
BLAC: Revoking Repeatedly Misbehaving Anonymous Users

Without Relying on TTPs∗

Patrick P. Tsang†, Man Ho Au‡, Apu Kapadia§¶, and Sean W. Smith†

Dartmouth Computer Science
Technical Report TR2008-635

October 1st, 2008

Abstract

Several credential systems have been proposed in which users can authenticate to service
providers anonymously. Since anonymity can give users the license to misbehave, some variants
allow the selective deanonymization (or linking) of misbehaving users upon a complaint to a
trusted third party (TTP). The ability of the TTP to revoke a user’s privacy at any time,
however, is too strong a punishment for misbehavior. To limit the scope of deanonymization,
systems have been proposed in which users are deanonymized if they authenticate “too many
times,” such as “double spending” with electronic cash. While useful in some applications, it is
not possible to generalize such techniques to more subjective definitions of misbehavior, e.g., it
is not possible to block users who “deface too many webpages” on a website.

We present BLAC, the first anonymous credential system in which service providers can re-
voke the credentials of repeatedly misbehaving users without relying on a TTP. Since revoked
users remain anonymous, misbehaviors can be judged subjectively without users fearing arbi-
trary deanonymization by a TTP. Finally, our construction supports a d-strikes-out revocation
policy, whereby users who have been subjectively judged to have repeatedly misbehaved at least
d times are revoked from the system.

∗This work was supported in part by the Institute for Security Technology Studies, under Grant number 2005-
DD-BX-1091 awarded by the Bureau of Justice Assistance, and the National Science Foundation, under grant CNS-
0524695. The views and conclusions do not necessarily represent those of the sponsors.
†Department of Computer Science, Dartmouth College, USA
‡Centre for Computer and Information Security Research, School of Computer Science and Software Engineering,

University of Wollongong, Australia
§MIT Lincoln Laboratory, USA
¶This research was conducted while Apu Kapadia was at Dartmouth College.

1

Contents

1 Introduction 4
1.1 Our Contributions . 5
1.2 Paper Outline . 6

2 Solution Overview 6
2.1 A Glimpse into Tickets . 6
2.2 Supporting a d-strikes-out Revocation Policy . 7

3 Preliminaries 7
3.1 Notation and terminology . 7
3.2 Pairings . 8
3.3 Mathematical Assumptions . 8
3.4 Proofs of Knowledge . 8

4 Model 10
4.1 Syntax . 10
4.2 Security Notions . 11
4.3 Formal Definitions . 12

5 System Construction 15
5.1 Parameters . 15
5.2 Setup . 15
5.3 Registration . 15
5.4 Authentication: The Special Case . 16
5.5 Authentication: The General Case . 17
5.6 Blacklist Management . 17

6 Instantiation of ZKPoK Protocols 18
6.1 SPK 3 . 18
6.2 SPK 4 . 19
6.3 SPK 5 . 20
6.4 Efficiency . 20

7 Analysis 21
7.1 Complexities . 21
7.2 Security . 21

8 Performance Evaluation 25
8.1 Prototype Implementation . 26
8.2 Experimental Results and Analysis . 26

9 Discussion 27
9.1 Efficiency . 27
9.2 Interleaving Authentications . 28
9.3 Enrollment Issues . 29
9.4 Allowing the Sharing of (Entries in) Blacklists . 29
9.5 Revoking Compromised TPMs . 29

2

10 Conclusions 30

11 Acknowledgments 30

3

1 Introduction

While anonymous access to service providers (SPs) offers users a high degree of privacy, it can give
users the license to misbehave without the fear of punishment. For example, Wikipedia1 has allowed
editors to modify content anonymously, and as a result several users have misbehaved by posting
inappropriate content. SPs, therefore, desire some level of accountability against misbehaving
users. Several anonymous credential systems have been proposed in which users can be selectively
deanonymized or have their accesses linked (pseudonymized) under special circumstances. As we
will discuss, for certain applications the existing schemes are either too punitive — deanonymization
(or linking) is unreasonably harsh, and often relies on trusted third parties (TTPs) capable of
revoking a user’s privacy at any time — or too restrictive — allowing deanonymization under only
certain narrowly defined types of misbehavior.

Deanonymizing a user is not always necessary to discourage misbehavior; in some cases it
is sufficient to simply block misbehaving users from making future accesses (while maintaining
their anonymity). We call this property privacy-enhanced revocation,2 where revoked users remain
anonymous. For example, anonymous access at SPs such as Wikipedia and YouTube3 empowers
users to disseminate content without the fear of persecution — a user may add political content on
Wikipedia that is forbidden by his or her government, or post a video of police brutality to YouTube.
In such cases, while SPs may want to penalize users who deface webpages or post copyrighted
material, it is of paramount importance for SPs to preserve the anonymity of their well-behaving
users. By guaranteeing anonymity to all users, SPs can penalize misbehavior without the risk of
exposing legitimate users.

Anonymous credential systems that support accountability [15, 1, 11, 6, 14, 22] feature a TTP
called the Open Authority (OA). The OA is capable of deanonymizing (or linking) the user behind
any anonymous authentication. Anonymous credential systems with dynamic membership revo-
cation [2, 12, 7, 24], many of which are constructed from dynamic accumulators [12], also feature
a TTP that is capable of deanonymizing (or linking) users. Recently, some of the authors of this
paper proposed the Nymble system [21] to allow SPs to block misbehaving users hiding behind an
anonymizing network such as Tor [17]. Nymble makes several practical considerations for anony-
mous IP-address blocking, but it does rely on multiple entities that can collude to deanonymize
(or link) a misbehaving user. The existence of such TTPs, however, is undesirable — users can
never be assured that their privacy will be maintained by the TTP. Defining the circumstances
under which a TTP can expose a user, and ensuring its trustworthiness to judge fairly, is an undue
burden on SPs. For such applications, therefore, a system without TTPs is desirable.

To eliminate the reliance on TTPs, certain “threshold-based” approaches such as e-cash [3, 9, 10]
and k-Times Anonymous Authentication (k-TAA) [27, 25, 4, 28] have been proposed. In these
schemes, users are guaranteed anonymity unless they authenticate more than a certain number of
threshold times. For example, spending an e-coin twice (“double spending,” an undesirable action)
or authenticating k + 1 times in a k-TAA scheme provides the SP with enough information to
compute the user’s identity. Linkable ring signatures [23, 34, 33] and periodic n-times anonymous
authentication [8] also fall into this category. Unfortunately, misbehavior cannot always be defined
in terms of threshold values such as double spending. For example, “inappropriate” edits to a
Wikipedia page, or “offensive” video uploads to YouTube are usually identified based on human
subjectivity and cannot be reduced to “too many authentications”. For such applications, therefore,

1http://www.wikipedia.org
2We originally called this concept anonymous blacklisting [30]. As will become clear, we differentiate between the

action of blacklisting, which may or may not result in revocation.
3http://www.youtube.com

4

subjective judging is desirable. Taking the concept of threshold-based schemes one step further,
ideally, one would be able to revoke users who have misbehaved more than a certain number of
times (we call this a d-strikes-out revocation policy). k-TAA and related schemes cannot provide
such functionality because k+ 1 authentications provide enough information to reduce the privacy
of users, and there is no way to penalize k + 1 misbehaviors instead.

To reiterate, it is important to have an anonymous credential system in which repeatedly misbe-
having users can be revoked in a way that (1) preserves their anonymity, (2) is based on subjective
definitions of misbehavior, and (3) does not rely on a TTP. Syverson et al. citeSyversonSG97fc
present a scheme in which SPs issue users blind tokens, which are renewed at the end of a user’s
transaction for a subsequent authentication. An SP can block future connections from a user by
simply not issuing a new token at the end of a transaction (e.g., if the user fails to pay for continued
service). The major drawback to this approach is that misbehavior must be judged while the user
is online. Indeed, their scheme was not designed for privacy-enhanced revocation since a user’s
misbehavior is usually identified long after the user has disconnected. Furthermore, d-strikes-out
revocation policies are not possible in such a scheme.

1.1 Our Contributions

We present the BLacklistable Anonymous Credential system (BLAC), which was the first4 construc-
tion of an anonymous credential system that supports privacy-enhanced revocation and subjective
judging without relying on TTPs that are capable of revoking the privacy of users at will. We
formalize the security model for such a system and prove that our construction is secure under this
model. Furthermore, we implement our construction and evaluate its performance analytically and
experimentally. These results were reported in a conference paper [30] and a technical report [31],
which included more details.

In this paper, we make a significant additional contribution by extending our original construc-
tion of BLAC to provide more flexible revocation — SPs can specify a d-strikes-out revocation
policy, so that users can authenticate anonymously only if they have not misbehaved d or more
times. Such a policy forgives a few (i.e., up to d− 1) misbehaviors, but then blocks users who mis-
behave repeatedly. Following authentication, users remain anonymous, and SPs learn only whether
a user has crossed the threshold of d misbehaviors. The original construction of BLAC is a special
case with d = 1.

Defining the exact meaning of security (and privacy) of BLAC that supports a d-strikes-out
revocation policy is a non-trivial task. We have spent considerable effort in formalizing a security
model and proving the security of our construction under this model.

Our proposed concept of d-strikes-out is an important improvement on existing threshold
schemes such as k-TAA, which deanonymize (or link) users who authenticate more than a cer-
tain number of times. k-TAA cannot be used to punish “too many misbehaviors” because users
necessarily suffer degraded privacy after k authentications. Our scheme, for the first time, de-
couples the notion of misbehaviors from authentications — users can verify the SP’s blacklist of
identified misbehaviors and be assured that their authentication will be anonymous, irrespective of
the number of past authentications.

4Concurrently and independently, Brickell and Li citeepid proposed a similar scheme called Enhanced Privacy
ID (EPID); more recently, the same authors of this paper presented Privacy-Enhanced Revocation with Efficient
Authentication (PEREA) [32], which alters the semantics of revocation for more efficient authentication. We discuss
them in Section 9.

5

1.2 Paper Outline

We provide a high-level overview of BLAC in Section 2. In Section 3 we present preliminary
information on the various cryptographic tools and assumptions used in our construction. In
Section 4, we formalize the syntax and security properties for BLAC. We present our construction
at a high level in Section 5, and fill in the details of how the various zero-knowledge proofs can be
instantiated in Section 6. We analyze the algorithmic complexity and security of our construction
in Section 7, and present an experimental evaluation of it in Section 8. We discuss several issues
in Section 9, and finally conclude in Section 10.

2 Solution Overview

We give a high-level overview of our BLacklistable Anonymous Credential system (BLAC) in this
section, and defer the details of its construction to the subsequent sections.

In our system, users authenticate to Service Providers (SPs) anonymously using credentials
issued by a Group Manager (GM). The GM is responsible for enrolling legitimate users into the
system by issuing credentials to them.5 Each enrolled user privately owns a unique credential, which
is not known even by the GM. We emphasize that the GM is not a TTP that can compromise the
privacy of users, and is trusted only to enroll legitimate users into the system, and issue at most one
credential per user. SPs are willing to serve enrolled anonymous users that have never misbehaved
thus far, where misbehavior may be arbitrarily defined and subjectively judged by each individual
SP. We describe this process next.

The novelty of our approach is that SPs maintain their own blacklists of misbehaving users
without knowing the identity of the misbehaving users. Users anonymously authenticating to the
SP must first prove that there are fewer than d entries on the blacklist corresponding to that user
(otherwise authentication will fail). Following a user’s authentication, SPs store a ticket extracted
from the protocol transcript of the authentication and if the user is later deemed to have misbehaved
during the authenticated session, possibly long after the user has disconnected, the SP can add the
ticket as an entry into its blacklist.6 If a user Alice detects that she is on the blacklist (d or more
times), she terminates the authentication and disconnects immediately. The SP, therefore, learns
only that some anonymous revoked user was refused a connection, and does not learn the identity
of the revoked user. Users that are not revoked will be able to authenticate successfully, and the
SPs learn only that the user is not on the blacklist d or more times. Furthermore, our system allows
SPs to remove entries from the blacklist, thereby forgiving past misbehaviors. Depending on the
severity of misbehavior, a user may be blacklisted for varying periods of time — using inappropriate
language could correspond to being blacklisted for one week, whereas posting copyrighted material
could correspond to blacklisting for one month. Users are always assured that if they successfully
authenticate to an SP their access will always remain anonymous — all that an SP can do is block
future accesses by a misbehaving user.

2.1 A Glimpse into Tickets

Tickets are a vital object in BLAC. A ticket is the only piece in the authentication protocol transcript
that contains information about the identity of the authenticating user. Jumping ahead, tickets in
BLAC have the form of (s, t), where the serial number s is a bit-string and the tag t is an element in

5Who is a legitimate user and how to verify such legitimacy are application-dependent.
6In practice, the SP may privately log arbitrary information about an authenticated session that is necessary for

it to judge at a later time whether the anonymous user misbehaved during that session.

6

a DDH-hard group G (to be defined later). A user produces a new ticket during each authentication
by randomly choosing s and computing t as H(s||sid)x, where sid is the target server’s identity,
x is from the user’s credential and H is a secure cryptographic hash function.

Here we highlight three features of such a ticket construction. First, it allows every user to
produce tickets that are different and more importantly unlinkable, for otherwise SPs would be
able to tell if two authentications are from the same user. Second, users can prove and disprove to
the SPs that a ticket belongs to them. This allows, on the one hand, for users to prove that they
are not blacklisted, and, on the other hand, the prevention of users fabricating incorrect tickets to
circumvent blacklisting and/or impersonating and hence framing other users. Finally, it provides
the option to allow or disallow the sharing of blacklist entries (tickets) between SPs. Sharing a
blacklist entry would allow multiple SPs to block a user who misbehaved at one of the SPs. We will
first present the system where such sharing is disallowed and then point out how to allow sharing
in Section 9.

2.2 Supporting a d-strikes-out Revocation Policy

We present a new extension to our original BLAC construction [30, 31] to provide more flexible
blacklisting of users. In our previous construction, each blacklist entry represented an instance of
a misbehavior, where each misbehavior was unlinkable to the other misbehaviors. As a result, SPs
could not express policies spanning multiple misbehaviors, e.g., such as a “three-strikes-out” revoca-
tion policy where up to two misbehaviors by the same user are forgiven. Our extended construction
now supports a “d-strikes-out” revocation policy, where users are allowed access as long as they
have misbehaved fewer than d times. In this more general construction, our original construction is
simply a special case that supports a “1-strike-out” revocation policy, where a single misbehavior
would result in the user being blocked. As noted in Section 1, such functionality is not possible in
schemes such as k-TAA, which necessarily reduces a user’s privacy after k authentications.

3 Preliminaries

In this section we outline the assumptions and cryptographic tools that we use as building blocks
in our BLAC construction.

3.1 Notation and terminology

|S| represents the cardinality of a set S. If S is a non-empty set, a ∈R S means that a is an element
in S drawn uniformly at random from S. A ⊆d S denotes that A is a subset of S of cardinality d.
We denote by N the set of natural numbers {1, 2, . . .} and by Z∗ the set of non-negative integers
{0, 1, 2, . . .}. If n ∈ Z∗, we write [n] to mean the set {1, 2, . . . , n}; [0] is the empty set ∅. If
s, t ∈ {0, 1}∗, then s||t ∈ {0, 1}∗ is the concatenation of binary strings s and t.

A sequence Q = (a1, a2, . . . , a`) is an ordered list of ` ∈ Z∗ (not necessarily unique) natural
numbers a1, a2, . . . , a`. Q is index-bounded-from-below, or simply bounded, if ai ≥ i for all i ∈ [`].
Q is empty if ` = 0; an empty sequence is by definition always bounded. For any k ∈ N, Q can
be partitioned into k (possibly empty) subsequences Q1, Q2, . . . , Qk in an order-preserving manner,
i.e., an element a is before another element b in a subsequence only if a is also before b in the
original sequence. We call the set P = {Q1, Q2, . . . , Qk} a k-partitioning of Q. There is at least one
k-partitioning of Q for all k ∈ N. for all Qj ∈ P . Finally, a sequence Q is k-boundedly-partitionable,
or simply k-partitionable, if there exists a bounded k-partitioning of Q.

7

We note the following two facts. (1) If Q is k-partitionable, then Q is also k′-partitionable, for
all k′ > k. Thus, if Q is not k-partitionable, then Q is also not k′-partitionable for all k′ ∈ [k − 1].
(2) If Q is k-partitionable, then any subsequence Q′ of Q is also k-partitionable. Thus, if Q is not
k-partitionable, then any sequence Q′ that contains Q as a subsequence is also not k-partitionable.

3.2 Pairings

A pairing is a bilinear mapping from a pair of group elements to a group element. Specifically, let
G1, G2 and G be multiplicative cyclic groups of order p. Suppose P and Q are generators of G1

and G2 respectively. A function ê : G1 ×G2 → G is said to be a pairing if it satisfies the following
properties:

• (Bilinearity.) ê(Ax, By) = ê(A,B)xy for all A ∈ G1, B ∈ G2 and x, y ∈ Zp.

• (Non-degeneracy.) ê(P,Q) 6= 1, where 1 is the identity element in G.

• (Efficient Computability.) ê(A,B) can be computed efficiently (i.e., in polynomial time) for
all A ∈ G1 and B ∈ G2.

3.3 Mathematical Assumptions

The security of our BLAC construction requires the following two assumptions:

Assumption 1 (DDH) The Decisional Diffie-Hellman (DDH) problem in group G is defined as
follows: On input of a quadruple (g, ga, gb, gc) ∈ G4, output 1 if c = ab and 0 otherwise. We say
that the DDH assumption holds in group G if no probabilistic polynomial time (PPT) algorithm
has non-negligible advantage over random guessing in solving the DDH problem in G.

Assumption 2 (q-SDH) The q-Strong Diffie-Hellman (q-SDH) problem in (G1,G2) is defined
as follows: On input of a (q + 2)-tuple (g0, h0, hx0 , hx

2

0 , . . ., hx
q

0) ∈ G1 × Gq+1
2 , output a pair

(A, c) ∈ G1 × Zp such that A(x+c) = g0 where |G1| = p. We say that the q-SDH assumption holds
in (G1,G2) if no PPT algorithm has non-negligible advantage in solving the q-SDH problem in
(G1,G2).

3.4 Proofs of Knowledge

In a Zero-Knowledge Proof of Knowledge (ZKPoK) protocol [19], a prover convinces a verifier that
some statement is true without the verifier learning anything except the validity of the statement.
Σ-protocols are a special type of three-move ZKPoK protocols, which can be converted into non-
interactive Signature Proof of Knowledge (SPK) schemes, or simply signature schemes [20] that are
secure under the Random Oracle (RO) Model [5].

In the following, we review several Σ-protocols that will be needed as building blocks in our con-
struction. We follow the notation introduced by Camenisch and Stadler citeCamenischS97crypto.
For instance, PK{(x) : y = gx} denotes a Σ-protocol that proves the knowledge of x ∈ Zp such
that y = gx for some y ∈ G. The corresponding signature scheme resulting from the application of
the Fiat-Shamir heuristic to the above Σ-protocol is denoted by SPK{(x) : y = gx}(M).

8

3.4.1 Knowledge and Inequalities of Discrete Logarithms

Let g, b ∈ G and bi ∈ G for all i be generators of some group G of prime order p such that their
relative discrete logarithms are unknown. One can prove in zero-knowledge the knowledge of the
discrete logarithm x ∈ Zp of y ∈ G in base g by using the Σ-protocol:

PK {(x) : y = gx} ,

the construction of which first appeared in Schnorr identification [26]. As we shall see, our BLAC
construction requires the SPK of this protocol to prove the correctness of tickets.

One can further prove in zero-knowledge that x does not equal logb t, the discrete log of t ∈ G
in base b, using the Σ-protocol:

PK {(x) : y = gx ∧ t 6= bx} ,

the most efficient construction of which is due to Camenisch and Shoup cite[§5]CamenischS03crypto.
In our BLAC construction we will need a generalized version of the above Σ-protocol to prove

that a user is not currently on the blacklist. In particular, we need a protocol that allows one to
prove in zero-knowledge that, for some n > 1 and for all i = 1 to n, x 6= logbi ti, where ti ∈ G.
That is,

PK

{
(x) : y = gx ∧

(
n∧
i=1

ti 6= bxi

)}
.

Such a Σ-protocol can be constructed by applying a technique due to Cramer et al. cite-
CramerDS94crypto to Camenisch and Shoup’s construction mentioned above.7

3.4.2 Proving d out of n DL representations

Let n, d be positive integers such that d ≤ n. Let Ãi, bi, ti be elements in some group G of prime
order p such that there exist I ⊆d ([n]) and β, ρ ∈ Zp such that Ãi = bβi t

−ρ
i for all i ∈ I. One can

prove in zero-knowledge the knowledge of such (β, ρ) by using the Σ-protocol:

PK

(β, ρ) :
∨

I⊆d([n])

∧
i∈I

Ãi = bβi t
−ρ
i

 ,

the construction of which was first presented by Cramer et al. citeCramerDS94crypto with O(n)
complexity both during signing and verification.

3.4.3 BBS+ Signatures

Let g0, g1, g2 ∈ G1 and h0 ∈ G2 be generators of G1 and G2 respectively such that g0 = ψ(h0) and
their relative discrete logarithms are unknown, where ψ is a computable isomorphism and (G1,G2)
is a pair of groups of prime order p in which the q-SDH assumption holds. Let e be a pairing
defined over the pair of groups. One can prove possession of a tuple (A, e, x, y) ∈ G1×Z3

p such that
Ae+γ = g0g

x
1g

y
2 , or equivalently, ê(A,whe0) = ê(g0g

x
1g

y
2 , h0), where w = hγ0 , by the Σ-protocol:

PK
{

(A, e, x, y) : Ae+γ = g0g
x
1g

y
2

}
.

7The technique describes a general method of constructing proofs of disjunction or conjunction of any of the two
statements about knowledge of discrete logarithms.

9

Boneh et al. cite[§4]BonehBS04crypto present the construction of this protocol, which is secure
under the Decision-linear Diffie-Hellman assumption. Au et al. citeAuSM06scn provide a modified
construction that does not rely on this assumption. As first pointed out by Camenisch and Lysyan-
skaya citeCamenischL04crypto, the protocol’s corresponding SPK is actually the SDH-variant of
CL signatures [13], which Au et al. citeAuSM06scn refer to as BBS+ Signatures. Our BLAC con-
struction will need this protocol as a building block for users to prove that they are enrolled in the
system. We will employ Au et al.’s citeAuSM06scn construction to avoid the need of less standard
assumptions.

4 Model

We present the syntax of BLAC, followed by the security properties that any BLAC construction
must satisfy.

4.1 Syntax

The entities in BLAC are the Group Manager (GM), a set of Service Providers (SPs) and a set of
users. BLAC consists of the following protocols:

4.1.1 Setup

This algorithm is executed by the GM to set up the system. On input of one or more security
parameters, the algorithm outputs a pair consisting of a group public key gpk and a group private
key gsk. The GM keeps gsk private and publishes gpk to the public. gpk is an implicit input to
all the algorithms described below.

4.1.2 Registration

This protocol is executed between the GM and a legitimate user to register the user into the system.
Upon successful completion of the protocol, the user obtains a credential cred, which she keeps
private to herself, and is thereby enrolled as a member in the group of registered users.

4.1.3 Authentication

This protocol is executed between a user with credential cred and an SP. The initial input to
the user is her credential. The initial input to the SP is its blacklist and a threshold value.
When an execution of the protocol terminates, the SP outputs a binary value of success or
failure. If the SP outputs success in an execution of the protocol, we call the execution a
successful authentication and say that the authenticating user has succeeded in authenticating
herself; otherwise the authentication is unsuccessful and the user has failed. Only upon a successful
authentication does the SP establish an authenticated session with the authenticating user during
which the user can access the service provided by the SP. Note that the protocol transcript of a
successful authentication as seen by the SP is useful for the SP to blacklist the authenticating user,
as described next.

4.1.4 Blacklist Management

This is a suite of three algorithms: Extract, Add and Remove, which are executed by SPs for
managing their blacklists. On input of an authentication protocol transcript, Extract extracts and

10

returns a ticket from the transcript. A blacklist is a collection of tickets. On input of a blacklist
and a ticket, Add returns a new blacklist that contains all the tickets in the input blacklist as well
as the input ticket. On the other hand, on input of a blacklist and a ticket, Remove returns a
new blacklist that contains all the tickets in the input blacklist, except the one(s) equivalent to the
input ticket.8

When we say that a user Alice is blacklisted by an SP, we mean that there exists an authentication
between Alice and the SP such that the SP has added the ticket extracted from the authentication
transcript to its blacklist and has not removed it (yet). Otherwise Alice is not blacklisted by the
SP. Also, we say that Alice is misbehaving, and thus revoked, with respect to the SP if she has been
blacklisted by the SP at least a threshold number of times d. Otherwise, she is well-behaving.

Any BLAC construction must be correct:

Definition 1 (Correctness) A construction of the BLAC system is correct if all entities in the
system being honest (i.e., they follow the system’s specification) implies that for any enrolled user
Alice and for any SP, Alice is able to successfully authenticate herself to the SP with overwhelming
probability if Alice has been blacklisted by the SP fewer than a specified threshold number of times.

4.2 Security Notions

We now give informal definitions of the various security properties that a BLAC construction must
possess. Their formal definitions will be given in the next subsection.

4.2.1 Mis-authentication Resistance

Mis-authentication occurs when an unregistered user successfully authenticates herself to an SP. In
a BLAC construction with mis-authentication resistance, SPs are assured to accept authentications
from only enrolled users.

4.2.2 Blacklistability

Any SP may blacklist a user who has authenticated successfully at any later time. In a BLAC
construction with blacklistability, SPs are assured to accept authentications from only well-behaving
users, i.e., users who are blacklisted fewer than a threshold number of times. As a consequence,
misbehaving users are revoked from the system, and they will no longer be able to successfully
authenticate themselves to the SP until enough of their misbehaviors are unblacklisted by the SP.

4.2.3 Anonymity

In a system with anonymity, all that SPs can infer about the identity of an authenticating user is
whether the user is or was blacklisted at the time of protocol execution, regardless of whatever the
SPs do afterwards, such as arbitrarily manipulating their blacklists.

4.2.4 Non-frameability

A user Alice is framed if she is not currently blacklisted by an honest SP, but is unable to successfully
authenticate herself to the SP. In a BLAC construction with non-frameability, well-behaving users
can always successfully authenticate themselves to honest SPs.

Any BLAC construction must be secure:
8We don’t define the equivalence of tickets here because it is construction-dependent.

11

Definition 2 (Security) A BLAC construction is secure if it has mis-authentication resistance,
blacklistability, anonymity and non-frameability.

4.3 Formal Definitions

We use a game-based approach to define the notion of security formally. The adversary’s capabilities
are modeled by arbitrary and adaptive queries to oracles, which are stateful and together share a pri-
vate state denoted as state, which contains three counters i, j, k, and six sets IP , IA, IB,JP ,JA,KA.
Initially, the three counters are 0 and the six sets are ∅. We next describe the oracles, which are
simulated by the simulator S during the games.

• P-Reg(). This oracle allows the adversary to register an honest user with the honest GM.
Upon invocation, the oracle increments i by 1, simulates the Registration protocol between
an honest user and the honest GM, sets state := state||〈i, $i, credi〉, where $i is the resulting
protocol transcript and credi is the resulting user credential, adds i to IP and finally outputs
($i, i) to the adversary. The newly registered user is indexed by i.

• A-Reg(). This oracle allows the adversary to register a corrupt user with the honest GM.
Upon invocation, the oracle increments i by 1, plays the role of the GM and interacts with the
adversary in the Registration protocol, sets state := state||〈i, $i,⊥〉, where $i is the protocol
transcript, adds i to IA and finally outputs i to the adversary. The user is indexed by i.

• B-Reg(). This oracle allows the adversary to register an honest user with the corrupt GM.
Upon invocation, the oracle increments i by 1, plays the role of a user and interacts with
the adversary in the Registration protocol, sets state := state||〈i,⊥, credi〉, where credi is
the credential issued to the user by the adversary, adds i to IB and finally outputs i to the
adversary. The user is indexed by i.

• Corrupt-U(i). This oracle allows the adversary to corrupt an honest user. On input i ∈
IB ∪ IP , the oracle removes i from IB or IP , adds i to IA, and finally outputs credi to the
adversary.

• Add-SP(sid). This oracle allows the adversary to introduce an SP with fresh identity sid ∈
{0, 1}∗ into the system. Upon invocation, the oracle increments j by 1, adds it to JP , and
finally outputs it to the adversary. The SP is indexed by j.

• Corrupt-SP(j). This oracle allows the adversary to corrupt an honest SP. On input j ∈ JP ,
the oracle removes j from JP and adds it to JA.

• P-Auth(i, j, d). This oracle allows the adversary to eavesdrop an authentication run between
an honest user and an honest SP. On input (i, j, d) such that i ∈ IP ∪ IB, j ∈ JP and d ∈ N,
the oracle increments k by 1, simulates (using credi) the Authentication protocol between
honest user i and honest SP j assuming a threshold value of d, sets state := state||〈k, $k〉,
where $k is the resulting protocol transcript, and finally outputs (k, $k) to the adversary.

• A-Auth(j, d). This oracle allows a corrupt user to authenticate to an honest SP. On input
j ∈ JP and d ∈ N, the oracle increments k by 1, plays the role of SP j assuming a threshold
value of d and interacts with the adversary in the Authentication protocol, adds k to KA, sets
state := state||〈k, $k〉, where $k is the resulting protocol transcript, and finally outputs k to
the adversary.

12

• B-Auth(i, j). This oracle allows the adversary to have an honest user authenticate to a
corrupt SP. On input i ∈ IB ∪ IP and j ∈ JA, the oracle increments k by 1, plays the role of
user i to authenticate to SP j and interacts with the advesary in the Authentication protocol,
sets state := state||〈k, $k〉, where $k is the resulting protocol transcript, and finally outputs
k to the adversary.

• Add-To-BL(j, k). This oracle allows the adversary to influence an honest SP to judge a user
as have misbehaved during an authenticated session. On input j ∈ JP and k ∈ [k], the oracle
adds the ticket τk = Extract($k) to SP j’s blacklist.

• Remove-From-BL(j, τ). This oracle allows the adversary to influence an honest SP to
forgive a user for her misbehavior during an authenticated session. On input j ∈ JP and τ
such that τ is in SP j’s blacklist, the oracle removes τ from that blacklist.

We remark that queries to P-Reg and A-Reg do not interleave because the honest GM registers
users one at a time; queries to Add-To-BL(j, ·) and Remove-From-BL(j, ·) do not interleave with
one another, or with queries to P-Auth or A-Auth because honest SPs update their blacklists
only when no authentication is in progress. Queries to P-Auth is atomic, but we allow interleaving
among queries to P-Auth, A-Auth and B-Auth.

4.3.1 Mis-authentication resistance and blacklistability

Mis-authentication resistance is in fact implied by Blacklistability: if someone can authenticate
to an SP without having registered, she can authenticate after being blacklisted by mounting an
attack against mis-authentication resistance. The following game between the simulator S and the
adversary A formally defines Blacklistability.

Setup Phase S takes a sufficiently large security parameter and generates gpk and gsk according
to Setup. gpk is given to A.

Probing Phase A is allowed to issue queries to all the oracles except B-Reg. In other words,
the GM is always honest.

End Game Phase A outputs j, n ∈ N, k1, k2, . . . , kn ∈ AA.

Let SO be the sequence of all oracle queries made throughout the game in chronological order.
A wins the game if all of the following hold:

1. There exist d1, d2, . . . , dn ∈ N such that the sequence S∗O =
k1 ← A-Auth(j, d1), Add-To-BL(j, k1),
k2 ← A-Auth(j, d2), Add-To-BL(j, k2),

...
kn−1 ← A-Auth(j, dn−1), Add-To-BL(j, kn−1),
kn ← A-Auth(j, dn)

is a subsequence of SO.

2. In all n A-Auth queries in S∗O, the honest SP j as simulated by S terminated the Registration
protocol successfully.

13

3. Without loss of generality, before the query kn ← A-Auth(j, dn), A never queried
Remove-From-BL(j, Extract($ki)), where 〈ki, $ki〉 ∈ state, for all i ∈ [n− 1].

4. Either |IA| = 0 or the sequence D = (d1, d2, . . . , dn) is not |IA|-partitionable.

This completes the description of the game.
Throughout the game, adversary A has corrupted |IA| registered users. If |IA| = 0, then the

existence of even a single successful A-Auth query implies that the adversary has broken mis-
authentication resistance and thus blacklistability. Otherwise, i.e., |IA| > 0, the adversary wins
only if D is not |IA|-partitionable. Below we provide more explanation for this latter case.

Consider the contrary that D is |IA|-partitionable. Let P = (D1, D2, . . . , D|IA|) be one such
partitioning. Adversary A could have successfully made the n A-Auth queries in D according to
the following strategy: use the credential of the i-th corrupted user in the j-th A-Auth query if
dj ∈ Di. In fact, this strategy is always feasible for any BLAC construction with the correctness
property; D could just have been a sequence of legitimate authentications in the system where
there are only honest participants. Therefore, an |IA|-partitionable sequence D is not considered
as a breach in blacklistability and thus a victory of the adversary in the game.

Now, consider the case when D = (d1, . . . , dn) is indeed not |IA|-partitionable. There is always
an n′ ≤ n such that D′ = (d1, . . . , dn′) is also not |IA|-partitionable. Let n∗ be the smallest such
n′. The n∗-th A-Auth is considered to be a breach in blacklistability for the following reason: no
matter in what order and who among any group of |IA| honest registered users have authenticated
in the first n∗ − 1 successful authentications, each of them has already authenticated at least dn∗
times by the time the n∗-th authentication is about to be made. Since the n∗-th authentication
has a threshold value of dn∗ , none of them should be able to successfully authenticate in the n∗-th
authentication.

4.3.2 Anonymity

The following game between the simulator S and adversary A formally defines anonymity.

Setup Phase S takes a sufficiently large security parameter and generates gpk and gsk, which
are given to A.

Probing Phase A is allowed to issue queries to all the oracles except P-Reg and A-Reg. Oracle
queries can be interleaved and/or span the Challenge Phase and Probing Phase 2.

Challenge Phase A outputs i∗0, i
∗
1 ∈ IB, j∗ ∈ [j] and d∗ ∈ N. S then flips a fair coin b̂ ∈ {0, 1}. A

queries P-Auth(⊥, j∗, d∗) if j∗ ∈ JP , or B-Auth(⊥, j∗, d∗) otherwise. Notice that A leaves
i unspecified in either query. S answers the query assuming i = i∗

b̂
. Let $∗k be the resulting

transcript. Furthermore, let d∗0 (resp. d∗1) be the current number of tickets on the blacklist
sent from SP j∗ to S during the P-Auth or B-Auth query that are extracted from the
trancript of an authentication involving user i∗0 (resp. i∗1).

Probing Phase 2 A is allowed to issue queries as in the Probing Phase, except that queries to
Corrupt-U(i∗0) or Corrupt-U(i∗1) are not allowed.

End Game Phase A outputs a guess bit b′. A wins the game if b̂ = b′ and at least one of the
following is true:

• (Case I.) Both d∗0 and d∗1 are smaller than d∗ and A never queried Add-To-BL(∗, k∗).

14

• (Case II.) Both d∗0 and d∗1 are greater than or equal to d∗.
The condition of Case I implies that A cannot blacklist the challenge authentication
in an attempt to break anonymity. This prevents the trivial attack in which A simply
blacklists the authentication and has the two users (i∗0 and i∗1) attempt to authenticate.
Whoever fails to authenticate will be the underlying user of the challenge authentication.

4.3.3 Non-frameability

The following game between the simulator S and the adversary A formally defines Non-frameability.

Setup Phase S takes a sufficiently large security parameter and generates gpk and gsk, which
are given to A.

Probing Phase A is allowed to issue queries to all the oracles except P-Reg and A-Reg. Oracle
queries may span over the End Game Phase.

End Game Phase A outputs i∗ ∈ IB, j∗ ∈ JP and d∗ ∈ N. Let d∗i be the number of unique
Add-To-BL(j∗, k), where k is such that (·, k) is the output of a P-Auth(i∗, j∗, ·) query,
minus the number of unique Remove-From-BL(j∗, τ), where τ is the ticket extracted from
the transcript of an authentication involving user i∗. S then runs P-Auth(i∗, j∗, d∗). A wins
the game if d∗ > d∗i and SP terminates unsuccessfully in the P-Auth query.

5 System Construction

We now detail our cryptographic construction and assess its security and efficiency. For simplicity,
we first present our construction without flexible blacklisting, and then show how the construction
can be extended to support a d-strikes-out revocation policy.

5.1 Parameters

Let λ, ` be sufficiently large security parameters. Let (G1,G2) be a bilinear group pair with com-
putable isomorphism ψ as discussed such that |G1| = |G2| = p for some prime p of λ bits. Also let
G be a group of order p where DDH is intractable. Let g0, g1, g2 ∈ G1 and h0 ∈ G2 be generators of
G1 and G2 respectively such that g0 = ψ(h0) and the relative discrete logarithm of the generators
are unknown.9 Let H0 : {0, 1}∗ → G and H : {0, 1}∗ → Zp be secure cryptographic hash functions.

5.2 Setup

The GM randomly chooses γ ∈R Zp and computes w = hγ0 . The group secret key is gsk = (γ) and
the group public key is gpk = (w).

5.3 Registration

Upon successful termination of this protocol between a user Alice and the GM, Alice obtains a
credential in the form of (A, e, x, y) such that Ae+γ = g0g

x
1g

y
2 , and (A, e, x, y) is known only to

Alice. The private input to the GM is the group secret key gsk.
9This can be done by setting the generators to be the output of a cryptographic hash function of some publicly

known seeds.

15

1. The GM sends m to Alice, where m ∈R {0, 1}` is a random challenge.

2. Alice sends a pair (C,Π1) to the GM, where C = gx1g
y′

2 ∈ G1 is a commitment of (x, y′) ∈R Z2
p

and Π1 is a signature proof of knowledge of

SPK 1

{
(x, y′) : C = gx1g

y′

2

}
(m) (1)

on challenge m, which proves that C is correctly formed.

3. The GM returns failure if the verification of Π1 returns invalid. Otherwise the GM sends
Alice a tuple (A, e, y′′), where e, y′′ ∈R Zp and A = (g0Cg

y′′

2)
1
e+γ ∈ G1.

4. Alice computes y = y′+ y′′. She returns failure if ê(A,whe0) 6= ê(g0g
x
1g

y
2 , h0). Otherwise she

outputs cred = (A, e, x, y) as her credential.

To prevent the possibility of a concurrent attack [16], we require that users must be registered
sequentially, as opposed to concurrently.

5.4 Authentication: The Special Case

For an easier understanding, we first describe the protocol construction assuming the special case
when the SP enforces a 1-strike-out revocation policy, i.e., it uses a threshold value of 1. In the
next subsection, we show how the construction can be extended to allow a d-strike-out revocation
policy, with any d ≥ 1.

During an execution of this protocol between a user Alice and the SP, Alice’s private input is
her credential cred = (A, e, x, y). Let sid ∈ {0, 1}∗ be the string that uniquely identifies the SP.
When the protocol terminates, the SP outputs success or failure, indicating whether the SP
should consider the authentication attempt successful.

1. (Challenge.) The SP sends to Alice a pair (BL,m), where m ∈R {0, 1}` is a random challenge
and BL = 〈τ1, . . . , τn〉 is its current blacklist and τi = (si, ti) ∈ {0, 1}` ×G, for i = 1 to n, is
the i-th ticket in the blacklist.

2. (Blacklist Inspection.) Alice computes, for i = 1 to n, the bases bi = H0(si||sid). She
returns as failure if tag ti = bxi for some i (indicating that she is blacklisted). She proceeds
otherwise.

3. (Proof Generation.) Alice returns to the SP a pair (τ,Π2), where τ = (s, t) ∈ {0, 1}` × G is
a ticket generated by randomly choosing a serial s ∈R {0, 1}` and computing the base b as
H0(s||sid) and then the tag t as bx, and Π2 is a signature proof of knowledge of:

SPK 2

(A, e, x, y) : Ae+γ = g0g
x
1g

y
2 ∧ t = bx ∧

∧
i∈[n]

ti 6= bxi

 (m) (2)

on the challenge m, which proves:

(a) Ae+γ = g0g
x
1g

y
2 , i.e., Alice is a group member,

(b) t = bx = H0(s||sid)x, i.e., the ticket τ is correctly formed.

(c)
∧n
i=1 ti 6= H0(si||sid)x, i.e., Alice is not currently on the SP’s blacklist, and

16

4. (Proof Verification.) The SP returns failure if the verification of Π2 returns invalid.10

Otherwise it returns success.

The protocol transcript of a successful authentication at the SP is thus $ = 〈sid, BL,m, τ,Π2〉.
As discussed, the SP stores ticket τ extracted from the transcript, along with information logging
Alice’s activity within the authenticated session.

5.5 Authentication: The General Case

We now modify the protocol for Authentication presented in Section 5.4 to support a d-strikes-out
revocation policy. Our extension does not alter the time and communication complexities of the
authentication protocol, which remain O(n), where n is the size of the blacklist.

The inputs to each of user Alice and the SP in the protocol in the general case are the same
as those in the special case, except that the SP additionally gets a threshold value d. When
the protocol terminates, the SP outputs success or failure, indicating whether the SP should
consider the authentication attempt successful. Authentication succeeds only if there are less than
d entries corresponding to Alice’s credential in the blacklist.

1. (Challenge.) In addition to (BL,m), the SP sends to Alice the threshold value d ∈ [n], where
n is the size of BL.

2. (Blacklist Inspection.) Alice computes, for i = 1 to n, the bases bi = H0(si||sid). She
returns failure if tag ti = bxi for d or more distinct i’s (indicating that she has reached the
blacklisting threshold). She proceeds otherwise.

3. (Proof Generation.) Π2 is instead a signature proof of knowledge of:

SPK 3

{
(A, e, x, y) :

Ae+γ = g0g
x
1g

y
2 ∧ t = bx ∧(∨

I⊆(n−d+1)[n]

∧
i∈I ti 6= bxi

) } (m) (3)

on the challenge m, which proves:

(a) Ae+γ = g0g
x
1g

y
2 , i.e., Alice is a group member,

(b) t = H0(s||sid)x, i.e., the ticket τ is correctly formed.

(c)
∧n
i=1 ti 6= H0(si||sid)x, i.e., Alice is not currently on the SP’s blacklist d times or more,

and

4. (Proof Verification.) The verification of Π2 changes accordingly.

The protocol transcript of a successful authentication at the SP thus becomes $ =
〈sid, BL,m, d, τ,Π2〉.

5.6 Blacklist Management

The three algorithms are all very simple and efficient. Extract($) returns ticket τ in the input
transcript $ = 〈BL,m, τ,Π2〉. Add(BL, τ) returns blacklist BL′, which is the same as the input
blacklist BL, except with the input ticket τ appended to it. Remove(BL, τ) returns blacklist BL′,
which is the same as the input blacklist BL, except with all entries equal to the input ticket τ
dropped.

10The SP also terminates with failure if the blacklist is being updated concurrently. This behavior ensures that
if a user is blacklisted at time t, she cannot authenticate to the SP after t or until she is unblacklisted.

17

6 Instantiation of ZKPoK Protocols

The ZKPoK protocols SPK 1, SPK 2 and SPK 3 presented above require instantiation. We omit
spelling out the relatively trivial instantiation of SPK 1. In the following, we instantiate SPK 3.
Note that SPK 2 is a special case of SPK 3 at d = 1.

6.1 SPK 3

6.1.1 Signing

Let (A, e, x, y) ∈ G1 × Z3
p be a tuple such that Ae+γ = g0g

x
1g

y
2 , t = bx, and

∧
i∈J (ti 6= bxi) for

some J ⊆(n−d+1) [n]. To produce a proof Π3 for SPK 3 on message m ∈ {0, 1}∗, a prover with the
knowledge of (A, e, x, y) does the following.

1. Produce auxiliary commitments

aux = (C1, C2, C3, C̃1, C̃2, . . . , C̃n)

as follows. First pick ρ1, ρ2, ρ3, ρ4 ∈R Zp and compute C1 = gρ11 g
ρ2
2 , C2 = Agρ12 , and C3 =

gρ31 g
ρ4
2 . Then pick C̃i ∈R G for all i ∈ [n]\J , pick ri ∈R Zp for all i ∈ J and compute

C̃i = (bxi /ti)
ri for all i ∈ J .

2. Return Π3 as (aux,Π4,Π5), where Π4 and Π5 are respectively signature proofs of knowledge
of:

SPK 4

 e, x, y,

ρ1, ρ2, ρ3, ρ4,
α1, α2, β3, β4

 :

C1 = gρ11 g
ρ2
2 ∧ 1 = C−e1 gα1

1 gα2
2 ∧

C3 = gρ31 g
ρ4
2 ∧ 1 = C−x3 gβ3

1 gβ4
2 ∧

ê(C2,w)
ê0

= ê(C2, h0)−eêx1 ê
y+α1
2 ê(g2, w)ρ1 ∧

1 = bβ3t−ρ3

 (m̂)

SPK 5

(µi, ri)i∈[n] :
∨

I⊆(n−d+1)[n]

∧
i∈I

(
1 = bµit−ri ∧ C̃i = bµii t

−ri
i

) (m̂)

on message m̂ = aux||m. Π4 can be computed using the knowledge of

(e, x, y, ρ1, ρ2, ρ3, ρ4, α1, α2, β3, β4),

where α1 = ρ1e, α2 = ρ2e, β3 = ρ3x and β4 = ρ4x; Π5 can be computed using the knowledge
of (µi, ri)i∈J , where µi = rix for all i ∈ J .

In the above, we denoted ê(gi, h0) as êi for i = 0 to 2.

6.1.2 Verification

To verify a proof Π3 = (aux,Π4,Π5) for SPK 3 on message m where aux =
(C1, C2, C3, C̃1, C̃2, . . . , C̃n), return valid if the verification of both Π3 and Π4 on m̂ = aux||m
returns valid, and C̃i 6= 1 for all i = 1 to n. Return invalid otherwise.

The instantiation of SPK 4 and SPK 5 is enumerated next.

18

6.2 SPK 4

6.2.1 Signing

To produce a proof Π4 for SPK 4 on message m̂ ∈ {0, 1}∗, do the following:

1. (Commit.) Pick re, rx, ry, rρ1 , rρ2 , rρ3 , rρ4 , rα1 , rα2 , rβ3 , rβ4 ∈R Z∗p and compute

T1 = g
rρ1
1 g

rρ2
2 , T2 = C−re1 g

rα1
1 g

rα2
2 ,

T3 = g
rρ3
1 g

rρ4
2 , T4 = C−rx3 g

rβ3
1 g

rβ4
2 ,

T5 = ê(C2, h0)−re · êrx1 · ê
ry+rα1
2 · ê(g2, w)rρ1 , T = brβ3 t−rρ3 .

2. (Challenge.) Compute
c = H(T1, . . . , T5, T, m̂).

3. (Respond.) Compute

se = re − ce, sx = rx − cx, sy = ry − cy,

sρi = rρi − cρi for i = 1 to 4,

sαi = rαi − cρie for i = 1, 2, and sβi = rβi − cρix for i = 3, 4.

4. (Output.) The signature proof of knowledge Π4 on m̂ is

Π4 = (c, se, sx, sy, sρ1 , sρ2 , sρ3 , sρ4 , sα1 , sα2 , sβ3 , sβ4).

6.2.2 Verification

To verify a proof Π4 for SPK 4 on message m̂, do the following:

1. Compute
T ′1 = g

sρ1
1 g

sρ2
2 Cc1, T ′2 = C−se1 g

sα1
1 g

sα2
2 ,

T ′3 = g
sρ3
1 g

sρ4
2 Cc3, T ′4 = C−sx3 g

sβ3
1 g

sβ4
2 ,

T ′5 = ê(C2, h0)−se · êsx1 · ê
sy+sα1
2 · ê(g2, w)sρ1 ·

(
ê(C2, w)

ê0

)c
, T ′ = bsβ3 t−sρ3 .

2. Return valid if
c = H(T ′1, . . . , T

′
5, T

′, m̂).

Return invalid otherwise.

19

6.3 SPK 5

6.3.1 Signing

To produce a proof Π5 for SPK 5 on message m̂ ∈ {0, 1}∗, do the following:

1. (Commit.) Pick rµi , rri ∈R Zp for all i ∈ J and pick ci, sµi , sri ∈R Z∗p for all i ∈ [n]\J . Then
compute

Ti =
{
brµi t−rri , i ∈ J ,
bsµi t−sri , i ∈ [n]\J , and T̃i =

{
b
rµi
i t
−rri
i , i ∈ J ,

b
sµi
i t
−sri
i C̃cii , i ∈ [n]\J .

2. (Challenge.) Compute
c0 = H((Ti, T̃i)ni=1, m̂).

Construct a polynomial f over Z∗p of degree at most (d − 1) such that ci = f(i) for all
i ∈ {0} ∪ [n]\J . Compute ci = f(i) for all i ∈ J .

3. (Respond.) Compute, for all i ∈ J ,

sµi = rµi − ciµi and sri = rri − ciri.

4. (Output.) The signature proof of knowledge Π4 on m̂ is:

Π4 = (f, (sµi , sri)i∈[n]).

6.3.2 Verification

To verify a proof Π5 for SPK 5 on message m̂, do the following:

1. Compute, for all i ∈ [n],

T ′i = bsµi t−sri and T̃ ′i = b
sµi
i t
−sri
i C̃

f(i)
i .

2. Return valid if deg(f) ≤ d− 1 and

f(0) = H((T ′i , T̃
′
i)
n
i=1, m̂).

Return invalid otherwise.

6.4 Efficiency

Note that among the 5 pairings needed to compute T5 above, 4 of them are constant and are
assumed to be included in the system’s parameters. The signer thus only needs to compute one
pairing, namely e(A2, h0). This pairing does not depend on the blacklist and the message and can
thus be precomputed. Similarly, the SP needs to compute two pairings during verification, namely
e(A2, h0) and e(A2, w).

20

Table 1: Number of operations during an authentication with a blacklist of size n.

Operation
User

SP
w/o Preproc. w/ Preproc.

G1 multi-EXP 7 0 4
G multi-EXP 3n+ 3 2n 2n+ 4

Pairing 1 0 2

7 Analysis

7.1 Complexities

We analyze the efficiency of our construction in terms of both time and space/communication
complexities. First we emphasize that both complexities are independent of the number of users
and SPs in the system. Thus our system scales well with respect to these two quantities. Both
complexities, however, are dependent on the size of the blacklist. In particular, the communication
overhead and the time it takes for both a user and an SP to execute the Authentication protocol
grow linearly with the current size of the SP’s blacklist.

More specifically, a blacklist of size n contains n tickets, each consisting of an `-bit string and
an element of G. A proof Π3 of SPK 3 consists of 3 G1 elements, n G elements and 3n + 12 Zp
elements. The total communication complexity for an authentication is thus n+ 1 `-bit strings, 3
G1 elements, (2n + 1) G elements and 3n + 12 Zp elements. SPs need to store a ticket for every
successful authentication.

A breakdown of time complexity of the Authentication protocol into the number of pairing oper-
ations and multi-exponentiations (multi-EXPs)11 in various groups is shown in Table 1. Operations
such as G addition and hashing have been omitted as computing them takes relatively insignficant
time. Some preprocessing is possible at the user before the knowledge of the challenge message and
the blacklist. In fact, all but 2n multi-EXPs in G can be precomputed by the user.

7.2 Security

The correctness of our construction mostly stems from the correctness of the SPKs. Its proof is
thus relatively straightforward. We claim that our construction has correctness without proof for
the sake of conciseness.

We now state the following theorem about the security of our construction, and then sketch its
proof.

Theorem 1 (Security) Our construction of BLAC is secure if the q-SDH problem is hard in
(G1,G2) and the DDH problem is hard in G under the Random Oracle Model.

7.2.1 Blacklistability

Suppose there exists a PPT adversary A who can win in game Blacklistability with non-negligible
probability, we show how to construct a PPT simulator S that solves the q-SDH problem with
non-negligible probability.

11A multi-EXP computes the product of exponentiations faster than performing the exponentiations separately.
We assume that one multi-EXP operation multiplies up to 3 exponentiations.

21

On input of an instance of the q-SDH problem (g′0, h
′
0, h
′
0
γ , . . . , h′0

γq), S’s task is to output a
pair (Ā, ē) such that ê(Ā, h′0

γh′0
ē) = ê(g′0, h

′
0). We assume that A queries A-Reg or Corrupt-U

at most q times. S uses the problem instance to generate the public parameters so that it can
answer these queries. Specifically, S randomly generates a degree (q − 1) polynomial f such that
f(x) =

∏q−1
i=1 (x + ei). It computes h0 = h′0

f(γ) and w = hγ0 = h′0
γf(γ). It also computes h1 =

[(whe∗0)ν1h−1
0]1/ν2 and h2 = hµ1 for some e∗, ν1, ν2, µ ∈ Z∗p generated uniformly at random. Next, it

computes gi = ψ(hi) for i = 0 to 2. Finally, S gives (h0, h1, h2, g0, g1, g2, w) to A as the system
parameters. Let K be the set {1, . . . , q − 1} ∪ {∗} and K′ be an empty set ∅.
S keeps track of every user in the system. For a user ι ∈ IP , S simulates the P-Reg oracle by

first selecting xι ∈ Z∗p uniformly at random and then using it to simulate the Registration protocol.
This is possible since the Registration protocol has Honest-Verifier Zero-Knowledgeness (HVZK).
To simulate P-Auth and B-Auth for user ι ∈ IP , S computes the tag as t = bxι and simulates
the other steps using the HVZK property of the Authentication protocol.

When user ι ∈ IP is to be corrupted, S chooses ϕ from set K \ K′ uniformly at random. If
ϕ = ∗, S sets yι = (ν2 − xι)/µ, Aι = gν1 and eι = e∗, and returns (Aι, eι, xι, yι) as the credential of
user ι. Otherwise, S chooses yι ∈ Z∗p uniformly at random, sets eι = eϕ, computes Aι as:

Aι =
(
g0g

xι+µyι
1

) 1
eι+γ = g′0

f(γ)
eι+γ g

xι+µyι
γ+eϕ

1

= g′0
f(γ)
eι+γ

(
g

(xι+µyι)ν1(e∗+γ)−(xι+µyι)
(eι+γ)ν2

0

)

= g′0
f(γ)
eι+γ

“
1−xι+µyι

ν2

”(
g

(xι+µyι)ν1
ν2

0

)“
1− eι−e∗

eι+γ

”

= g′0
f(γ)
eι+γ

“
1−xι+µyι

ν2
− (eι−e∗)(xι+µyι)ν1

ν2

”
g

(xι+µyι)ν1
ν2

0 ,

and finally returns (Aι, eι, xι, yι) as the credential of user ι. In both cases, S adds ϕ to K′.
The simulation of A-Reg is similar. Upon receiving C for user ι (to be added to IA), S first

extracts the pair (xι, y′ι) by rewinding the adversary and selects ϕ from K\K′ uniformly at random.
If ϕ = ∗, S chooses y′′ι such that xι + µ(y′ι + y′′ι) = ν2, sets Aι = gν1 , eι = e∗ and finally returns
(Aι, eι, y′′ι). Otherwise, S chooses y′′ι uniformly at random, sets eι = eϕ and yι = y′ι + y′′ι , computes
Aι as:

Aι = g′0
f(γ)
eι+γ

“
1−xι+µyι

ν2
− (eι−e∗)(xι+µyι)ν1

ν2

”
g

(xι+µyι)ν1
ν2

0 ,

and finally returns (Aι, eι, y′′ι). S adds ϕ to K′ in both cases.
S stores all the credentials issued to A. For each SP j, S maintains a table Tj of q rows. The

rows are indexed by elements of K and contains no elements initially.
For each k := A-Auth(j, d) query, S tests if the associated ticket (s, t) satisfies t = H0(s||SPj)xϕ

for all ϕ ∈ K. If such i exists, it appends % := (k, d) to row ϕ. Otherwise, it rewinds and
extracts the underlying credential c′ := (A′, e′, x′, y′). We call c′ a special tuple. For each
Remove-From-BL(j, τ) query, S removes the corresponding element from the table Tj .

If a special tuple c′ exists, S solves the q-SDH problem as follows.

• Case I: e′ 6= eϕ for all ϕ ∈ K.

22

Denote z = x′ + µy′. We have:

A′e
′+γ = g0g

z
1

A′e
′+γ = g

ν1z(e∗+γ)−z
ν2

0

A′ = g
ν2−z

ν2(e′+γ)
0

(
g
ν1z
ν2

0

)“
1− e

′−e∗
e′+γ

”

g
1

e′+γ
0 =

(
A′g

−ν1z
nu2

0

) ν2
ν2−z−ν1z(e′−e∗)

.

Denote B′ = g0

1
e′+γ = g′0

f(γ)

e′+γ . Using long division, there exists a degree (q− 2) polynomial fq

such that f(γ)
(e′+γ) = fq(γ)(e′ + γ) + f1 for some f1 ∈ Z∗p\{0}. Thus B′ = g′0

f1
e′+γ+fq(γ). Finally,

A computes Ā =
(
B′g′0

−fq(γ)
)1/f1

and sets ē = e′. (Ā, ē) is a solution to the q-SDH problem.

• Case II: (e′ = eι ∧A′ = Aι) for some ι ∈ IP ∪ IA.
This case happens with negligible probability unless A can solve the discrete logarithm of h2

to base h1.

• Case III: e′ = eϕ for some ϕ ∈ K.
If e′ 6= e∗, S aborts. Otherwise denote z = x′ + µy′. We have:

A′e∗+γ = g0g
z
1

A′ = g
ν2−z

ν2(e∗+γ)
0 g

ν1z
ν2

0

g
1

e∗+γ
0 =

(
A′g

−ν1z
ν2

0

) ν2
ν2−z

.

Denote B′ = g0

1
e∗+γ = g′0

f(γ)

e′+γ . S uses the same method as in Case I to solve the q-SDH
problem.

It remains to argue that, if A can win the game, a special tuple exists with non-negligible
probability.

Assume there is no special tuple and |A| 6= 0. A wins the game if there exists a sequence of
A-Auth oracle query (A-Auth(j, d1), . . . ,A-Auth(j, dm)) such that the sequence (d1, . . . , dm) is
not q-partitionable. We can assume m is equal to the number of A-Auth(j, ·) query, for if the
sequence formed by the whole series of A-Auth(j, ·) query is q-partitionable, any sub-sequence of
it must be q-partitionable. Let the sequence be Q∗

The set of the sequences formed by the second element of each row of table Tj is a q-partition
of Q∗. Denote this particular q-partition as Q′. Since Q∗ is not q-partitionable, it must be the
case that Q′ is not bounded. It implies that there exists an ι and d such that the table entry d∗

in the ι-th row and the d-th column is less than d, i.e., d∗ < d. Let the corresponding query be
k := A-Auth(j, d∗), during which A has constructed a valid proof of knowledge of SPK Π3 using
a witness with xι in it.

Now, on the blacklist used in k := A-Auth(j, d∗), there are (d− 1) tickets generated using xι.
(Otherwise, the adversary would have already violated the soundness of Π3 in at least one of the

23

authentications associated with those (d− 1) tickets.) The soundness of Π3 thus implies that, with
non-negligible probability, d < d∗, which contradicts to d∗ < d above.

Otherwise, |IA| = 0. In that case, there must be a special tuple as K is empty. Moreover, case
I above happens with overhelming probability since the adversary does not have any information
about the ei’s.

7.2.2 Anonymity

Suppose there exists a PPT adversary A who can win in game Anonymity with non-negligible
probability (say, 1

2 +ε), we show how to construct a PPT simulator S that solves the DDH problem
with non-negligible probability. On input a DDH problem instance (g′, g′u

′
, g′v

′
, T ′), S is required to

decide if T ′ = g′u
′v′ . S sets G = 〈g′〉 and generates all other parameters honestly. The parameters

and the master key of the GM are given to A.
S keeps track of every user in the system. S chooses one user, denoted as user i∗. For all oracle

queries (except the Hash oracle) not related to user i∗, S follows the protocol honestly.
Queries related to user i∗ are handled as follows. For B-Reg, S simulates the protocol as

if (u′, y′) is an opening of the commitment C. The distribution is perfect since for any u′ there
exists an y′ such that C = gu

′
1 g

y′

2 . Upon receiving (A, e, y′′) from A, S records the credential for
i∗ as (A, e,⊥,⊥). The credential for user i∗ is (A, e, u′, y) such that y = y′ + y′′. This credential,
however, is unknown to S. For P-Auth or B-Auth queries, S chooses s uniformly at random and
sets H0(s||IDj) = g′R, where IDj is the ID of SP j, for some R generated uniformly at random. S
then computes t = g′u

′R and simulates the protocols with τ = (s, t).
In the challenge phase, A outputs two users i∗0 and i∗1 from IB. If i∗ /∈ {i∗0, i∗1}, S aborts. Else,

A queries P-Auth(⊥, j∗, d∗) if j∗ ∈ JP , or B-Auth(⊥, j∗, d∗) otherwise.
Now there are two cases to consider. In the case when d∗0 and hence d∗1 are greater than

or equal to d∗, S simply return ⊥ as the protocol transcript. It is straight-forward to see that
the corresponding B-Auth or P-Auth query does not contains any information on i∗0 or i∗ and
probability of A winning cannot be greater than 1

2 .
In the case when d∗0 and d∗1 are both less than d∗, S flips a fair coin b̂. If i∗ 6= i∗

b̂
, S aborts.

Otherwise, S chooses si∗ uniformly at random and sets H0(si∗ ||SPj) = g′v
′
. S computes the ticket

τ = (H0(si∗ ||SPj), ti∗) = (g′v
′
, T ′) and simulates the corresponding Authentication protocol.

If T ′ is a DDH tuple, the simulation is perfect and A wins with probability 1
2 + ε. On the other

hand, if T ′ is a random element, the simulation is imperfect in the sense that the authentication
transcript is not related to either of the challenge users. In that case probability of A winning
cannot be greater than 1

2 .
Finally, if A guessed b̂ correctly, S answers that (g′, g′u

′
, g′v

′
, T ′) is a DDH-tuple.

Now with probability 2
|IB | , i

∗ ∈ {i∗0, i∗1}. With probability 1
2 , i∗ = i∗b . Thus, the probability of

not aborting is 1
|IB | , which is non-negligible. We assume S answers “no” when it has to abort, in

which case the probability of S winning is 1
2 .

If S does not abort and T ′ is a DDH tuple, A wins with probability 1
2 + ε. If T ′ is a random

element, A can only output the guess bit correctly with probability no more than 1
2 since the

transcript of the challenge authentication does not contain any information on i∗
b̂
. In fact, A could

abort or behave randomly and for simplicity we let its winning probability be ε′ such that 0 ≤ ε′ ≤ 1
2 .

To summarize, there are 4 cases.

1. T ′ is a DDH tuple, S answers “yes”. The corresponding probability is 1
2 + ε.

24

2. T ′ is a DDH tuple, S answers “no”. The corresponding probability is 1
2 − ε.

3. T ′ is not a DDH tuple, S answers “yes”. The corresponding probability is ε′ for some ε′ such
that 0 ≤ ε′ ≤ 1

2 .

4. T ′ is not a DDH tuple, S answers “no”. The corresponding probability is 1 − ε′ for some ε′

such that 0 ≤ ε′ ≤ 1
2 .

The probability that S answers correctly (case 1 + case 4) is therefore

1
2

(
1
2

+ ε+ 1− ε′) =
1
2

+
ε

2
+ (

1
2
− ε′),

which is no less than 1
2 + ε

2 . Summing up the cases of aborting and not aborting, the probability
of S winning is at least 1

2 + ε
2|IB | .

7.2.3 Non-Frameability

Suppose there exists a PPT adversary A who can win in game Non-Frameability with non-negligible
probability, we show how to construct a PPT simulator S that solves the discrete logarithm problem
in G.

On input of a DL problem instance (T ′, g′), S is required to compute u′ such that g′u
′

= T ′. S
sets G = 〈g′〉 and all other parameters are generated honestly. The parameters and the master key
of GM are given to A.
S keeps track of every user present in the system. S chooses one user, denoted as user î. For

all oracle queries (except Hash oracle) not related to user î, S follows the protocol honestly. Let K
be the set of credentials S has obtained from A in the B-Reg query.

Queries related to user î are handled as follows. For B-Reg, S simulates the protocol as if
u′, y′ is an opening of the commitment C. The distribution is perfect since for any u′ there exists
a y′ such that C = gu

′
1 g

y′

2 . Upon receiving (A, e, y′′) from A, S adds (A, e,⊥,⊥) to K. Note that
the credential for user î is (A, e, u′, y) such that y = y′ + y′′ and is unknown to S. For P-Auth or
B-Auth, S chooses s and R uniformly at random and sets H0(s||IDj∗) = g′R, where IDj∗ is the
ID of SP j∗. S then computes t = g′u

′R and simulates the protocols with τ = (s, t).
Finally, S aborts if î 6= i∗. With probability 1

|IB | , S does not abort. Since d∗ > d∗i (refer to
Section 4.3.3 for their meaning), the fact that the challenge P-Auth query terminated unsuccess-
fully implies that, with overwhelming probability, there exists an Add-To-BL(j∗, k′) query for
some k′ such that k′ is the output of an A-Auth query. (Observe that k′ cannot be an output of
P-Auth(i∗, ·, ·) or B-Auth(i∗, ·, ·).) Denote by $k′ the transcript of the A-Auth query. Assume
(s′, t′) = Extract($′k), S rewinds the SPK in the A-Auth query and obtains u′ = logH0(s′||·)(t′). It
returns u′ as the solution of the DL problem.

Informally speaking, the above means that, to prevent an honest user from authenticating him-
self successfully, the adversary must have conduct some kind of k′ := A-Auth query such that the
associate ticket is equal to H0(·||·)x so that x is the secret of the target user i∗. Then the adversary
queries Add-To-BL(j∗, k′), making the corresponding P-Auth to terminate unsuccessfully. S, by
rewinding the the A-Auth query k′, thus gets to know the DL of u′, which is x.

8 Performance Evaluation

We now present results from the experimental evaluation of our BLAC construction.

25

8.1 Prototype Implementation

We implemented our construction of BLAC in C and packaged the code into a software library
to allow for easy adoption by application developers. We have not implemented the extension for
supporting a d-strikes-out revocation policy and our current implementation therefore supports
only a 1-strike-out revocation policy. We used the Pairing-Based Cryptography (PBC) Library12

(version 0.4.11) for the underlying elliptic-curve and pairing operations, which is built on the GNU
MP Bignum (GMP) Library.13 We also made use of several routines in OpenSSL,14 such as its
SHA-1 hash function for instantiating the cryptographic hash functions needed by our construction.

The choice of curve parameters can have a significant effect on the performance of an implemen-
tation. We used pairings over Type-A curves as defined in the PBC library. A curve of this type
has the form of E : y2 = x3 +x over the field Fq for some prime q. Both G1 and G2 are the group of
points E(Fq) of order p for some prime p such that p is a factor of q+ 1. The pairing is symmetric
and has an embedding degree k of 2. Thus G is a subgroup of Fq2 . In our implementation, q and
p are respectively 512-bit and 160-bit integers. We also used G for the group wherein the tickets
reside.

The interface to the library we implemented is defined by a list of C functions. Some of the more
important functions are as follows. setup() is a function that implements the Setup algorithm. The
functions register gm() and register user(), executed by the GM and the user respectively,
together implement the Registration protocol. Similarly authen sp() and authen user() together
implement the Authentication protocol.

To test and evaluate our library implementation, we wrote a driver application that allows users
to post text messages at a web forum. This can be thought of as users editing Wikipedia pages.
We did not prototype the user registration part of the system because our major interest was to
study the performance of the Authentication protocol.

In the application, authentication is carried out as follows. The SP first creates a listening
socket. Upon the arrival of a connection request from a user, the SP sets up an SSL socket with
the user using OpenSSL.15 This means that a confidential and server-authenticated channel is set
up between the user and the SP. From within this channel, the user and the server respectively
execute authen user() and authen sp(). If authen sp returns failure, the SP closes the SSL
connection, thereby refusing to serve the user. Otherwise, SP serves the user using the same
channel by recording the text message sent by the user, along with the ticket extracted from
the authentication transcript. The SP may then manually inspect the text message and add the
associated ticket to its blacklist.

Alternatively, by integrating it with SSL server-authentication, BLAC authentication can be
turned into a mutual authentication, in which the user authenticates the server’s identity but the
server is ensured that and only that the user is some well-behaving user.

8.2 Experimental Results and Analysis

For our experiments, we used a Dell OptiPlex 745 desktop machine with an Intel dual-core (Core
2) 1.86GHz CPU and 1GB of RAM, running Linux/Ubuntu 7.10. All the timings reported below
were averaged over 10 randomized runs.

We measured two time quantities related to the execution of the Authentication protocol: (1)
the time it took for an SP to verify the authentication (i.e., step 4 of the protocol), and (2) the time

12http://crypto.stanford.edu/pbc/
13http://gmplib.org/
14http://www.openssl.org/
15For the sake of simplicity, the SP uses a self-signed key-pair to authenticate itself.

26

it took for a user to inspect the blacklist and produce a proof (i.e., steps 2 and 3 of the protocol),
with preprocessing enabled. The sum of these two quantities roughly represents the total latency
incurred by the protocol as perceived by the user if we ignore the network I/O delay, which is
network-dependent.

When the blacklist was empty, it took the SP 0.06s to verify the authentication. When the
blacklist had 400 entries instead, it took the SP 0.46s to do the same. On the other hand, when the
blacklist size was 0 and 400, the user spent 0.09ms and 0.73s respectively to inspect the blacklist and
produce a proof. The estimated protocol latencies are thus 0.06s and 1.19s respectively. The total
communication overhead due to the authentication protocol is roughly 0.27KB per blacklist entry.
Figures 1(a) and 1(b) show experimental data collected with different blacklist sizes. Please see our
discussion in Section 9 that elaborates on the feasibility of our construction in real applications.

Note that our authentication protocol scales well with the number of cores in CPUs because
virtually all computation that grows linearly with the blacklist size is parallelizable.16 As evidence,
on our dual-core machine, all the timings we collected using a single-threaded implementation
almost doubled the figures of our current multi-threaded implementation, whose figures are reported
above.

9 Discussion

We now discuss various practical issues related to the deployment of BLAC in a real-world setting.

9.1 Efficiency

In our cryptographic construction, blacklist verification requires O(n) computations, where n is
the number of entries in the blacklist. As indicated by Section 8, our scheme would support 1,600
blacklist entries with 2 authentications per second on an 8-core machine.17 Since anonymous au-
thentication will be used at SPs such as Wikipedia only for certain operations such as editing
webpages, we believe this performance is reasonable. Consider two extreme examples. In March
2007, Wikipedia averaged about two edits per second to its set of English webpages.18 Likewise,
YouTube reported less than one video upload per second on average in July 2006.19 The commu-
nication complexity required to sustain one or two authentications per second with 1,600 blacklist
entries would be about 3.5 to 7 Mbps for the SP. Such a data rate would be high for an individual
server, but would be reasonable for large SPs such as YouTube and Wikipedia, which may have
distributed servers across the nation for handling large bandwidth. Based on these calculations,
SPs with much lower authentication rates than Wikipedia or YouTube (e.g., one authentication ev-
ery few seconds) can easily be served on commodity hardware and T-1 lines. We reiterate that our
construction is the first to allow anonymous blacklisting without TTPs, and more efficient blacklist
checking, perhaps in O(log n) or O(1) time, is an open problem that deserves further research.
Faster verification will allow much higher rates of authentication while supporting extremely large
blacklists, and this problem is, therefore, worthy of further study. As mentioned earlier, our follow-
up work on PEREA [32] alters the semantics of revocation to provide more efficient authentication.
PEREA introduces the concept of a revocation window, the number of subsequent authentications
before which a misbehavior must be recognized and blacklisted for the user to be revoked. These

16The only exception is the two calls to SHA-1, but they take comparably negligible time.
17An 8-core Mac Pro with two 2.8GHz Quad-Core Intel Xeon processors was available for approximately $2,800 at

the time of writing.
18http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm
19http://technology.guardian.co.uk/weekly/story/0,,1823959,00.html

27

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000

T
im

e
(s

ec
)

Entries in Blacklist

Time taken for authentication vs. Size of blacklist

SP Verify
User Precomputation

User Blacklist Check + Sign

(a) Generating proofs at the user takes approximately twice the
amount of time taken by the SP. With precomputation, this
time is cut in half. Authentication latencies are on the order of
a couple of seconds for 1,000 blacklist entries. The timings we
collected were consistent, and the error bars representing one
standard deviation around the mean are barely visible in this
graph.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

S
iz

e
(K

B
)

Entries in Blacklist

Amount of communication between the SP and the User vs. Size of blacklist

Total
Uplink

Downlink

(b) Communication is on the order of 300–400 KB for 1,000
blacklist entries and is approximately the same for uplink and
downlink communication.

Figure 1: The communication and execution times scale linearly with the size of the blacklist.

semantics allow for more efficient authentication at the server, but allows for the possibility of
blacklisted users to remain unrevoked (if misbehaviors are not recognized within the revocation
window).

9.2 Interleaving Authentications

One concern is that an individual user may attempt to interleave multiple authentications and take
up several hundreds of entries in the blacklist by misbehaving several times in a short span of time.
Such an attack is possible because users can parallelize several anonymous sessions with an SP. A
promising approach would be to use a scheme such as Camenisch et al.’s citeCamenischEtAl06ccs
periodic n-times anonymous authentication to rate-limit the number of anonymous accesses from
users. In such a scheme, an anonymous user would be able to access the SP anonymously at most
n times within a time period. For example, for n = 10 and a time period of 1 day, a single user

28

would be able to contribute at most 10 entries to the blacklist in a given day.

Remark. Since concurrent sessions are preempted while an entry is added (atomically) to a blacklist,
our system guarantees that once an entry is added to the blacklist at time t, the blacklisted user
will not be able to access the service after time t (or until unblacklisted at a later time).

9.3 Enrollment Issues

We assume that the Group Manager issues only one credential per legitimate user and assume
it is difficult to perform “Sybil” attacks [18], where users are able to obtain multiple credentials
by posing as different identities. The Sybil attack, however, is a challenging problem that any
credential system is vulnerable to, and we do not attempt to solve this problem here.

In a real deployment of BLAC, users may eventually misplace their credentials, or have them
compromised. Since that credential may be blacklisted by an SP, issuing a new credential to a
user can help that user circumvent blacklisting. As a trade-off, we suggest that if a user misplaces
his or her credential, that user is issued a pseudonymous credential for a certain amount of time
called the “linkability window” before a new anonymous credential is issued. If a user repeatedly
attempts to acquire new credentials, the linkability window of that user can be increased to curb
misbehavior.

9.4 Allowing the Sharing of (Entries in) Blacklists

We have presented our construction of BLAC in which an SP cannot use an entry from another
SP’s blacklist (corresponding to Alice) to prevent Alice from successfully authenticating to the SP.
Nevertheless, in some applications, a group of SPs may desire to block users misbehaving at any
one of the SPs.

Our system can be modified to allow such sharing: instead of computing the tag in a ticket
as t = H(s||SP)x, a user computes it as t = H(s)x regardless of the SP the user is connecting to.
Tickets computed as such can be shared among SPs as adding a user’s ticket borrowed from another
SP is no different from the SP obtaining a ticket directly from the same user. Such a modified
construction, however, has different security (and privacy) implications. For instance, Wikipedia
may decide to add only YouTube’s tickets to its blacklist. If a user’s authentication fails, Wikipedia
knows that the user has previously visited YouTube. Even though the user is anonymous, an SP
can learn some information about the user’s behavior at another SP.

9.5 Revoking Compromised TPMs

Concurrently and independently, Brickell and Li citeepid have proposed a method to unlinkably
revoke compromised Trusted Platform Modules (TPMs) [29]. While they focus on revoking com-
promised hardware, as opposed to blacklisting misbehaving users, their construction is similar to
ours. Both solutions use a protocol for proving the inequality of multiple discrete logarithms to
prove that a user is not revoked/blacklisted. Nevertheless, signatures in their solution are not bound
to the verifier’s identity and authenticating even once could result in the global revocation of the
prover. Our solution provides more privacy by allowing sharing and non-sharing of blacklist entries
among verifiers. Their solution does not support a d-strikes-out revocation policy, and finally, their
solution is RSA-based while ours is pairing-based.

29

10 Conclusions

We present BLAC, an credential system for anonymous authentication that for the first time simul-
taneously provides privacy-enhanced revocation, subjective judging, and eliminates the reliance on
trusted third parties capable of revoking the privacy of users. We believe that the ability to revoke
users while maintaining their anonymity is a worthwhile endeavor. While BLAC demonstrates the
feasibility of such a goal, we encourage researchers to develop solutions that are more efficient —
BLAC requires computation at the SP that is linear in the size of the blacklist. We make one such
attempt with PEREA [32], albeit with different revocation semantics. We also believe that our
contributions of supporting a d-strikes-out revocation policy is a novel analog to threshold-based
approaches such as k-TAA. Future work could explore more complex policies such as boolean com-
binations of misbehaviors (such as “user has defaced a webpage AND user has posted copyrighted
material more than 3 times”).

11 Acknowledgments

The authors would like to thank Jiangtao Li and the anonymous CCS’07 reviewers for their valuable
comments.

30

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-
resistant group signature scheme. In CRYPTO, volume 1880 of LNCS, pages 255–270. Springer,
2000.

[2] G. Ateniese, D. X. Song, and G. Tsudik. Quasi-efficient revocation in group signatures. In
Financial Cryptography, volume 2357 of LNCS, pages 183–197. Springer, 2002.

[3] M. H. Au, S. S. M. Chow, and W. Susilo. Short e-cash. In INDOCRYPT, volume 3797 of
LNCS, pages 332–346. Springer, 2005.

[4] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. In SCN, volume 4116 of
LNCS, pages 111–125. Springer, 2006.

[5] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing effi-
cient protocols. In Proceedings of the 1st ACM conference on Computer and communications
security, pages 62–73. ACM Press, 1993.

[6] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, volume 3152 of
LNCS, pages 41–55. Springer, 2004.

[7] D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In ACM Conference
on Computer and Communications Security, pages 168–177. ACM, 2004.

[8] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich. How to
win the clonewars: efficient periodic n-times anonymous authentication. In ACM Conference
on Computer and Communications Security, pages 201–210. ACM, 2006.

[9] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EUROCRYPT,
volume 3494 of LNCS, pages 302–321. Springer, 2005.

[10] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Balancing accountability and privacy
using e-cash (extended abstract). In SCN, volume 4116 of LNCS, pages 141–155. Springer,
2006.

[11] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In EUROCRYPT, volume 2045 of LNCS, pages
93–118. Springer, 2001.

[12] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In CRYPTO, volume 2442 of LNCS, pages 61–76. Springer,
2002.

[13] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In SCN,
volume 2576 of LNCS, pages 268–289. Springer, 2002.

[14] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In CRYPTO, volume 3152 of LNCS, pages 56–72. Springer, 2004.

[15] D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT, pages 257–265, 1991.

[16] I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In EURO-
CRYPT, pages 418–430, 2000.

31

[17] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-generation onion router.
In USENIX Security Symposium, pages 303–320. USENIX, 2004.

[18] J. R. Douceur. The sybil attack. In IPTPS, volume 2429 of LNCS, pages 251–260. Springer,
2002.

[19] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989.

[20] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[21] P. C. Johnson, A. Kapadia, P. P. Tsang, and S. W. Smith. Nymble: Anonymous ip-address
blocking. In Privacy Enhancing Technologies, volume 4776 of Lecture Notes in Computer
Science, pages 113–133. Springer, 2007.

[22] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In EUROCRYPT,
volume 3494 of LNCS, pages 198–214. Springer, 2005.

[23] J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group signature for
ad hoc groups (extended abstract). In ACISP, volume 3108 of LNCS, pages 325–335. Springer,
2004.

[24] L. Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA, volume 3376
of LNCS, pages 275–292. Springer, 2005.

[25] L. Nguyen and R. Safavi-Naini. Dynamic k-times anonymous authentication. In ACNS, volume
3531 of LNCS, pages 318–333. Springer, 2005.

[26] C.-P. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174,
1991.

[27] I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication (extended abstract).
In ASIACRYPT, volume 3329 of LNCS, pages 308–322. Springer, 2004.

[28] I. Teranishi and K. Sako. k-times anonymous authentication with a constant proving cost. In
Public Key Cryptography, volume 3958 of LNCS, pages 525–542. Springer, 2006.

[29] TPM Work Group. TCG TPM specification version 1.2 revision 94. Technical report, Trusted
Computing Group, 2006.

[30] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith. Blacklistable anonymous credentials:
Blocking misbehaving users without TTPs. In ACM Conference on Computer and Communi-
cations Security. ACM, 2007. To Appear.

[31] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith. Blacklistable anonymous creden-
tials: Blocking misbehaving users without TTPs (full version). Technical Report TR2007-601,
Dartmouth College, Aug 2007.

[32] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith. PEREA: Towards practical TTP-free
revocation in anonymous authentication. In CCS ’08: 15th ACM conference on Computer and
communications security (To Appear). ACM, 2008.

32

[33] P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting, e-cash and attestation.
In ISPEC, volume 3439 of LNCS, pages 48–60. Springer, 2005.

[34] P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong. Separable linkable
threshold ring signatures. In INDOCRYPT, volume 3348 of LNCS, pages 384–398. Springer,
2004.

33

