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ABSTRACT

We question current trends that attempt to leverage virtualization
techniques to achieve security goals. We suggest that the security
role of a virtual machine centers on being a policy interpreter rather
than a resource provider. These two roles (security reference mon-
itor and resource emulator) are currently conflated within the con-
text of virtual machines and VMMs. We believe that this “double-
duty” leads to both a significant performance impact as well as a
bloated virtualization layer. Increased complexity reduces confi-
dence that the code is elementary enough to verify or trust from
a security perspective. Ironically, as more security–related func-
tionality is shoved into a VM platform, the system becomes less
trustworthy as it becomes increasingly trusted.

We argue that a principle reason for such an unfortunate situation
is the lack of efficient hardware trapping mechanisms. We propose
an architecture to help ameliorate this problem by transferring the
security enforcement and program analysis roles from the virtual-
ization component to a policy-directed FPGA.
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B.7.1 [Hardware]: Types and Design Styles—Gate Arrays; C.1.3
[Computer Systems Organization]: Other Architecture Styles—
Data-flow architectures
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Design, Performance, Security

Keywords

debugging, virtualization, traps, security policy

1. INTRODUCTION
Virtualization serves as a method to intercept device access or

system execution in order to multiplex the underlying hardware.
Naturally, the isolation properties of this technique are attractive
from a security perspective, as is the ability to inspect the details
of that execution or the ability to tweak the isolation boundaries.
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Thus, in addition to providing multiplexing or emulation1 of de-
vices, virtualization becomes a convenient mechanism for examin-
ing and enforcing security policies. The conceptual simplicity of
isolation as a security primitive (and the resulting relative simplic-
ity of isolation-based policies) have made virtualization a popular
policy implementation tool.

Yet, the conceptual simplicity of isolation-based policies comes
at the high price of having to emulate entire “machines.” This emu-
lation necessitates the creation of numerous “virtual device” drivers
that then form part of the trusted code base, greatly increasing its
size and complexity [11]. This bloat is hardly conducive to improv-
ing the security of virtualization-based policy solutions.

Another important practical aspect of using multiple virtual ma-
chines is the need for a privileged management and administra-
tive interface. Such an interface can help an administrator deal
with a collection of virtual machines in a more streamlined fash-
ion than managing the equivalent collection of physical hardware.
These interfaces, however, represent an attractive attack surface, as
demonstrated by several virtual machine escape techniques2. We
see this avenue of attack as yet another consequence of expanding
the trusted code base due to the practicalities of using emulation to
achieve security goals.

Of course, the practical benefits of virtualization’s security uses
are hard to deny, which suggests that these benefits are due to a
deeper underlying principle than isolation through emulation. The
activity of trapping (the ability to intercept execution at just the
“right” moments), is overloaded: different approaches to virtual-
ization are predicated on trapping certain classes of events of in-
terest needed to accomplish a VM’s role as a resource provider.
Furthermore, the need to trap other classes of events (such as those
that matter from a security perspective) has, to a large extent, been
constrained by the types of events that the VM system might al-
ready be trapping to accomplish its role as a resource provider. We
assert that these classes of events are quite distinct, and this paper
attempts to elucidate this principle by identifying the (mis)use of
trapping in VMs for security benefits. In other words, our goal is
to untangle security and virtualization by differentiating between
the twin needs to trap both security-related events and emulation-
related events (of which there may be overlap).

1.1 Approach: Focus on Traps
To this end, we stress this key principle: it is the ability to com-

prehensively and flexibly trap program execution that is fundamen-
tal to all virtualization technologies. Moreover, the trapping capa-

1We use the term emulation loosely to denote a variety of ap-
proaches to supervised or instrumented execution.
2E.g., http://www.itsecurity.com/features/
virtualization-security-061708/



bilities of a virtual platform are central to ensuring any trustwor-
thiness properties of that platform, by determining which program
behaviors will be trapped (and thus mediated) by the platform.

In a nutshell, a comprehensive trapping system provides the ba-
sis of all virtualization technologies. We argue that it is also the
primary source of virtualization’s power as a security primitive,
and we believe that it should be separated from emulation proper,
which, although it relies on trapping, in practice can do more harm
than good to achieving security goals.

We note that debugging is another area where comprehensive
trapping systems play a central role in tracking programs’ behav-
ior (and ultimately validating the programmer’s assumptions about
its trustworthiness). Thus, there exists a deep link between debug-
ging and policy enforcement, since both activities aim to relate the
expected program’s behavior (on which the programmer or the ad-
ministrator base their trust in the program) with its actual behavior.

We therefore approach the problem of untangling security and
virtualization from a rather unconventional direction: we are moti-
vated by the need to greatly decrease the performance cost of de-
bugging and runtime program analysis. As such, this paper largely
focuses on issues related to debugging and program analysis rather
than traditional virtualization-related security topics like isolation,
compartmentalization/MLS, or honeypots.

While unconventional, this approach is not out of scope: virtual-
ization is useful for analysis as well as isolation. For instance, de-
bugging software manually remains one of the few effective means
of addressing security and reliability issues in program code. In
addition, anti-malware researchers and professionals employ de-
bugging techniques to reverse–engineer malcode, and they often
run malware samples in emulated or virtualized environments to
discover their dynamic runtime behavior.

1.2 Limitations of Trapping Support
Despite the increasing complexity and burgeoning feature set of

modern virtualization environments, debuggers, and IDEs, soft-
ware analysis remains a manual art: an iterative, interactive, and
time–consuming process. Although one can perform analysis of
small programs by using ordinary breakpoint or single-step rou-
tines in combination with manual checking for conditions of inter-
est, such techniques no longer suffice.

This state of affairs is primarily derived from the limitations of
trapping support in modern hardware. Designs of hardware and
memory systems rarely contain efficient interception and inspec-
tion facilities to aid debugging efforts; rather, these systems are
meant to run program code as quickly as possible. Debugging or
analysis frameworks often perch on an overtaxed, ungainly hard-
ware kludge. A structured approach to this problem can both obvi-
ate the need for the current use of non–conventional, obscure CPU
features and facilitate building semantically rich trapping systems.
It seems that we need to increase the expressive power of descrip-
tions of breakpoint (i.e., fault or trap) conditions.

We must match this increase in expressive power with a corre-
sponding change in hardware support. We envision a trapping sys-
tem that automatically dispatches “false positives” (i.e., events that
are not of interest to the analyst) without significantly slowing the
program. Currently, all such breakpoints involve an interrupt of
program execution, even if the event is ultimately not of interest.

Our key proposal is to offload condition checking to a “debug-
ging policy” interpreter encoded on an FPGA. Figure 1 demon-
strates how our proposed architecture affects the current service
path for traps. Although current traps might be relatively cheap,
gathering state and evaluating the conditions on that state at each
trapped event is expensive. We aim to greatly reduce the cost of

Figure 1: Transforming the Memory Trap Service Path. Cur-

rently, as shown in (a), servicing an interrupt for debugging

purposes involves traversing the system stack twice, which

incurs both human processing time as well as two context

switches (between the traced and tracing process). We propose

to insert an analysis policy as well as an FPGA to interpret that

policy (see (b)), thus avoiding this traversal and concomitant

context switches for the average case. See Figure 2 for an il-

lustration of where particular analysis tools and infrastructure

reside in this service path.

condition evaluation while increasing the expressive power of de-
bugging statements. One potential benefit of doing so is to achieve
a degree of automated, policy–driven debugging, where the de-
veloper or reverse engineer encodes a debugging or analysis plan
rather than undertaking a manual sequence of specific memory ma-
nipulations and examinations.

1.3 Better Trap Semantics
What does this all have to do with virtualization? Besides the

high-level use of virtualized environments to support efforts like
malware analysis [24], the application of virtualization to the sys-
tems security domain has worked to conflate two roles within the
virtualization system: the role of reference monitor (enforcement)
and the role of resource provider (emulation). Each of these roles
is predicated on the ability to intercept and measure execution by
means of an event trapping framework. It is unclear, however, if the
events needed to support emulation remain the same as the events
of interest for interpreting some security policy.

The connection between a trap system for a particular platform
and the security properties of that platform are directly and inti-
mately related. Abnormal system transitions should cause traps,
after which the system’s state may no longer be considered trust-
worthy. Accordingly, much of a security system’s essential func-
tionality is implemented inside trap handlers. While such mecha-
nisms can be implemented purely in software, in practice they rely
on hardware-supported traps whenever possible so that application
code executes at full speed between mediated events. Thus, traps
form a core mechanism upon which to implement security policy
interpreters. As such, they directly or indirectly influence all as-
pects of the latter. In our opinion, the details of the trap system
de-facto shape the capabilities and performance of the policy sys-
tem. Therefore, we believe that a flexible hardware trap system
(one that allows execution to proceed at the highest possible CPU



speeds until an event of interest occurs) is a necessary condition of
increasing trustworthiness — and therefore security, of software.

The key issue here is that the set of trapping conditions that we
can describe with hardware primitives is severely limited. On the
x86, reads, writes, or instruction fetches from fixed memory loca-
tions can trigger traps, but the x86 neither provides hardware nor
enables efficient software support for describing any combinations

of these events, such as simple predicate logic (e.g., for specify-
ing additional conditions being satisfied at the time of the access),
temporal logic (e.g., for specifying that an event B should only be
trapped if it occurs after an event A), or linear logic (for tracking
use of finite resources and state changes). In fact, it seems that the
current design does not target any formal logic model.

In other words, evaluating program logic conditions described
with any of the logics above requires costly propagation of the rele-
vant information to the tracing process (in most cases, the debugger
process), which stores it and performs the actual evaluation. We be-
lieve that including support for expressing such common program
conditions efficiently, with hardware support for recording even a
limited amount of state and appropriate logic, will bring about qual-
itative improvements to both debugging and verifying policy asser-
tions about programs.

Recent examples of unorthodox ways (see Section 2) to both
store high–level state in hardware page table control bits and ma-
nipulate existing trap handling mechanisms strongly suggests that
developers require a more efficient mechanism to evaluate the types
of logical conditions we mention above. These mechanisms should
support checking and setting hardware-maintained data as well as
acting (by invoking a higher–level handler) only on the relevant
combinations of conditions they process.

1.4 Contributions
Trying to eliminate software bugs before deployment and track-

ing down reported errors post deployment remains one of the pri-
mary methods for evolving a software system toward a more secure
state. In addition, reverse engineering and malware analysis of-
ten require a virtual environment to aid inspection. Unfortunately,
the process of program analysis does not seem to scale with the
size of new software systems or the rates of exploitable bugs. Al-
though Agrawal [2] introduced novel debugging techniques (e.g.,

program slicing and backtracking), almost no progress has occurred
on increasing the efficiency of trapping on memory events: the
core operational requirement of debugging. Furthermore, very lit-
tle progress has been made to automate the process of reasoning
about errors during debugging.

We identify a new approach for program analysis and security
policy support to both increase the expressive power of this anal-
ysis as well as reduce the performance cost of intercepting exe-
cution. We begin by examining several motivating examples and
several systems that aim to provide richer debugging primitives.
We then generalize them to propose a set of hardware-supported
features that would make the implementation of these mechanisms
both simpler (by delegating much of the present functionality down
the system stack) and more efficient (by delegating the most fre-
quently performed tasks to kernel and hardware levels).

2. MOTIVATION
This section considers several motivating examples that high-

light the need for a faster and more expressive trap system. As
Figure 1 shows, the use of an FPGA and a debugging policy can re-
move the need to completely traverse the software stack (and incur
a context switch) twice for each trappable event.

Not surprisingly, a number of ad-hoc solutions recently arose to

help fill this growing need for better trapping mechanisms. Many
of these techniques rely on non-conventional use of x86 memory
architecture features and provide far from a comprehensive solu-
tion. For example, in order to express the policy: “an instruction

was executed from a memory page recently written to by the current

process”, the OllyBone3 debugger extension relies on exploiting a
combination of two hardware features. First, the x86 uses sep-
arate ICACHE and DCACHE TLBs for fetching instructions and
data, respectively. Second, it relies on invalidating TLB entries and
adding the respective clause to the page fault handler.

Note that none of the available built-in x86 debugging mecha-
nisms offers a simple way to simultaneously define this kind of a
trappable event while allowing the code to execute at natural speed
prior to its occurrence. Compared to traditional debugging func-
tionality, emerging approaches to debugging exhibit several com-
mon trends (listed below). These trends provide an implied set of
desiderata for a more mature debugging and trapping system.

• Developers or reverse engineers must find creative ways to
manipulate the hardware “trapping bits” and their trap han-
dlers (i.e., the x86 special register flag and descriptor entry
bits) to express Boolean or temporal combinations of condi-
tions that are ultimately trappable with built-in traps.

• Some frameworks increase the extent and nature of context
pertaining to the previous history of the process so that the
developer or system can use this context at the point of de-
ciding whether or not to trap.

• Some frameworks allow access to the debugged process’s OS
environment, including its process information block.

2.1 Debugger Watchpoints
Debugger watchpoints [23], as implemented in the popular de-

bugger GDB, enable the debugger to break execution of the traced
process when both a memory access to a variable occurs and a cer-
tain predicate evalutes as true. Watchpoints can provide a powerful
debugging mechanism that allows the user to automate checking
for additional conditions of interest, thereby saving the time that
needed to manually check the predicate at the breakpoint prompt.

Unfortunately, as the GDB manual states, execution in the pres-
ence of watchpoints can be hundreds of times slower that normal.
This slowdown is due to both the limitations of hardware support
for memory breakpointing and the high cost of context switches be-
tween the debugged process and the debugger process, where the
information and logic necessary to evaluate the predicate is actually
kept. Thus, the watchpoint mechanism arguably presents one of the
biggest disappointments of code development to novice debugger
users — despite the great power of this method in theory, it often
turns out to be unsupportable in practice. Even so, as the authors
of GDB note, “this may still be worth it, to catch errors where you
have no clue what part of your program is the culprit.”

From our point of view, watchpoints highlight the fundamen-
tal imbalance between event primitives available for code and data:
code can be instrumented at instruction granularity, via either single-
stepping instruction execution mode or as many breakpoints as nec-
essary (the basic trappable event being “instruction at a given ad-
dress was fetched to be executed”). Memory event instrumentation,
on the other hand, is limited to either a few hardware watchpoints
or page granularity. In other words, the primitives available for
debugging are heavily biased toward code granularity rather than

3OllyBone (http://www.joestewart.org/ollybone/)
can catch the moment when the main body of polymorphic mal-
ware payload finishes decrypting and begins execution.



memory granularity. This continued, implicit preference toward
analyzing code based on control flow stands in apparent contrast
to the old dictum that understanding data gets one much further
towards overall program understanding than control flow4.

2.2 Costly State
Consider the following example of using a watchpoint. Sup-

pose we want to break on the 200th write to the watched variable.
To accomplish this goal, the debugger’s watchpoint handler needs
to increment and keep track of a counter. Note that we assume
the best possible operating situation for the current generation of
watchpoint–based debugging, where the watchpoint mechanism is
hardware-assisted (e.g., by the debugger process setting an x86

DR register pair with the watched address and the descriptor of the
watched span of memory locations at that address).

Generally speaking, for this scenario, we need to maintain 8 bits
of state. Unfortunately, these bits and the logic to process them
will be kept in the debugger process, necessitating control transi-
tions all the way from the hardware layer to the user space software
layer and back (as shown in the first half of Figure 1); also, we
incur the costs of switching between the original process’s virtual
address space and that of the debugger where the counter is kept5.
Therefore, including these bits of state in the description of our de-
sired trapped events translates to substantial costs.

Moreover, even a single bit of state would incur the same costs.
For example, in the case when our desired event includes temporal
logic such as “write to a watched variable AFTER another variable
was written” (or, in general, “write to a watched variable AFTER
another event occurred”). When debugging information flow, these
types of events are of interest; they are also the core events to watch
for a security policy regarding information flow to be efficiently
enforced6 . Again, the debugger must maintain that single bit of
state needed to indicate the occurrence of the precondition event.

2.3 Catching Malware Unpackers
Malware analysis provides another motivating example of the

need for more expressive debugging primitives and less expensive
debugging support mechanisms. In order to frustrate static anal-
ysis attempts, malware authors often protect their code by one or
more layers of encryption or packing: an “unpacker” or decoder
preamble extracts the malware. Catching the moments when the
encrypted or packed malcode is extracted and begins execution
is crucial for analysis. In addition, reverse engineers often em-
ploy a virtual machine environment or emulator such as Bochs7 or
QEMU [5] to analyze the behavior of a malcode sample.

The malware author can purposefully lengthen the unpacker sec-
tion to make manual tracing challenging for the analyst. In addi-
tion, longer preambles can delay execution of the code in a virtual
machine environment, thereby making tracing a time-consuming
activity for an analyst. Longer preambles can also help malcode

4“Show me your flow charts and conceal your tables and I shall
continue to be mystified, show me your tables and I won’t usually
need your flow charts; they’ll be obvious.” – Brooks, The Mythical
Man-Month [7]
5Although some architectures (e.g., modern SPARC) might de-
crease this cost by supporting an alternate address space where a
copy of the debugged process can live, the issue here is the sepa-
ration between the debugger and the debugged process. The pos-
sibility of doing debugging more cheaply because we can abuse a
unique hardware feature is a symptom of exactly the problem we
try to address.
6Consider a policy based on the proposal http://cr.yp.to/
unix/disablenetwork.html.
7
http://bochs.sourceforge.net

evade automated analysis mechanisms that timeout after a certain
number of instructions or wall clock time passes without “interest-
ing” events. Finally, malcode can detect a VM environment (e.g.,

by executing an instruction that is not virtualizable — several such
instructions exist on x86) and abort execution.

An analyst can greatly benefit from a trapping mechanism that
would allow the unpacker to execute at (close to) normal hardware
speed, yet trap near the point where the unpacked code started exe-
cuting. In essence, such a mechanism would fool the malware into
thinking it is executing natively (for all practical purposes, it is),
yet enable the analyst to step in at a crucial point in execution.

As we illustrated earlier, the OllyBone debugger provides a mech-
anism that does just that by manipulating the separate x86 TLBs
for code and data in a fashion unintended by the designers of IA-32.
In essence, OllyBone can automatically trap the event of “instruc-
tion was fetched from a memory location previously written by the
process”, executing up to that point with minimal overhead com-
pared to bare hardware speed. We see this example as highly signif-
icant for two reasons. First, it makes use of x86 hardware trapping
features to let the execution proceed at almost normal hardware
speed — an essential requirement for the task, which cannot be ac-
complished by existing conventional techniques. Second, it uses
hardware bits to track the state and co-opts elements of the hard-
coded address translation logic to trap the desired complex trapped
event (“execution from a location after a write”), essentially push-
ing most of the time-critical work down from the expensive debug-
ger userspace process to the much more efficient hardware layer.

3. INSTRUMENTATION ENVIRONMENTS
Recent debugging frameworks can intercept process execution in

a number of ways. Here, we summarize three approaches to pro-
gram interception at various levels of the system stack, including
Pin [14], DTrace [10], and Kprobes and SystemTap [19]; we cov-
ered some informal “hacker debugging” techniques used in Olly-
Bone in Section 2 (other examples of these approaches include
ProcessStalker and RastaDebug). Two important points of com-
parison include each system’s flexibility to specify “interception
conditions” as well as whether the trap is precise or asynchronous
(i.e., is the trap on the critical path or alongside it or activated within
some time limit).

3.1 Hierarchy of Trap Handlers
Given that the underlying x86 hardware can trap memory access

and instruction execution events with only the simplest descriptions
such as instruction fetch at an address or read/write from/to an ad-

dress, the rest of the “intelligence” that drives a trap system has be
handled in the upper layers of the software stack. For the sake of
the following discussion, we display these layers and our example
systems in Figure 2.

Human use of debugging tools like gdb, IDAPro, and strace in-
volves careful, repeated, and interactive management of the debug-
ger software. Although debuggers and user-level program supervi-
sion frameworks contain many features, extensive programmability
rapidly begins to degrade performance, which prohibits debugging
live production systems. The kernel can provide almost zero-cost
hooks, but still reflects the tension resulting from the lack of sup-
port from below and the demand for flexible debugging from above.
Although VMMs like Xen are “physically” positioned between a
full-blown OS and the hardware, they experience the same con-
straints that the OS has (static and limited trap filtering capabilities
of the underlying hardware). We propose to insert a programmable
hardware component to help with the cost of servicing expressive
debugging policies, as shown in Figure 1.



Figure 2: Handler Hierarchy. Forcing humans to manually

evaluate a condition results in a slow and iterative debugging

procedure. Although software can help alleviate the demand

for more flexible debugging and program analysis procedures,

this level of programability begins to rapidly degrade perfor-

mance. The OS can provide some support, but it remains lim-

ited by the capabilities of the underlying hardware. We propose

adding our “better mousetrap” at the hardware layer.

Our proposed changes, described in Section 4, focus on the hard-
ware level. The DTrace and Kprobes systems have their core func-
tionality implemented at the kernel level. Decisions made here in-
cur the cost of a trap handler invocation through the x86 IDT and
are typically measured in microseconds. Program instrumentation
frameworks like strace(1) and Pin [14] are userland facilities
that rely on the underlying OS debugging support but do not modify
it. Decisions made here incur the cost of a context switch to the pro-
cess that evaluates the decision’s logic as well as the cost of copy-
ing appropriate data structures between the virtual address spaces.
Typically, we can measure the total cost of these operations in at
least tens of microseconds. The most expensive conceptual level
of debug event handling is the human level. Ultimately, the human
analyst decides whether a given trapped event was of interest to
the task or in fact a “false positive.” By increasing the expressive
power of watchpoint policies, we aim to limit the amount of com-
plex event filtering decisions made by a human. This goal comple-
ments our aim to reduce the cost of servicing a trapped event.

3.2 Pin
Both Valgrind [16] and Pin [14] provide customizable runtime

interception of program execution (i.e., something more feature–
rich than ptrace(2)). Pin provides an API that exposes a num-
ber of ways to instrument a program during runtime, including in-
tercepting and observing properties of individual instructions, basic
blocks, functions, binary sections, and binary images. The Pin API
provides a number of methods for obtaining the values of both hard-
ware and process–level context, including access to function argu-
ments and return values, the contents of hardware registers (and
thus the process stack) and thread state.

Despite the capabilities of the Pin API, the ability to write Pin
tools as ordinary C++ programs, and Pin’s ability to instrument
programs at a very fine granularity, Pin still imposes a considerable
performance penalty: depending on the nature of the instrumenta-
tion, Pin can insert tens or hundreds of extra instructions per native

instruction. Even if this instrumentation executes at native speed
after the first time it is exercised, this work represents a noticeable
slowdown. For some tools we have implemented, this slowdown
can amount from a 2X to a 30X performance hit. In addition, Pin
supervises only user space code; it does not instrument the kernel
(although PinOS uses the Xen VMM to partially address this issue).

3.3 DTrace
Sun Microsystems designed, built, and ships DTrace [10], a dy-

namic tracing toolkit for the Solaris 10 (and Mac OSX) operating
system. It provides the ability to instrument any part of the running
kernel by inserting “probes” (usually at function boundary points)
and specifying actions to be performed when the probes are en-
countered during both kernel and user space execution. DTrace in-
terprets scripts in the D language; these scripts trace or instrument
the kernel. A D program is compiled into an intermediate format
before executing it against the running kernel, and the language
and the runtime environment guarantees some protection against
system abuse or accidental programmer errors.

One of DTrace’s drawbacks is that it cannot be used for strict

policy enforcement since the probe handlers are only partially in-
line, i.e. they do not divert and “grab” kernel control flow like tra-
ditional system-call wrappers do, since probe handlers are executed
aynchronously within the kernel. And also the policies, if written,
would be limited by the capabilities of the D language itself. While
DTrace serves as an excellent low-latency observation mechanism,
one cannot use it to enforce traditional security policies.

Recently, impressive DTrace extensions RE:Trace and RE:Dbg
have been presented by Beauchamp and Weston [4, 3], which take
advantage of the DTrace architecture and combine it with disas-
sembling and debugging capabilities. Notably, these tools extend
DTrace trap and script semantics to the full power of the Ruby ob-
ject oriented language, providing even greater flexibility and ex-
pressive power than the D language of DTrace. We refer the reader
to the conference presentations of the above tools for their motiva-
tion and the unprecedented set of features.

3.4 Kprobes
Kprobes is a dynamic instrumentation framework for Linux that

allows the user to insert arbitrary instruction–level breakpoints in
the kernel and handle them with C code residing in one or more
kernel modules. Both DTrace and Kprobes provide minimal la-
tency when no probes are activated on the running kernel. We be-
lieve that this property is critical for tracing systems.

3.5 SystemTap
While Kprobes provides finer granularity than DTrace in terms

of probe location, probe handlers are defined in kernel modules
and run in the same context as the kernel. Therefore, faulty code
in these probe handlers has the ability to crash the kernel (unlike
DTrace where all exceptions are handled gracefully). Furthermore,
the programming environment of Kprobes remains inaccessible to
anyone not familiar with careful handling of the kernel locks, data
structures, and APIs.

The SystemTap project [19] by Redhat, IBM, and Intel attempts
to address the limitations of Kprobes by augmenting it with a user–
level scripting language. The semantics of this scripting language
are similar to AWK, and the language contains some features from
C. One major benefit of SystemTap is that the scripting language
insulates the programmer from directly manipulating code that is
inserted into the kernel.

4. PROPOSED HARDWARE FEATURES
Changing the way memory events are trapped and serviced re-

quires both programmability and speed. In essence, we need an
architecture that will simultaneously allow more complex analysis
and a faster overall (amortized) trap service speed. We propose an
architecture that contains two primary components. First, an FPGA
configured to act as a memory event stream parser interacts with the
CPU and MMU to obtain a stream of memory events and a series of



interrupts. Second, a memory event analysis policy is loaded into
the memory of the FPGA to direct the actions of the FPGA parser
circuit. With this architecture, we hope to satisfy the twin demands
of more flexible analysis and better trap handling performance.

4.1 Hardware Modifications for VM interac-
tion with the FPGA

In hardware, we physically align the FPGA near the MMU so
that the MMU can consult the FPGA for validating memory pages.
But the MMU somehow needs to know which pages to consult the
FPGA for, and we propose modifying the MMU to add a trace
bit to each page table entry (PTE) that indicates if the MMU needs
to watch that page.

When loading a policy, the FPGA first determines the addresses
specified by the policy that is being loaded. It then sets the trace
bit for the pages corresponding to those addresses. But these ad-
dresses are virtual, meaning there might not yet exist a virtual-
to-physical mapping for these pages. To establish this mapping
and thus ensure that the MMU has a PTE entry for each virtual
page, the FPGA first generates page faults on behalf of the process
whose policy is being loaded. This forces the MMU to establish
the virtual-to-physical mapping. Then the FPGA retrieves the nec-
essary PTEs, sets the trace bit and activates the policy. Simi-
larly, when deactivating a policy, the FPGA unsets the trace bit
for each page that it was previously monitoring.

We now consider how the MMU traps to either the kernel or the
FPGA depending on which memory address is being accessed by
the processor. Traditionally, the MMU generates a page fault which
is then handled by the kernel. The kernel then services the fault by
mapping in the requested page. We still retain this basic model, but
in addition to it, the MMU checks if the trace bit is set for the
page being accessed, and if so, consults the FPGA. The FPGA in
turn checks the validity of the access against the activated policy
and performs the neccessary actions (such as ALLOW, DENY etc).

Figure 3: A Block Diagram of the proposed architecture. The

bold lines indicate traditional VM interactions and the dotted

lines indicate interactions with the FPGA.

The MMU and the FPGA in our design interact to accomplish
the following:

1. When a process acccesses a memory page, if the PTE for that
page has its trace bit set, then the MMU transfers control
to the FPGA to determine the validity of the access.

2. The FPGA then searches through its policy list to find a pol-
icy that moderates that memory event. The FPGA verifies
the memory event using the policy and retrieves any needed
state from the kernel.

3. If the memory event satisifies the policy, the FPGA returns
SUCCESS to the MMU; otherwise, a violation exists, and the
FPGA signals FAILURE.

4. In the case of a SUCCESS, the MMU proceeds as usual,
i.e., it performs the action indicated by the memory event
(read/write) on the requested page. In case of an error, the
MMU raises a page fault to the kernel, where our policy-
handler portion of the page fault handler recognizes that a
policy violation has occured, and takes the necessary action,
which might include logging the access, killing the process,
panicking the system etc., as dictated by the policy itself.

In addition to the collaboration with the MMU, the FPGA also
needs to retrieve processor state such as the condition of the regis-
ters, TLB entries, L1/L2 cache contents etc. In order to facilitate
this, we suggest placing the FPGA in close proximity to both the
CPU and the MMU hardware.

4.2 VMM Interaction with the FPGA
While the primary purpose of the FPGA is policy interpretation

for each individual VM, we also construe the FPGA as a fast com-
putation unit, capable of interpreting policies dictated at the VMM
level, specifically policies that deal with controlling the kind of
shared data and general communication that occurs between guest
virtual machines, whose policy dataset can typically be huge. The
VMM interaction with the FPGA is necessary for two reasons:

1. To allow the FPGA to recognize which VM is currently run-
ning on the system.

2. To interpret policies for the VMM itself.

Because of the likely existence of more than one virtual machine
on the same system, the FPGA needs to identify the currently run-
ning VM and enforce policies on that VM’s applications only. In
order to accomplish this, the VMM conveys sufficient information
regarding the currently executing VM to the FPGA on every VM
context-switch. The FPGA then saves its policy dataset for the cur-
rent VM and subsequently loads the policies for the new VM.

Additionally, the VMM also has access to the FPGA to enforce
policies on the virtual machines themselves. This happens by first
preloading the FPGA (typically on bootup) with the necessary poli-
cies, and then activating them as needed at runtime.

5. POLICY LANGUAGE
Developers sometimes find it difficult to undertake accurate be-

havioral analysis (an essential part of reverse engineering) precisely
because malware (and even benign software) spends large amounts
of time engaged in startup routines: work common to most appli-
cations or irrelevant to the behavioral analysis. As we mention in
Section 2, software tracing using standard breakpoints and watch-
points can slow this analysis down. Given that malware rapidly
evolves to purposefully frustrate ad hoc unpacking tricks, we be-
lieve a structured approach to providing comprehensive debugging
hardware primitives will catalyze the malware analysis field.

We are in the process of designing a policy language for debug-
ging. At present, we have not specified a formal, complete gram-
mar. The examples that follow are slightly more structured than
psuedocode, and we express them in a C-like dialect with several



Table 1: Features of Instrumentation Tools. Here we compare the feature set of existing approaches to debugging with our Better

Mousetrap proposal. The “performance” row indicates a system that imposes a relatively small overhead during normal system

operation. Flexibility indicates that the system provides a rich API for accessing and modifying process state and context. Inter-

position indicates that the system is able to “stand in the path” of a program’s process (i.e., it does not operate asynchronously).

Asynchronous operation leaves the door open for an attacker to bypass the system.

Pin DTrace Kprobes gdb BMT

performance
√ √ √

flexibility
√ √

interposition
√ √ √ √

define var memFoo = MEM[ 0xc0801040 ..

0xc0803000 ];

define var instr =

FUNC[list_add,list_del];

rule moderateFoo

{

if( w(memFoo) &&

!within(REG[EIP], instr))

ALERT();

}

Figure 4: Policy MemAccess.

built-in features, keywords, and predicates. This current, unfin-
ished form of the policy language contains the primitives listed in
Table 5. We next consider a selection of some policies (in a rough
form of our envisioned memory–event based debugging policy lan-
guage) that are impossible or extremely inefficient to write with
traditional trapping models.

Policy MemAccess.
Frequently, access to a particular block of memory needs to be

moderated by allowing only a predefined set of instructions. For
example, a particular instance of this policy (see Figure 4 for an
example) might allow only the kernel function list_add and the
kernel function list_del to modify the next and prev point-
ers of any doubly-linked list in the kernel. This arrangement would
essentially prevent malicious code striving to hide processes, files,
or Loadable Kernel Modules (LKM) by modifying the lists directly
through the kmem device. Efficiently protecting data structures in
the kernel from such code while retaining the ability to dynami-
cally patch or extend the kernel through the same kmem or LKM
interfaces remains an active area of research.

Policy LockControl.
Since the Linux kernel is multi-threaded, data structures in the

kernel are frequently protected by locks embedded in the structure
itself. Code accessing portions of the structure follow the familiar
pattern: acquire the lock, access the fields in the structure, release
the lock. However the above sequence does not apply to kmem

rootkits that usually skip the tedious procedure of acquiring and
releasing the lock, since that would lead to complications.

Also, such rootkits might not be aware of the addresses of mutex
lock and unlock functions, and even then, scalability becomes an
issue as it gets cumbersome to keep track of all mappings between
locks and structure fields. We now use this distinction to write a
policy on the data structure itself. Our policy would allow access
to the specified fields only if the appropriate lock is held. This can
be detected by the pseudocode in Figure 5.

While one might argue that using call-stacks would be more ef-

// decide on virt/phys address

define var foo = MEM[ 0xd0130560 ..

0xd0130564 ];

define lock fooLock = foo + 16;

define var instrs = FUNC[mutex_lock];

rule protectFoo

{

if( (lock_status(fooLock) !=

LOCK_HELD) && ( w(foo) ))

ALERT();

}

rule protectFooLock

{

if( w(fooLock) &&

!within(REG[EIP], instrs) )

ALERT();

}

Figure 5: Policy LockControl.

ficient in detecting calls to these mutex functions, many times such
functions are inlined8 to improve efficiency; invoking them does
not modify the kernel’s call stack.

Policy MemReadOnly.
To ensure that pages mapped read-only remain unmodified, it

is sufficient to ensure that the “read-only” permission in the page-
table is set for that page. However this mechanism is not com-
pletely secure since any process with kmem access can modify the
page table entries to give write permissions to any user or kernel
page. To protect the page-tables against such modifications, we
need a process operating at a higher privilege than the kernel itself.
Although VMMs achieve this, it involves the overhead of tracking
each memory access and checking the address and operation per-
formed against the policy. By enforcing policies at the hardware
level, we can ensure both safety and performance guarantees.

To illustrate an example, the Linux kernel supports cryptograph-
ically signed LKMs, which are currently insecure since the signa-
ture verification happens in the binary insmod. Imposing read-
only permissions on the text region of insmod would not pre-
vent rootkits from modifying its page table, mapping the page con-
taining the verification code “read-write”, and then overwriting the
memory to always pass verification. As such, enforcing the policy
in Figure 6 from hardware would help prevent such attacks.

Policy ExecWrite.
A policy that detects access patterns similar to those used by

OllyDbg to detect packer code, i.e. detect instruction fetches from
addresses which were previously written into. While OllyDbg does

8
http://lxr.linux.no/linux+v2.6.24.1/
include/asm-x86/semaphore\_32.h



Table 2: Debugging Policy Language Primitives.

Primitive Explanation

MEM[ a..b,c..d ] Identifies memory addresses ranging from address a to b, c to d,...
REG[ reg ] Identifies the contents of register reg
FUNC[ f ] Identifies the address range (start .. end) of the function f
ALERT() Raises an alert to the user/kernel
w( var ) True if any of the addresses in the range indicated by var is being written.
r( var ) True if any of the addresses in the range indicated by var is being read.
x( var ) True if any of the instructions in the range indicated by var is being executed.
var.wc Contains the last time when the address(es) indicated by var were written into.
curtime Time in nanoseconds or jiffies since the system was booted.
within(var1, var2) Returns true if the value of var1 is contained in the address range identified by var2.
lock_status(lck) Returns LOCK_HELD or LOCK_FREE

define var bar = MEM[ 0xc3541ab0 ..

0xc4500130 ];

rule readonlyMem

{

if (w(bar))

ALERT();

}

Figure 6: Policy MemReadOnly.

define var packedMem = MEM[ 0xc0131040 ..

0xc0132000 ];

rule detectUnpacker

{

if( x(packedMem) &&

( (curtime - packedMem.wtime) <= 1s) )

{

ALERT();

}

}

Figure 7: Policy ExecWrite.

this through ITLB flushing, the FPGA provides a simpler and faster
solution to the same problem, as shown in Figure 7.

Policy LinkProtect.
Protecting tables of links is also of concern, as shown in Figure 8.

6. DISCUSSION
Alternatives to using an FPGA include using page protection and

instruction emulation, but it remains unclear whether the cost of
emulating each instruction (even with translation caches) and the
cost of page faults (pages are large, and faults are common) is actu-
ally cheaper than having an inline FPGA that operates at hardware
speed in observing memory events. In any event, as we highlight
in Section 2, most “hackish” solutions for policy-driven analysis
already rely on unconventional use of page protection traps in one
form or another.

We also note that some of the performance problems of current
debuggers stem from implementation issues. For example, some
breakpoint processing to evaluate conditions, expressions, or vari-
able values does not necessarily require a context switch. The
ERESI9 suite of tools does enable in–process evaluation, but at the
cost of introducing a whole variety of hacks (hackish enough to
make two Phracks in a row [15, 22]).

9
http://www.eresi-project.org

define var table = MEM[ 0x1000 ..

0x3200 ];

define var fLink = FUNC[ldd_link];

define var fUnlink = FUNC[ldd_unlink];

rule guardLinkTable

{

if( w(table) )

{

if(table.wc == 0 &&

!within(REG[eip], fLink) )

ALERT();

if(table.wc == 1 &&

!within(REG[eip], fUnlink) )

ALERT();

}

}

Figure 8: Policy LinkProtect.

6.1 VMM and TCB “Bloat”
In this paper, we have emphasized the link between a bloated

VMM and what is generally thought to be a dictum: larger TCBs
containing more code and complexity tend to have lower levels of
security assurance. The extent to which this folk wisdom is true for
any particular system is difficult to gauge. One reviewer pointed out
that the instrumentation code for trapping low level events forms a
relatively small part of a modern VMM; removing such code to
an FPGA might seem like a small victory in terms of reducing the
TCB size.

From our perspective, the actual trapping mechanism is some-
thing of value for both resource emulation and security policy en-
forcement. While the current code in the VMM responsible for
trapping events of interest may be a relatively small part of the code
base (as opposed to device drivers, etc.), it hardly allows the kind
of flexibility that better policy enforcement or debugging requires
(we give examples of this need in Section 2).

Further, our position is not simply to remove basic trapping code
from the VMM, but rather the handling of security–related traps.
Bellovin points out [6] that the real issue that virtualization has
yet to solve is the need to provide customizable, expressive control
of I/O between isolated VMs. In an abstract sense, the trapping
present in a VMM supports such isolation by managing access to
the MMU; in reality, the VMM management interface and various
performance hacks allowing neighboring guest VMs to communi-
cate violates this isolation.

Our proposal introduces an efficient hardware–based facility for
trapping on memory events: such a facility may be of use for the



VMM in its need to supervise the MMU to enforce separation be-
tween guest VMs. Our point is not so much about removing the
burden from the VMM — it is about independent progress and the
growing requirements of debugging and security (authentication,
authorization, self–healing, attestation) policy making this burden
so great that a VMM would no longer be a good place for it.

Accordingly, we assert what may seem to be a rather controver-
sial opinion in a forum that focuses on the marriage between virtu-
alization and systems security. Our opinion is that virtualization is
not the answer for better security policies. Instead, we assert that
something that underlies virtualization — a hardware trap system
with its own logic — is that answer. As a result, this paper mainly
focuses on the properties of this system that help support faster in-
strumentation execution (instead of traditional virtualization topics
like isolation).

6.2 Using an FPGA
We focus on the addition of an FPGA for several reasons, even

though it represents a significant deviation from existing architec-
tures. An FPGA is programmable and provides hardware speed
monitoring. We assert that such properties are exactly what is
needed to tackle the problems of malware analysis, reverse engi-
neering, and security policy enforcement that we highlight earlier
in the paper. Despite the fact that combinations of slight archi-
tecture extensions, binary translation, and microcode tweaks seem
like safer, more conservative options (and hence more likely to
be adopted by a hardware industry anxious for security–related
chip improvements that will not seriously disrupt their production
pipeline), we believe that there is significant value in the research
community examining a paradigm shift in how such event handling
might be accomplished. An FPGA seems like the most feasible
method of producing an academic research prototype in the near
future without having to undertake chip fabrication. Finally, an
FPGA prototype is within our capabilities, unlike more conserva-
tive architectural changes that would have required leveraging our
existing industry relationships to undertake an effort which proces-
sor designers rarely rush into. Our aim is to capture the interest of
that community by explaining what one can do with a better trap
system and convince them that designing such a system for produc-
tion is worthwhile.

7. RELATED WORK
Interesting alternative approaches to improving the performance

of security-related checks exist; for example, Nightengale et al. [17]
describe how such checks can be performed on spare cores of a
multicore system, and Oplinger and Lam [18] discuss the use of
Thread-Level Speculation (TLS) for achieving much the same ef-
fect. Note that these approaches can benefit from more efficient
trapping to their measurement or security check execution code;
even if such code is executed on another core, this code still needs
to be invoked by some trapping mechanism, and the that code still
requires efficient access to security–related program state.

7.1 Program Instrumentation
The recent work of King et al. [12] provides an existence proof

that the types of designs we envision are feasible. This work demon-
strates how software can trap into the FPGA logic. In turn, the
FPGA will return control to the software in such a way that the pro-
gram can transparently continue execution when an event of inter-
est is judged by the FPGA logic to not have occurred. The interplay
between the FPGA-based logic and the regular processor instruc-
tions (software or firmware) generalizes that of the virtual memory
translation and interrupt handling mechanisms, which were, up to

now, the only such examples of fast hard-coded and software logic
fitting together into a single execution stream.

Although King et al. discuss their implementation only in the
context of malicious hardware undermining the security properties
of the platform, we note that the ability of an FPGA-based mech-
anism to mesh with the code transparently and efficiently opens
much broader prospects. Namely, it allows for creating trap sys-
tems of unprecedented expressive power, which will translate to
both new and more efficient security policy enforcement and much
richer debugging and reverse engineering primitives.

Systems like Valgrind [16] and Pin [14] have recently emerged
that enable a programmer or software tester to interweave complex
programmatic instrumentation at runtime into an existing software
system. These systems use dynamic binary rewriting and do not
require access to the source code. Similar environments include
the Rio architecture [8] and Dyninst [9].

Solaris zones10 from Sun Microsystems is a weak implemen-
tation of full-fledged virtualization that provides application-level
and not OS-level virtualization. It is similar in concept to FreeBSD
Jails and provides a secure isolated environment for applications
within each zone. Solaris zones can be of two flavors: sparse or
whole root. Sparse zones share common system files with other
zones through a loopback system interface mounted read-only within
each zone, while whole root zones provide an individual private
copy of the necessary system directories. Both kinds of zones can
co-exist within a single system. Solaris also comes packaged with
resource management facilities that provide administrative inter-
faces for allocating system resources such as processor, memory
etc to each individual zone. Zones and Jails are customized and
tightly integrated with the operating system to provide certain vir-
tualization functionalities such as isolation and abstraction for ap-
plications, but they should not be confused with pure virtualizing
systems such as Xen and Vmware.

Program shepherding [13] focuses on ensuring that control flow
transfers of a process remain within the bounds of some policy.
For example, the technique uses the Rio [8] system to ensure that
code in library routines is only accessed via the entry point of the
particular library function. Control Flow Integrity (CFI) [1] is a
similar idea in which a program’s static control flow graph acts like
a policy for the runtime behavior of the system.

7.2 Other Work
The Spyder project at Purdue introduced several seminal tech-

niques in debugging, among them program slicing and backtrack-
ing, to help provide an automated debugging tool [2]. MemSh-
erlock [21] proposes automated debugging of memory corruption
vulnerabilities. It uses combination of source code analysis and
tainted data flow analysis to discover the vulnerability path through
a program and associate it with source–level statements. MemSh-
erlock is relevant to our work because it relies on creating a “write
set”: the set of all possible statements in a program that write to a
particular memory location.

In what we believe to be a seminal call to action for the oper-
ating systems research community, Roscoe et al. [20] argue that
current OS research utilizing hypervisors should move away from
endlessly refining traditional approaches aimed at Unix/Windows
ABI model compatibility. In essence, the hypervisor presents a
useful backwards-compatible interface, and Roscoe’s paper argues
that the problems that we currently tackle at the VMM level (such
as inter-VM communication, resource sharing among VMs, VM
isolation) have all been solved at the OS-level, and adding more

10
http://www.sun.com/bigadmin/features/
articles/solaris_zones.jsp



functionality in the VMM is largely wasted effort. Furthermore,
adding needless functionality to the VMM simply increases the size
of the trusted computing base (TCB), and hence it becomes harder
to prove VMM correctness or security properties. The size and na-
ture of this complexity are discussed in an article by Karger and
Safford [11]; they make many of the same points (and ably illus-
trate the various interactions) we do with respect to the complexity
of VMM I/O systems.

8. CONCLUSION
Current hardware provides basic and limited trapping and in-

spection facilities on which entire supervision, debugging, and anal-
ysis infrastructures must be built from the ground up. We believe
that this situation contributes to the incorporation of security func-
tionality into software virtualization components. We argue that
this is exactly the wrong place to put it.

A flexible and robust program supervision and debugging ca-
pability depends on having an efficient and expressive trap mech-
anism. We propose that such a trap system can be based on an
FPGA placed at the interface between the CPU and the memory
cache. We believe it will allow for checking complex conditions
(and trapping, should these conditions be satisfied) at almost the
native speed of the computing platform.
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