has to create thisugptable when informed to by the man-
agement hierarchy. A temporary routing table is createdbyjeving the mode holders for the two
modes involved in a hierarchical mode change operation ddohg the forwarding information
that is present in both modes to a new temporary mode holdete that a subscription config-
ured to operate in two or more modes utilize the same pathugifirthe data plane in both modes,

but may be forwarded at different rates. The status routectsethe highest subscription interval
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(lowest rate) from the two modes for a particular subsasip&and uses it when the status router
operates in the temporary mode. The temporary routing talweeated during the prepare phase
of the hierarchical mode change algorithm and causes nan@sexhaustion as subscriptions are

only removed.

4.7 Rate Filtering

This section investigates how the hierarchical mode chah@ses, prepare, internal change and
edge phase affect a subscription that is to operate in mockeEn@nd Yellow. Figure 4.10 shows
that the edge status routers, B1 and B4, operate in mode Gr&etiow while B5 still operates

in mode Green. The subscriber subscribes to the publist@ygpublication valuel every 100 ms

Prepare phase

Publisher interval: 100ms
Subscriber subscribes to value1 every 100ms in mode Green
Subscriber subscribes to value1 every 300ms in mode Yellow

Gny G Gny

100ms 300ms 100ms 300ms
Publisher . Subscriber
Pub: valuel B5 expects a smaller subinterval  gyp: value1

Figure 4.10: The hierarchical algorithm - subscriptioresadfter the prepare phase

in mode Green, and every 300 ms in mode Yellow. The publishblighes status events (valuel)
every 100 ms. Since B1 operates in GreeYellow it will forward status events from the publisher
according to the highest subscription interval (lowesty&bom Green or Yellow, and will therefore
forward 1 out of 3 received status events to B5. B5, on therdthad, expects to receive status
events from Bl at a higher rate (100 ms), but will simply fordvatatus events to B4 when it
receives them. That is, at an interval of 300 ms. B4 forwakesyestatus event to the subscriber
as it receives them at the expected subscription intenaligmot required to perform any rate
filtering. If the subscription intervals were reversed thbscriber would still receive status events

at the same interval as edge status routers pick the hightestrgption interval (lowest rate) from
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the two modes involved in the mode change operation. The diffigrence is that B5 receives
status events at the expected subscription interval (300 ms
Figure 4.11 illustrates how the next phase, the internahgbghase, affects the subscription.

The internal status router B5 switches from Green to Yellod/frwards status events that belong

Internal Change Phase

Publisher interval: 100ms
Subscriber subscribes to value1 every 100ms in mode Green
Subscriber subscribes to value1 every 300ms in mode Yellow

GNY Y GNY
100ms 300ms 300ms 300ms
Publisher Subscriber
Pub: value1 Sub: value1

Figure 4.11: The hierarchical algorithm - subscriptioresadfter the internal change phase

to the single subscription downstream every 300 ms. As Bé&ives those status events every 300
ms it is not forced to perform any rate filtering.
Figure 4.12 shows the operating modes and subscriptiorvaiseused after B1 and B4 change

from Greem Yellow to Yellow. Although none of the rates alter for thisaemple, the edge status

Edge Change Phase

Publisher interval: 100ms
Subscriber subscribes to value1 every 100ms in mode Green
Subscriber subscribes to value1 every 300ms in mode Yellow

1 00ms300ms300m3300ms

Publisher Subscriber
Pub: value1 Sub: value1

Figure 4.12: The hierarchical algorithm - subscriptioresatfter the edge change phase

routers forward status events conforming to the subsonptiterval in mode Yellow.
The rationale for selecting the highest subscription wrakflowest rate) in the prepare phase
is not to overload any internal status routers with trafficiniyithe edge change phase. Overload

scenarios at internal status routers in this section reféandoming status router queues. Figure
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4.13 and 4.14 show what happens if edge status routers mckutbscription interval from mode

Green in a hierarchical mode change operation switching feseen to Yellow.

Overloading B5 — Internal Change Phase (Green subinterval)

Publisher A interval: 100ms
Subscriber subscribes to value1 every 100ms in mode Green
Subscriber subscribes to value1 every 300ms in mode Yellow

Gny Gny
Value1: 300ms
‘100ms'—100ms Value2: 100ms e g’
Publisher A Subscriber
Pub: value1 300ms Sub: value1, value2
GNny
100ms e
Publisher B
Pub: value2

Publisher B interval: 100ms
Subscriber subscribes to value2 every 300ms in mode Green
Subscriber subscribes to value2 every 100ms in mode Yellow

Figure 4.13: Status router resource overload - internad@ha

Overloading B5 — Edge Change Phase (Green subinterval)

Publisher A interval: 100ms
Subscriber subscribes to value1 every 100ms in mode Green
Subscriber subscribes to value1 every 300ms in mode Yellow

Gny GﬂY
Value1: 300ms

‘100ms'—100ms Value2: 100ms g’
Publisher A Subscriber
Pub: value1 100ms Sub: value1, value2

Y B2 switches before B1 and overloads B5!

100ms e
Publisher B
Pub: value2

Publisher B interval: 100ms
Subscriber subscribes to value2 every 300ms in mode Green
Subscriber subscribes to value2 every 100ms in mode Yellow

Figure 4.14: Status router resource overload - edge charagep

The subscriber subscribes to valuel at publisher A everymi®t mode Green and 300 ms
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in mode Yellow. The secondary subscription is between thsaiber and publisher B with sub-
scription intervals 300 ms and 100 ms, in mode Green andWetkspectively. An assumption is
that B5 becomes overloaded with two incoming streams at 19Agure 4.13 shows that B1 and
B2 forward status events to B5 with rates 100 ms and 300 ms.

Figure 4.14 assumes that B2 switches from Greerellow to Yellow prior to B1 and causes
B5 to become overloaded as the subscriber subscribes te2valtery 100 ms in mode Yellow.
At this point, B5 remains overloaded until B1 changes to méelow. If the edge status routers
picked the highest subscription interval in the preparesph®5 would not become overloaded
when B2 switches mode prior to B1 in the edge change phasee@ken is that B1 and B2 would
forward status events from publisher A and B at a subscngtiterval of 300 ms, and when B2
switches to mode Yellow prior to B1 in the edge change phasélihot cause any problems for

BS.

4.8 Pseudo-Code for The Hierarchical Mode Change Algorithm

The following pseudo-code and explanations show how a mbdege phase is propagated from
the coordinator and down through the management hieracstgrtls a set of status routers. Fur-
thermore, the pseudo-code for each individual mode chahggepis presented at the status router

level.

4.8.1 Coordinator Code

The following code outline shows the simple steps a cootdm&oS broker) has to follow in or-
der to switch modes by using the hierarchical mode changeitig. It first defines a Modelnfo
container (See Section 3.2.1) with the required parameataissends it to its direct QoS broker
children. Then, it awaits acknowledgements from its dif@eS broker children prior to initiating

the next mode change phase.
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for Each mode change phade
Define a Modelnfo container with the required parameters
Register the mode change phase as pending
for Each QoS broker childo
Send the mode change phase over the established RPC connecti
end for
Await acknowledgements from each direct QoS broker child
Mark the mode change phase as complete

end for

4.8.2 Interior QoS Broker Mediator Code

An interior QoS broker in the hierarchical scope of the camatbr simply forwards the mode

change phase to its direct QoS broker children.

for Each QoS broker childo
Send the mode change phase over the established RPC connecti

end for

4.8.3 Leaf QoS Broker Mediator Code

In a similar manner to an interior QoS broker, a leaf QoS brékevards the mode change phase

to a set of status routers in its administrative cloud.

Retrieve all internal status routers from state
Retrieve all edge status routers from state
if Inform phasdghen
Send the mode change phase to all edge status routers

end if
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if Prepare phashen

Send the mode change phase to all edge status routers
end if
if Internal change phagken

Send the mode change phase to all internal status routers
end if
if Edge change phasleen

Send the mode change phase to all edge status routers
end if
if Commit phasehen

Send the mode change phase to all edge status routers

end if

4.8.4 Inform Phase Code

The following code outline shows the process of informingssuibers about the upcoming mode
change operation from an edge status router. If the modegehaimase has already been executed,
the edge status router responds with an acknowledgemet# lieaf QoS broker. Otherwise, it
retrieves the list of all connected subscribers and infdirea about the upcoming mode change

operation. Finally, it responds with an acknowledgemeiiistieaf QoS broker.

if Mode change phase has previously been exedhtad

Send an acknowledgement up to the management hierarchy
else

Register the mode change phase

for Each subscribedto

Inform the subscriber about the upcoming mode change operat

45



end for

Send an acknowledgement up to the management hierarchy

end if

4.8.5 Prepare Phase Code

The following code outline shows the process of creatingtémeporary routing table Green
Yellow in a mode change from Green to Yellow at an edge statuter. First, if the mode change
phase has previously been executed, the edge status respends with an acknowledgement to
its leaf QoS broker. Otherwise, it locks the routing tabl@fsd creates a temporary routing table
(Greenn Yellow). The edge status router adds forwarding rules fergibscriptions that are reg-
istered to operate in both modes to the temporary routing tatd picks the highest subscription
interval. Finally, it switches from Green to Greenvellow, unlocks the routing table(s) and sends

an acknowledgement to its leaf QoS broker.

if Mode change phase has previously been exec¢htad
Send an acknowledgement up to the management hierarchy
else
Register the mode change phase
Lock the routing table
Create an empty temporary routing table
for Each subscription in Greedo
if Subscription in Yellonthen
Add the forwarding rules for the subscription to the tempprauting table
Pick the highest subscription interval from Green or Yellow
end if

end for
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Change from Green’s routing table to the temporary routaindet
Unlock the routing table
Send an acknowledgement up to the management hierarchy

end if

4.8.6 Internal Change Phase Code

The following code outline shows the process of switchirgrfrGreen to Yellow in an internal
status router. First, if the mode change phase has preyibash executed, the edge status router
responds with an acknowledgement to its leaf QoS brokerei@iise, it lock the routing table(s)
and switches to the routing table for mode Yellow. Finaliynlocks the routing table(s) and sends

an acknowledgement to its leaf QoS broker.

if Mode change phase has previously been exedhtad

Send an acknowledgement up to the management hierarchy
else

Register the mode change phase

Lock the routing table

Change to Yellow’s routing table

Unlock the routing table

Send an acknowledgement up to the management hierarchy

end if

4.8.7 Edge Change Phase Code

The following code outline shows the process of switchigfithe temporary routing table Green
N Yellow to Yellow’s routing table. First, if the mode changegse has previously been executed,
the edge status router responds with an acknowledgemet# fieaf QoS broker. Otherwise, it

locks the routing table(s) and switches from the temporauting table created in the prepare
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phase to the routing table of mode Yellow. Finally, it unlsedke routing table(s) and sends an

acknowledgement to its leaf QoS broker.

if Mode change phase has previously been exedhtad

Send an acknowledgement up to the management hierarchy
else

Register the mode change phase

Lock the routing table

Change from the temporary routing table to Yellow’s routialgle

Unlock the routing table

Send an acknowledgement up to the management hierarchy

end if

4.8.8 Commit Phase Code

The following code outline shows the process of informingssuibers about the completed mode
change operation from an edge status router. If the modegehaimase has already been executed,
the edge status router responds with an acknowledgemet# lieaf QoS broker. Otherwise, it
retrieves the list of all connected subscribers and infatmes about the completed mode change

operation. Finally, it responds with an acknowledgemeiiistieaf QoS broker.

if Mode change phase has previously been exedhtad

Send an acknowledgement up to the management hierarchy
else

Register the mode change phase

for Each subscribedto

Inform the subscriber about the completed mode change tiqera
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end for
Send an acknowledgement up to the management hierarchy

end if

4.8.9 Leaf QoS Broker Acknowledgement Aggregation Code

The following code outline shows the actions of a leaf Qoérafter all status routers have
acknowledged the pending mode change phase. If the cotwdiesides higher up in the man-
agement hierarchy, the leaf QoS broker sends an acknowtesigaup to its parent QoS broker.

Otherwise, it continues with the next mode change phase.

Retrieve the list of status routers from state
if Mode change phase is the commit phtsn
for Each status router in stati®
Update the modes table to reflect the operating modes oftttisssouter
end for
Update the list of what modes all status router should opénat
end if
if The coordinator is higher up in the management hieraticey
Send acknowledgement to parent QoS broker
else
if Commit phase¢hen
Update operating modes
else
Initiate next phase
end if

end if
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Mark the mode change phase as complete

4.8.10 Interior QoS Broker Acknowledgement AggregatiodeCo

The following code outline shows the actions of an interiolSQoroker after all direct QoS broker
children have acknowledged the pending mode change phadiee ¢oordinator resides higher
up in the management hierarchy, the QoS broker sends anwalddgement up to its parent QoS

broker. Otherwise, it continues with the next mode changeseh

if The coordinator is higher up in the management hieraticay
Send acknowledgement to parent QoS broker
else
if Commit phasé¢hen
Update operating modes
else
Initiate next phase
end if
end if

Mark the mode change phase as complete

4.9 Failure Scenarios

The hierarchical mode change algorithm is able to condigtehange between modes and enables
transferredsubscriptions to flow under the assumption that all statusers execute the mode
change phases sequentially (blocking scheme) and in tmeatdimeframe. By using the non-
blocking scheme (see Section 3.6.1) in hierarchical modegh operations, QoS broker failures,
status router failures and network failures may interfeite Wierarchical mode change operations

and lead to broken subscription flows until the failure isohesd.
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The hierarchical algorithm is divided into five distinct [glea in order to presenteansferred
subscriptions during mode change operations and to avgicbaerload scenarios. This means
transferred subscriptions are guaranteed to flow but thecsigtion interval may vary according
to the modes the participating status routers operate ia fdllowing failure scenarios assume the
use of a non-blocking scheme in hierarchical mode changeatpes and overload scenarios refer
to incoming status router queues. A non-responsive statuerrrefers to a status router which is
able to forward status events but unable to communicatethtimanagement hierarchy.

A status router which does not participate in any of the hadmaal mode change phases be-
comes inconsistent when the mode change operation is ctanglg., from Green to Yellow.
During the mode change operation, however, the non-regmostatus router is able to forward
status events that belong t@ansferredsubscriptions, but possibly at the wrong rate. After the
commit phase, the status router operates in the wrong matieidireither not be able to forward
any of the status events that belong to the new mode or willdad status events at the wrong rate
(transferred subscriptions).

If the non-responsive status router has failed, it is no¢ ablforward any status events and
therefore breaks subscriptions flows that pass throughhieé dperating modes of a failed status
router will be restored by the leaf QoS broker whenever ibneects to the GridStat network. If
a status router reconnects to GridStat and resumes itsngiggities during a hierarchical mode
change operation, it will first be restored to the mode the encliange operation is switching
from, and then updated with the mode change phases that baveeliecuted. Status routers log
incoming mode change operations (and phases) and ensuneet @ydering of execution.

Additional causes for a non-responsive status router manetveork partitions, link failures or
heavy link loss that affect communication between the meamegnt hierarchy and the data plane.
A network partition in the data plane, in nature, leads tormomnsistent hierarchical mode change
operation and forces the management hierarchy to resterepérating modes in the data plane

whenever communication to the partition is re-establishieidk failures are tolerable, to some
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extent, under the assumption that RPC connections betwatrs souters and leaf QoS brokers
utilize an appropriate number of redundant paths. A leaf Quf&er may be unable to contact
one of its status routers if a set of failed links prevent afithe redundant paths to forward mode
change operations to the status router. In such circumssarice leaf QoS broker can initiate
the recovery mechanism (Section 3.6) which will queue pamdiode change operations (phases)
and continually retry the call at specific intervals. Thilig tecovery mechanism is able to deliver
gueued mode change operations when the assumed failed statar restores contact with the
management hierarchy.

An alternative scheme, not yet implemented in GridStat, ld/te for the leaf QoS broker to
flood the mode change operation to its cloud by using the fit@pdiechanism instead of indi-
vidually contacting each status router. The flooding meigdmarcan utilize the maximum amount
of redundancy available in the cloud, and thereby increlasgtobability of delivering the mode
change operation to the assumed failed status router. Howere is still no guarantee that the
flooding mechanism is able to deliver the message to a n@oinss/e status router. The presence
of heavy link loss is closely related to link failures, butééhe recovery mechanism has a chance
to deliver the mode change operation (phase) through thedexhreundancy property in the RPC
mechanism over the lossy link itself, or through a redungatt, if any.

The hierarchical mode change algorithm eliminates overissues during mode change oper-
ations when all status routers participate by selectindpitieest subscription interval (lowest rate)
in the prepare phase. However, there exists overload sosnghen one or more status routers
do not participate in a hierarchical mode change operakaure 4.15 shows three status routers
responsible for forwarding status events from publishend publisher B towards the subscriber.
Edge status routers B1 and B2 operate in modes Green, Gréeltow and Yellow during a mode
change operation switching from Green to Yellow. Assum¢ Btais overloaded when both B1

and B2 forwards status events at a rate of 100 ms, which canamalur when B1 operates in
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Green and B2 in Yellow. More specifically, if B1 does not papate in the mode change opera-
tion, but still forwards events, B5 becomes overloaded whemperation is complete (B2 operates

in Yellow).

Internal Status Router — Overload Scenarios

G: 100
GNY: 300
Y: 300
g’ 100ms— B1 @ N
N
Publisher A Subscriber
Pub: value1 G: 300 Sub: value1, value2
GNY: 300

Y: 100

Publisher A, B interval: 100ms

100ms Subscriber subscribes to value2 every 300ms in mode Green
Subscriber subscribes to value2 every 100ms in mode Yellow

Publisher B Subscriber subscribes to value1 every 100ms in mode Green

Pub: value2 Subscriber subscribes to value1 every 300ms in mode Yellow

Figure 4.15: Status router overload - upstream incongisberer

This issue can be solved by one of the following modificatimn&ridStat:

e A resource management scheme collectively employed by #reagement hierarchy can
prevent overload scenarios, as depicted in Figure 4.15ldsgly monitoring how subscrip-
tions affect hierarchical mode change operations. If agititton request will cause a status
router to become overloaded in a mode change operationsaigching from A to B, the

request is rejected.

e Leaf QoS brokers can block aggregation rounds until alustabuters have acknowledged
a mode change phase. QoS brokers employ a similar blockivese, but awaits acknowl-
edgements from its direct QoS broker children. This schenpdiés that a hierarchical mode
change phase has to be delivered, executed and acknowleglgeery status router and QoS
broker participant, and effectively solves any overloalies in the data plane. The disad-
vantage is that hierarchical mode change operations blutk&rease the overall execution

time in the presence of network or GridStat failures. Seei@®8.6.1 for more details.
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CHAPTER FIVE

DESIGN OF THE FLOODING MODE CHANGE ALGORITHM

The flooding mode change algorithm is an alternative to tkeahchical mode change algorithm
and offers better statistical delivery guarantees to the plane. The flooding mode change algo-
rithm delivers mode change operations directly to the staduters through the limited flooding
mechanism in GridStat. In order to utilize the limited flooglimechanism, the QoS brokers em-
bed a publisher instance that connects to some edge states lthe QoS broker’s hierarchical
scope. The QoS broker can publish mode change operatiangtihthe publisher instance, where
status routers forward the operation to all their statuseroneighbors, except the one they re-
ceived the operation from. The flooding mechanism will eualty stop when all status routers
have been informed. The limited flooding mechanism beneéita the amount of redundant paths
in the data plane and is thus more resilient to network fagihan the hierarchical mode change
algorithm. Whereas the hierarchical mode change algorétiempts to preserve the subscriptions
registered in the two involved modes, the flooding mode chagorithm switches directly to the
new mode. Figure 5.1 shows a flooding mode change initiate@d$y broker A which floods the
mode change operation directly out on the data plane thridssigmbedded publisher instance, and
is able to deliver the operation to all participants withirefimessage rounds. The diagram assumes
an equal link delay, and the event channel labels refer tofgsage round in which the operation
is flooded.

The flooding mode change algorithm assumes that all stattisrsoin the hierarchical scope of
the coordinator have synchronized clocks. Synchronizecksl across the data plane in GridStat

can be achieved through GPS synchronization methods, aligtisssed more in Section 8.2.9.
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QoS Broker A initiates a

S Broker A .
R 1E Oker flooding mode change

Leaf QoS Broker i Leaf QoS Broker
B Publisher ©

Figure 5.1: The flooding mechanism

5.1 Preparation and Use of a Flooding Variable

A QoS broker continually attempts to connect its publishetance to an edge status router in the
data plane during the startup phase. Once the publishenrgected, the QoS broker registers a
publication dedicated for disseminating flooded mode chamggrations. The publication request
is sent from the publisher to its edge status router, andfthr@rarded to the leaf QoS broker that
holds the publisher in its hierarchical scope. The leaf Quikdr validates the publisher and the
publication variable, adds the publication informationtsstate and replies with a variable ID.
The QoS broker client registers the recent publication asoaléid publication by contacting all the
status routers in its hierarchical scope. The status reatark the routing entry for the particular
publication as a flooding variable, and thereby forward armpming status events belonging to
the publication to all their status router neighbors.
A QoS broker prepares a flooded mode change operation bglimitig a container for the

information necessary for the status routers to executepleeation (see Section 3.2.1). The
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flooded mode change operation utilizes a timestamp vartabfgorm status routers at what time
to execute the operation. The QoS broker determines theef@ixecution timestamp based on
its own clock, and therefore illustrates the necessity oichyonized clocks across all GridStat
entities. The QoS broker serializes (Java) and deliversibe change operation to its embedded
publisher instance which publishes the mode change eveitd tlge status router. The edge
status router checks the embedded variable identifier im@ming status events and determine
whether the status event is of a standard subscribed-tabkaror a flooded variable. In the latter
case, the status router looks up the variable identifiersimatiting table and determines at what
level the flooded status event is to be forwarded. The uskewdl in the flooding mechanism
refers to theéflooding domairwhich corresponds to the hierarchical scope of the QoS bibie
initiated the flooding mode change operation. For exampie,fiooding domain of a specific
QoS broker in the management hierarchy corresponds toeaBtttus routers that are contained
in the hierarchical scope of that QoS broker, andléivel setting is set to the location of the QoS
broker in the management hierarchy. Status routers willtiiledy receive redundant copies of a
flooded variable from their neighbors, but will quickly disd them not to over-utilize any network
resources. In addition, a status router will not forward adked status event to status routers it
has previously received the same status event from, thenesgrving network resources. More

information on the flooding mechanism can be found in [3].

5.2 Activation of Flooding Mode Change Operations

When a status router receives a flooded mode change opeitdfiish registers the operation in
its state and deserializes the event stream in order tevetthe mode change structure. The
status router checks if the mode change operation is regis{previously executed) or currently
pending. If so, the mode change operation is discarded a<itrrently pending to be activated
at the desired timestamp or has already been activatedr tBractivating the timer, the status

router informs all its subscribers about the upcoming mdaenge operation. More specifically,
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subscribers are informed to be aware of potential QoS vawlatthat may occur until the mode
change operation is committed. The next step of the floodingenthange algorithm is for the
status router to check the timestamp variable in the modegehatructure and create a timer that
is scheduled to time out at that timestamp. If the timestaagpaiready passed the timer triggers
immediately; otherwise, the timer times out when the modengle operation is scheduled to be
activated. The status router ends with sending an ackngetadnt up to its leaf QoS broker
to confirm that it received the operation. During the timephéase of a flooding mode change
operation the status router continues to forward any inogretatus events and process additional
flooding mode change operations, if any. At the time a timenévs triggered the status router
exclusively locks the routing table and performs the modécéwThat is, the status router changes
from the previously activated mode to the new mode accorthirthe information passed in the
mode change structure that belongs to the particular modegehoperation. The mode switch
effectively means that the status router will forward suipsion traffic for the new mode, while the
deactivatednode prohibits any of its registered subscription traffibeédorwarded. It is important
to mention that a subscription belonging to both the old &edew mode is continually forwarded,
whereas subscription traffic that belongs solely to the addlenis dropped at the publisher’s edge
manager. When the mode switch is complete the status ranitmeks the routing table and informs

its subscribers that the particular mode change operatioompleted.

5.3 Pseudo-Code for The Flooding Mode Change Algorithm

The following pseudo-code and explanations show how a mbdege operation is delivered to a
set of status routers in the data plane. Furthermore, thelpseode shows in detail how a status

router uses and executes mode change operations.

5.3.1 Coordinator Code

The following code outline shows the process of flooding a exthnge operation directly out on

to the data plane. The coordinator defines a Modelnfo coettath the required parameters and
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registers the mode change operation as pending. Thenjatizes the Modelnfo container and
publishes the byte stream directly out on to the data plamalli it marks the mode change op-
eration as complete when it receives mode change acknoerelgfs from its direct QoS broker

children.

Define a Modelnfo container with the required parameters

Register the mode change as pending

Serialize the Modelnfo container into a byte stream

Publish the byte stream

if All acknowledgements from direct QoS broker children aeieedthen
Mark the mode change as complete

end if

5.3.2 Status Router Processing Code

The following code outline shows the process of receivingpadéd mode change operation and
storing it for later activation at the status router levalst the status router forwards the flooded
message on all outgoing links except the link it initiallgeesed the operation on. Then, it decodes
the message and checks if the mode change operation hasysiguween executed or is currently
pending. If so, it sends an acknowledgement to its leaf Q@®dor Otherwise, it registers the
mode change operation, marks it as pending and createsratimeh will trigger when the mode

change is to occur. Finally, the status router sends an adkdgement to its leaf QoS broker.

Forward the flooded message on all outgoing links exceptibgving link
Decode byte stream and retrieve the Modelnfo container
if The mode change operation has previously been executeg@ndingthen

Send an acknowledgement to the management hierarchy
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else
Register the mode change operation
Mark the mode change operation as pending
Create a Timer that will trigger when the mode is to be switiche
Send an acknowledgement to the management hierarchy

end if

5.3.3 Status Router Activation Code

The following code outline shows the process of executingpdarchange when the timer triggers
(in a mode change from Green to Yellow). If the status roweairi edge status router, it locks
the routing table(s) and switches to the routing table of enéellow. Then, it unlocks the routing
table(s) and informs all connected subscribers about thlmied mode change operation. If the
status router is an internal status router, it only switdethe routing table of mode Yellow. Fi-

nally, the status router marks the mode change operatioomapleted and stops the timer.

if Status router type is an edge status rothien
Lock the routing table(s)
Switch to the routing table of mode Yellow
Unlock the routing table(s)
Retrieve the list of connected subscribers
for Each connected subscrilu
Inform subscriber about the completed mode change operatio
end for
end if
if Status router type is an internal status rotiten

Lock the routing table(s)
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Switch to the routing table of mode Yellow
Unlock the routing table(s)

end if

Mark the mode change operation as completed

Stop the Timer

5.3.4 Leaf QoS Broker Acknowledgement Aggregation Code

The following code outline shows the actions of a leaf Qokérafter all status routers have
acknowledged the pending mode change operation. If thedowdor resides higher up in the
management hierarchy, the leaf QoS broker sends an ackagevieent up to its parent QoS bro-

ker. Otherwise, it marks the mode change operation as coeple

Retrieve the list of status routers from state
for Each status router in statie
Update the modes table to reflect the operating modes oftttisssrouter
end for
Update the list of what modes all status router should openat
if The coordinator is higher up in the management hieraticey
Send acknowledgement to parent QoS broker
else
Update operating modes
end if

Mark the mode change phase as complete

5.3.5 Interior QoS Broker Acknowledgement AggregationeCod

The following code outline shows the actions of a QoS brokr alirect QoS broker children

have acknowledged the pending mode change operation. dbtréinator resides higher up in the

60



management hierarchy, the QoS broker sends an acknowledgerm to its parent QoS broker.

Otherwise, it marks the mode change operation as complete.

if The coordinator is higher up in the management hieraticey
Send acknowledgement to parent QoS broker

else
Update operating modes

end if

Mark the mode change phase as complete
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5.4 Failure Scenarios

This section investigates the limitations of the floodingdma@hange algorithm and how to better
tolerate or even overcome them in future versions of Grid&tacomparison with the hierarchical
mode change algorithm, the flooding mode change algoritliimasg the flooding mechanism in
GridStat that efficiently disseminates a message to a grbsfatus routers in the data plane. As
status routers forward the flooded message on all outgomkg,liexcept the one they received
the operation from, the flooding mechanism is efficient imt&f message roundsnd is able to
tolerate link failures and link loss to some extent. Ovetllseenarios for the flooding mode change
algorithm is discussed in more detail in Section 5.4.1.

Tolerance of link failures and link loss in flooding mode champerations that involve several
clouds highly depend on the inter-connectivity betweenidto The flooding mechanism benefits
from the amount of redundancy within a cloud, and by floodegyessage can reach a specific
status router through several disjoint paths. However,ctse might not be that simple with
flooding mode change operations that span more than one.clungtwork topology with few
inter-cloud communication links might increase the riskimfonsistent flooding mode change
operations as flooding mode change messages between cl@aydeaanhbenefit from the same
redundancy as within a single cloud. This scenario stregmesecessity of a well-connected
network topology, both within and between clouds, as wel &ggh degree of redundancy in the
data plane for a deployment of GridStat.

A flooding mode change operation that is disseminated asms=ral clouds and is unable to
reach one or more clouds leaves the operating modes in theptiate inconsistent unless addi-
tional recovery mechanisms are in place. The status rountéhe clouds that originally received
the mode change operation send acknowledgements to theiQ&S broker and up towards the
coordinator. The clouds which have not received the floodimayle change operation remain

idle. The QoS brokers that manage the clouds that origimatigived the mode change operation
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aggregate acknowledgements and forward a response up tregermaent hierarchy towards the
coordinator. An aggregation round that is initiated at tteessS@roker which contains one or more
of the clouds that did not receive the mode change operatiisa hierarchical scope will discover
an inconsistent mode change operation when the aggregatimd times out. The QoS broker
proceeds to initiate the recovery mechanism (Section &Bich hopefully, will be able to con-
tact the inconsistent status routers and QoS brokers btiferstatus routers have been informed
to switch. Figure 5.2 depicts an inconsistent cloud thaét®vered by the recovery mechanism.

Inconsistent clouds are cleanly handled by the recovenhamsm but might restore the modes at

2. QoS Broker A’s aggregation
round times out
3. QoS Broker A initiates the
recovery mechanism

QoS Broker A

4. QoS Broker B is queried, but §’ 1. QoS Broker C acknowledges
has not seen the operation = QOE? Rieker Publisher the operation
5. QoS Broker B sends the

operation to all its status routers

6. The status routers execute
the mode change operation

g
I

Q = SR switches at the right time @ = SR does nocvi\;vr:g:rtliézwnches atthe |

— e e e J

Figure 5.2: The recovery mechanism in flooding mode changeatipns

the inconsistent status routers later than the destine@ mwich time. In that case, subscriptions
that go through the inconsistent status routers, and whedtnigs to the new mode, are cut-off
until the recovery mechanism restores the status routetiser@ise, the previously inconsistent

status routers continue as planned to switch to the new miotihe alestined timestamp. Figure
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5.3 shows an inconsistent status router which breaks thecgpbon that passes through it, and
the subscription remains broken until the status routec#es the mode change operation or is

restored by the recovery mechanism. A flooding mode changetpn is associated with a future

QoS Broker A initiates a

S Erker A flooding mode change

Leaf QoS Broker Leaf QoS Broker

B Publisher C

= SR does not switch / switches at the [
- _____X>__ _ _ _ wongtme _ _ _

Figure 5.3: Inconsistent status routers in flooding modegbaperation

mode switch timestamp and, if chosen carefully, leaves rtmrthe recovery mechanism to run.
Since the flooding mode change algorithm utilizes the flogdirechanism and benefits from the
amount of redundancy in the data plane, the recovery mestanas a relatively low chance to
restore any inconsistent status routers. On the other tla@decovery mechanism facilitates ser-
vices to continously query inconsistent status routersrastibre their operating modes whenever
they re-establish contact with the management hierarchg. asociated mode switch timestamp
can be tuned to quickly perform flooding mode changes withaatstle period or, alternatively,
incorporate a long idle period to make flooding mode changa® mesilient to temporal network

anomalies through the use of the recovery mechanism. Depend the situation, the ability to
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tune the mode switch timestamp in runtime can be useful wattéus network conditions.

A shortcoming of the flooding mechanism is when a flooding nadenge operation is lost at
the first link to the data plane, e.g., between the coordiisapaiblisher and its edge status router.
There are no mechanisms in place to acknowledge a succdissfding, and the publisher is
therefore not able to convey that the flooding mechanisraddi the coordinating QoS broker. In
such a circumstance, none of the status routers will retee/#ooding mode change operation and
QoS brokers will not aggregate any acknowledgements uprttssthe coordinator. In short, the
flooding mode change operation is not executed and Grid&sahd knowledge of it, except from

the coordinator. This shortcoming can be overcome by oneooe of the following solutions:

e The coordinator can time out and initiate the recovery meidma if it has not received any

acknowledgements from its direct QoS broker children (atust routers).

e The coordinator can flood the mode change operation out odatzeplane through several
edge status routers. This requires some modification toSEatdout can potentially make
the flooding mechanism more efficient. Although this is nob@plete solution it will make
the flooding mechanism more resilient to link failures amdk lioss on the first link to the

data plane.

e The coordinator can receive an acknowledgement from thieefitge status router that re-
ceives the mode change message, and enables the publishmgltly a temporal redundancy

scheme.

5.4.1 Status Router Overload Scenarios

The flooding mode change algorithm is a best-effort algoriimd offers a high statistical delivery
guarantee to all status routers participating in a mode gdaperation. However, the flooding
mode change algorithm does not prevent overload scendFioste are two ways status routers

can become overloaded. Incoming buffer queue overloadasiosncan occur when one or more
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status routers, long-term or short-term, are left opegatinan inconsistent mode (Figure 4.15 in
Section 4.9). Outgoing buffer queues can become overloalied a status router switches directly
between two modes, e.g., Green to Yellow.

An example of overloading an outgoing buffer queue (statuser) is illustrated in Figure 5.4.
The diagram shows a status router’s forwarding rate wheratipg in mode Green and Yellow and

Mode change: Green to Yellow

Queue full
| taaiaiaaiads Sl """"\\' """""""" ,7'\ """"
Outgoing queue A

Yellow
forwarding rate P P i ‘

Green

forwarding rate H T H

Time ——

Figure 5.4: Status router - outgoing buffer queue overload.

the contents of its outgoing buffer queue (assume one augdimik). The status router operates in
mode Green and is told to switch to mode Yellow. At that tinte dbutgoing queue is currently
full as the status router processes a burst of status evettbe¢long to mode Green. With a full
outgoing buffer queue, the status router switches to YeHoa begins to process a burst of status
events which belongs to that mode. This causes the stattes toudrop many status events as the
outgoing buffer queue is full. More specifically, many of #tatus events that belong to the new
operating mode is lost due to an overloaded outgoing butfeug.

The flooding mode change algorithm is affected by the aboeel@ad scenario as it switches
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directly between two modes. This issue, however, can becows by flushing every outgoing
buffer queue after the status router has switched modesatrcase, the outgoing buffer queues
are empty and status events belonging to the current moderararded to the next downstream
status router. Unless the status router flushes its outdmifigr queues, the queued status events
that belong to the previous active mode would have been éppthe next downstream status
router, and thus wasting network resources.

The flooding mode change algorithm is more liable to overlseeharios than the hierarchi-
cal mode change algorithm as it switches directly betweeden@t a predetermined timestamp.
The hierarchical mode change algorithm, on the other hamdgepts overload of outgoing buffer
gueues by creating the temporary routing table (Sectioh 4®wever, the hierarchical mode
change algorithm is just as liable to incoming buffer quewerload as the flooding mode change

algorithm when using the non-blocking scheme.
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CHAPTER SIX

EXPERIMENTAL RESULTS

This chapter evaluates the current global and hierarcineale change mechanisms and man-
agement implementation in GridStat. The same set of exeatisrare conducted by both mode

change algorithms, and the following list denotes pointsiterest:

e How well does the hierarchical mode change algorithm sddt@® do the hierarchical scope

and the width of the management hierarchy affect the résults

e How well does the flooding mode change algorithm scale? Howhddierarchical scope

and the width of the flooding domain affect the results?

¢ How well can both mode change algorithms tolerate link loss®v do various link loss

settings affect the results?

e How do various link latency settings affect the results?

6.1 Experiment Setup

The experiments were conducted on a 16-node cluster at éogrieal Engineering and Computer
Science department at Washington State University. Thdweaae and software specifications are

described in detail below:

Hardware and Software Specifications:

e 14 Intel Dual Xeon 3.06 GHz, 1 GB of RAM and 1 Gb network intedfa
— Redhat 9 (2.4.20-8smp kernel)

e 1 Intel Pentium Il (Coppermine) 1 GHz, 512 MB of RAM and 100Métwork interface.
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— Ubuntu 6.10 (Edgy) Linux Distribution (2.6.17.10 kernel).
e Java Standard Edition 5.0 (build 1.51Q0-b03).

The cluster nodes were used to run all the GridStat entigegssary to conduct the various
experiments. The Ubuntu system ran a link emulator whichwgasl to emulate link latency and

link loss on a per-link basis (data plane links) in GridStat.

Java Virtual Machine Arguments:
e -jar: The Java applications are wrapped inside jar files.

e -Xms128m -Xmx128m: Statically set the heap size of the jgyalieations to prevent un-

necessary garbage collector runs.

GridStat Settings
Figure 6.1 shows the GridStat experimental setup with 7 Qo&dss and 20 status routers.
A cloud consists of five status routers: three edge statugnmoand two internal status routers.

Additional settings are listed below:

e QoS brokers communicate with other QoS brokers, and leaftai&rs with status routers
through dedicated RPC connections that have been estdblstor to activating any mode

change operations.

e RPC connections between leaf QoS brokers and status raurgec®nfigured to utilize two

redundant paths.
¢ Inter-QoS broker RPC connections are configured to utiliee math only.

e Whenever a GridStat entity does not receive an RPC ackngetadnt aftesometimeout,
it retries the RPC call. The RPC retry timeout value is sutian experiment setup (Table

6.1).
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QoS Broker A

QoS Broker B1 QoS Broker B2
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C1 Cc2 C3 C4

Figure 6.1: GridStat experimental setup

e All status routers are launched as edge status routers ar twdutilize RPC connections
with their leaf QoS broker. A consequence is that the edgasstautersconfiguredto act
as internal status routers are included in the inform- amdnat phase of the hierarchical

mode change algorithm.
Link Emulator Settings

e Alinkis associated with a latency, a probability of packetd and a burstiness setting. When
a packet loss triggers, the link will consecutively lose asynpackets as the burstiness set-
ting suggests. If the burstiness setting is variable-siead 3-5, the link will at a minimum
lose 3 consecutive packets, but no more than 5 (the actuabewis subject to a uniform

distribution).

e The probability of triggering a packet loss is adjusted @ dlesired packet loss probability
setting divided by the mean burstiness setting. More spadifj with a packet loss proba-

bility setting of 8% and a burstiness setting of 3-5, thegeigprobability is8% /4 = 2%.
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¢ A link will not trigger a new packet loss when in the middle of @angoing loss sequence.
e Edge links, publisher to edge status router or subscribstiatos router, do not lose packets.
Experiments were conducted over a wide range of link pararset

e The same set of experiments were conducted with 0 ms, 1 ms, 2 ms and 8 ms link la-
tencies. These link latencies were chosen to reflect realsiues for a GridStat deployment

in a critical infrastructure.

e The same set of experiments were conducted on a GridStaiyhepht with 0%, 1%, 2%,
4% and 8% link loss. These link loss settings were chosendw #iat the implementation

works under a range of network conditions.

6.2 RPC Retry Timeout Overview

In order to tolerate link loss the RPC retry timeout is a @lsetting to quickly adapt to packet
loss over RPC connections. When a distributed call is seat am RPC connection the client
awaits an RPC acknowledgement. If an RPC acknowledgememdtabeen received after the
RPC connection times out, the client will reattempt to sér@RPC call to the server. If the RPC
acknowledgement itself got lost, the server will discarduredant messages. The selected RPC
retry timeouts outlined in Table 6.1 are based on the hightestrved RPC round-trip times in the
conducted experiments. More specifically, several expanis) one per link latency and for each
level in the management hierarchy, were conducted in oaéndl the highest RPC round-trip
time for the particular experiment setup. The listed RPG/rneout values will be used in mode
change operations initiated at one of the three possibkdden the management hierarchy at the

various link latency experiments.
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Link Latency | Top Level| Second Level Leaf Level
0Oms 10 10 10
1ms 15 15 15
2ms 30 25 20
4 ms 60 40 30
8 ms 120 70 55

Table 6.1: Experiment RPC retry timeouts.

6.3 Hierarchical Mode Change Experiments

This section includes the experimental results from hadiaal mode change operations conducted
at all the three levels in the management hierarchy. Modegdhaperations are initiated at either
QoS broker A, B1 or C1 in Figure 6.1. Table 6.2 lists all theimas network conditions, link
latency, link loss and burstiness setting and the respeatiwde change times for hierarchical
mode change operations initiated at the top level (see Agipénfor results from second and leaf

level). The times presented in the experimental resultsutjinout this section highly depend on

Experiment [ Loss % | Min. burst | Max. burst [ Omslinklat. | 1mslinklat. | 2mslinklat. | 4 mslinklat. | 8 mslink lat.
1 0% 0 0 162.66 279.16 402.69 671.01 1237.31
2 1% 1 1 168.48 309.41 447.49 762.43 1361.01
3 1% 1 2 171.64 316.34 454.93 772.63 1400.48
4 1% 1 4 180.18 327.95 474.30 815.79 1486.06
5 1% 3 5 182.51 344.88 468.94 791.05 1520.83
6 2% 1 1 178.59 332.95 483.59 826.37 1508.32
7 2% 1 2 188.50 355.85 508.06 861.13 1616.64
8 2% 1 4 205.35 381.12 556.37 927.13 1759.23
9 2% 3 5 221.86 432.62 537.45 948.64 1917.66
10 4% 1 1 213.71 417.41 576.95 1008.27 1916.58
11 4% 1 2 240.12 439.00 607.74 1059.65 1992.49
12 4% 1 4 252.57 454.35 652.78 1160.58 2154.97
13 4% 3 5 271.38 494.65 715.08 1179.67 2297.58
14 8% 1 1 361.18 577.15 841.95 1448.47 2659.82
15 8% 1 2 333.97 585.02 857.15 1551.41 2897.88
16 8% 1 4 382.76 673.30 920.42 1627.72 3018.97
17 8% 3 5 439.17 755.58 1035.97 1737.45 3245.15

Table 6.2: Hierarchical mode change experiments initiatethe top-level QoS broker.

several factors:

e The RPC retry timeouts affect the overall mode change timeke presence of link loss.

That is, higher link latency settings increase the RPC tatrgout values being used.
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e One-path RPC connections employed by interior QoS brokerfiable to link loss (espe-
cially bursty loss), whereas the established two-path RBtDections used for communica-

tion between the leaf-level QoS brokers and the data pldesate link loss to some extent.

e As RPC connections are established on top of subscriptioonsle change times depend
on the length of subscription paths. That is, the number eheehannels a mode change
message has to traverse in order to reach its destinatialompestRPC connection (sub-
scription path) are: 5 event channels from top level QoSdrtk middle level QoS broker,
4 event channels from middle level QoS broker to leaf leveb@Qumoker and 3 event channels
from leaf level QoS broker to any status router. For exantpke gstimated round-trip time
to deliver a mode change operation to any status router fnenap level QoS broker with
an 8 ms link latency setting i$(8ms*5) + (8ms*4) + (8ms*3)) *2 = 192ms. QoS broker

(per level) and status router processing times and link araubverhead come in addition.
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6.3.1 Top-level Experiment

Figure 6.2 depicts the average time per experiment (100atpes) for mode change operations
activated from the top level in the management hierarchyexXsected, the mode change times
increase when the overall probability of packet loss (p#)lincreases. When increasing the link
latency, the increase in mode change completion time is matable, which correlates to higher

RPC connection traversal latencies and RPC retry timeduésa

Top level: Hierarchical mode change times (per experiment)
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Figure 6.2: Hierarchical mode change operations at theeirgd In the management hierarchy.

6.3.2 Second-level Experiment

Figure 6.3 depicts the average time per experiment (100atipas) for mode change operations
activated from the second level in the management hierarthg experiments conducted at the
second level in the management hierarchy share the sanus asrthe experiments conducted at
the top level. The experiments conducted with the same bsk bnd latency settings, but with

variable burstiness settings, are not subject to the saonease in overall mode change times as

is the case in Figure 6.2. The reason for this behavior istiieabumber of utilized one-path RPC

74



connections have decreased, which makes mode changeiopgi@nducted at the second level
in the management hierarchy less vulnerable to link los& thlo one-path RPC connections are
between the coordinator of the mode change operationsatwildtieaf QoS broker children, while

communication between the leaf QoS broker and status gteover two redundant paths.

Middle level: Hierarchical mode change times (per experiment)
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Figure 6.3: Hierarchical mode change operations at thensdewel in the management hierarchy.

6.3.3 Leaf-level Experiment

Figure 6.4 depicts the average time per experiment (100atipaes) for mode change operations
activated from the leaf level in the management hierarchiie &xperiments conducted at the
various link latency settings show a relatively flat trendhiath suggests that the two redundant
paths utilized by the RPC connections between the leaf Qol&eband its status routers are able
to withstand link loss up to 4% without any significant imgliion on the mode change times. An
8% link loss setting increases the average mode change winehl clearly illustrates the impact

of having only two redundant paths between the leaf QoS brake its status routers.
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Leaf level: Hierarchical mode change times (per experiment)
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Figure 6.4: Hierarchical mode change operations at thddgaf in the management hierarchy.

6.4 Flooding Mode Change Operations

This section includes the experimental results from flooshedle change operations conducted
at all the three levels in the management hierarchy. FigusellGstrates the experimental setup
and shows which status routers the QoS brokers are conntctdéurthermore, mode change
operations are initiated at either QoS broker A, B1 or C1 iguFe 6.5, and refer to top level,
middle level and leaf level, respectively. All results frdlooding mode change operations initiated
at the top level are listed in Table 6.3 (see Appendix A foulisfrom second level and leaf level).
A total of 300 mode change operations are executed in séquender per experiment setup.
Once all the status routers have switched to the new modéharmbordinator of the operation has
received acknowledgements from its descendants, the pexaton follows.
Common for all flooded mode change operations is that thedawatiorfloodsthe mode change

message directly out on the data plane without propagdtegiessage down through the hierar-

chy towards the status routers. The status routers formartidoded mode change message to all
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Figure 6.5: GridStat flooding connection points

Experiment | Loss % | Min. burst Max. burst { 0 mslink lat. 1 ms link lat. 2mslinklat. | 4mslinklat. [ 8 mslinklat.
1 0% 0 0 11.35 18.57 21.50 28.00 44.27
2 1% 1 1 13.84 20.01 22.72 29.32 45.69
3 1% 1 2 13.72 19.73 22.19 29.34 45.87
4 1% 1 4 13.19 19.40 21.93 29.22 45.19
5 1% 3 5 13.07 19.21 22.03 28.46 45.17
6 2% 1 1 12.97 19.52 21.74 28.70 46.21
7 2% 1 2 13.52 19.29 21.73 28.08 45.16
8 2% 1 4 14.06 19.23 21.88 28.56 44.56
9 2% 3 5 13.04 19.30 22.28 28.58 45.06
10 4% 1 1 13.15 18.59 22.68 29.61 47.39
11 4% 1 2 13.20 18.79 21.31 29.00 46.09
12 4% 1 4 13.39 18.41 21.42 29.08 46.60
13 4% 3 5 13.71 19.04 21.43 29.17 46.08
14 8% 1 1 13.13 18.91 2181 31.06 50.08
15 8% 1 2 13.27 19.11 22.38 30.58 48.98
16 8% 1 4 12.89 18.50 22.17 29.85 48.58
17 8% 3 5 13.62 18.55 21.20 29.94 47.80

Table 6.3: Flooding mode change experiments initiated bydp-level QoS broker.

their immediate neighbors except from the neighbor thegived the mode change message from.
Thus, the flooded mode change algorithm benefits from the atreduedundancy present in the
data plane in order to reach all the target status routerthérespective mode change operation.

The times presented in the following diagrams are the timesrnwhelast status router received
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the message, averaged over 300 mode change operations.
The number of message rounds required by the flooding messhdaideliver the mode change

operations to all status router participants, per levehenrhanagement hierarchy, are:

e QoS broker A needs four message rounds in order to delivaratie change operations to

all status router participants, according to the best flogpgiath.
e QoS broker B1 needs four message rounds.
e QoS broker C1 needs two message rounds.

6.4.1 Top-level Experiment

Figure 6.6 shows the average time per experiment (300 opesafor flooded mode change oper-

ations activated from the top level in the management hibgarAs the mode change messages are

Top level: Flooded mode change times (per experiment)

55 T T T T T T T T T T T T T T T T T
50 L 4
- - Bl |
45 | '/./’.’_7.*\'1»*7I’/“‘\\I\>;.,,I’ TR i
40 | 4
m
€
£ 3B} .
@
£ 30 Brg a
o = B G B g B B B B N
4
<
25 | -
s TR e KT e R R
20 - « A V. N B VIV
T /’“'\0—0—/*//‘\»———0—0/"/“’\%——'\/ 1
lo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O, X, &, X, ey D, o, 2, Oy Y, Y % %, & & & &

Experiment setup (drop probability:minBurst-maxBurst)
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Figure 6.6: Flooded mode change operations at the top llevkeimanagement hierarchy.

disseminated directly on to the data plane, the five graphs per latency setting, illustrate how
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resilient the flooded mode change algorithm is against lbskg with various burstiness settings.

With a link latency setting set to 8 ms, the flooded mode chaegehes all the target status routers

after approximately 45 ms, whereas the hierarchical algorrequires 1200-3200 ms (Figure 6.2)

depending on the link loss and burstiness setting. The arpats conducted with 8% link loss

passes a threshold where the redundancy available in theptiate is not able to propagate the

mode change message to the farthest away status routediacrctiy the best path, or close to the

best path, in which the average mode change time increases.

6.4.2 Second-level Experiment

Figure 6.7 shows the average time per experiment (300 opesatfor flooded mode change op-

erations activated from the second level in the managemerdrbhy. A flooded mode change
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Figure 6.7: Flooded mode change operations at the secoeldiehe management hierarchy.

disseminated from the second level in the management bigrarvolves 10 status routers, evenly

distributed among two clouds. The trend is similar to theultssn Figure 6.6 across all the con-

ducted experiments, but shows slightly lower average mbedeage times. The lower mode change
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times are subject to fewer status routers involved in theemrgents (less link emulator overhead)
and an additional best-case flooding path. Interestinglyrésults from this experiment show a
better resilience against 8% link loss in comparison withdiog mode change operations initiated
by the top level QoS broker (Figure 6.6). Figure 6.5 showstti@best-case flooding path from
QoS broker A and QoS broker B1 require four message roundslar ¢o reach all status router
participants. However, QoS broker B1 has an additionalbase flooding path that only requires
four message rounds, whereas QoS broker A requires five geessands when link loss prevents

the best-case path from delivering the mode change messafiestatus router participants.

6.4.3 Leaf-level Experiment

Figure 6.8 shows the average time per experiment (300 apesafor flooded mode change oper-

ations activated from the leaf level in the management tobga A flooded mode change dissem-

Leaf level: Flooded mode change times (per experiment)
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Figure 6.8: Flooded mode change operations at the leafiletleé management hierarchy.

inated from the leaf level in the management hierarchy we®b status routers in a single cloud

controlled by the leaf QoS broker (coordinator). The expents conducted with 8% link loss
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share the same trend as the experiments with the same netettirigs conducted at the second
level in the management hierarchy, but are more efficierietetif QoS broker only requires two
message rounds, through the flooding mechanism, to reastatlk router participants. Leaf QoS
broker C1 suffers from a single best-case flooding path, eqdires three message rounds when
link loss prevents the best-case path from delivering thderahange message to all status router
participants. This explains the impact on the average mbdage times under an 8% link loss
setting in comparison with the experiments conducted by Qro&er B1 in Figure 6.7 which has

two best-case flooding paths.

6.5 Hierarchical vs. Flooding Algorithm Comparison

The following diagrams illustrate how the hierarchical dledding mode change algorithms scale
when activating mode change operations at the three diffézeels in the management hierarchy.
Common for all diagrams is a representation of all the expenits conducted at the link latency

setting setto 0 ms, 1 ms and 8 ms for both the hierarchicalrenfiitoding mode change algorithm.

6.5.1 Top-level Comparison

Figure 6.9 shows the average time per experiment, 100 opesdor the hierarchical algorithm
and 300 operations for the flooding algorithm, for mode cleamyerations activated from the top
level in the management hierarchy. The diagram clearlgtitates the impact of disseminating the
mode change operations and collecting mode change ackagevteents through the management
hierarchy for the hierarchical mode change algorithm. Asri®oS broker RPC connections only
utilize a single path, the effect of increased link lossisg# directly corresponds to a higher
overall mode change completion time caused by higher RRZ detays. The flooding algorithm
does not suffer from the same propagation delays and RPZdelays as the hierarchical mode
change algorithm since the operations are disseminatedtlgirout on the data plane by using
the flooding mechanism in GridStat. The flooding algorithrielyodepends on thevidth of the

flooding domainthe origin point of the flooding mechanism and the generadllef redundancy
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Top level: Comparison between hierarchical mode changes and flooded mode changes (per experiment)
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Figure 6.9: Hierarchical vs. flooding mode change operatamducted at the top level (0, 1 and
8 ms link latencies).

available in the data plane. The results from the floodingritlygm conducted with 8 ms link
latency shows that the average mode change times are well ltkeé hierarchical experiment

0:0-0 with a link latency setting set to 0 ms.

6.5.2 Second-level Comparison

Figure 6.10 shows the average time per experiment for modegehoperations activated from
the second level in the management hierarchy. The floodogyi#hm still outperforms the hier-

archical algorithm under all the different network conalits (note that the flooding experiments
conducted with 8 ms link latency are significantly lower thiiha hierarchical experiments con-
ducted with 0 ms link latency). The hierarchical resultsvgl@gomore flat outline than the exper-
iments conducted at the top level (Figure 6.9) as the numben®-path RPC connections have

decreased.
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Middle level: Comparison between hierarchical mode changes and flooded mode changes (per experiment)
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Figure 6.10: Hierarchical vs. flooding mode change opematamnducted at the second level (0, 1
and 8 ms link latencies).

6.5.3 Leaf-level Comparison

Figure 6.11 shows the average time per experiment for moalegehoperations activated from the
leaf level in the management hierarchy. Since the RPC caoiomscutilize two redundant paths
in the hierarchical algorithm, the significance of highesteyn loss is negligible, while at 8% link
loss an increase in hierarchical mode change times is cdnyseet limitation of having only two
redundant paths between the leaf QoS broker and a statwe.rolie flooding algorithm still

outperforms the hierarchical algorithm by almost an ordenagnitude.

6.6 Link Traversals

Table 6.4 shows the number of links (event channels) traddoy both mode change algorithms.
The number of traversals is averaged over all the expersrantducted at a specific level in the
management hierarchy. For example, the hierarchical ithgort the top level traverses a total of

2124 event channels, averaged over all experiments cagdiatthat level. The hierarchical mode
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Leaf level: Comparison between hierarchical mode changes and flooded mode changes (per experiment)
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Figure 6.11: Hierarchical vs. flooding mode change opematmpnducted at the leaf level (0, 1
and 8 ms link latencies).

change algorithm requires more link traversals since tlmedinator disseminates mode change
operations through the management hierarchy and towaedddta plane. The flooding mode
change algorithm, on the other harshvesa trip through the management hierarchy and uses
it only for aggregating acknowledgements up towards thedioator. In addition, the leaf QoS
brokers utilize the spatial redundancy property in Griti8taugh its established RPC connections

with the status routers it controls, which increases thebrmaf link traversals for both algorithms.

Algorithm | Top Level | Second Level| Leaf Level
Hierarchical| 2124 833 340
Flooding 367 165 84

Table 6.4: Link traversals
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6.7 Scalability Results

The following diagrams compare the same experiments caaedat the three levels in the man-
agement hierarchy in order to see how the algorithms scadmwitreasing the hierarchical scope

of the hierarchical algorithm or the flooding domain of thetlong algorithm.

6.7.1 The Hierarchical Algorithm

Figure 6.12 depicts experiments conducted at the threéslgvehe management hierarchy with 1
ms link latency, and Figure 6.13 shows the experiments aedwith 8 ms link latency. Figure
6.12 depicts an increase in time between the experimentiucted at the leaf and second level
which is approximately the double of the mode change timégsed at the leaf level, and the
same results are seen between the experiments conducdbedsatcond and top level at lower link
loss settings. Figure 6.12 also shows the impact of the atieipter-QoS broker RPC connections
(top level experiments utilize more one-path RPC connasttban the experiments at the second

level).

Hierarchical mode change times: Scalability (1 ms link latency)
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Figure 6.12: Scalability results using the hierarchicgbakthm (1 ms link latency).
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Figure 6.13 share the same trend as Figure 6.12, but the irop#fte number of one-path

inter-QoS broker RPC connections is more clear.

Hierarchical mode change times: Scalability (8 ms link latency)
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Figure 6.13: Scalability results using the hierarchicgbakthm (8 ms link latency).

At first, one might expect that the linear increase is causethé number of status routers
involved in the hierarchical mode change operations: Setdaf level, 10 at the middle level and
20 at the top level. This is not necessarily true. The hiéiaed mode change algorithm depends
on the number of levels in the management hierarchylethgthof the RPC connections between
the QoS brokers and the corresponding delays. The expemiayout for the hierarchical mode
change algorithm in Figure 6.1 shows a binary managemest where the length of the RPC
connections are: 5 links between A and B1, 4 links betweenr8ilGl and 3 links between C1
and each status router, and suggests that the paths becogee lkogher up in the management
hierarchy. However, the length of RPC connections depenti®topology in the data plane and
at which status router the QoS broker’s publisher and silEcare connected to. With a trinary

tree where each QoS broker has three direct children Qo®twake situation might be different
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depending on how the status router network is divided betilezleaf QoS brokers. Itis important

to mention that the status router network remains the sameenumber of status routers and the
underlying network topology. The difference lies with a eiigdnanagement hierarchy and slightly
less populated GridStat clouds. This suggests that ayrinee has fewer levels than a binary tree
and that the length of RPC connections between QoS brokefsrager. In that case, a binary tree

and a trinary tree should yield approximately the same tesul

6.7.2 The Flooding Algorithm

Figure 6.14 depicts experiments conducted at the threéslavéhe management hierarchy with
1 ms link latency, and Figure 6.15 shows the experimentsweiad with 8 ms link latency. The
diagrams represent the average time at which all statugnotve received the mode change
operation, and give a notion of how much time should be alextéor flooding a mode change
operation to all status router participants. For examptpyie 6.15 (8 ms link latency) shows that
flooding mode change operations initiated by the top leved Quker require approximately 50
ms to deliver the operation to all status router participagden under stringent network conditions.
This means that, in the average case, status routers caynsafich modes at any time after that.
However, some time variance must be taken into account,aagsim Section 6.9.2.

The experiments conducted at the three levels with 1 mséitgnky (figure 6.14) show a mini-
mal increase in mode change times that is caused by largéiriipdomains when the coordinator
resides higher up in the management hierarchy, and withgerdlooding domain increases the
number of message rounds for the mode change operationdio aflastatus router participants.
Another factor is the starting point of the flooding mechanig.g., flooding from theniddle of
the flooding domain is more efficient than initiating a floodrfr an edge in the flooding domain.
An example of this is shown in figure 6.15 which depicts a la@yge between the experiments con-
ducted at the leaf and second level. Logically, one wouldathat the experiments conducted at

the second level should be closer to the results achieveddole mhange operations conducted at
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Flooded mode change times: Scalability (1 ms link latency)
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Figure 6.14: Scalability results using the flooding aldorit(1 ms link latency).

the leaf level. However, flooding mode change operationgaetd from the second level initiate
the flooding mechanism from an edge in the flooding domainleathie leaf QoS broker initiates

the flooding mechanism from the center status router in fitglsiadministrative cloud. This, in

effect, means that the leaf level requires two message stmdisseminate the operation to all
the status router participants (one from the leaf QoS brtikéne cloud), while the second level
requires four message rounds. An optimization would bettthkesecond level initiate the flood-
ing mechanism from the center node in one of its two admitist clouds, which would reduce
the number of message rounds with one. Note that the actpaliotgy in the involved clouds in

a flooding mode change operation and the degree of redundeteyen them have to be taken
into consideration when determining which status routeughserve as the point of origin for the

operation.
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Flooded mode change times: Scalability (8 ms link latency)
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Mode change at top level: 8 ms link latency —+—
Mode change at middle level: 8 ms link latency ---x---
Mode change at leaf level: 8 ms link latency ---*---

Figure 6.15: Scalability results using the flooding aldorit(8 ms link latency).

6.8 Flood Inconsistencies

The flooding algorithm has to some degree a limitation dejpgndn the number of redundant
links (event channels) connecting clouds. For exampleyafd¢louds are only connected through
one single link, there is a relatively high probability iretpresence of link loss that one of the
clouds will not receive a mode change operation dissentdnate on the data plane by using
the flooding mechanism. This scenario can potentially leheedata plane inconsistent as one
cloud has no knowledge of any recent mode change operatiadStat handles such scenarios
through the management hierarchy (see Section 3.6) wheSehQukers eventually, after some
timeout, attempt to correct the situation in the data planeding the hierarchical mode change
algorithm. The recovery mechanism will only contact théugtaouters the management hierarchy
has not received any acknowledgements from and informs tbernange to the new mode. It is
important to mention that the flooding mechanism is not &f@enuch by bursty loss (triggered

by the link emulator) as a flooded message is only sent onckngebut bursty loss might affect
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the next flooding mode change operation.

Table 6.5 shows the number of times such scenarios outlibedeaoccur under various net-
work conditions by using the flooding algorithm where cloads inter-connected by three event
channels. All experiments are conducted at the top levéiénmmtanagement hierarchy and each

experiment represents 300 flooding mode changes (1 instaeaas 1/300 mode change opera-

tions).
Experiment | Loss % | Min. burst Max. burst | 0 ms link lat. 1 ms link lat. 2mslinklat. | 4mslinklat. [ 8 mslinklat.
0% 0 0 0 0 0 0 0
2 1% 1 1 0 0 0 0 0
3 1% 1 2 0 0 0 0 0
4 1% 1 4 0 0 0 0 0
5 1% 3 5 0 0 0 0 0
6 2% 1 1 0 0 0 0 0
7 2% 1 2 0 0 0 0 0
8 2% 1 4 1 0 0 0 0
9 2% 3 5 0 0 0 0 0
10 4% 1 1 0 1 0 1 0
11 4% 1 2 0 0 1 0 0
12 4% 1 4 1 0 0 0 0
13 4% 3 5 1 0 0 0 0
14 8% 1 1 5 4 3 0 1
15 8% 1 2 5 0 2 3 0
16 8% 1 4 4 0 0 1 2
17 8% 3 5 0 1 0 0 0

Table 6.5: Flood inconsistency occurrences.
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6.9 Mean and Standard Deviations

Figure 6.16, 6.17, 6.18 and 6.19 show the mean and standaedide for experiments conducted
with 0 ms and 8 ms link latency at the top level by using bothhiesarchical and the flooding
algorithm. The experiments conducted with link latencyisgs 1 ms, 2 ms and 4 ms are listed in

Appendix A.

6.9.1 The Hierarchical Algorithm
Figure 6.16 depicts the mean and standard deviation resitit® ms link latency from hierarchical

mode change operations initiated by the top level QoS brakigher link loss probabilities do not

Hierarchical mode change times: Mean and std. deviation (0 ms link latency)
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Figure 6.16: Mean and standard deviation using the hiei@lchlgorithm (0 ms link latency).

affect the results significantly as QoS brokers can quiagdpond to link loss through the temporal
redundancy property inherent in the RPC mechanism. RPCections utilized by the top level
QoS broker await RPC acknowledgements for 10 ms (Table Ge)amode change message has

been sent, and explains the deviations seen throughoteatperiments.
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Figure 6.17 depicts the mean and standard deviation resgiifis8 ms link latency from hier-

archical mode change operations initiated by the top lew& @roker. In comparison with Figure

Hierarchical mode change times: Mean and std. deviation (8 ms link latency)
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Figure 6.17: Mean and standard deviation using the hiei@lchlgorithm (8 ms link latency).

6.16, a higher link latency and RPC retry timeout (120 msantyecauses larger deviations. For
example, four sequential losses with an 8 ms link latencyl&@ms RPC retry timeout result in
an added delay of 480 ms to a hierarchical mode change operhtit only 40 ms with 0 ms link

latency and 10 ms RPC retry timeout.

6.9.2 The Flooding Algorithm

Figure 6.18 shows the mean and standard deviation resulisOwns link latency from flooding
mode change operations initiated by the top level QoS brokiee flooding domain contains 20
status routers evenly distributed in four clouds, whereidsoare inter-connected by three event
channels. The standard deviations, for all experimentswathin the same range and do not
increase when the overall link loss setting increases. las& during flooding mode change oper-

ations may cause a higher number of necessary message fouatlarticipants to receive the
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Flooded mode change times: Mean and std. deviation (0 ms link latency)
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Figure 6.18: Mean and standard deviation using the floodguyiéhm (O ms link latency).

operation, and the standard deviation is caused by linketsa times and link emulator overhead.
Figure 6.19 shows the mean and standard deviation resuit8wns link latency from flooding
mode change operations initiated by the top level QoS brokiee flooding domain contains 20
status routers evenly distributed in four clouds, wheraeidtoare inter-connected by three event
channels. The standard deviations increase with a linkdgtef 8 ms as the number of necessary
message rounds may increase when the data plane is exjegi@eavy link loss. For example,
one additional message round increases the flooding modgelisne by 8 ms in comparison to
0 ms (plus link emulator overhead) in Figure 6.18. Furtheanthe diagram depicts the average
time at which all status router participants have receitedinode change operation. For example,
with 8% link loss and a burstiness setting set to 1-1, alustabuter participants receive the mode
change operation after 50 ms (average). However, as se@rttietime variance, the coordinator
should provide at least 55 ms for the flooding mechanism tgoror to switching modes. That

is, status routers, for this particular example, can safefych modes 55 ms after the coordinator
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Flooded mode change times: Mean and std. deviation (8 ms link latency)

70 T T T T T T T T T T T T T T T T T

60 - E

40 | .

30 -

Avg. time (in ms)

10 F -

Experiment setup (drop probability:minBurst-maxBurst)

8 ms link latency +——+—

Figure 6.19: Mean and standard deviation using the floodogyiéhm (8 ms link latency).

initiated the mode change operation.
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CHAPTER SEVEN

RELATED WORK

Given that both GridStat and the global and hierarchical endthnge mechanism are novel, there
is not much related work that closely resembles the cortdba of this thesis. Previous work has
been done in network routing using multiple routing tablag, this work has adressed multiple
simultaneously active routing tables for differentiatedSQouting[6][8]. More specifically, two
routing tables are used; one for QoS traffic and another fet-&kort traffic. This allows for
differentiated routing strategies for the two traffic clessFor example, QoS traffic emphasizing
lower drop rates could be forwarded along less loaded pathscing the probability of drops due
to congestion at the expense of longer paths and thus higtey. dThe mechanisms proposed in
this thesis share the property of previous work in the aresupporting multiple routing tables,
but is novel in that a status router is collectively managgdlset of QoS brokers where each
QoS broker controls a distinct set of routing tables, andthasbility to switch between them in

run-time.
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CHAPTER EIGHT

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The implementation of global and hierarchical mode changehanisms and management enables
GridStat to quickly switch between bundles of subscrigtionrun-time. GridStat pre-loads and
populates routing tables in the status router network aiegrto subscription modes where mode
change operations effectively switches between routiblg$a The alternative approach to switch
between bundles of subscriptions would be for GridStat ptexee subscription bundles through
allocation and de-allocation methods. The allocation agaltbcation of subscriptions are ex-
pensive operations and will delay data streams when theyesréed the most, and is undesirable
for contingency handling in the electrical power grid. Trever grid industry can benefit from
this mechanism in GridStat by identifying and creatingidigtmode holders for the information
that is needed during various critical situations in thecteleal power grid. Furthermore, Grid-
Stat’s modes implementation enables load shedding forsfisams and corresponds to how load
shedding enables transmission adjustments in the elggaever grid.

This thesis has presented two mode change algorithms fieatidferent tradeoffs with respect
to consistency, resource usage and efficiency. The hiecatchode change algorithm enables sub-
scriptions present in both the old and new modes to flow dwingpde change operation through
five execution phases. In addition, the hierarchical modmgh algorithm prevents bandwidth,
status router computational resources and queues to bexdraasted. The flooding mode change
algorithm is an efficient best-effort algorithm that infastatus routers to change modes through
the flooding mechanism, and therefore provides a high statislelivery guarantee. However, the
flooding mode change algorithm is not able to prevent contjoun@ resources and queues in the

status router network to become overloaded.
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Both mode change algorithms forward a mode change opettaticards a set of status routers,
either through the management hierarchy or by using the ifi\gaghechanism, and are therefore
liable to network failures. The recovery mechanism isaté&d when one or more status routers do
not respond to a pending mode change operation. In thattb@sescovery mechanism attempts to
contact the non-responsive status routers with instrastio restore their operating modes when
the network failures are resolved.

Further, this thesis has presented the use and integrdtitve RPC mechanism in GridStat.
The RPC mechanism enables GridStat entities to commurvateallocated subscriptions and
will therefore benefit from the QoS GridStat provides. TheCRRechanism was primarily de-
signed for external applications, e.g., actuator conbyot,this thesis shows that it is also useful
internal to GridStat.

The experimental evaluation shows the mode change complitnes for both mode change
algorithms under various network conditions. The expenitaleresults show that the hierarchical
mode change algorithm scales linearly when increasing igrardchical scope of a mode change
operation. However, the algorithm adds a significant dedai¢ overall mode change completion
time in the presence of link loss. The reason for this belasithat QoS brokers do not utilize
redundant subscription paths in their established RPCeaztiiums. The hierarchical mode change
algorithm is expected to perform much better during poownek conditions with redundant com-
munication paths in the management hierarchy. The resubis shat the flooding mode change
algorithm completes a mode change operation more than an ofdnagnitude faster than the
corresponding experiment conducted with the hierarcimuade change operation. Furthermore,
the flooding mode change algorithm is less prone to link lossslhhows a minimal impact on the
overall mode change completion times. In term of scalabilite flooding mode change algorithm
scales linearly and clearly shows that the width of the flagdlomain and the point at which QoS

brokers initiate the flooding mechanism from increases tbdarthange completion times.
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The experimental evaluation demonstrates that the glatohheaerarchical mode change mech-
anisms and management implementation in GridStat is aipaheind feasible approach for con-
tingency adaptation in the electrical power grid. The ekpents show that both algorithms scale
linearly in the management hierarchy, are resilient to lwds through a well-connected status
router network, and together with the recovery mechanisthaanassumed QoS broker replica-
tion scheme provide the necessary means to ensure cohsisida changes. The mode change
algorithm that is best suited for the electrical power gridl mequire investigation into standard

practices and in close coordination with representatin@s the electrical power grid industry.

8.2 Future Work

8.2.1 Multiple Mode Sets Per QoS Broker

Currently, a QoS broker does only support the definition asel af a single mode set and will
always operate in one mode from its mode set. An improvemenidvbe for QoS brokers to
define multiple mode sets, and therefore operate in severdés For example, a utility company
might be interested in monitoring a common set of importaower grid variables which will
never change independent of which contingencies or poweifgtures the utility will face. By
supporting multiple mode sets, a utility can defineeselinemode which it will always operate in,
and use additional mode sets for contingency monitoringthEumore, the support for multiple
mode sets allows modes to be categorized. Utility compacaes for instance, define several
modes, belonging to the same mode set, for detailed regisaower line monitoring which can
be used in the presence of power line failures. In order tpedpnultiple mode sets, the use and
storage of mode definitions at QoS brokers and status routgssbe altered, but the overall mode

change mechanisms can be utilized as is.
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8.2.2 Optimized Routing Table Construction

With the introduction of multiple active routing tables hretstatus routers is an associated overhead
in the forwarding algorithm. Status routers have to itethteugh all forwarding data sets per pro-
cessed status event and obviously slows down the forwaedgayithm. This section investigates
how this step can be eliminated from the forwarding algomithrough alternate constructions of
the routing table.

Status routers can, during mode change operations, cecalsingle mode holder instance
that contains all the necessary forwarding informationstatus events that belong to the current
set of operating modes. This means, that for each mode clogagation, the status routers have
to calculate and construct a new routing table. Furtherptbeestatus routers must be careful to
construct the new routing table such that the multicast @aeisim is preserved. If subscriptions
are added in run-time the forwarding sets must be carefldiggal in the already existing structure.

Alternatively, instead of constructing routing tables ba fly during mode change operations,
status routers can pre-calculate a single mode holdenicstar all possible permutations of oper-
ating modes and have routing tables ready for use. Thisisnlaptimizes the current routing table
implementation, but at the cost of higher resource usageustouters must store all routing table
permutations and re-calculate them when subscriptionadded in run-time, which necessitates
a large storage space for status routers that are envisiofedrun on light-weight hardware.

An optimization to the routing table permutations schemelldide for the management hi-
erarchy to pre-calculate all possible routing table peatioihs or calculate a single routing table
during mode change operations. This is a reasonable agppasagoS brokers will run on high-end
machines. However, the management hierarchy is resperfsibsending routing tables down to
all status routers participating in a mode change operasiod may therefore increase the risk of

inconsistent mode change operations in the presence obriefailures.
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8.2.3 Link Delay and Noise Measurements

The RPC mechanism uses a pre-configured retry timeout vdiee awaiting RPC acknowledge-

ments and is common for all GridStat entities that utilize BPC mechanism. When the RPC
retry timeout value is lower than the connection’s actuahabtrip time, the sender might resend
unnecessary RPC calls. On the other hand, a high RPC reteptinvalue adds additional delay
to the RPC calls in the presence of temporal network anomalieerefore, GridStat must provide
a scheme for measuring subscription path delays and naisstablished RPC connection. Such
a measurement scheme can be incorporated into the RPC nsrol@rprovided as an additional

layer on top of the RPC mechanism. A measurement schemedpbbly the RPC mechanism has
the sole benefit of being transparent to the overlying appba, and the RPC mechanism itself is
responsible for monitoring its established connectiorigerAatively, the overlying application can

provide the necessary means for implementing a measurestieertne on top of the RPC mecha-
nism and allows the client to perform its desired measurésn&ihich method best suits GridStat

is subject to the end-to-end argument and is a future desigisidn.

8.2.4 Alternative Flooding Mode Change Algorithm Design

The flooding mode change algorithm informs status routersatiech between modes at a pre-
determined future timestamp. An optimization to, or anraliéive design to, the flooding mode

change algorithm is for status routers to switch modes wlestded to. A status event belongs
to a subscription established to operate in one or more maaheshas an associated published
timestamp and an estimated delivery deadline (subscrilvetflis proposed design, a status router
switches modes when a status event belonging to the new mitlua delivery deadline after the

mode switch timestamp passes through it. The following nag®ns are made in a flooding mode

change operation switching from Green to Yellow:

e Status events in Yellow Status events published prior to the mode switch timestamp

with a delivery deadline after the mode switch timestampfanearded through the status
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router network and delivered to the subscriber applicatioBtatus routers on the path(s)

switch from Green to Yellow when processing the status event

e Status events in Green Status events with a delivery deadliclese but prior, to the mode
switch timestamp can not be guaranteed to reach the subsapplications. The reason is
that some status routers on the paths towards the subscniiagralready have switched to
mode Yellow, due to status events in Yellow with a delivergdlene after the mode switch
timestamp. This introduces a notion of uncertainty regayditatus events in Green that

should be delivered prior to the mode switch timestamp.

e Status events in Green and YellowStatus routers in the status router network can operate
in either Green or Yellow during the mode change operatiahfarwards status events in

Green and Yellow towards the subscriber applications, bssiply at the wrong rate.

The current implementation of the flooding mode change dlyaris used as is to deliver the
mode switch timestamp to the status router network, whatestouters switch modes when sub-
scription traffic in the new mode with a delivery deadlineeathe mode switch timestamp passes
through them. Subscription traffic in the new mode with daiyvdeadlines after the mode switch
timestamp is guaranteed to be delivered to the subscrippphcations, whereas subscription traf-
fic in the old mode with delivery deadlines just prior to the tmode switch timestamp might
become dropped. More specifically, subscription traffichi@ old mode with a delivery deadline
prior to the mode switch timestamp might become dropgiéer the first status event in the new
mode with a delivery deadline after the mode switch timegtdras caused some of the status
routers to switch modes. In this time period, status roubpesate in either the old or the new
mode, and status routers can receive subscription trafboin modes, which makes them liable
to overload scenarios. This can be overcome by discardatgssevents in the old mode after
the first status event in the new mode (with delivery deaddifter the mode switch timestamp)

has been sent, thus creating a status router behavior wlusklg resembles the prepare phase
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(see Section 4.2) in the hierarchical mode change algorithmwever, during this time, the status
router network will drop status events in the old mode witlrevery deadline prior to the mode

switch timestamp.

8.2.5 The Hierarchical Mode Change Algorithm and Flooding

The flooding mode change algorithm provides high statistiedivery guarantees through the
flooding mechanism in GridStat. The current implementatibthe hierarchical mode change
algorithm, on the other hand, is not able to benefit from thedillg mechanism as it disseminates
mode change operations (phases) through the managemsarchieby using the RPC mecha-
nism. The RPC mechanism benefits from GridStat’s QoS gusganmost importantly spatial
redundancy, but can not meet the same statistical deliveayagtees as the flooding mechanism.
The flooding mechanism can be incorporated into the hiei@atmode change algorithm as fol-

lows:

e The leaf QoS brokers can, as an alternative to the RPC mexthafiood the mode change

operations out in its respective clouds.

e The coordinator of a mode change operation can flood modegehphases directly out
on the status router network. Status routers will execugentbde change phase and send
acknowledgements up to the management hierarchy, wherdf@&8rs collectively aggre-
gate and send acknowledgements up towards the coordinatmifg the established RPC

connections.

e The recovery mechanism can utilize the flooding mechanismefample, if a status router
does not respond with an acknowledgement, the leaf QoS bcakeflood the mode change
phase to its cloud, and thereby be able to contact the asdaitextistatus router with a high

statistical delivery guarantee, unless the status rosifgatititioned or offline.
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8.2.6 QoS Broker Replication

QoS broker replication has served as a major assumptiorotbrhode change algorithms, and
thus no mechanisms have been implemented in order to cirenifailed QoS brokers. The recov-
ery and RPC mechanism provide the means to continue modge&lgerations once QoS brokers
resume operation through the assumed replication schecte/efor passive replication serve as

two suitable replication strategies for GridStat.

8.2.7 Resource Management

The introduction of global and hierarchical modes in GratStresses the necessity of a resource
management scheme in GridStat. A resource management adhamllectively employed by
the management hierarchy to control and manage resourdhs ilata plane and to make sure
resources do not become overloaded at any time during aperg&lobal and hierarchical modes
enable status routers to utilize several routing tablesraréases the complexity of any resource
management scheme. That is, the resource management socheshensure that no resources

become overloaded with any set of operating modes.

8.2.8 Security

Security concerns have not been the focus of this thesisthieuglobal and hierarchical mode
change mechanisms and management implementation mig#fitfeom ongoing work on secur-

ing communication within the data plane and managemenepl@ne project aims to secure data
plane communication (subscriptions) through encryptiod eerification methods, and as mode
change operations are disseminated through GridStat’s iR&hanism, the current global and
hierarchical mode change implementation will directlydeage from the results of that project.
Another issue is for status routers and QoS brokersust the contents of a mode change op-
eration. For example, a misbehaving leaf QoS broker medraight, by using the hierarchical

algorithm, change the mode change operation contents &ordhiiits status routers to change to a

wrong mode. Therefore, appropriate mechanisms to deteoteyate Byzantine failures, to some

103



degree, need to be investigated for future versions of GatdS

8.2.9 Clock Synchronization

The flooding mode change algorithm relies on synchronizecksl across all GridStat entities in
order to inform all status router participants to switch m®at a predetermined timestamp. The
Network Time Protocol (NTP) was used in order to synchroliimee) all the cluster nodes used
in the experimental evaluation (Chapter 6). However, NTRoissuitable in a wide-area network
which spans several network technologies. The correctoeise forwarding of status events
is proportional to the level of clock synchronization betwestatus routers. To ensure a high
quality of forwarding, clock synchronization should be lretlow milliseconds, or ideally within
microseconds, as this is well below publishing rates comynosed in power grid applications.

GPS synchronization products are available that providaracy of one microsecond to UTC.

8.2.10 Byzantine Failures

The hierarchical mode change algorithm and the flooding nobdege algorithm rely on QoS
brokers and status routers to behave correctly. Byzardiheés with respect to a QoS broker can

affect the two mode change algorithms as follows:

A QoS broker does not forward the mode change operation éphasits children QoS

brokers.

A QoS broker tampers with the mode change operations, buafadis them to all QoS broker
children. This might cause all status routers in the hidiiaet scope of the QoS brokers to

execute the wrong mode change phase, or switch to the wrodg.mo

A QoS broker might not send an acknowledgement up to its p&ye8 broker during ag-

gregation rounds.

A QoS broker might not initiate the recovery mechanism ocakea recovery request.
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The above list presents Byzantine failure scenarios for Qu&ers. However, the same set
of problems might be caused by an exploited or misbehaviatystrouter, but in that case, a
Byzantine failure will not cause much harm. In order to taterByzantine failures, GridStat must
employ an extensive amount of security features and fadaetection mechanisms. Furthermore,

status routers might benefit from voting mechanisms in otdetetect exploited mode change

operations.
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APPENDIX ONE

EXPERIMENTS

This appendix presents additional experimental resubts fthe hierarchical and flooding mode

change algorithms.

A.1 Hierarchical Algorithm Results

Table A.1 shows the average mode change times for all hl@calcmode change experiments

conducted at the second level in the management hierarobyJable A.2 for the leaf level, re-

spectively.
Experiment | Loss % | Min. burst Max. burst { 0 mslink lat. 1 ms link lat. 2mslinklat. | 4mslinklat. [ 8 mslinklat.
1 0% 0 0 67.51 164.73 227.14 351.05 634.18
2 1% 1 1 72.08 168.97 234.67 377.80 658.78
3 1% 1 2 70.66 179.14 234.85 376.17 671.62
4 1% 1 4 71.63 167.42 239.94 376.92 671.54
5 1% 3 5 78.19 171.93 236.05 387.24 667.40
6 2% 1 1 78.40 185.80 248.78 386.16 684.18
7 2% 1 2 77.96 187.52 246.50 402.41 693.76
8 2% 1 4 84.89 189.58 258.03 394.22 729.52
9 2% 3 5 74.43 192.61 262.96 391.97 693.98
10 4% 1 1 84.79 193.00 282.87 435.85 746.50
11 4% 1 2 90.24 191.94 298.39 443.70 760.55
12 4% 1 4 94.29 200.69 285.09 455.06 789.31
13 4% 3 5 91.68 211.96 297.23 462.91 814.52
14 8% 1 1 120.28 243.32 340.45 515.32 909.08
15 8% 1 2 129.12 24757 352.74 520.43 920.50
16 8% 1 4 133.42 272.37 406.57 588.06 979.92
17 8% 3 5 139.10 280.36 383.82 620.49 958.07

Table A.1: Hierarchical mode change experiments initidgthe second-level QoS broker.

Experiment | Loss % | Min. burst Max. burst { 0 mslink lat. 1 ms link lat. 2mslinklat. | 4mslinklat. [ 8 mslinklat.
1 0% 0 0 38.14 71.02 99.18 158.12 276.86
2 1% 1 1 38.11 71.44 99.48 158.73 279.24
3 1% 1 2 35.18 68.52 97.06 156.26 278.25
4 1% 1 4 33.26 67.11 95.93 155.36 276.11
5 1% 3 5 34.46 68.57 96.46 155.62 276.65
6 2% 1 1 37.96 7154 100.05 159.78 281.72
7 2% 1 2 33.91 67.32 97.26 157.00 282.49
8 2% 1 4 32.01 67.29 96.97 156.25 280.46
9 2% 3 5 32.15 66.52 95.02 156.70 278.78
10 4% 1 1 31.90 67.03 98.38 160.67 285.71
11 4% 1 2 32.58 67.97 96.75 160.00 290.79
12 4% 1 4 32.95 68.82 98.02 159.27 288.33
13 4% 3 5 32.99 66.35 96.14 158.97 288.05
14 8% 1 1 36.53 77.00 109.86 177.16 318.39
15 8% 1 2 35.86 75.81 103.66 171.53 315.67
16 8% 1 4 37.07 75.94 106.80 170.94 307.54
17 8% 3 5 37.97 71.20 107.29 172.70 315.99

Table A.2: Hierarchical mode change experiments initisgthe leaf-level QoS broker.
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A.2 Flooding Algorithm Results

Table A.3 shows the average mode change times for all floadiode change experiments con-

ducted at the second level in the management hierarchy, @vlé A.4 for the leaf level, respec-

tively.
Experiment [ Loss % | Min. burst | Max. burst [ Omslinklat. | 1mslinklat. | 2mslinklat. | 4mslinklat. | 8 mslink lat.
1 0% 0 0 7.40 12.50 15.46 23.61 38.94
2 1% 1 1 9.79 13.58 16.58 2431 39.64
3 1% 1 2 8.25 13.08 16.34 23.55 39.45
4 1% 1 4 7.93 11.96 16.42 24.00 39.70
5 1% 3 5 8.96 11.74 16.41 23.87 39.26
6 2% 1 1 8.01 11.83 16.58 2411 39.88
7 2% 1 2 7.25 12.08 16.01 24.44 39.62
8 2% 1 4 6.97 11.73 16.25 24.08 38.95
9 2% 3 5 7.55 11.56 16.11 23.17 38.80
10 4% 1 1 7.85 12.21 15.65 23.85 39.15
11 4% 1 2 7.64 11.70 15.53 23.08 39.13
12 4% 1 4 9.04 12.03 15.42 23.43 39.80
13 4% 3 5 8.34 11.74 15.37 23.62 39.06
14 8% 1 1 7.10 12.18 16.22 24.40 40.55
15 8% 1 2 7.14 12.29 16.25 23.35 40.59
16 8% 1 4 7.05 11.86 16.59 23.24 40.01
17 8% 3 5 7.04 11.96 16.04 24.03 39.73

Table A.3: Flooding mode change experiments initiated leysttcond-level QoS broker.

Experiment [ Loss % | Min. burst [ Max. burst | Omslinklat. | 1mslinklat. | 2mslinklat. | 4 mslinklat. | 8 mslinklat.
1 0% 0 0 4.26 6.40 8.23 12.13 20.11
2 1% 1 1 3.49 6.03 8.43 12.62 20.39
3 1% 1 2 4.33 5.84 7.89 12.38 19.88
4 1% 1 4 3.51 5.79 8.17 12.26 19.57
5 1% 3 5 2.73 5.78 7.84 11.92 19.80
6 2% 1 1 291 5.55 8.07 12.20 20.17
7 2% 1 2 2.96 5.39 8.11 12.08 19.94
8 2% 1 4 3.58 5.49 7.86 11.77 19.80
9 2% 3 5 3.06 5.38 7.93 12.13 19.83
10 4% 1 1 2.77 5.34 8.52 12.41 20.79
11 4% 1 2 2.98 5.53 8.45 12.55 20.78
12 4% 1 4 2.95 5.23 8.07 12.64 20.42
13 4% 3 5 2.76 5.34 8.27 12.50 20.43
14 8% 1 1 3.10 5.53 8.94 13.49 22.47
15 8% 1 2 2.81 5.55 8.48 13.25 21.93
16 8% 1 4 2.92 5.28 8.51 13.49 21.56
17 8% 3 5 3.43 5.05 8.33 12.88 22.06

Table A.4: Flooding mode change experiments initiated leyl¢lf-level QoS broker.

A.3 Mean and Standard Deviations

A.3.1 The Hierarchical Algorithm

Figures A.1, A.2 and A.3 show the means and standard dengatar hierarchical mode change

experiments conducted at the top-level QoS broker withlalditency setting set to 1 ms, 2 ms and
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4 ms repectively.
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Figure A.1: Mean and standard deviation using the hieraatlilgorithm (1 ms link latency).

A.3.2 The Flooding Algorithm

Figures A.4, A.5 and A.6 show the means and standard dengata flooding mode change ex-

periments conducted at the top-level QoS broker with a ktéricy setting setto 1 ms, 2 ms and 4

ms repectively.
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Figure A.2: Mean and standard deviation using the hieraatlilgorithm (2 ms link latency).
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Figure A.3: Mean and standard deviation using the hieraatlilgorithm (4 ms link latency).
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Figure A.4: Mean and standard deviation using the floodiggrithm (1 ms link latency).
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Figure A.5: Mean and standard deviation using the floodiggrithm (2 ms link latency).
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Figure A.6: Mean and standard deviation using the floodiggrithm (4 ms link latency).
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