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1 Introduction

1.1 SCADA Systems

Supervisory Control And Data Acquisition (SCADA) systems are real-time process control systems
that monitor and control local or geographically remote devices. They are widely used in industrial
facilities and critical infrastructures such as electric power generation and distribution systems, oil
and gas refineries and transportation systems, allowing operators to ensure their proper functioning.

Electric power utilities, for instance, were among the first to widely adopt remote monitoring
and control systems. Their earliest SCADA systems provided simple monitoring through periodic
sampling of analog data, but have evolved into more complex communication networks. In this
paper, we focus on SCADA systems for electric power generation and distribution. However, our
proposed solution and discussion are applicable to many other SCADA systems.

Devices and Communications A SCADA system consists of physical devices, as well as com-
munication links (we simply call them links from now on) that connect them together. Typical
communications in a SCADA system include exchanging control and status information between
master and slave devices. Master devices, most of which are PCs or programmable logic controllers
(PLCs), control the operation of slave devices; a slave device, e.g., a remote terminal unit (RTU),
can be a sensor, an actuator, or both. Sensors read status or measurement data of field equipments
such as voltage and current, whereas actuators send out commands or analog set-points such as
opening or closing a switch or a valve.

Most SCADA systems have traditionally used low-bandwidth links, e.g., radio, direct serial
and leased lines, with typical baud rates from 9600 to 115200. They are known as serial-based
SCADA systems. Communication protocols used in these systems are very compact—messages are
short, and slave devices send information only when polled. Popular protocols include Modbus
(http://www.modbus.org/) and DNP3 (http://www.dnp.org).

Security Trouble Many serial-based SCADA systems in operation today were deployed decades
ago with availability and personnel safety as the primary concerns, rather than security. As with
any complex systems not designed to withstand adversarial action, these systems are vulnerable
to a variety of malicious attacks such as sniffing and tampering. The risks due to such a lack of
security in these systems are ever increasing, as an initial protection of “security through obscurity”
breaks down.

First, after initial dependence on proprietary elements, it is now common to build SCADA
systems using commercial off-the-shelf (COTS) hardware and software that speak open communi-
cation protocols, the technical internals of which are often easily accessible. Second, many utilities
have replaced, to various extent, their private networks by public ones such as the Internet. Their
SCADA networks and corporate networks have also become highly inter-connected to achieve ef-
ficient information exchange—leading to increased risks of intentional or inadvertent exposure to
the Internet. Finally, teams of sophisticated hackers are now employed by criminal organizations
or terrorists to break into these systems.

Retrofitting Security Failures of critical infrastructures could lead to devastating consequences.
As an example of cyber-attacks on critical infrastructures, in 2001, an Australian man hacked into
a computerized sewage management system and dumped millions of liters of untreated waste into
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Figure 1: System and attack model for “bump-in-the-wire” approach.

local parks and rivers [Smi01]. It is therefore paramount to secure SCADA systems against malicious
attacks. In the long run, existing insecure SCADA systems may eventually be replaced by newer
ones built with better technologies and with security as a primary goal—we will gradually see
devices that are computationally more powerful, links with higher bandwidths, as well as devices
and protocols with built-in security, e.g., DNPSec [MPPW06] and IEC 61850 (http://www.61850.
com/).

Nonetheless, for the next several decades (the expected lifetime of many SCADA equipments
spans from 20 to 50 years), achieving security requires non-intrusively retrofitting it to existing
insecure and legacy SCADA systems, as it is economically infeasible, if not technically impossible,
to simply throw away the existing infrastructures overnight. In such an effort, several “bump-in-
the-wire” (BITW) solutions have been developed. In a BITW solution, two hardware modules
are inserted into the link connecting two communicating SCADA devices, one next to each of
the device, as depicted in Figure 1. These modules transparently augment the necessary security
through mechanisms such as encryption and authentication.

1.2 The Challenge

BITW solutions secure SCADA communications at the expense of incurring end-to-end communica-
tion delay, due to the processing and buffering in the BITW modules. Buffering can be prohibitively
expensive in low-bandwidth links. For instance, a serial link at 9600 baud per second has a byte
time (i.e., the time to send one byte of data) of roughly 1ms. If each of the two BITW modules
buffers up a message of 20 bytes before processing it, then a timing overhead of 40ms is incurred,
due to buffering alone. If the message has 250 bytes, the overhead becomes 0.5s.1

Such an overhead could be intolerable for serial-based SCADA systems that have timing con-
straints on communication latencies. For example, the exchange of event notification information
for bus and transformer protection function between Intelligent Electronic Devices (IEDs) within
a power substation must be accomplished within 10ms, and the maximum delivery time for infor-
mation such as response to data poll and phasor measurements is up to 0.2s [IEE05].

As we will see in Section 2 when we review some of the existing solutions, retrofitting data
privacy to the communications in serial-based SCADA systems, even the time-critical ones, is a
relatively trivial task; the real challenge lies in retrofitting data authenticity and freshness in a

1A typical SCADA message has a length of roughly 20 bytes. However, some SCADA protocols allow a maximum
message-length of more than 250 bytes.
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timely manner, as the straightforward application of conventional data authentication techniques
does not provide the required timing guarantee: the BITW module at the receiving end of the
communication must “hold back” the message, i.e., it must wait until the receipt of the entire
message and its authentication information, before relaying the message to the destination SCADA
device, if the message is indeed authentic and fresh. This incurs a latency dependent linearly on
the length of the message being secured.

1.3 Our Contributions

We present Yet Another SecurIty Retrofit, or YASIR, which is a novel BITW solution for retrofitting
security to time-critical communications in serial-based SCADA systems. To the authors’ best
knowledge, our solution is the first that achieves all of the following goals simultaneously:

• High Security. YASIR provides data authenticity and freshness, and optionally data pri-
vacy, against not only eavesdroppers but stronger adversaries such as insiders, at a security
level of 80 bits.2

• Low Latency. YASIR incurs an overhead of at most 18 byte times, irrespective of the length
of the message being authenticated, and can hence secure time-critical SCADA communica-
tions.

• Comparable Cost. YASIR’s BITW modules have hardware costs comparable to many
existing solutions. Deploying YASIR is thus economically practical.

• Standard and Patent-free Tools. All cryptographic tools and techniques used in YASIR,
such as AES-CTR and HMAC, are NIST-standardized and patent-free.

The rest of this paper is organized as follows. In Section 2, we review several existing BITW
solutions. Section 3 covers SCADA preliminaries. Section 4 studies the threat model and security
goals of BITW solutions. We give an overview to our solution in Section 5 and provide the details
of its actual construction in Section 6. Section 8 concludes the paper. In the extended version of
this paper [TS08], we evaluate YASIR’s security, performance and costs in depth. We also report
on a micro-controller prototype of YASIR.

2 Existing Solutions

We do not consider encryption-only solutions as retrofitting only data privacy does not provide
sufficient security. Also, since we are interested in non-intrusively retrofitting security into legacy
SCADA communications, we do not consider non-BITW solutions, i.e. solutions that require replac-
ing the link with one of a higher bandwidth, e.g., from RS-232 to Ethernet, and/or upgrading the
(software or hardware of) the SCADA devices to allow for newer technologies such as IPSec [KA98].

Below, we review several existing BITW solutions, all of which fall short in some critical prop-
erty: they don’t provide data authenticity against realistic attacks, or they delay messages too long.
Table 1 summarizes this picture.

2A security solution attains a security level of ` bits if brute-forcing a space of 2` possibilities is the most effective
strategy for an adversary to break the solution’s security.
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Table 1: Previous BITW solutions for securing legacy SCADA communications all fall short in
some critical property; the one previous approach that provides the critical property is not BITW.
Our approach meets all the criteria.

2.1 SEL’s Serial Encrypting Transceiver

The SEL-3021 Serial Encrypting Transceiver from Schweitzer Engineering Laboratories, Inc (SEL,
http://www.selinc.com) is a BITW module for securing RS-232 serial links between SCADA
devices against malicious attacks. Both available models, SEL-3021-1 and SEL-3032-2, support all
standard SCADA protocols, including DNP3-Serial and Modbus/RTU, at data rates up to 115200
bps.

The SEL-3021-2 provides data authenticity through HMAC-SHA-1/-256. It also optionally
provides data privacy through AES-CTR-128. Unfortunately, SEL-3021-2 does not provide an
upper-bound on the delay it may incur [Sch]. In fact, SEL suggests that SEL-3021-2 “may not be
suitable to secure links that require time-critical communications with low latency (i.e., links for
electrical tele-protection)” [Sch]. Another model in the family, the SEL-3021-1, is an encryption-
only solution.

2.2 AGA’s SCADA Cryptographic Module

The American Gas Association (AGA) (http://www.aga.org/) Task Group 12 designed the SCADA
Cryptographic Module (SCM) [Ame06] as a BITW solution that retrofits data authenticity to
SCADA communications while maintaining the performance requirements. AGA’s SCM provides
several cipher-suites to choose from. The most secure ones use AES-CTR for data privacy and
HMAC-SHA-1/-256 for data authenticity. Unfortunately, messages must be held back by the re-
ceiving SCM using these cipher-suites.

PE Mode of Operation In one of the cipher-suites provided by AGA’s SCM, data authenti-
cation is achieved by operating AES in the Position-Embedded (PE) mode [WKM04]. Using this
cipher-suite, SCMs provide data authenticity with an overhead of only 32 byte times, regardless of
the message-length. To the best knowledge of the authors, AGA’s SCM and our YASIR are the
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only BITW solution for legacy SCADA systems that provide data authenticity without message
hold-back.

Unfortunately, AES operating in the PE mode attains a security level of only 16 bits at maxi-
mum, which is far below the generally accepted minimum of 80-bit level of security: with a proba-
bility of at least 2−16, SCADA devices protected by SCMs will accept maliciously crafted messages
as authentic. As a remedy, SCMs rely in addition on traditional HMAC for more secure data
authentication. However, as pointed out by Majdalawieh et al [MPPW06], although unauthentic
messages can eventually be detected by the SCM, the late detection can’t stop the SCM from
forwarding them to the SCADA devices. Moreover, AES in PE mode is proven secure only under
known-plaintext attacks [WKM04]. Hence, this solution is not guaranteed to be secure against
stronger and yet realistic attacks, such as chosen plaintext and/or ciphertext attacks launched by,
e.g., a compromised employee working in the control center.

2.3 PNNL’s Secure SCADA Communications Protocol

A SCADA communications authenticator technology is under development by a group led by Mark
Hadley at the Pacific Northwest National Laboratory (PNNL, http://www.pnl.gov/). In PNNL’s
solution, SCADA messages are “wrapped” by an authenticator and potentially some other infor-
mation such as a unique identifier. Their solution is effectively a protocol wrapper that converts
an insecure SCADA protocol into their Secure SCADA Communications Protocol (SSCP).

PNNL’s technology is being implemented both as a BITW solution and an embedded solu-
tion [Had07]. The BITW solution requires message hold-back. The embedded solution is fast but
is not a BITW solution: it requires upgrading the hardware and/or software of the SCADA devices.

3 Preliminaries

3.1 SCADA Protocols

The data link layer of a SCADA protocol specifies how control and data messages are encoded into
bit-sequences known as frames for transmission over the communication link. Let || denote the
concatenation of (bit- or octet-) strings. A frame F has the form s||H||P||e.

The header H, if present,3 may contain control information about the frame such as its length.
The payload P contains a message in its encoded form and usually has variable length. The
starting symbol s and the ending symbol e are bit-sequences distinct from any code symbols used
in the rest of the frame so that a SCADA device can detect frame boundaries unambiguously. In
many asynchronous protocols including Modbus/ASCII and DNP3-Serial, frame boundaries can be
recognized within two byte times. In Modbus/RTU, which is a synchronous protocol, a silence of
3.5 byte times indicates the end of a frame.

3.2 A Classification of Legacy SCADA Protocols

There are more than a hundred SCADA protocols in use today, many of which are closed and
proprietary. A practical BITW solution should make few assumptions about the SCADA protocol
it is protecting, so that it can be used to, upon simple configuration, protect a majority of protocols.

3In some SCADA protocols such as Modbus, frames do not have a header.
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Our solution to be presented in Section 6 does require certain assumptions to be made about
the underlying protocols, but is otherwise designed so that those assumptions hold for the majority
of SCADA protocols. Specifically, we introduce a classification of SCADA protocols into Type-I
and Type-II in the following; our solution assumes that a SCADA protocol is of Type-I or Type-II,
or both.

• Type-I Protocols. The last few octets in the frame is a checksum of (a part of) the rest of the
frame produced according to certain known CRC algorithm. A receiving SCADA device flags
an error and drops the frame if the checksum is incorrect. For example, in Modbus/ASCII
(resp. DNP3), the last two octets is a CRC-16 on the rest of the payload (resp. the previous
16 bytes).

• Type-II Protocols. A frame contains in its fixed-sized header information from which the
length of the frame (and thus that of the payload) can be calculated. If the actual length of
the frame is smaller than4 the length as calculated using the header information, a receiving
SCADA device flags an error and drops the frame.5 For example, DNP3 frames contain in
the header the size (in terms of the number of 16 octets) of the payload excluding the CRCs.

Most existing SCADA protocols are of Type-I or Type-II: it has long been a commonly adopted
practice to append CRC checksums to frames at the data-link layer of a communication protocol
for detecting transmission errors. Similarly, length verification is employed in many communication
protocols as a mechanism for detecting errors. Moreover, it is fairly easy to check if a protocol is
of one of the types and determine the CRC algorithm used. Even if the protocol is closed and
proprietary, one can do so by examining several actual frames coming out of a real SCADA device
speaking that protocol.

3.3 Formalizing BITW Solutions

As Figure 1 illustrates, a source SCADA device S converts messages such as data or control
information into frames for transmission. We overload S to denote the function that models the
device, which takes a message M as input and outputs the corresponding frame F. Similarly, the
destination SCADA device D is modeled as a function D, which takes a frame F′ as input and
output an error, if F′ fails to pass certain conformance checks such as the random-error detection,
or else the corresponding original message M′.

If no error was introduced (randomly or maliciously) into F during its transmission (i.e., if
F′ = F), then a correct pair of S and D must always give D(F′) = D(F) = D(S(M)) = M. If F′ 6= F,
then D may or may not return an error, depending on whether F ′ passes the conformance checks
in D. Virtually all SCADA devices have random-error detection mechanisms such as CRCs, and
are thus capable of catching most random errors.

Now, any BITW solution injects two hardware modules into the link in the model, one next
to S and the other next to D, which we call the Transmitter T and the Receiver R respectively.
Refer to Figure 1 again for a diagrammatic illustration. Again T is overloaded to denote the
function that models the Transmitter, which takes each frame F output by S as input and returns

4Replacing “smaller than” with “different from” results in a more restrictive assumption as there may exist
protocols that reacts to frames longer than what is specified in the header by, rather than dropping them as error,
truncating them to the specified length and operating on the truncation.

5This implicitly implies that the device will do the same if the frame is shorter than a header.
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the corresponding transformed frame F̃ to be transmitted over the insecure channel. Similarly, the
Receiver R is modeled as a function R that takes in a transformed frame F̃′ and outputs either an
error, or the corresponding original frame F′ to be given to D. If no error was introduced (randomly
or maliciously) into F̃, i.e., F̃′ = F̃, a correct pair of T and R must always give R(F̃′) = R(F̃) =
R(T (F)) = F. In most existing BITW solutions that provides data authenticity and freshness, if for
whatever reason F̃′ 6= F̃, then R should output an error with overwhelming probability. Effectively,
R acts as a guard in these solutions and discards all malformed frames so that D won’t even see
them.

We note that while S and D do not output the corresponding output until they receive the
input in its entirety, this is not necessarily the case for T and R: they could start outputting part of
the output after having received only part of the input. For example, T and R output data of size
equal to an AES-block for every receipt of data of the same size in AGA’s SCMs; in the solution
we are going to propose, T and R output a byte upon receiving a byte.

Finally, a SCADA device can be the source at one time and the destination at another (but
never at the same time). A BITW module in operation will thus switch between the role of a
Transmitter and that of a Receiver accordingly.

4 Security Requirements

A BITW solution retrofits security to legacy SCADA communications to thwart adversarial attacks.
Here we study the adversary’s goals and capabilities when attempting to launch those attacks and
the security properties a BITW solution must possess to defend against them. A more formal
treatment of the discussion in this section can be found in Appendix B.

4.1 Threat Model

When attempting to break the security provided by a BITW solution, the adversary may interact
with the various components in the SCADA system through all interfaces exposed to him in any
malicious and arbitrarily intelligent way, in order to increase his advantage in launching a successful
attack. Formalizing a threat model by correctly identifying the adversary’s capabilities is thus
critical in the evaluation of the security of any BITW solution.

Communication Links It is impossible to keep the adversary away from the entirety of links
as they travel through a long distance to connect end SCADA devices together. This is the case
for private leased lines, and even more so for public networks such as the Internet. As Figure 1
shows, in our threat model, links are insecure: an adversary may arbitrarily sniff, tamper, inject
and replay communications.

SCADA Devices and YASIR Modules We assume that the adversary knows how S, D, T
and R operate, i.e., the complete specification of how they convert an input into the corresponding
output. For SCADA systems that speak open protocols, such information is readily available to
the public. Even for systems that use closed and proprietary standards, one should that the same
information can be obtained by the adversary through reverse-engineering or insider leaks.

However, we assume that the adversary can’t physically tamper with any of them, e.g., ma-
nipulate their internal operations, or extract or overwrite their internal states, including the secret
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keys in the case of T and R. Assumptions on physical tamper-resistance as such are inevitable
for most cryptographically secure hardware. One usually achieves physical tamper-resistance by
carefully controlling who can have physical accesses to the hardware, and/or by introducing tamper-
resistant/-responsive mechanisms to the hardware itself.

Insider Attacks If there existed security boundaries around the substations and the control
centers, then attacking the communication links would be all the adversary could possibly do.
Unfortunately, such security boundaries do not exist. For example, an adversary may physically
break into an under-guarded substation, compromise an employee working in the control center, or
remotely hack into the computers auditing the SCADA devices.

In our threat model, SCADA devices and the attached YASIR modules are insecurely located:
as depicted in Figure 1, an adversary may feed D with maliciously crafted inputs and learn the
corresponding outputs at T ; he may also feed R with maliciously crafted inputs and learn the
corresponding outputs at D.

As we have discussed, the security of AGA’s SCMs using AES operating in PE mode assumes
the absence of any insider. We think that this is a rather unrealistic assumption. The actual
security of their solution is unclear in practice when the assumption ceases to hold.

4.2 Security Goals

A BITW solution must provide data authenticity and freshness to SCADA communications. If
desired, it must also provide data privacy.

Data Authenticity and Freshness A destination SCADA device D equipped with a YASIR
Receiver R only accepts a transformed frame F̃ as valid, i.e., it outputs the corresponding original
message M instead of flagging an error, if:

• (Authenticity.) M was an input to a source SCADA device S equipped with the YASIR
Transmitter T that shares its secret keys with R.

• (Freshness.) F̃ is fresh, i.e., not a replayed/re-ordered frame. More precisely, if T output any
other transformed frame F̃′ after outputting F̃, R has not been given F̃′ as an input.

Data Privacy No information about the corresponding original frame can be inferred from a
transformed frame in transit, except perhaps its size. More precisely, an adversary is allowed to
choose two messages M0 and M1 such that their corresponding frames, F0 and F1 respectively, as
output by S, are distinct but of the same length. The goal of data privacy is so that when given
the transformation F̃ by T of either F0 or F1, the adversary does not know which is the case.

We remark that there are scenarios when data privacy is not a concern. For example, it is fine
for an IED to report the current temperature reading to another IED within the same substation
over an unencrypted channel because an adversary who has broken into the substation might as well
go to read off the temperature directly from the sensing IED instead of tapping into the serial link.
There are even scenarios when data privacy is undesirable, such as when a message has multiple
recipients. One example is when the control center wants to broadcast the same control message
to all RTUs. Also, one might want to install a logging device that audits all the messages leaving
or entering a SCADA device.
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As will become clear, our proposed solution provides both data privacy and data authenticity
and freshness by default, and yet can easily be modified to provide only data authenticity and
freshness and send transformed frames in cleartext.

5 Solution Overview

5.1 An Observation

Recall that the BITW receiver module R acts as a guard for the destination SCADA device D
in most existing solutions. R can’t decide if a frame is authentic and fresh and hence can’t start
relaying it until the receipt of the entire frame and its authentication tag. The latency thus grows
linearly with the frame length. AES in PE mode used in AGA’s SCM as previously discussed is,
however, a novel exception. R starts relaying the frame to D before the authenticity of the frame
is known. However, R operates on the frame in such a way that, with probability close to 1, D will
flag a CRC error and drop the frame if it has been tampered.

In a sense, AGA’s solution converts random-error detection, already built in to the legacy
SCADA devices, into a mechanism for verifying data authenticity against malicious attacks. In their
solution, the conversion relies on the “real-or-random indistinguishability” property [BDJR97a] of
AES when used as a block cipher. However, this solution has three drawbacks: (1) one 16-byte
block of data must be buffered at each of both BITW modules. (2) There is a non-negligible
probability (as high as 2−8 or 2−16, depending on the underlying protocol) that a maliciously
tampered frame can get through R and be operated on by D. (3) This approach is proven secure
only against known-plaintext attacks, but not against stronger and yet still very realistic attacks
such as chosen-plaintext and/or chosen-ciphertext attacks.

5.2 Our Approach

Our solution shares the same idea of converting random-error detection to data authenticity and
freshness checking, but is different in how that conversion is done, which enables our solution to
offer three advantages: (1) our BITW modules operate on a frame as a stream of bytes instead
of 16-byte blocks so that latency to due buffering is minimal. (2) Our solution uses HMAC (but
in a way so that no message hold-back is required) so that R knows, at a 80-bit security level,
when a frame has been tampered with, in which case R is always capable of forcing D to drop the
frame. (3) The use of HMAC also allows our solution to be secure against stronger and yet realistic
attacks, namely chosen-plaintext-and-ciphertext attacks.

To provide data privacy and freshness, our solution makes appropriate use of encryption and
sequence numbers respectively, as we will describe in details in the next section. However, if we
ignore data privacy and freshness for now, the following explains at a high level how our solution
provides data authenticity.

For each frame F the BITW Transmitter T receives from the source SCADA device S, T appends
an HMAC-SHA-1-96 on F to the back of F and sends it off to the insecure channel. This can done
without holding back the frame. At the other end, the BITW Receiver R relays every byte it gets
from the insecure channel to the destination SCADA device D, but with a delay of 14 byte times.
Since a HMAC-SHA-1-96 MAC has 12 bytes, by the time R is about to relay last byte, it will have
already received the whole HMAC and will thus be able to verify the authenticity of the received
frame. Now if the HMAC verifies, all R has to do is to finish up relaying the frame by sending
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the last byte. However, if the HMAC does not verify, R manipulates the last byte to cause the
conformance checks at D to fail.

6 Solution Details

We now present the construction for our YASIR Transmitter and YASIR Receiver. Our single
YASIR Transmitter construction works for both Type-I and Type-II SCADA protocols; we have
two YASIR Receiver constructions, one for each type of SCADA protocols. If a SCADA protocol
to be secured is of both Type-I and Type-II, then either YASIR Receiver construction may be used.

Let Hash denote the cryptographic hash function SHA-1, the output of which has an octet-
length of `H = 20. Let Hmac denote the HMAC function HMAC-SHA-1-96, the output of which has
an octet-length of `M = 12. Further let Encrypt denote the encrypting (resp. decrypting) function
AES-CTR-128, which takes a nonce of octet-length `N = 4, and a plaintext (resp. ciphertext) of
any length, and outputs the corresponding ciphertext (resp. plaintext) of the same length. Finally,
let Crc denote the CRC algorithm used by the Type-I SCADA protocol, which takes a frame and
outputs boolean answer of the validity of a frame, as described in Section 3.

The BITW Transmitter T and Receiver R share a 128-bit AES key ek and a 160-bit HMAC-
SHA-1 key hk. These keys are re-negotiated on a regular basis, such as once every day.6 T and
R keep counters ctrT and ctrR of octet-length `S = 4 respectively, both of which are reset to zero
every time keys are re-negotiated.7

6.1 YASIR Transmitter

On input an incoming frame F = s||H||P||e, the YASIR Transmitter T does the following:

1. Output the corresponding transformed frame F̃ = s||CTXT||x||MAC||SEQ||e, where

CTXT = Encryptek(ctrT , H||P), MAC = Hmachk(ctrT ||CTXT), SEQ = ctrT ,

and x is, like s and e, a special symbol distinct from any code symbol used in the rest of the
frame. It indicates the end of CTXT and hence the start of MAC.8

2. Increments ctrT by 1.

In a nutshell, T transforms F to F̃ by first encrypting F’s content (i.e., header and payload) for
data privacy, then appending a “time-stamp” on the ciphertext with a unique sequence number for
data authenticity and freshness, and finally appending the sequence number itself.

The above describes how T operates on an input to produce the corresponding output, without
detailing the timeliness of the operation, i.e. which part of the output is available when. We specify
this in the following.

6 Key management is outside the scope of this paper. One can borrow key distribution and re-negotiation
techniques from other existing BITW solutions.

7There is no practical chance of exhausting a 4-byte counter in any SCADA deployment.
8Alternatively, one can use a character escaping mechanism to allow for proper frame parsing.
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Figure 2: Latency incurred by (a) YASIR Transmitter, (b) the communication link itself, and (c)
YASIR Receiver. Shaded boxes indicates values computed by the YASIR components.

Operation Timeliness T leverages the “stream”-nature of AES-CTR, which, upon receiving
one byte in the plaintext, can compute the corresponding byte in the ciphertext. Consequently,
T processes each of the bytes in the incoming frame F as they come in, and immediately outputs
a byte in the corresponding transformed frame F̃. The processing of each byte involves only a
byte-wise XOR operation in the critical path, which incurs negligible latency.

When T has received F in its entirely, it immediately computes the HMAC on the internal
counter and the ciphertext and starts outputting the result as well. We adopt an iterative compu-
tation of HMAC so that both the latency and storage requirement of this HMAC computation is
a small constant independent of the length of the ciphertext, and thus that of F.

Consequently, the transformation done by T incurs no delay, except the time needed to decode
a code symbol or detect frame boundaries in the input frame, which takes at most 4 byte times in
almost all protocols, as discussed in Section 3.

Figure 2 gives a pictorial illustration of this.

6.2 YASIR Receiver for Type-I Protocols

On input a transformed frame F̃′ = s||CTXT′||x||MAC′||SEQ′||e, denote

H′||P′ = Encryptek(ctrR, CTXT′), MAC′′ = Hmachk(ctrR||CTXT′),

and l = |P′|. The YASIR Receiver R does the following:

• If MAC′ = MAC′′ then output the frame F′ = s||H′||P′||e. and increment ctrR by 1.
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• Otherwise, output the frame F′′ = s||H′||P′′||e, where P′′ = P′ [1 . . . (l − 1)] ||err and err is
any single octet such that Crc(F′′) is invalid. Furthermore, if SEQ′ > ctrR and MAC′ =
Hmachk(SEQ′||CTXT′), set ctrR = SEQ′ + 1.

In other words, R reconstructs F′ from F̃′ simply by decrypting CTXT′ if F′ contains a valid HMAC.
Otherwise, R replaces the last byte of F′ with a byte err during its reconstruction in such as way
that the error-injected frame F′′ will fail the conformance check in D. R calculates err by first
computing the correct CRC for F′′ and then choosing err to be any byte different from the last
byte of the correct CRC.

Sequence Numbers Contrary to many other protocols in which sequence numbers are contained
in frame headers, T in YASIR puts the sequence number at the end of a frame to reduce the
amount of data R must receive before it can reconstruct a frame and decides on the authenticity
and freshness of the frame. Since YASIR uses a 4-octet sequence number, the latency at R is
reduced by 4 byte times.

Note that R does not know the actual sequence number of a frame by the time it has finished
relayed the frame to D. To properly decrypt and verify the integrity the incoming transformed
frame, R predicts the sequence number of the frame using its internal counter value. The prediction
will be correct if there was no random or malicious corruption in one or more frames recently sent.
The sequence number at the back of the frame is used for re-synchronizing the internal counters
between T and R in case they have gone out of synchronization, but only when the integrity of the
frame can be verified using that sequence number, to prevent malicious manipulation of the value
of R’s counter.

Operation Timeliness Similar to T , R is designed to minimize the latency it incurs by attempt-
ing to start outputting bytes of the detransformed frame once they become available. The use of
AES-CTR once again allows R to reconstruct the original frame at a per-byte basis by decrypting
the input bytes as they arrive.

The output of R depends on the validity of the HMAC inside the transformed frame it receives.
R behaves indifferently until when it has finished outputting the second to last byte in the payload
and has to decide whether it should inject an error or not, depending on the validity of the HMAC.
This implies that R must have received the entire 12-byte-long HMAC in the input at that moment.
To ensure this, R must delay its operation by at least 12 byte times.

As argued in Section 6.1, decrypting a byte and verifying a HMAC both take negligible time.
Also, the CRC checksum for F ′′ and thus the value of err can be computed in negligible time
and even pre-computed. Therefore, if we assume that the symbol x can be decoded in 2 byte
times, the total latency incurred by R is thus 12 + 2 = 14 byte times. Finally, while R may
operate on the sequence number in the input, the operation does not incur additional latency as
the detransformation does not depend on it.

Figure 2 illustrates this.

6.3 YASIR Receiver for Type-II protocols

On input a transformed frame F̃′ = s||CTXT′||x||MAC′||SEQ′||e, denote

H′||P′ = Encryptek(ctrR, CTXT′), MAC′′ = Hmachk(ctrR||CTXT′),
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and l = |P′|. Let also lh be the length of P′ as indicated in H′. The YASIR Receiver R does the
following:

1. If (i) l < lh, or (ii) l = lh and MAC′ = MAC′′, then output the frame F′ = s||H′||P′||e. Otherwise,
output the frame F′′ = s||H′||P′′||e, where P′′ = P′[1 . . . (lh − 1)].

2. If MAC′ = MAC′′, then increment ctrR by 1. Otherwise, if MAC′ = Hmachk(SEQ′||CTXT′) and
SEQ′ > ctrR, set ctrR = SEQ′ + 1.

R for Type-II protocols mostly operates in the same way as that for Type-I protocols. Here we
only highlight the differences between the two.

The output behavior of R for Type-II protocols depends not only on the validity of the HMAC,
but also the frame’s actual length, l, compared to the length as indicated in the header, lh. There
are three cases to consider. (1) If l < lh, then there is probably some random or malicious error in
the frame. However, the frame is malformed in itself already and D will drop it when it checks the
length. Therefore, R does not inject any error in this case. (2) If l = lh and the HMAC verifies, R
decides that the frame is authentic and fresh and hence does not inject any error. (3) If l > lh, or
l = lh but the HMAC verification fails, R must inject an error. To do so, R outputs a frame with
payload one byte shorter than what is indicated in the header.

Operation Timeliness R for Type-I protocols and R for Type-II protocols both require a 12-
byte HMAC to decide on whether an error should be injected; they also need to make that decision
at the same time: after the receipt of the second to last byte of the payload. Therefore, even though
they differ in how an error is injected, a delay of 14 byte times is sufficient for both of them. Again,
we have an illustration of this in Figure 2.

7 Evaluation

7.1 Security

We state the theorem regarding the security of our YASIR construction in the following. We have
given a discussion of what security means for a BITW solution in Section 4. We have yet to
define it formally, which we will do in Appendix B. We therefore defer the proof of the theorem to
Appendix C.

Theorem 1 (YASIR’s Security) Our YASIR construction has data privacy, and data authen-
ticity and freshness under our security model defined in Appendix B if the cryptographic primitives
underlying YASIR, namely AES-CTR, HMAC-SHA-1, are secure.

7.2 Hardware Costs

A hardware implementation of the YASIR BITW module, T or R, possesses an AES core, a SHA-1
core (which enables HMAC-SHA-1) and some registers for storing various internal states. Also, a
circuit for calculating the CRC checksum must be present in R for Type-I protocols, while a circuit
must exist to extract the frame length from the frame header in R for Type-II protocols. We stress
that the hardware size (in terms of gate count) is independent of the length of the frames being
secured.
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Figure 3: Our experimental testbed. The PC on the left represents a source SCADA device located
in a control center. The RTU on the right acts as a destination SCADA device found in a remote
substation. The left (resp. right) micro-controller board is our YASIR Transmitter (resp. Receiver).
The middle board plays the role of the adversary who has tapped into the communication link.

In practice, a YASIR BITW module functions both as a Transmitter and a Receiver, but it
never needs to play both role at the same time. Therefore, the module can reuse most of the
hardware for both functionalities.

7.3 End-to-end Latency

As have analyzed in Section 6, our YASIR Transmitter and Receiver incurs 4 and 14 byte times
respectively. Therefore a total of 18 byte times is incurred by YASIR. This confirms with Table 1.

One could reduce the end-to-end latency from 18 to only 10 byte times by replacing HMAC-
SHA-1-96 with HMAC-SHA-1-32. The relatively low level of security provided by HMAC-SHA-1-32
may still be enough for SCADA communications, as the communication links have bandwidth low
enough to preclude too many attack attempts [NIS02, Appendix B].

To achieve low latency, we move the AES block-cipher operation off the critical path. This
requires the throughput of the AES core to be at least the data-rate of the SCADA links. This
is not an issue at all: AES cores with throughput high enough even for Gigabit Ethernet are
commercially widely available and also exist as academic FPGA/ASIC prototypes. Similarly, the
latency due to the HMAC operation using an FPGA is only a negligible fraction of 1 byte time,
due to low baud rates of the SCADA protocols.

A comprehensive survey of AES and SHA hardware performance can be found in [GLOK05].

7.4 Prototyping and Experimentation

As a proof-of-concept prototype, we have implemented YASIR on two Freescale MCF5235EVB
micro-controller boards, one running as the YASIR Transmitter and the other as the Receiver. In
our experimental testbed, each board ran the µClinux operating system, and communicated via its
two RS-232 serial ports configured at the baud rate of 9600. For the destination SCADA device, we
used OSIRIS, an RTU manufactured by the company OSI. For the source SCADA device, we used
a PC running a software that emulates the Human Machine Interface (HMI) at control centers.
We connected everything using RS-232 serial cables as in Figure 1, except that we injected an
extra micro-controller board in the middle of the communication link, which allowed us to mimic
the presence of an adversary who sniffs and tampers with traffic. Figure 3 shows our experimental
testbed.
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Experimenting with the testbed setup, we were able to demonstrate several properties of YASIR.
First, bumping the YASIR Transmitter and Receiver pair into the wire does not affect the normal
operations. For example, the PC was still able to set the digital switches in the RTU and also
poll analog data from the RTU. Second, after adding the YASIR modules, the traffic sniffed by the
adversary was no longer in clear. Finally, the RTU stopped responding to commands crafted and
injected by the adversary once YASIR was in place.

8 Conclusions

In this paper, we have proposed YASIR, which is a BITW solution for retrofitting security to
serial-based SCADA systems where communications are time-critical, such as those for electric
power generation and distribution. As Table 1 has shown, our solution is the first to provide
data integrity in a timely manner, at a high security level even against strong and yet realistic
adversaries. Hence, YASIR is a pragmatic solution to a high-threat security problem we are facing
right now.

We have implemented our solution as a proof-of-concept prototype. As our next step towards
a real industrial deployment of YASIR, we are going to implement it on FPGA for better cost-
effectiveness. Furthermore, we have been in contact with Working Group C6 in the Substation
Committees of IEEE. The group is drafting a standard for a cryptographic protocol for cyber
security of substation serial links [IEE07]. We are working on the potential incorporation of YASIR
into that standard.
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A Cryptographic Tools

AES-CTR Advanced Encryption Standard (AES) [NIS01b] is a block cipher with block size
of 16 octets. A block cipher can operate in different modes, which specify ways of turning an
operation on block-length values into an operation on longer-length messages [Dwo01]. In the
counter mode (CTR), a counter (incremented for each new block) is combined with a nonce and
then encrypted under the block operation; the output is then XOR’ed against the corresponding
block of plaintext. The security of CTR mode is proven in [BDJR97a]. We denote AES operating in
counter mode as AES-CTR, and denote AES-CTR with 128-bit keys as AES-CTR-128. AES-CTR
is NIST-standardized and patent-free.

SHA and HMAC SHA-1 (resp. SHA-256) [NIS01a] is a cryptographic hash that operate on
messages of any length and produce 160-bit (resp. 256-bit) outputs. A secure cryptographic hash
must possess properties such as preimage resistance and collision resistance. HMAC-SHA-1 and
HMAC-SHA-256 [NIS02] are keyed hash message authentication codes (HMACs) built from SHA-
1 and SHA-256 respectively. HMAC-SHA-1-96 (resp. HMAC-SHA-1-32) [NIS02] is the same as
HMAC-SHA-1, except that the 160-bit output is truncated to the first 96 (resp. 32) bits. The
above hash functions and HMACs have the same block size of 512 bits. SHA and HMAC are
NIST-standardized and patent-free.

B Security Model

To formally model the adversary’s capabilities as described in Section 4.1, we allow the adversary
to make black-box queries to the following oracles:

• The transformation oracle, OST , takes a SCADA message M as input and returns the trans-
formed frame F̃ = T (S(M)). The presence of this oracle models the adversary’s capability
similar to launching chosen-plaintext attacks in authenticated encryption [BN00].

• The detransformation oracle, ORD, takes a transformed frame F̃ as input and returnsD(R(F̃)),
i.e., either an error or the corresponding original message. The presence of this oracle models
the adversary’s capability similar to launching chosen-ciphertext attacks in authenticated
encryption.

We say that a BITW solution is secure if it has data authenticity and freshness, and data
privacy. These notions are defined in the following.

Data Authenticity and Freshness A BITW solution has data authenticity and freshness if
no probabilistic poly-time (PPT) adversary can win, with non-negligible probability, in the game
defined as follows:

• (Setup Phase.) The challenger generates the necessary keys and initializes T and R.

• (Learning Phase.) The adversary can arbitrarily and adaptively query OST and ORD.

• (Challenge Phase.) The adversary returns a transformed frame F̃∗. The challenger computes
ORD(F̃∗). If the output is an error, the adversary loses immediately. Otherwise, let the
output be M∗.
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The adversary wins in the game if:

• (Case 1.) 6 ∃OST (M∗), or,

• (Case 2.) F̃∗ ← OST (·), ∃F̃′ ← OST (·), ∃ORD(F̃′), and F̃∗ ← OST (·) happened before
F̃′ ← OST (·).

Data Privacy A BITW solution has data privacy if no probabilistic poly-time (PPT) adversary
can win, with probability non-negligibly greater than 1/2, in the game defined as follows:

• (Setup Phase.) The challenger generates the necessary keys and initializes T and R.

• (Learning Phase 1.) The adversary can arbitrarily and adaptively OST and ORD.

• (Challenge Phase.) The adversary queries the challenge oracle OC with two messages M0 and
M1 such that their respective frames F0 and F1 of the same length. OC behaves as OST (Mb),
where b = 0 or 1 with equal probability, and returns the oracle output F̃∗.

• (Learning Phase 2.) The adversary can arbitrarily and adaptively query OST and ORD,
except ORD(F̃∗).

• (End Game Phase.) The adversary outputs b′ ∈ {0, 1}.

The adversary wins in the game if b′ = b.

C Proof Sketch for Theorem 1

Data Authenticity and Freshness We assume the contrary that there exists a PPT adversary
who can win the corresponding game with non-negligible probability, and arrive at a contradiction.

The challenger generates the encryption key for the T and R, but does not know the HMAC key.
The challenger answers the adversary’s queries to the oracles according to specification throughout
the game. To do so, he queries the HMAC oracle to produce valid HMACs in the transformed
frames. With non-negligible probability, the adversary will return F̃∗ and win the game, after some
polynomial time and having made a polynomial number of queries.

Now, if is it the case that 6 ∃OST (M∗), i.e. it is case 1 in the game, then F̃∗ contains a valid
HMAC on some input such that the challenger has never queried the HMAC oracle. This violates
the security guarantee of HMAC. Otherwise, i.e. it is case 2 in the game, then the sequence number
s∗ in F̃∗ must be no less than the internal counter c∗ in R during the challenge phase, i.e. s∗ ≥ c∗.
Moreover, s∗ is strictly less than the sequence number s′ in F̃′ as F̃∗ was output earlier than F̃′ was,
i.e. s∗ < s′. Finally, the existence of ORD(F̃′) implies that the internal counter of R was set to s′

before the challenge phase and because the counter value can only increases, we have c∗ ≥ s′. We
have a contradiction: s∗ ≥ c∗ ≥ s′ > s∗.

Data Privacy We assume the contrary that there exists a PPT adversary who can win the
corresponding game with probability non-negligibly greater than 1/2, and arrive at a contradiction.

The challenger generates the HMAC key for the T and R, but does not know the encryption key.
The challenger answers the adversary’s queries to the oracles according to specification throughout
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the game. To be able to properly produce the ciphertext in the transformed frames when answering
OST queries, he queries the AES-CTR oracle using T ’s internal counter as the nonce. Also, the
challenger is able to, with overwhelming probability, answer ORD queries thanks to the security
of HMAC: the challenger needs only decrypt ciphertexts the plaintext of which he already knows
about, as the only way to produce a transformed frame that will be be not detransformed to an
error is through OST .

The challenger embeds the AES-CTR problem instance when answering the adversary’s query to
OC and relays the adversary’s answer to whether b = b′ as his answer to the AES-CTR challenge. It
is trivial to see that the challenger’s answer is correct if and only if the adversary’s answer is correct.
Therefore, given the adversary, the challenger can break the security of AES-CTR, contradicting
to the assumption that AES-CTR is secure.

Remarks It has been shown in [BT04] that it is impossible for on-line encryption to be se-
cure against chosen-ciphertext attacks in the conventional sense defined for symmetric encryp-
tion. As the YASIR modules also operate input “on-the-fly” like on-line encryption, one might
wonder why YASIR could possibly be secure against chosen-ciphertext attacks, i.e. IND-CCA-
secure [BDJR97b]. The reason can be summarized as follows. The on-line nature of the YASIR
modules is not exposed to the adversary: to probe T , the adversary must provide a message in
its entirety to S; he is unable to get a partial transformed frame from a partial message and then
adaptively devise the rest of the message. Similarly, even though R outputs bytes to D before
checking their authenticity, the adversary can only see them at the output of D when those bytes
are eventually checked to be authentic. In other words, S with T attached (resp. D with R at-
tached) exposes an interface to the adversary similar to the encryption (resp. decryption) device in
conventional (authenticated) symmetric encryption. Therefore, the impossibility result in [BT04]
is not applicable in YASIR’s case.
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