
c© 2008 Zahid Anwar



AUTOMATIC SECURITY ASSESSMENT OF CONTROL
SYSTEMS FOR CRITICAL CYBER-INFRASTRUCTURES

BY

ZAHID ANWAR

B.S., Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, 2001
M.S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Professor Roy H. Campbell, Chair
Professor Klara Nahrstedt
Professor Carl A. Gunter
Assistant Professor Sam King



Abstract

Government and advisory agencies have issued various critical infrastructure
protection standards and best-practice schemes for security-hardening of power
and control networks in the wake of several security incidents threatening the
reliability of the Power Grid. These security schemes differ in their installation
costs and the degree of protection they provide against cyber attacks. Manu-
ally determining vulnerabilities and security risks in control networks and their
maintenance procedures is a cumbersome process. Furthermore the process of
mapping security schemes to vulnerable cyber assets each with a unique criti-
cality in the power network configuration can easily become intractable.

This research attempts to bridge this gap by investigating the automation of
security assessment of the static and dynamic properties of critical infrastruc-
tures. We describe first-order logic based models of the static elements including
power and control devices, services and connectivity, and re-writing logic based
models of the dynamic elements such as operating procedure workflows, and the
state of a working power grid. We introduce a tool-chain that, with a little man-
ual assistance, can automatically generate these models from specifications, con-
tinuously update attributes from online event aggregators, and perform security
assessment. Aside from checking whether the system configuration conforms to
recommended best-practices for establishing security controls, the assessment
also reveals whether the observed anomalies about the system could indicate
possible security problems and permits dynamic ranking of alternative recovery
procedures to minimize the total risk. Moreover the tool-chain can recommend
an optimal selection of security schemes to apply to various vulnerable parts of
the Power Grid network to maximize security when faced with a budget con-
straint. A case study on security hardening the IEEE power system 118-bus test
case from a pool of five different best-practice schemes is used to demonstrate
the feasibility of the tool chain implementation.

ii



To my parents.

iii



Acknowledgments

This project could not have been possible without the support of my seniors,
colleagues and friends. It is a pleasure to acknowledge all those who educated,
supported and guided me in the process of my research. I was lucky to be asso-
ciated with my adviser, Roy Campbell, who has supported me for the past six
years. I am very grateful to him for his stimulating conversations, provocative
ideas and practical help in the areas of learning. I hope that I could be as lively,
enthusiastic, and energetic as Roy and to someday be able to command an audi-
ence as well as he can. Also thanks to my committee members, Klara Nahrstedt,
Carl Gunter, and Sam King, for their scientific advice and knowledge and many
insightful discussions and suggestions. I also have to thank the project leads
of my technical research group, William H Sanders and Himanshu Khurana for
their helpful career advice and suggestions in general. A good research team is
important to surviving and staying sane during paper submission deadlines and
preparing for conference presentations. I thank all the members of the Systems
Research Group i.e. Ravinder Shankesi who was extremely knowledgeable, help-
ful, and friendly, Mirko Montanari, who has been helpful with answering Model
Checking questions and paper editing, Alejandro Gutierrez, a nice and helpful
person who has been supportive throughout the thesis writing, Ellick Chan for
all his constructive feedback and Naeem Sheikh for bringing awareness to me
and thrashing out complicated mathematical segments in this thesis.

Thanks to the University of Illinois, Department of Computer Science for
awarding me a Teaching Assistantship in the early part of my PhD career, a
Sohaib and Sara Abbasi Fellowship in the mid-part, providing me with the
financial means to complete this project. It would not be just if I do not extend
thanks to the Information Trust Institute (ITI) that provided funding for all my
training, travel and research involved in the Trustworthy Cyber Infrastructure
for the Power Grid (TCIP) Project.1 And finally, thanks to my parents, who
endured this long process with me, always offering support and love.

1The research presented in this thesis was funded by the National Science Foundation
under grant TCIP NSF CNS 05-24695.

iv



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background and Related Work . . . . . . . . . . . . . . . . . . 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 A Power System . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Rewriting Logic . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Surveys of SCADA Security . . . . . . . . . . . . . . . . . 9
2.2.2 Security Models for General Computer Networks . . . . . 9
2.2.3 Security Models for Critical Cyber-Infrastructures . . . . 10

3 Logic- Based Models of the Power Grid . . . . . . . . . . . . 12
3.1 Network Model, N . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Dependency Graph G . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Best Security Practices . . . . . . . . . . . . . . . . . . . 14
3.1.3 Attack Graphs G′ . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Workflow Model W . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Tool Chain Architecture . . . . . . . . . . . . . . . . . . . . . . 22
4.1 CIM Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Event Aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Implementation in Predicate Calculus . . . . . . . . . . . . . . . 24
4.4 Implementation of Best Practice Rules in Prolog . . . . . . . . . 25
4.5 Implementation of Attack Graph Rules in Prolog . . . . . . . . . 26
4.6 Graphical Control User Interface . . . . . . . . . . . . . . . . . . 26
4.7 Representing Recovery Workflows . . . . . . . . . . . . . . . . . 27
4.8 Mapping Workflows to Term-rewriting Logic . . . . . . . . . . . . 28
4.9 Analyzing Workflows in Term-rewriting Logic . . . . . . . . . . . 30

5 The Model Checking Process . . . . . . . . . . . . . . . . . . . 31
5.1 Scenario A: Security Best Practices Conformance Checking . . . 31

5.1.1 Test 1: Access Control Implementation . . . . . . . . . . 32
5.1.2 Test 2: Firewall Deployment . . . . . . . . . . . . . . . . 33

5.2 Scenario B: Security Ranking of Recovery Procedures . . . . . . 33

v



6 Optimal Security Hardening of the Power Grid . . . . . . . . 39
6.1 Role of Relay Networks in the Power Grid . . . . . . . . . . . . . 39
6.2 Contingency Losses: A Metric to Quantify Cyber-Attack Damage 41
6.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Security Best-Practice Schemes for Attack Damage Mitigation . 42

6.4.1 Intrasubstation Traffic Segregation via Virtual LANs . . . 43
6.4.2 Intersubstation Traffic Segregation via Firewalls . . . . . 44
6.4.3 Intersubstation Traffic Encryption via Link Encryption . 45

6.5 Implementation Costs and Attack Coverage of Security Schemes 45
6.6 Optimal Security Hardening Algorithm . . . . . . . . . . . . . . . 46

6.6.1 Reduction from Multiple-Choice Knapsack . . . . . . . . 46
6.6.2 Dynamic Programming Solution . . . . . . . . . . . . . . 47

6.7 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 48
6.7.1 Contingency Analysis . . . . . . . . . . . . . . . . . . . . 48
6.7.2 Security Analysis Implementation as Logical Rules . . . . 48

7 Case Study: Optimal Security Hardening of the 118-Bus . . 51
7.1 Security Schemes Employed . . . . . . . . . . . . . . . . . . . . . 52
7.2 Case Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 57
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Author’s Biography . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



List of Tables

3.1 Firewall Architectures . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Workflow Definition . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 CIM XML and Prolog Description of a Substation . . . . . . . . 23
4.2 Control Device Models as Prolog Facts . . . . . . . . . . . . . . 24
4.3 ‘Access Control’ Concern: Prolog Implementation . . . . . . . . . 25
4.4 A Prolog Rule for an Attack Graph . . . . . . . . . . . . . . . . . 26
4.5 Java-JPL Code to Query Path Information . . . . . . . . . . . . 26
4.6 XML Output of YAWL . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Maude Rule for Conditional Split . . . . . . . . . . . . . . . . . . 29

5.1 Access Control Implementation Results . . . . . . . . . . . . . . 32
5.2 Correct Firewall Deployments Results . . . . . . . . . . . . . . . 33
5.3 Device Risk Evaluated and Assigned to Actions . . . . . . . . . . 37
5.4 Possible Ways to Fulfill the Workflows . . . . . . . . . . . . . . . 38

6.1 Optimal Security Scheme Selection: Prolog Implementation . . . 50

7.1 A Cost-Benefit Comparison of Security Schemes . . . . . . . . . 52
7.2 Attack Coverage Quantification of Security Schemes . . . . . . . 54
7.3 Method A: Optimal Assignment of Security Schemes . . . . . . . 54
7.4 Method C: Optimal Complete Assignment of Security Schemes . 55
7.5 Method B: Unlimited Budget Assignment of Security Schemes. . 56
7.6 Security Hardening Results of the Entire 118-Bus . . . . . . . . . 56

vii



List of Figures

2.1 Power Distribution System . . . . . . . . . . . . . . . . . . . . . 6

3.1 A Simple Power and Corresponding Control Network . . . . . . . 13
3.2 Workflows Security Lattice . . . . . . . . . . . . . . . . . . . . . 19

4.1 Tool Chain: High-Level Architectural Diagram . . . . . . . . . . 22
4.2 Generic Workflow Example in the YAWL Editor . . . . . . . . . 27

5.1 Assessment of a Simple Control Network Configuration . . . . . . 31
5.2 Access control Conformance Checking . . . . . . . . . . . . . . . 32
5.3 A 275 kV Substation with a Fault . . . . . . . . . . . . . . . . . 34
5.4 Control Network for the 275kV Substation . . . . . . . . . . . . . 35
5.5 A Logical Attack Graph for Device DS12 . . . . . . . . . . . . . 35
5.6 Logical Attack Graph for a DoS attack on a PLC . . . . . . . . . 36
5.7 Procedure to Enable a Backup Transformer . . . . . . . . . . . . 37

6.1 Intrasubstation Traffic Segregation using VLANs . . . . . . . . . 44
6.2 Intersubstation Traffic Segregation using Firewalls . . . . . . . . 45

7.1 Contingency Analysis of A Portion of the 118-Bus Test Case . . 51
7.2 Cost-Benefit Comparison of Scheme Selection Methodologies. . . 55

viii



List of Abbreviations

SCADA Supervisory Control and Data Acquisition.

FERC Federal Energy Regulatory Commission.

NERC North American Power and Reliability Council.

NIST National Institute of Standards and Technology.

ISA Instrumentation, Systems and Automation Society.

DoS Denial of Service Attacks.

CIP Critical Infrastructure Protection.

VLAN Virtual LAN.

FWALL Firewall.

FLINK Firewall plus Link Encryption.

CIM Common Information Model.

YAWL Yet Another Workflow Language.

XML Extensible Markup Language.

PLC Programmable Logic Controller.

RTU Remote Terminal Unit.

EN Enterprise Network.

PCN Process Control Network.

NFS Network File System.

ix



1 Introduction

“Techniques to automate security assessment, evaluation

with applications to cost-benefit analysis, conformance to

best-practices of arbitrary Power Grid configurations and

critical infrastructure protection of SCADA systems”

The Power Grid has been designed with the N-1 principle in mind, meaning
that it is built to survive at least one failure. The redundant design is such
that if a power asset such as a transmission line or generator were to fail the
power would be routed from elsewhere without causing major blackouts. How-
ever, infrastructure that resists single points of random failure, may not survive
malicious, intelligent attacks by disgruntled employees, terrorist networks, etc,
especially if this redundancy is in the power network alone, without isolation
in the control. Consider two redundant power lines designed to handle the ex-
tra load if one or the other goes down but essentially controlled by a common
vulnerable relay.

Computerized control systems, also referred to as Supervisory Control and
Data Acquisition (SCADA) systems, have become vital in the modern world.
SCADA is deployed to control water supply, telecommunications as well as elec-
tricity generation and distribution. In this thesis we focus on SCADA systems
for the electrical power grid. Relays are a popular choice for protection and
control in power utilities. They communicate to constantly monitor the status
of equipment, and participate in real-time pilot protection schemes [33] that
involve detecting and agreeing on presence of faults, de-energizing equipment to
protect against short circuits and reclosing circuits automatically in an attempt
to clear faults. Relays are programmed to send alarms to operation personnel
in case faults cannot be cleared automatically. Despite their important role, re-
lay configurations are generally set up with convenience and efficiency in mind
rather than security. Their open accessibility from the enterprise and office
LANs and sometimes even the Internet gives the adversary easy opportunities
for attacks. Furthermore, knowledgeable and inside attackers can use the prop-
erties of the power grid and its operating procedures to cause cascading failures,
power blackouts or damage vital resources which are difficult to replace such as
high-power transformers.

The security of SCADA systems made headlines [39] recently when the CIA
reported incidents where hackers shut down power to entire cities by breaking
into the systems of electricity companies. In a separate incident [37] researchers

1



at the Department of Energy’s Idaho lab launched an experimental cyber attack
(codenamed Aurora) on an electrical power plant causing a generator to self-
destruct. While the attack details are not explained in depth, what is clear is
that researchers were able to remotely hack into the SCADA network and change
its configuration to cause significant damage to the generator. A comprehensive
report compiled by the Industrial Security Incident Database (ISID) [2], shows
an alarming increase in the numbers of security attacks on cyber infrastructures
in recent years, with externally generated incidents accounting for 70% of all
events between 2001 and 2003. The Slammer Worm infiltration of an Ohio
nuclear plant [16] and the Australian sewage spill incident [58] in 2000 are two
recent examples. In the latter case an attacker connected through a wireless
network used to control sensors for a sewage treatment plant in Queensland,
taking control of the main system to drain raw sewage into many of the parks
and lakes.

The Federal Energy Regulatory Commission (FERC) recently approved eight
cyber security and critical infrastructure protection standards proposed by NERC
[15, 40] requiring bulk power system users, owners, and operators to identify
and document cyber risks and vulnerabilities both for the cyber critical as-
sets and their configurations as well as for operating procedures and incidents.
While these standards represent a major break-through in what security controls
should be enforced they are fairly flexible in how exactly they be implemented.
For instance CIP 005 requirement 4 (R4) in the standards document states:

“The Responsible Entity shall perform a cyber vulnerability assess-
ment of the electronic access points to the Electronic Security Perime-
ter(s) at least annually”

Possible ways of securing access to the electronic security perimeter is through
proper deployments of firewalls and access control protocols. Similarly CIP-009-
R2 discusses security implications of operating and recovery procedures from
disasters, their relative ordering, timeframe and requirements. While the NERC
standards do not discuss implementation, other government security organiza-
tions such as National Institute of Standards and Technology (NIST) and the
Instrumentation, Systems and Automation Society (ISA) have published a large
amount of literature detailing guidelines for implementing best security prac-
tices for SCADA systems [31, 17, 21, 43, 52]. Most of these guidelines are
informal English descriptions of secure SCADA infrastructure configurations,
firewall rules, services that should be allowed and security protocols to employ.

Unfortunately incidents keep reoccurring [2] due to nonconformance to best
practices resulting in loss of power, revenue and harm to consumers. These best
practices can be implemented using security schemes that differ vastly in the
kind of protection they provide. For instance firewalls may hinder DoS against
control devices but will not prevent eavesdropping attacks. A link encrypter on
the other hand may solve the latter attack but might prove ineffective against

2



DoS. Additionally cost and effort to implement the two schemes will differ; con-
sider just upgrading the firmware on a router to provide firewall services as
apposed to buying special hardware to provide ‘bump in the wire’ encryption
for the real-time traffic demands of control devices. Similarly cyber assets for
controlling power system resources differ vastly in terms of criticality. For in-
stance it would be worthwhile investing in an expensive security lock down of a
valuable asset like a 50,000 MW powerplant as compared to a substation that
contributes less than 500 MW to the grid.

Perfect security is ideal but in reality security administrators are usually
faced with budget constraints and end up trying to balance cost and security.
This kind of manual cyber-security planning for a network the size of the Power
Grid can easily become intractable and is actually an NP hard problem.

The contribution of this research is the observation that formalizing these
best practices would allow automated conformance checking of arbitrary SCADA
network configurations to enable FERC standards compliance. Moreover it rec-
ognizes the importance of spending more capital (more powerful security con-
trols) on securing assets that are more critical. Security schemes are presented
that use best practice guidelines from NIST [52, 51] and other advisory agencies
e.g. firewall, VLAN segregation, link encryption to isolate redundant power
network assets in the control networks. Metrics have been proposed to evalu-
ate the protection provided by security schemes, the cost to implement them,
and determine the criticality of equipment in terms of revenue loss incurred in
the event of their compromise. A pseudo-polynomial time automated solution
is proposed that uses these metrics together to determine the optimal scheme
selection to maximize security given a fixed budget allocated for Power Grid
security hardening.

In our work [8, 6], it is shown that logic-based models of the power grid,
and its control elements can be used for automatic conformance checking for
adherence to best security practice schemes. Throughout this thesis we model
power and SCADA networks in predicate-logic (henceforth called a network
model) which consists of a set of devices, services, network connections, known
vulnerabilities as well as their attributes. The network model contains com-
plete information regarding the network dependency graph both in terms of
physical connections such as links as well as logical connections such as service
dependencies. This information is automatically obtained from SCADA specifi-
cation languages such as the Common Information Model (CIM). Best practices
modeled as a set of rules over the facts determine if the network meets certain
security constraints.

In addition, the network model is used to generate attack graphs for various
SCADA devices to determine vulnerability to external attackers. While evaluat-
ing these attack graphs, we compute the security risk for each device depending
on both the severity of the isolated vulnerabilities of various nodes, on the path
to that device, as well as the topology of the paths. Our device security risk

3



is formalized as a lattice whose partial order function depends on the type of
vulnerability and the calculated severity of the vulnerability (i.e. an execution
control vulnerability is rated higher than a denial of service vulnerability and
the severity of a vulnerability may be valued higher or lower depending on its ex-
ploitability). The device security risk calculated in the network model is used as
input for our second model explained below. The second model, called the work-
flow model, describes the various operating procedures, as workflows encoded
in rewriting logic. Operational procedures are usually recovery or maintenance
activities that the operators follow in the system, for instance, to recover from
a failed component or deal with some contingency. These recovery procedures
are made up of an ordered set of tasks that enable or disable SCADA network
devices (for instance, a task to allow selection of a backup transformer from a
list of idle transformers in a substation). Tasks can be fulfilled in various ways,
allowing operators a choice of strategies to perform a particular function. The
security risk of a particular recovery procedure is calculated by aggregating the
risks derived from all the vulnerabilities of each device used in the recovery pro-
cedure as obtained from the network model. Finally, the security model presents
its evaluation of the possible recovery procedure options to an operator along
with their security risks.

We have developed a tool-chain that semi-automates the generation of the
network and workflow models as well as keeps the attributes up-to-date using
on-line event aggregators. We demonstrate its feasibility to find complicated
attacks on arbitrary network configurations. Besides conformance checking,
the tool-chain can use additional attributes from the power network itself such
as overloading violations, power flows and costs to automatically evaluate for
SCADA network configurations, which combination of security schemes would
best protect against a knowledgeable adversary who attempts to maximize the
damage inflicted by attacking SCADA that controls the most critical power
equipment[7]. An extensive case study evaluates the feasibility of our approach
and demonstrates the tool-chain functionality by security hardening the IEEE
118-bus test case from a pool of five different best-practice schemes.

The remainder of this thesis is organized as follows: Chapter 2 puts this work
into prospective by describing background and related work on security assess-
ment techniques for the electric power grids and computer networks. Chapter 3
outlines the design of our security model and Chapter 4 describes the architec-
ture and implementation of our tool chain that allows automated construction
of these models. Chapter 5 walks the reader through the tool-chain’s model
checking process using representative scenarios. Chapter 6 introduces metrics
for quantifying security and uses them as a basis for a cost-benefit analysis of
Power Grid configurations. Chapter 7 describes the details of an evaluation case
study of the cost-benefit analysis on the 118-bus test case to demonstrate the
tool-chain functionality. The thesis is concluded with a short discussion and
possible future work in Chapter 8.

4



2 Background and Related
Work

While assessment and evaluation of the cyber-security properties of SCADA net-
works for critical infrastructures is a relatively new and emergent area; quanti-
tative analysis of network security in general and of electric power networks has
been separately looked at extensively by their respective research communities.
This chapter gives a brief introduction to the power system terminology and
the logic model checking techniques used in the thesis to the new reader. It also
discusses complementary related power and cyber security analysis research.

2.1 Background

This paper does not assume that the reader has a power engineering background
and explains all the key power terms used throughout the paper in this section.
Horn-clause logic and rewriting logic have been used for the formal analysis and
while we assume the reader is reasonably familiar with the former we give a
brief explanation of the latter here as well.

2.1.1 A Power System

A conventional electric power system has three main components - generation,
transformation and distribution [32]. Typically, energy from fossil fuels or falling
water is harnessed to generate steam to drive power turbines that produce elec-
tricity, which is then transmitted and distributed to the end user. There are
a variety of SCADA controls used throughout the process e.g. turbine control,
burner control, and substation local control. This paper focuses on automated
security assessment of the SCADA network and switching devices (e.g. relays
and circuit and protection breakers) used in the production and distribution of
electric power but the security model we use is not restricted to just this par-
ticular aspect of SCADA systems and can be easily applied to other supervisor
power control systems as well.

A power grid has a large number of switches that affect the way power is
routed and distributed within various components system. These switches are
often controlled remotely through SCADA (but can also be turned on or off
manually). Changing the status of switching devices in a substation allows
some interesting attack scenarios from an intruder’s point of view. A denial of
service attack on the controlling relay would lead to a failure to report the proper
state in time (and might require manual intervention). Even more seriously, a

5



buffer-overflow in a networked device (allowing execution privileges) can allow
an attacker to black-out a feeder or overload a transformer. The latter is a very
serious attack as transformers are expensive and hard to replace.

A small example of a power-grid system is illustrated in Figure 2.1. A power
distribution system can be viewed as a network of electric lines connected via
switching devices (represented by small circles) and fed via circuit-breakers (rep-
resented by large squares). Switching devices and circuit-breakers are connected
to, at most, two lines. They have two possible positions: Open or closed. A
circuit-breaker supplies power if and only if it is closed, and a switching device
stops the power propagation if and only if it is open. Consumers may be lo-
cated on any line and are supplied only when their line is supplied. Distribution
networks have a meshable structure exploited radially: The positions of the de-
vices are set so that the paths taken by the power of each circuit-breaker form
a tree called a feeder. The root of a feeder is a circuit-breaker, and its leaves
are whatever switching devices downstream happen to be open at the time.

Figure 2.1: Power Distribution System

Power distribution systems are often subject to permanent faults (short cir-
cuits) occurring on one or even several lines. Since these short circuits are
mainly due to bad weather conditions and lightning, multiple faults are not
rare. Upon occurrence of a fault, the circuit-breaker feeding the faulty line
opens in order to protect the rest of its feeder from damaging overloads. For
instance, if a fault occurs on the line between DS1 and DS2, CB1 will open.
As a result, all consumers located on that feeder are left without power. Sim-
ply reclosing the circuit-breaker will not help. Since the fault is permanent,
the circuit-breaker will still be feeding it and will open again. Instead, using
SCADA devices controlling the switches, the faulty lines must be located and
the network reconfigured so as to isolate them and restore the supply to the
non-faulty lines. Switches are controlled by remote-controlled actuators that
sense and change their position and report sensing the presence of faults.

2.1.2 Rewriting Logic

We specify the operating procedures as workflows in rewriting logic. In general, a
concurrent system can be specified in rewriting logic as the theoryR = (Σ, E, R)

6



where (Σ, E) is the order-sorted equational theory [24] such that:

• The signature Σ specifies the sorts, a sub-sort relation, constants and
function symbols. The terms TΣ and TΣ(X) denote, respectively, the
terms the set of ground Σ-terms and the set of Σ-terms over variables in
X.

• The equations in E are of the form

(∀X) u = v if C

where u, v are of the same sort and the (possibly null) condition C is a
conjunction of unquantified Σ-equations involving variables (only) in X.
We say the Σ-algebra A satisfies the equation (∀X) u = v if C iff for each
assignment a : X → A, a(u) = a(v)

Intuitively the theory (Σ, E) defines the states of the system and has the
initial model TΣ|E , The elements in TΣ|E are E-equivalence classes of terms.

The dynamics are described by the rewrite rules R that specify concurrent
transitions that can occur in the system and that can be applied modulo the
equations in E.

In general rewrite rules are of the form

(∀X) u → v if
∧
i

ui = vi

and describes a transition from the term t to term t′. To apply the rewrite
rule to the term t, we find a subterm of t which is an instance of u under some
substitution σ. We substitute u in t by v, only if all the conditions hold i.e..,
∀i : σ(ui) = σ(vi). Note that multiple rewrite rules may be applicable to a given
term.

A concurrent system can be described using rewriting logic [36]. Given a
rewrite-theory (Σ, E, R) we can define the transition relation → over the states
(given by the terms in the algebra TΣ|E) by using the one-step rewrite rule in
R. We can label the transition system given by (TΣ|E ,→) by using predicates
defined using equations P 1 that associate a term in (Σ, E) to a proposition.
Therefore, given a rewrite theory, (and appropriate labeling) we can define the
Kripke-structure that describes the transition system. The extension from a
rewriting logic to the Kripke structures on which the LTL model checking works
is described in greater detail in [13]. Therefore, given a system described using
term-rewriting logic, we can we can verify if it satisfies a given LTL property
by using LTL model checking [12].

Rewrite theories are executable (under reasonable assumptions over E,R)
and there are several rewriting logic implementations such as Maude [14], CafeOBJ

1We require that (Σ, E ∪ P ) be a protecting extension of the theory (Σ, E)

7



[23], ELAN [10]. In this work, we use Maude to implement our workflow model.
Maude supports LTL model checking by using a on-the-fly model checker [20].

For instance consider the following example, taken from the Maude book
[13], of a system describing the classic crossing the river problem 2

1 mod RIVER−CROSSING−2 i s

2 s o r t s S ide Group .

3 ops l e f t r i g h t : −> S ide [ c t o r ] .

4 op change : S ide −> S ide .

5 −−−− shepherd , wo l f , goat , cabbage

6 ops s w g c : S ide −> Group [ c t o r ] .

7 op + : Group Group −> Group [ c t o r a s s o c comm] .

8 op i n i t i a l : −> Group .

9 v a r s S S : S ide .

10 eq change ( l e f t ) = r i g h t .

11 eq change ( r i g h t ) = l e f t .

12 eq i n i t i a l = s ( l e f t ) w( l e f t ) g ( l e f t ) c ( l e f t ) .

13 r l [ shepherd−a l one ] : s (S ) => s ( change (S) ) .

14 r l [ wo l f ] : s (S ) w(S) => s ( change (S) ) w( change (S) ) .

15 r l [ goat ] : s (S ) g (S) => s ( change (S) ) g ( change (S) ) .

16 r l [ cabbage ] : s (S ) c (S) => s ( change (S) ) c ( change (S) )

17 endm

.
In the example given above, the signature Σ is given by the sorts Side,Group

as well as the unary operators change,s,w,g,c; the binary operator + (given in
line 7) and the constants left,right (of sort Side) and initial (of sort Group).
The equations E of the rewriting theory are given by the three equations in
lines 10-12. Essentially, the equations in E give the equivalence classes for
the terms in Σ. Therefore the terms s(change(change(left))) w(right), s(right)
w(change(left)) and s(left)w(right) are equivalent and describe the state of the
system when the shepherd is on the left of the bank and the wolf is on the right.

The real state-changing transitions of the system are given by the rewrite
rules R (given in lines 13-16. For instance, the rule in line 14, labelled ‘wolf’
describes a transition where the system transitions from a state where the shep-
herd and the wolf are on the same side of the bank and their state changes to
the other bank in one atomic transition.

Note that the transitions for a given state can be non-deterministic as multi-
ple rules might be applicable to a given state. For instance, given a state consist-
ing of a shepherd,wolf,goat,cabbage on the same side (s(S)w(S)g(S)c(S)) 3, we
can apply any of the four rules on that given state. Also note that transitions are
modulo equations in E, therefore you can apply the first rule ‘shepherd-alone’
to the term s(change(change(S))) to yield s(change(S)).

2The problem describes a system where a shepherd, a goat, a wolf and a cabbage need to
cross a river, such that the shepherd can take at most one of the items along with him when
he crosses the river and he cannot leave a goat alone with a wolf or a goat with a cabbage.

3note that we use the variable S for every operator here, signifying that its value (left or
right) must be the same for every operator

8



2.2 Related Work

Our research benefits from related work on surveys of SCADA system security,
security assessment techniques such as attack trees for computer networks in
general and in particular techniques that target critical infrastructure protec-
tion.

2.2.1 Surveys of SCADA Security

The Power Grid’s vulnerability to physical disruptions from natural disasters
and other causes has long been recognized [45]. This vulnerability has increased
in recent years because infrastructure has not expanded as quickly as demand
has, thereby reducing the systems ‘cushion’ against failed, destroyed, or other-
wise unavailable system components. A survey of real SCADA systems and the
security controls in place by security analysts [34] reveals a startling truth about
the lack of authentication mechanisms, little or no software patch updates, and
numerous uncontrolled interconnects to the public Internet. The authors were
able to break into oil and power production systems by using simple exploits
such as SQL Injection. The paper argues that even with knowledge of individual
vulnerabilities in the nodes of the system, there are currently no adequate tools
for reasoning about the overall security of the system. Our work can be seen as
a way of reasoning about such systems.

Mark Grimes [25] presents a detailed survey of vulnerabilities in popular
protocols used in SCADA systems such as MODBUS, DNP3, UCA. The author
walks the reader through step by step instructions on exploiting each of the
protocol vulnerabilities via packet fuzzing, DoS and spoofing attacks demon-
strating the easy with which SCADA control devices could be compromised if
an attacker were to gain network access.

Risley et al [50] survey a set of security tools suitable for the stringent
communication demands of SCADA networks as well as meet the CIP security
standards set by NERC and other government agencies. Merits of devices such
as crypto modems, secure communication processors and firewall solutions are
discussed along with their installation costs. While it is clear from this work
that multiple competing tools and schemes exist for protecting control networks,
how to map them to individual configurations is unclear. Certainly applying
these controls in the entire network would be too cost prohibitive to be feasible.

2.2.2 Security Models for General Computer Networks

Guttmann et al, developed a technique for rigorous automated network secu-
rity management [27] that builds a formal model of the various devices present
in computer networks, reasons about their security and generates the necessary
configuration files for the devices in order to deploy the required security strate-
gies. They use the SNMP [3] data model for computer networks and try to

9



deduce the security of the network.
Attack graphs are a well known technique [47, 46, 57] that represents a

chain of exploits as a path, where each exploit in the chain lays the ground-
work for subsequent exploits. The pioneering work [57] in this area used model
checkers to identify explicit attack sequences. However, this approach suffers
from scalability issues because the number of such sequences grows exponen-
tially with the product of the number of vulnerabilities and devices. Later work
[46] proposes a new logic based approach where each node in the graph is a log-
ical statement and edges are causality relations between network configurations
and attacker privileges. This results in the attack graph size being polynomial
in the size of the network.

Dewri et al. [18] use attack trees to model networks and employ evolu-
tionary algorithms to solve the optimization problem of what subset of security
measures to use so that the cost of implementing these measures and the cost
of residual damage is minimized.

Jajodia and Noel have used automated attack graph generation and pro-
cessing techniques using vulnerability scanning tools like Nessus [42] for aiding
sensor placement for monitoring attack paths to critical network nodes [41].

2.2.3 Security Models for Critical Cyber-Infrastructures

One work on SCADA attack trees [11] describes the application of attack
trees to the common MODBUS SCADA protocol with the goal of identifying
security vulnerabilities inherent in the specification and in typical deployments.
The paper shows, using domain relevant examples, how attack trees are a tech-
nique to achieve their goal. The scope of this study is, however, limited to
the examination of one particular SCADA protocol and the authors have not
described any implementation of their idea. We extend attack trees to evalu-
ate the security properties of entire SCADA infrastructures and their operating
procedures with a working implementation.

An interesting use of SCADA attack trees is described by C. W. Ten et al.

[61] where the authors evaluate security improvements based on countermea-
sures types and password policy enforcement on tree leaves. The structure of
their attack tree is however different from ours in that it includes defense nodes
with countermeasures and an optimization problem is formulated to determine
pivotal leaves in the tree for security improvement. Their tree structure is how-
ever limited in that it does not capture the sequence in which attack leaves are
penetrated and the paper does not offer a way to build the tree structure in the
first place.

The most notable efforts in modeling and reasoning about security of critical
cyber-infrastructures has been carried out by the SINTEF [1] group of the
European Union. Their project, CORAS, [9] supports methodologies for risk
analysis of security-critical systems by modeling threats to a system as unwanted

10



features of the system in question. This allows users to model a system and its
associated threats as UML diagrams and XML schemas for exchange of risk
assessment data in a more formal and standardized language. We improve
upon their idea of using UML by employing the standard descriptive language
based on Common Information Models (CIM) [30] to automate the generation
of our security models. CIM, an object-oriented cyber-infrastructure modeling
language developed by the Electric Power Research Institute (EPRI) is better
suited for modeling electrical utility enterprises.

Salmeron et al. [53] use bilevel mathematical models to determine the
most critical components in a power grid network i.e. those if taken down will
cause the most disruption in the network. Their model however does not include
the use of any security schemes to protect against attacks.

Researchers have also proposed various methodologies such as compromise
graphs [35] and Markov Chains [44] for obtaining a quantitative measurement
of the risk reduction achieved when a control system is modified with the intent
to improve cyber security defense. No discussion has made regarding generation
of these models or of how to mitigate the risk once determined.

The Control System Cyber Security Self-Assessment Tool (CS2SAT) [56] is
an online, detailed questionnaire consisting of hundreds of questions about the
components used by a power utility. The answers are compared to a database of
regulations and best-practises and a non-numerical report is generated identifing
if the control system meets the requirement or is deficient. It was developed
by Idaho National Labs (INL) as part of the DHS Control System Security
Program (CSSP).

While it is clear that security assessment of networked systems and the use
of attack graphs models to find network vulnerabilities is a fairly mature area,
we did not find much work in the automated generation of these models espe-
cially for the cyber-infrastructures domain. Moreover there has been little work
if any in using the security vulnerabilities calculated for network elements as
inputs to finding risks in operating procedures and providing advisories. Simi-
larly theoretical work exists on identifying security controls that would mitigate
vulnerabilities discovered by attack trees but again we did not find any research
on applications of this work to an actual cost-benefit analysis for a real system
such as the Power Grid.

11



3 Logic- Based Models of the
Power Grid

Our formal model is composed of two parts. A network model captures the static
parts of the Power Grid- comprising the power and control devices, network
topology, services, connectivity and vulnerabilities (known software exploits)
described in first-order predicate logic. A workflow model captures the dynamic
parts such as maintenance, recovery activities involved and their ordering and
relationships in re-writing logic.

3.1 Network Model, N
A power system is an electric network consisting of a set of power devices
Dp = {B ∪ E ∪ F ∪G ∪ L} where
B buses;
T transmission lines where T ⊂ B ×B;
F transformers where F ⊂ B ×B, {B ×B} \ {T ∪ F} = ∅ and {T ∩ F} = ∅;
G generators;
L loads;

and substations S where
S = {Si|Si ⊆ B},

⋃
∀i Si = B and ∀i,j

i 6=j

Si ∩ Sj = ∅;

the relation:
ConnectedTo zCb where z ∈ T, F,G,L and b ∈ B;

and a set of functions:

linesin :B → P{T} bus to lines mapping; (3.1)

transin :B → P{F} bus to transformers mapping; (3.2)

gensin :B → P{G} bus to generators mappingbi ∈ B and (3.3)

∀b1,b2b1 6= b2 , gensin(b1 ) ∩ gensin(b2 ) = ∅;

ldsin :B → P{L} bus to loads mapping and (3.4)

∀b1,b2b1 6= b2 , ldsin(b1 ) ∩ ldsin(b2 ) = ∅;

power :Dp → P device to power mapping where P ∈ R≥0; (3.5)

A power system is typically depicted as a graph in one-line diagrams where
nodes are buses and edges are branches. Branches can be either of type trans-
mission lines or transformers, through which electrical energy is transmitted to

12



supply customers. Devices in a power network conduct power (lines, buses),
generate (generators) or consume it (loads) as depicted in function 3.5.

A set of buses are functionally grouped together to form substations. We
distinguish between three types of substations as shown by the predicates 3.6-
3.9. (1) A power plant characterized by one or more generators connected
to atleast one of the buses. (2) A distribution substation has no generators
and is characterized by one or more loads connected to one of the buses. (3)
A transmission substation has no generators and loads, connects two or
more transmission lines and may have transformers to convert between two
transmission voltages.

powerplant(si) =si ∈ S ∧ ∃bi[bi ∈ si ∧ gensin(bi) 6= ∅]; (3.6)

dist substation(si) = si ∈ S ∧ ∀bi[bi ∈ si ∧ gensin(bi) = ∅]∧ (3.7)

∃bj [bj ∈ si ∧ ldsin(bj ) 6= ∅];

trans substation(si) = si ∈ S ∧ ∀bi[bi ∈ si∧ (3.8)

gensin(bi) ∪ ldsin(bi) = ∅∧

∃ti,∃tj [ti, tj ∈ linesin(bi) ∧ ti 6= tj ]];

substation(si) =si ∈ S∧ (3.9)

(trans substation(si) ∨ dist substation(si))

For instance the left part of Figure 3.1 shows an example of a simple power
system consisting of 4 substations. The buses represent powerplants (Bus 1 and
2), transmission (Bus 4 and Bus 5), and distribution substations (Bus 3).

Figure 3.1: A Simple Power and Corresponding Control Network

The network model N represents the SCADA network as a dependency
graph G, a set of best practice rules and a set of logical attack graphs G′.

13



3.1.1 Dependency Graph G

The dependency graph is given as G = (Dc ,E ,S ,V ,STYPES ,DTYPES ,Sp) where
Dc control devices;
E edges between two physically connected devices where E ⊆ Dc ×Dc;
S services;
V vulnerabilities;
Sp security protocols;
K pre-shared keys;
STYPES set of all service types;
DTYPES set of all device types;

and the following set of functions that give attribute mappings to the various
devices and dependencies:

devof : S → Dc hosted service to device; (3.10)

hostedsvs : Dc → P{S} device to hosted services (3.11)

where devof (S ) = Dc;

defsvs : Dc → S device to the default service; 1 (3.12)

depdtsvs : S → P{S} service to services dependent upon it; (3.13)

trusteddevs : Dc → P{Dc} device to its trusted devices; (3.14)

secprots : S → P{Sp} service to its installed security protocols; (3.15)

keys : Dc → P{K} device to its set of pre-shared keys; (3.16)

typeofsvs : S → stype service to its type where stype ∈ STYPES ; (3.17)

typeofdvs : Dc → dtype device to its type where dtype ∈ DTYPES ; (3.18)

knownvuls : stype → P{V } service to its known vulnerabilities; (3.19)

priv : S → privlvl maps a service to its privilege Level (3.20)

where privlvl ∈ {none ≤ user ≤ root};

exploitability : V → likelihood vulnerability to its exploit likelihood (3.21)

where likelihood ∈ R ( s.t 0 ≤ n ≤ 1);

and the following set of functions that give attribute mappings to the various
devices and dependencies.

3.1.2 Best Security Practices

We define best practices and standards by advisory bodies as rules whose terms
are a set of constraints on G.

1For example, the default service could be the Operating System.

14



Services between the PCN and the Internet should be strictly

allowed on a need basis

IAONA’s [29] template for protocols access in industrial environments states:
Security Concern: Incomming DNS, HTTP, FTP, TELNET, SMTP traf-

fic to the PCN should be discouraged unless absolutely required.

needbasis(G) =∀d1,∀d2 ∈ Dc [EN ∈ typeof (d1 ) ∧ PCN ∈ typeof (d2 )∧

∀s1∀s2 ∈ S [s1 ∈ hostedsvs(d1) ∧ s2 ∈ hostedsvs(d2)∧

depdtsvs(s1, s2) ⇒ typeofsvs(s2 ) 6∈ {dns, http, ftp, telnet , smtp}]];
(3.22)

Explanation: This rule checks to see whether there exist two devices be-
longing to the enterprise and PCN networks in a substation such that there
is service dependency between the former to the latter. If there exists such a
dependency then it should not be of the type dns, ftp, telnet or smtp.

Correct Implementation of Access Control

American Gas Association (AGA)’s report 12 on Cryptographic protection
of SCADA Communication [5] states:

Security Concern: In a proper access control implementation, a service
should provide an authentication scheme and also be capable of using commu-
nication protocols which guarantee confidentiality and integrity.

correct ac(G) =∀dalice,∀di,∀dj ,∀dbob ∈ Dc [depends(dalice, dbob) ∧

di ∈ path(dalice, dbob) ∧ dj ∈ path(dalice, dbob) ∧ (di, dj) ∈ E

⇒ (secprots(defsvs(di)) ∩ secprots(defsvs(dj))) 6= ∅ ∧

(keys(dalice) ∩ keys(dbob)) 6= ∅];
(3.23)

where we define the auxiliary functions:

path(d1, dk) ={d1, d2, ....dk−1, dk ∈ Dc|∀1≤i<k−1(di, di+1 ∈ E)}; (3.24)

depends(d1, d2) =∀d1,∀d2 ∈ Dc,∃s1,∃s2 ∈ S[s1 ∈ hostedsvs(d1)∧ (3.25)

s2 ∈ hostedsvs(d2) ∧ depdtsvs(s1, s2)];

where path (predicate 3.24) is a mapping from a pair of devices to all the
set of paths between them.

Explanation: This predicate checks if a given service Si implements access
control, confidentiality and integrity in the correct manner. It does this by

15



checking whether all its dependent services have a common shared-key mecha-
nism in place. A helper function path is used to check that the default service
on each pair of devices along the path from the queried service to the dependent
services share common security properties. The helper function keys checks if
the dependent services share a pre-shared key.

Correct Firewall Deployment for SCADA and Process Control Net-

works

NISCC [43] provides good practice guidelines on Firewall Deployment in
SCADA:

Security Concern: Traffic from the office LAN should be separated from
the industrial-control LAN by a firewall. Firewall architectures with lowest
security rating to highest security rating can be broken down into five general
classifications summarized in Table 3.1.

Table 3.1: Firewall Architectures
Type (Rating) Description

Dual-homed Server
(1)

This design installs two network interface cards on devices
requiring access to both networks, which violates the prin-
ciple of no direct Internet access from the PCN. This con-
figuration was severely affected by the Slammer worm in
January 2003.

Dual-Homed Host
Firewall(2)

The host-based firewall on a dual-homed machine prevents
traffic from traversing the PCN-EN boundary. However,
it offers low granularity with multiple shared servers when
remote PCN management is required.

Packet Filtering
Router (2)

This design uses a Layer 3 switch with basic filters to block
unwanted traffic. It offers limited protection because it is
not stateful and assumes that the EN is highly secure.

Two-Port Ded-
icated firewall
(3)

This aggressively configured stateful firewall provides con-
siderable security. The shared device is positioned in the
PCN or EN and the firewall is configured with the appro-
priate rules.

Two-zone Firewall-
based DMZ (4)

This design positions shared devices in their own DMZs,
which eliminates direct communication between the plant
floor and the EN. Multiple DMZs ensure that only desired
traffic is forwarded between zones. However, compromised
entities in the DMZs may be used as staging points for at-
tacks against PCN devices.

Firewall and VLAN
design (4.5)

This design partitions PCNs into subnets so that devices
that require little or no communication are placed in sepa-
rate networks and only communicate via Layer 3 switches.

dualhomedfirewalled(G) =∀de, dp, ds ∈ Dc [EN ∈ typeofdvs(de)∧

PCN ∈ typeofdvs(dp) ∧ depends(de, ds)∧

depends(dp, ds) ∧ (ds ∈ path(de, dp))∧

∃sf ∈ S[sf = hostedsvs(ds)∧

firewall = typeofsvs(sf )]];

(3.26)

16



dmz (G) =∀de, dp, ds ∈ Dc [EN ∈ typeofdvs(de) ∧ PCN ∈ typeofdvs(dp)∧

depends(de, ds) ∧ depends(dp, ds) ∧ ∃df1, df2, df3 ∈ Dc

[(df1 ∈ path(de, ds)) ∧ (df2 ∈ path(dp, ds)) ∧ (df3 ∈ path(de, dp))∧

firewall ∈ typeofdvs(df1) ∧ firewall ∈ typeofdvs(df2)∧

firewall ∈ typeofdvs(df3)]];

(3.27)

Explanation: This predicate identifies the shared network devices, for in-
stance the data historians, aggregators and access points. Servers that are
accessed by dependent services running on devices in both the enterprise and
PCN are characterized as shared. Proper placement of these devices with re-
spect to firewalls determines the firewall architecture in use. For instance the
first predicate states that if all the paths between the two dependent PCN and
enterprise devices pass through the shared device and that the device is run-
ning a personal firewall service then the architecture belongs to the category of
‘dual-homed with personal firewall’ and has a security level of 2. Similarly the
second predicate checks to see that all possible paths between the PCN dp and
enterprise device de, dp and the shared device ds, and finally de and ds pass
through firewalls then the shared device is properly placed inside a isolated dmz
and can be assigned the security level of 4. Rules for the other four firewall
architectures are not shown here but are constructed along the same lines.

3.1.3 Attack Graphs G′

The security risk of a device is dependent upon an attacker’s ability to exploit a
vulnerability V on that device or on a device from which it is reachable. Attack
graphs are a well known technique [47, 46, 57] that represents a chain of exploits
as a path, where each exploit in the chain lays the groundwork for subsequent
exploits. The pioneering work [57] in this area used model checkers to identify
explicit attack sequences. However, this approach suffers from scalability issues
because the number of such sequences grows exponentially with the product of
the number of vulnerabilities and devices. Later work [46] proposes a new logic
based approach where each node in the graph is a logical statement and edges
are causality relations between network configurations and attacker privileges.
This results in the attack graph size being polynomial in the size of the network.
We reuse their technique for generating our attack graphs.

We use two algorithms ConstructAttackGraph and EvaluateAttackRisk that
are executed sequentially for each device whose security risk is being evaluated.
The first algorithm constructs a graph depicting all possible ways an attacker
could effect a device’s safety (e.g. compromise of availability, integrity). The
EvaluateAttackRisk algorithm then uses this output graph as input and calcu-

17



lates the overall security risk for the device.
ConstructAttackGraph essentially records a successful Prolog derivation (an

implementation of the backward chaining algorithm in horn clause logic) as
an attack graph G′. Similar to [46] the logical attack graph G′ is a tuple
(Nr, Np, Nd, E, τ, γ) where Nr, Np and Nd are three sets of disjoint nodes in the
graph, E′ ⊂ (Nr × (Np ∪ Nd)) ∪ (Nd × Nr)), τ is a mapping from a node to
its label, and γ ∈ Nd is the attacker goal needed to perform the exploit rl on
device Dc

2. Nr, Np and Nd are the sets of rule nodes, primitive fact nodes and
derived fact nodes respectively. Primitive fact nodes Np were described earlier
in the construction of G. Nr represent predicate rules that describe conditions
on Np to form derived nodes Nd. The root node of the attack graph is the goal
we are trying to satisfy e.g. ‘is a device vulnerable to DoS’ while the primitive
facts such as knowledge about exploits form the leaves.

To find the accumulative security risk DM associated with the root device
node we use the following heuristics:

• H1: Security Risk decreases if the ‘length of the paths’ leading to the
victim increases following the analogy that the difficulty accumulated in
reaching a target is proportional to the number of locks to be opened.

• H2: Security Risk increases if the ‘number of paths’ leading to the target
is large. The attacker can use the different paths simultaneously to break
different locks on each path.

We can translate these heuristics into a graph traversal algorithm (see algo-
rithm 1) that evaluates the security risk. This algorithm is essentially a variant
of the recursive depth-first search algorithm over a directed acyclic graph. In-
termediate nodes evaluate their security risk by recursively calling EvaluateAt-
tackRisk on their children and returning a product of their own risk and that
of their children. Individual exploit likelihoods are available from vulnerability
databases such as [54, 60]). If there is more than one path to exploit a node
then the total node probability is calculated from the respective exploit prob-
abilities of all such paths. For instance, for a device with a vulnerable service
with expoitability pd and i possible paths reaching it each with exploitability
pi, then the total exploit probability is 1 − πi(1 − pd × pi). Since probabilities
are less than one, multiplication as we go up the tree ensures that longer paths
will decrease attack risk.

The algorithms ConstructAttackGraph, EvaluateAttackRisk together give,
for each vulnerable device Dc, the tuple (rl, DM ), where rl ∈ RL and (RL,≤) is
the security risk lattice which characterizes the kind of vulnerability that device
Dc has, and DM ∈ R s.t( 0 ≤ DM ≤ 1) is the severity of the vulnerability. We
use DM to assign a severity label to the original risk as follows Sev : R → SL

where (SL, <) is the set of labels with a total order3.
2for e.g., codeExecute,DoS to exploit integrity,availability resp.
3For instance, SL = {High,Medium,Low} such that (Low < Medium), (Medium < High)

18



Algorithm 1 Evaluates the risk associated with an input attack graph
/*initialize Risk=1 for all nodes*/
double procedure EvaluateAttackRisk(V )

if Visited(V ) then
return Risk(V )

end if
markAsVisited(V )
/*A rule node’s self risk is 1-P(no service is exploited)*/
if isRuleNode(V ) then

for EACH I ∈ AdjacentPrimitiveNodesSet(V ) do
Risk(V )← Risk(V )× (1− Exploitability(I ))

end for
Risk(V )← (1− Risk(V ))

end if
/*If a Leaf node then just return your self risk*/
if isLeafNode(V ) then

return Risk(V )
end if
/*If an intermediate node then recursively evaluate risks of children*/
childRsk = 1
for EACH I ∈ ChildSet(V ) do

childRsk ← (1− EvaluateAttackRisk(I )× Risk(V ))× childRsk
end for
Risk(V )← (1− childRsk)
return Risk(V )

Given the risk lattice RL and the severity label SL, we define the new ex-
tended risk-lattice RE as follows RE ⊂ {(RL × SL)}. The new security lattice
is defined by the partial order operator ≤E such that (given R,R′ ∈ RL and
S, S′ ∈ SL and ∀R ∈ RL : min(RL) ≤ R):

(R,S) = (R,S′) if (R = min(RL))
(R,S) ≤E (R′, S) if (R ≤ R′)
(R,S) ≤E (R,S′) if (S < S′)(and)(R 6= min(RL))
(R,S) ≤E (R′, S′) if (R ≤ R′) and (S < S′)

The new security-risk for each vulnerability is now given by (r × Sev(DM )) ∈
RE . For instance, the final risk-lattice for a system with {NoRisk ,Availability , Integrity}
as the vulnerabilities and {Low ,High} as the severity can be depicted in Figure
3.2.

Figure 3.2: Workflows Security Lattice

19



3.2 Workflow Model W

We formalize the notion of recovery and operating procedures in the form of
workflows. There are many different workflow description languages and our
model of workflows is a subset of YAWL’s basic control flow patterns. One
distinction is that we add the notion of “actions” to be performed by a task.
Here we have a list of actions that can be performed, and each of which has a
security risk. The next task that can be fired as well as the actions that are
chosen at any given task can be context-sensitive. The context consists of the
list of (task,action) pairs performed in the workflow so far 4. At any given task,
the workflow execution makes a non-deterministic choice between the list of
actions available at that task. Although this can be modelled in terms of basic
workflow primitives, our method of allowing non-deterministic choice at a task
allows us to use a “generic” workflow description for various different power-grid
environments. The individual “environment-specific” choices that can occur at
any given task can be modeled as actions possible at that task.

Formally, we define the workflow as the tuple, W = (T,C, F, Aid, RL,≤
, A, R, St, Jt), where each element in the tuple is defined in Table 3.2

Table 3.2: Workflow Definition
Element Definition
T set of Tasks
C set of Conditions.
F ⊆ (T × C ) ∪ (C × T ) transition between Tasks and Conditions.
Aid set of all actions possible.
RL set of security risks and ≤ is the partial-order

over elements in RL, such that (RL,≤) is a lat-
tice.

A : T → P(Aid) is the set of actions associated with any given
task.

R : Aid → RL maps a risk with each action.
St : T → {AND ,XOR} is the split condition5.
Jt : T → {AND ,XOR} is the join condition.

The semantics of the workflow are defined in terms of a transition system
over workflow states. A workflow state for a given workflow W is defined by the
tuple Ws = (Tk ,H, Ra) where:

• Tk ⊆ {(T × Tks) ∪ (C)} is the set of tokens present at any of the tasks
or conditions. A token at a task t ∈ T can be in one of two states
Tks = {ENABLED ,FINISHED}.

• H ⊆ {(T × Aid)} stores the set of actions performed at all the finished
tasks.

4However, we do not show the context in the model here to simplify the model description.
5Similar to the actions, we support conditional XOR splits, i.e., the next task to be fired

depends on the (task,action) performed at an earlier stage in the workflow. However we do
not describe it here to simplify the model description.

20



• Ra ∈ RL refers to the accumulated risk over all the actions performed at
all the finished tasks, ie., Ra = ∪a(R(a)),∀a ∈ H.

The transition relation between two consecutive workflow states in the sys-
tem depends on the workflow transition relation F and the split, join conditions
St, Jt. We define the state transition relation δ : Ws → Ws over the workflow
states Ws corresponding to a workflow W as follows:

Join Processing

• δ({Pred(T ) ∪ Tk, Ra,H}) = {(T,ENABLED), Ra,H} if Jt(T ) = AND ,
where Pred(t) = {c | (c, t) ∈ F} and F is the flow relation in workflow
W. Pred(T ) defines the set of all predecessor condition nodes for task T

in the workflow W.

• δ({Tp ∪ Tk, Ra,H}) = {(T,ENABLED), Ra,H} if Jt(T ) = XOR, where
Tp ∈ Pred(T ) for task T in the workflow W.

Task Processing

• δ({(T,ENABLED , Ra,H)}) = {(T,FINISHED), Ra +R(Ai), (T,Ai)∪H}
where (Ai) ∈ A(T ) and + is the least upper bound function for the risk-
lattice (RL,≤) of the workflow W.

Split Processing

• δ({(T,FINISHED) ∪ Tk , Ra,H}) = {Succ(T ) ∪ Tk , Ra,H} if St(T ) =
AND , where Succ(t) = {c | (t, c) ∈ F}. Succ(t) defines the set of all
successor condition nodes for task t in the workflow W.

• δ({(T,FINISHED) ∪ Tk, Ra,H}) = {Ts, Ra,H} if St(T ) = XOR, where
Ts ∈ Succ(T ) for task T in the workflow W.

. We define a workflow-run as the sequence of workflow states w1, w2, w3, · · · , wn

such that wi+1 = δ(wi). Given a workflow W with the transition relation δ,
(Ws, δ) is a transition system. From this we can derive a Kripke-structure
(Ws, δ, L) by defining a labeling function. This allows us to perform model-
checking on the system. The labeling function can depend on any of the infor-
mation present in the workflow-state Ws. In particular, this allows us to reason
about the accumulated risk as well as the tasks and actions fired in the system.

21



4 Tool Chain Architecture

Fig 4.1 shows a high level architectural diagram of the security assessment tool-
chain detailing how the various components sit with respect to each other. We
give a detailed description of each of the various modules:

Figure 4.1: Tool Chain: High-Level Architectural Diagram

4.1 CIM Parsing

The network model N of the power and control networks is auto-generated from
annotated specifications written in the standard descriptive language based on
Common Information Models (CIM) [30] with the help of a parser tool and
stored in a Prolog database. CIM’s comprehensive packages cover everything
from equipment, topology, load data, generation profiles to measurement and
scheduling. The CIM RDF schema is documented as a self-describing XML-
based IEC standard. The fact that CIM is becoming increasingly popular in
the Power industry as a means of exchanging Power System information is
evident from the fact that even load-flow software e.g. InterPSS[65] can digest
and export CIM descriptions directly for power analysis. We create a mapping
of the classes in the RDF model to entities in our security model. Table 4.1
shows the XML description and the Prolog version of a specific instance of an

22



actuator for a disconnect switch (DS3). Various XML attributes give detailed
information regarding the switch’s function, and of the SCADA elements that
control it.

The parser starts by identifying the main entities such as devices, connec-
tivity and services and then proceeds to populate the attributes of the entities.
The attributes can be easily populated by looking at the properties and associ-
ations for each object in the CIM model. Some attributes such as inter-service
data dependencies and the security protocols used by services are not covered
by the basic CIM data model and therefore need to be merged in by parsing
firewall configuration logs or manually annotating the CIM XML or doing a
look-up from a services to security properties table whenever a services entity is
encountered. Services running on a device can be easily determined by running
nmap port scans while two communicating services can be identified by pars-
ing firewall logs. To populate vulnerabilities we used models of popular exploits
such as buffer overflows quoted in attack graph literature and open vulnerability
databases such as CERT.

Table 4.1: CIM XML and Prolog Description of a Substation

1 <!−− De s c r i b e s our Sub s t a t i o n A r c h i t e c t u r e −−>
2 <Sub s t a t i o nA r c h i t e c t u r e >
3 <c l a s s name=”CIM Log i ca lSw i t ch ”
4 Sup e r c l a s s=”C IM Log i ca lDev i c e”>
5 <cim : C IM Log i ca lSw i t ch ID=”ActDS3” d e v i c e ( ActDS3 , // ID
6 cim : type=”D i s connec tSw i t ch ” Di sconnec tSw i tch , //Type
7 cim : S ta t e=”C losed ” Closed , // S ta t e
8 cim : PowerSystemResourceName= FwareActDS3 // S e r v i c e s
9 ” D i s connec t Switch No 3 Actua to r ” ) .

10 cim : Manufac tu re r=”Gene ra l E l e c t r i c ”
11 cim : C o n t r o l l e r f o r r e s o u r c e=”#DS3”>
12 <c l a s s name=”C IM Se r i a l L i n k ”
13 Sup e r c l a s s=”CIM Link”> connected ( PLC2 , // S t a r t Node
14 <cim : C IM Se r i a l L i n k ID=”Sl inkActDS3 ” ActDS //End Node
15 cim : s ou r c e=”PLC2” ) .
16 cim : d e s t=”ActDS3”/> </c l a s s >
17 <c l a s s name=”CIM Firmware”
18 Sup e r c l a s s=”CIM Serv i c e”> s e r v i c e ( FwareActDS3 ,// S e r v i c e ID
19 <cim : CIM Firmware ID=”F . wareActDS3” 1 . 0 , // Ve r s i o n #
20 cim : v e r =”1.0” cim : type=”ModbusSlave ” ModbusSlave , // Se rv i c eType
21 cim : PowerSystemResourceName= [ PLC2Master ] , //Dependence
22 ” Actua to r S e r v i c e f o r ActDS3” [TLS ] , // SecP ro to co l
23 cim : s e cp r op s=”TLS” 502 // ConnectPort
24 cim : dependsupon=”PLC2Master” ) .
25 cim : po r t=”502”/> </c l a s s >
26 </cim : CIM Log ica lSw i tch>
27 </c l a s s >
28 .
29 .
30 </Sub s t a t i o nA r c h i t e c t u r e >

4.2 Event Aggregator

Modeling a “live” system such as SCADA involves inherently dealing with in-
complete and imperfect information that is continually subject to change and
revision. Knowing the up-to-date properties of Power system assets and its
configuration is important for accurate security assessment. We added support

23



Table 4.2: Control Device Models as Prolog Facts

1 % dev i c e ( ID ,TYPE,GROUP, SERVICES LIST ,COORDX,COORDY)
2 d e v i c e ( adminpc , pc , en , [ ssh1 , s q l c l i e n t 1 ] , 1 0 , 2 0 ) .
3 d e v i c e ( h i s t o r i a n , pc , en , [ r l o g i n d1 , p s t g r e s q l d ] , 1 0 , 3 0 ) .
4 d e v i c e ( s en so r , pc , pcn , [ r l o g i n 2 , s q l c l i e n t 2 ] , 3 0 , 1 0 ) .
5 d e v i c e ( s e r vp roxy , r ou t e r , f i r e w a l l , [ f i r e w a l l d ] , 1 0 , 1 0 ) .
6
7 % s e r v i c e ( ID ,TYPE,VER, PRIV LEVEL ,PROTOCOL,ACL)
8 s e r v i c e ( s q l c l t 1 , d a t a b a s e c l i e n t , 2003 , use r , odbc , ) .
9 s e r v i c e ( s q l c l t 2 , d a t a b a s e c l i e n t , 2000 , use r , odbc , ) .

10 s e r v i c e ( p s t g r e s q l d , dbms ,1998 , root , odbc , [ s q l c l t 1 , s q l c l t 2 ] ) .
11
12 % b y d i r e c t i o n l i n k (SRC ,DEST)
13 connected ( adminpc , s e r v i c e p r o x y ) .
14 connected ( h i s t o r i a n , s e r v i c e p r o x y ) .
15 connected ( s enso r , s e r v i c e p r o x y ) .

.

to our tool-chain to interface to Power flow analysis software and online event
aggregators to modify prolog attribute information to reflect the current state
of the system. We used PowerWorld [48]-a power system visualization, simu-
lation, and analysis tool that allows clients to take snapshots of a real Power
System. A powerworld client provides a graphical view of the power system
states and the information used to drive the display is obtained via TCP/IP
from the retriever. This mimics a control room display that is obtaining data
from the power grid over a communications network. The retriever interfaces to
real devices in a SCADA network and provides data to all connected clients such
as bus voltages, phase angles, flows and lines and generator status. SimAuto
runs on the same host as the client and provides a COM API interface to third-
party applications to access the clients datastructures. Our Tool interfaces to
Powerworld through SimAuto to update its attributes about SCADA devices
allowing it to analyse the system at interesting periods of time such as when
there is a fault.

4.3 Implementation in Predicate Calculus

We implemented our predicate calculus security model as a form of Horn Clause
logic in Prolog using SWI-Prolog version 5.6. The various devices, services,
connectivity and dependencies identified by the parser were asserted as ‘facts’
in the Prolog knowledge base. Table 4.2 shows how Prolog facts describe inter-
connections and service dependencies of a sensor reporting its readings to a
historian and a AdminPC accessing the same through a firewall. Facts in our
knowledge base can be thought of as relational tables for example service IDs
serve as foreign keys in the device entities and primary keys in the services
entities. The connected predicate shows a bidirectional link between two devices.

24



Table 4.3: ‘Access Control’ Concern: Prolog Implementation

16 path (A,B, Path ) :−
17 t r a v e l (A,B , [ A ] ,Q) ,
18 r e v e r s e (Q, Path ) .
19
20 t r a v e l (A,B,P , [ B |P ] ) :−
21 connected (A,B) .
22
23 t r a v e l (A,B, V i s i t e d , Path ) :−
24 connected (A,C) ,
25 C \== B,
26 \+member (C , V i s i t e d ) ,
27 t r a v e l (C ,B , [ C | V i s i t e d ] , Path ) .
28
29 i s a c c e s s c o n t r o l (DevA , DevB) :−
30 keys (DevA , AuthMechA) ,
31 keys (DevB , AuthMechB) ,
32 match (AuthMechA , AuthMechB) .
33
34 i s e n d 2 e n d c o n f i n t e g ( SecProp sL i s t , [ Head ] ) :−
35 d e f s v s (Head , d s e r v i c e ) ,
36 s e c p r o t s ( d s e r v i c e , SPL i s t ) ,
37 Se cP rop sL i s t = SPL i s t .
38
39 i s e n d 2 e n d c o n f i n t e g ( SecProp sL i s t , [ Head | Ta i l ] ) :−
40 d e f s v s (Head , d s e r v i c e ) ,
41 s e c p r o t s ( d s e r v i c e , SPL i s t1 ) ,
42 i s e n d 2 e n d c o n f i n t e g ( SPList2 , T a i l ) ,
43 i n t e r s e c t i o n ( SPList1 , SPList2 , CommonSPList ) ,
44 nth0 (0 , CommonSPList , ) ,
45 Se cP rop sL i s t=SPL i s t1 .
46
47 ck ConformanceTo CIP002−08(DevA , DevB , Path ) :−
48 path (DevA , DevB , Path ) ,
49 i s a c c e s s c o n t r o l (DevA , DevB) ,
50 i s e n d 2 e n d c o n f i n t e g ( Path ) .

4.4 Implementation of Best Practice Rules in

Prolog

We implemented various rules to check for CIP conformance in a cyber-infrastructure.
Prolog rules are essentially goals that check for other sub-goals to hold true. Sub
goals maybe other rules or primitive facts such as those described in the last
section. Table 4.3 describes the implementation of the ‘Correct implementation
of Access Control’ concern. Note that some of the attributes have been taken
out for brevity.

We explain the listing bottom up. The ck conformanceTo CIP002-08 rule
(line 47) takes three arguments: the two communicating devices and a Path
variable. It then calls a helper rule path (line 16) which finds a path namely a
list of nodes through which one must travel to get from node A to node B. Path
uses the recursive travel rule to do this. A declarative reading for line 20 is: “A
path from A to B is obtained if A and B are connected”. The second clause (line
23) amounts to “A path from A to B is obtained provided that A is connected
to a node C different from B that is not on the previously visited part of the
path, and one continues finding a path from C to B”. Avoiding repeated nodes
ensures that the program will not cycle endlessly. Once the Path is known then
access control is checked (line 29) by comparing if both communicating nodes

25



Table 4.4: A Prolog Rule for an Attack Graph

52 execCode ( P r i n c i p a l , Vict im , P r i v ) :−
53 d e v i c e ( Vict im , , , S v s l s t ) ,
54 c on t a i n sVu l ( S v s l s t , r emoteExp l o i t , VSrvc ) ,
55 s e r v i c e ( VSrvc , , , Pr i v , A l lowedHosts , A l lowedSvs ) ,
56 hasaccount ( P r i n c i p a l , Source , P r i n c i p a l P r i v ) ,
57 i s I n c l u d e d ( Source , A l l owedHost s ) ,
58 e x i s t s S e r v i c eT y p e ( Source , P r i n c i p a l P r i v , A l lowedSvs ) ,
59 path ( Source , Vict im , Path ) .

Table 4.5: Java-JPL Code to Query Path Information

60 Va r i a b l e X = new Va r i a b l e (”X”) ;
61 Va r i a b l e Y = new Va r i a b l e (”Y”) ;
62 Va r i a b l e P = new Va r i a b l e (”P”) ;
63 Term arg [ ] = {X,Y,P } ;
64 Query q = new Query (” path ” , a rg ) ;
65
66 wh i l e ( q . hasMoreElements ( ) ){
67 Term bound to x= (Term) ( ( Hash tab l e ) q . nextE lement ( ) ) . ge t (”P”) ;
68 S t r i n g [ ] s t r a r r a y = j p l . U t i l . a t omL i s tToS t r i ngAr r ay ( bound to x ) ;
69 f o r ( i n t i =0; i<s t r a r r a y . l e n g t h ; i++)
70 System . out . p r i n t l n ( s t r a r r a y [ i ] ) ;
71 }

use a pre-shared key or PKI authentication. Confidential communication (line
34,39) amounts to checking if every pair of consecutive nodes on a path share a
encryption channel (e.g. IPSec, TLS) with each other.

4.5 Implementation of Attack Graph Rules in

Prolog

Generic Prolog rules search for facts derived from the CIMs to determine whether
an attack is possible. For instance the prolog rule shown in Table 4.4 says that a
Principal can execute code on a Victim device with a privilege Priv if a service
VSrvc running on that device contains a remoteExploit vulnerability and it al-
lows connections from the Source device that the Principal has an account on.
Furthermore Source should have a service from the set of allowed AllowedSvs
types, there should be a network path from Source to Victim and Source should
be in the ACL of Victim’s allowed hosts.

4.6 Graphical Control User Interface

In order to allow the tool to be used by security analysts and have easy and
fast use we added a Java based user interface frontend to the Prolog engine.
JPL is a set of Java classes and C functions providing an interface between
Java and Prolog by the embedding of a Prolog engine within the Java VM.
By annotating each device in our CIM specification with x and y coordinates
we can easily import and display the SCADA network in a Java grid panel.

26



Figure 4.2: Generic Workflow Example in the YAWL Editor

The advantage of this approach over other network visualization tools such as
Graphviz [49] is that it allows more user interaction. For instance a security
engineer can hover a mouse over a device icon to see a detailed listing of its
security attributes or point and click on devices of interest and formulate a
query. Table 4.5 demonstrates JPL code that imports information about all
possible paths between two devices in the form of lists from Prolog for display.
This predicate implementation was described in Table 4.3

Three JPL variables (lines 60,61 and 62) are created to hold the two devices
and the list of all possible paths between them. A query is then formulated
and sent to the Prolog engine which populates these values. The ‘atomList-
ToStringArray’ (line 68) is one of many utility functions provided by the JPL
library to convert between Java and Prolog types.

4.7 Representing Recovery Workflows

We represent operating procedures of a SCADA power-grid as “generic” control-
flow workflows that are not constrained by the detailed architecture of a specific
power-grid implementation. For example, the workflow described in figure 4.2
could be applied to activate any transformer.

The transformer workflow involves grounding the transformer (if it isn’t
already grounded) and energizing it afterwards. The first task of the workflow
“Is Transformer Grounded” has a mutually exclusive conditional split to two
other tasks. The transformer chosen for the first task (there can be multiple
transformers to choose from) is left undecided. We call the possible ways a given
task can be bound to specific entities as leading to a choice of “actions”. This
list of actions depends on the specific substation (some substations might have
1 backup transformer and some might have more) as well as their individual
states (some might already be grounded, for instance). However, the “action”
available at any given task may be conditional on the action done at an earlier
task. Furthermore, the choices taken after the task may be dependent on the
actions done earlier or at the current task.

We describe the operating procedures as workflows using Yet Another Work-
flow Language (YAWL [63]). YAWL is a workflow description language that

27



Table 4.6: XML Output of YAWL

1 <t a s k i d=”I s Backup Trans fo rme r Grounded 3”>
2 <name>I s Backup Trans fo rmer Grounded</name>
3 <f l ow s I n t o >
4 <nextE lementRe f i d=”Ene r g i z e T r an s f o rme r 5 ” />
5 <i sD e f a u l t F l ow />
6 </f l ow s I n t o >
7 <f l ow s I n t o >
8 <nextE lementRe f i d=”Ground Trans fo rmer 4 ” />
9 <p r e d i c a t e o r d e r i n g=”0”> t r u e ( )</p r e d i c a t e >

10 </f l ow s I n t o >
11 < j o i n code=”xor ” />
12 < s p l i t code=”xor ” />
13 </task>

supports common workflow patterns and its Editor [64] allows the construc-
tion of appropriate control-flow descriptions for the workflows and the export
of this information as an XML file. (Note that our tool chain uses only these
XML files and we do not use either YAWL’s data-flow aspects or validation
engine.) For instance, the XML output by the YAWL Editor for “Is Trans-
former Grounded” shown in table 4.6 illustrates a split to “Energize Trans-
former” as well as “Ground Transformer”. Furthermore, it splits mutually ex-
clusively (<split code=“xor”>), i.e., exactly one of the next two tasks is fired,
and the task itself is fired when any one of the previous tasks incoming task is
finished (<join code=“xor”>)1. Similarly we can describe, splits and merges
requiring parallel firing of tasks (AND-splits, AND-join) or multiple choice of
tasks (OR-splits, OR-join). We currently support only the basic control flow
patterns as described in ([63]).

4.8 Mapping Workflows to Term-rewriting

Logic

We use the “XML to Maude” converter tool to read the XML based workflow
description generated by YAWL and generate a term-rewriting description of the
workflow in Maude. As described earlier in Section 3.2 the workflow description
can be split into two parts. The generic configuration independent workflow
that describes the control-flow of the recovery procedure is given in YAWL as
described in Section 4.7. The configuration specific aspects of the workflow
(such as the set of actions that can be done at a given task, the conditions for
choosing the next task(s) to be fired) are given to the converter tool by the
“Risk Calc” tool (as shown in Figure 4.1 ).

To help with the workflow analysis, we developed a term-rewriting module in
Maude. This generic module consists of rules which describe the valid workflow
transitions for any generic workflow. For instance, Table 4.7 shows the rule that

1This incoming condition is irrelevant because there is exactly only one incoming task to
“Is Transformer Grounded” in our example, but it will be relevant when there are multiple
incoming transitions to a given task.

28



Table 4.7: Maude Rule for Conditional Split

1 r l [ c o n d i t i o n a l s p l i t ] : −−−Rewr i t e Rule f o r C o nd i t i o n a l s p l i t
2 [
3 < TkId , F i rCond , CndActs , { [ ( TkId1 ? Act Id1 ) = TkId2 ] ;
4 CondSp l tLs t }> TkL i s t , A c t L i s t ,
5 ( TkId1 ? Act Id1 ) ActCxt ,
6 Tk IdL i s t 1 ,
7 TkId ∗ Tk IdL i s t 2 ,
8 Tk IdL i s t 3 ,
9 SecRsk

10 ]
11 =>
12 [
13 < TkId , F i rCond , CndActs , { [ ( TkId1 ? Act Id1 ) = TkId2 ] ;
14 CondSp l tLs t }> TkL i s t , A c t L i s t ,
15 ( TkId1 ? Act Id1 ) ActCxt ,
16 Tk IdL i s t 1 ,
17 Tk IdL i s t 2 ,
18 TkId2 ∗ Tk IdL i s t 3 ,
19 SecRsk
20 ] .

allows Maude to evaluate a task with a conditional split 2.
The lines 2-10 describe the configuration before and the lines 12-20 describe

the configuration after the transition rule is fired. Line 2 contains the conditional
action ([(TkId1?ActId1) = TkId2]) which determines whether while evaluating
task TkId, the next task chosen should depend upon the action ActId1 chosen
earlier at task TkId1. Note that TkId1,ActId1 etc., in the rules are variables and
Maude can match the instantiation of the configuration to the left-hand-side
of the rule and transform the current configuration as per the rewriting rule.
Maude performs the transition by looking at whether the action-context (given
in line 5) contains the tuple that says that the required condition to perform the
particular task TkId2 was satisfied. If so, it picks the next task TKId2 and puts
it in the tasks to be fired ( in line 18), while simultaneously removing the current
task TkId from the evaluation queue (line 16). We emphasize that these rules
are generic and will work for any workflow description under consideration.

It is important to emphasize that these rules are generic and will work for any
workflow description under consideration. Once a concrete workflow description
is given to Maude, along with these workflow transition rules, Maude’s engine
will check if the possible transitions could be applied to the system.

The “XML to Maude” converter populates the terms to instantiate a specific
workflow that was described generically using YAWL (and given in XML to the
tool). The input includes the various actions possible at any given task and the
evaluated security risk for each task.

2A conditional split is similar to an XOR split except that the next task chosen depends
on the context

29



4.9 Analyzing Workflows in Term-rewriting

Logic

Given the workflow description (the generic term-rewriting theory along with
the specific workflow instantiation), we can use Maude’s LTL Model Checker
to verify any LTL property on the workflow. For instance, we can verify that
any task initiated in the system should never deadlock (starting from the given
initial state). This could be specified as the following LTL property:

�(initialstate → �(finalstate))

Furthermore, we can verify other hard constraints that should always hold
on any execution of the workflow (for instance if we open a switch in a given
recovery workflow, we should never close it).

Given that each task might be satisfied by multiple actions, we can have
multiple ways of executing a given workflow. Since each action (such as turning
on a device), can have a different security risk, the risk taken to complete a
given task is dependant on the choices of actions taken for any given tasks. Hard
security constraints based on actions cannot thus be model checked because we
do not have any idea in advance about the accumulative security risk of all the
choices.

However, we can find the workflow path (along with the choices taken at
every task) that minimize the security risk for the given procedure by model
checking iteratively. This can be performed by iteratively checking for the fol-
lowing LTL formula:

�(initialstate → (finalrisk ≥ maxrisk).

A simpler mechanism for finding the path with minimal security risk is to use
Maude’s search command to find a final-state in the workflow with the minimal
risk. We search to find a path from initial state to final state such that the final
state contains no security risk, failing which, we iteratively query for a path
with the next higher risk. Note that there might be multiple solutions because
our security risk lattice is a partial order.

This effectively checks that in all the paths that we are taking to finish the
procedure, the total risk taken is ≥ the maximum risk computed so far (maxrisk

is initialized to the upper bound of the security-risk lattice that we have). In
case this isn’t true, it means that there is a set-of-choices that could be taken
that contain a security-risk which is lesser than maxrisk and Maude will return
the counter-example. Note however, that this needn’t be the path with the least
cumulative risk, only lesser than the maxrisk. However, by doing this iteratively
by substituting maxrisk with the value returned in the previous iteration, we
will eventually reach a value where the formula holds. We then present the last
counter-example returned by Maude as the set of actions that the user should
take to minimize his risk while performing this recovery procedure.

30



5 The Model Checking
Process

Our implementation involves approximately 2,200 lines of Prolog code (not in-
cluding network and workflow encodings) and 3,500 lines of Java code. The
twelve best practices rules took roughly 30 hours to encode in Prolog. The
implementation was tested with several substation network-level scenarios (in-
volving less than 100 machines). Each scenario executed in a few seconds on
an Intel Core2Duo 2.0 GHz machine running Ubuntu Linux 7.10. This section
presents the results of access control and firewall deployment evaluations for
one of these scenarios with scenario B showing ranking of recovery procedures
during a substation fault.

Figure 5.1: Assessment of a Simple Control Network Configuration

5.1 Scenario A: Security Best Practices

Conformance Checking

Figure 5.1 presents a typical SCADA architecture containing two subnets (EN1
and EN2) with several enterprise machines and devices, and three subnets
(PCN1, PCN2 and PCN3) with process control devices. EN1 has two important
devices, the Wireless AP (access point) and Data Historian. The data relation-

31



ships are as follows. The Data Historian is a shared device that logs events in
several SCADA devices. It is accessed by local and remote users for supervisory
purposes. The Data Historian connects directly to devices in PCN1 via a proxy
server; this configuration enables the vendor to maintain the machine remotely
via the Internet. The Data Historian also logs events from Relay1 in PCN2 and
is accessed by the Admin PC and NFS File Server in EN3. Sensor1 and Sensor2
in PCN3 are managed by the Controller in EN3 and their events are logged
by the Data Historian. Services provided by the Controller are accessed by the
Admin PC.

5.1.1 Test 1: Access Control Implementation

Figure 5.2 shows the dependency graph of the two sensors in PCN3 that re-
port their readings to two enterprise devices (Controller and Data Historian)
through several proxy servers and PLCs, not all of which support IPSec or TLS
stacks for confidentiality. Table 5.1 summarizes the results of running a “correct
implementation of access control” query for confidentiality and integrity (C/I),
authentication (Auth) and CIP conformance (Conf) on the sensors.

Figure 5.2: Access control Conformance Checking

Table 5.1: Access Control Implementation Results
Source Sink Path C/I Auth Conf
S1 C S1 → PLC → P1 → C Yes Yes Yes
S1 DH S1 → PLC → P1 → P2 → DH No No No
S2 C3 S2 → PLC → P1 → C No Yes No
S2 DH S2 → PLC → P1 → P2 → DH No No No

The ck ConformanceTo CIP002(sensors,sinks,Paths) reveals that the

32



Table 5.2: Correct Firewall Deployments Results
Num Substation Architecture Rating Offending Link

1 Original Configuration as shown
in Fig 5.1

2 DH-PCN1

2 Same as 1 but with DH-PCN1
link removed

2 S2-PacketFilteringRouter-C

3 Same as 2 but with router re-
placed with a stateful firewall

3 C-AdminPC

4 3 but with C moved to the DH
subnet

4 None

data association channel between the sensors and the controller enforces in-
tegrity because there is an end-to-end pre-shared key. However the channel
between sensor S2 and the controller does not have confidentiality because the
hop between sensor S2 and the PLC does not support a confidentiality proto-
col. A similar problem occurs along the paths between the sensors and the data
historian where the hop between the two proxies is not confidential. The only
channel that passes the test successfully is between S1 and the controller mainly
because the sensor supports IPSec as an encryption protocol.

5.1.2 Test 2: Firewall Deployment

Firewall deployment was evaluated by starting with the original configuration,
identifying the offending link, incorporating the appropriate firewall, and re-
peating the conformance checking of the new configuration. Table 5.2 presents
the results. The original configuration has a security rating of 2 due to the direct
historian-PCN1 link that was incorporated for vendor convenience. This link
poses a serious threat to the substation as it potentially allows direct Internet
access to the plant floor. Note that the security rating of the entire substation
is dependent on the security rating of the weakest link. Removing this link
(by incorporating a new firewall or relocating PCN devices) and repeating the
analysis produces a security rating of 2. This is due to the presence of a packet
filtering router that separates devices in PCN3 from the controller in EN3. Upon
replacing the router with a stateful firewall, the new configuration has a security
rating of 3 with all the shared devices positioned behind the proper firewalls.
Finally, moving the shared controller to same subnet as the historian produces
a DMZ configuration (security rating 4) with all the shared devices located in
a separate subnet.

5.2 Scenario B: Security Ranking of Recovery

Procedures

We describe a scenario to illustrate our security assessment tool chain function-
ality to rank recovery procedures according to security risk when a fault occurs

33



in a substation. Vulnerable services were hypothetically introduced by us for
the purposes of this paper. Figure 5.3 shows a 275 kV substation with three
transformers and two bus bars. The PowerWorld tool provides a snapshot of the
system when a fault occurs on the 77kV bus-bar causing the protection system
to operate, trip two of the transformers (TR2 and TR3) causing the remaining
transformer to suffer from a severe overload condition. Operators in the control
center have to reduce the load of the transformer in ten minutes otherwise TR1
overheats and burns out causing a blackout of the entire 77kV system in the
substation.

Figure 5.3: A 275 kV Substation with a Fault

Figure 5.4 shows the SCADA network that controls the energizing of the
various power elements. The left hand side of the figure shows the enterprise
network with commodity desk tops and servers while the right hand side shows
the PCN involved with taking sensor measurements and flipping switches to
control the power flow. Top and bottom rows of actuators correspond to Bus
1 and Bus 2 control respectively. Groups of actuators are controlled by a PLC
which is in turn controlled by a relay. Mostly serial connections (RS-485) are
used to link these SCADA devices together, however some of the more upgraded
devices (for instance PLC4) do use Ethernet as well. Finally the relays report
their values to a data aggregator that communicates these to a data historian
on the EN. The firewall contains rules to allow modbus communication between
the aggregator and the historian.

We ran our security assessment toolkit on a model of this substation infras-
tructure. Logical attack graphs were generated for each candidate device in the
various recovery procedures. The attacker was assumed to be an outsider with
network access to the EN and no privileges to any machine except for his own.

34



Figure 5.4: Control Network for the 275kV Substation

Figure 5.5 shows a DoS attack graph for one of these devices: DS12. DS12
is controlled by PLC1 which is in turn controlled by Relay1 that forwards it
instructions for controlling the re-energizing of the transformer. If an attacker
were able to successfully deny service to this device then the underload operation
for TR1 could be delayed causing it to overload.

<0>||--doSattack(attacker, DS12)
<r0a> Rule: Modbus Invalid Header
[]-connectivity(aggregator,Relay1)
[]-vulExists(modbus_srvce, ’MODBUS_INVALID_HEADER’, remoteExploit, doS, 0.9)
<1>|--execCode(attacker, aggregator, root)
<r1> Rule : Remote Heap over-flow of modbus server
[]-connectivity(historian, aggregator, modbus)
[]-vulExists(modbus_srvce, ’HEAP_OVERFLOW’, remoteExploit, Integrity, 0.7)
<2>||--execCode(attacker,historian,root)
<r2> Rule : Trust Relationship with AdminPC
[]-connectivity(adminPC,historian, rlogin)
[]-trust(adminPC,historian)
<3>|--execCode(attacker,adminPC, root)
<r3> Rule : Remote Buffer Overflow
[]-connectivity(attacker,adminPC)
[]-service(adminPC,OpenSSL)
[]-vulExists(OpenSSL, ’GLSA 20071030’, remoteExploit, Integrity,0.49)

<r0b> Rule: 08 Diagnostics function code with a sub-function of 01
[]-connectivity(aggregator,Relay1)
[]-vulExists(modbus_srvce, ’08DiagnosticSubf01’, remoteExploit, doS, 0.87)
|--execCode(attacker, aggregator, root) ==> <1>

Figure 5.5: A Logical Attack Graph for Device DS12

The root node is the attack goal; in this example it is doSattack(attacker,DS12),
meaning “the attacker can cause the DS12 to be unresponsive”. Every rule node
is labeled with the rule name that is used for the derivation step. Rule nodes r0a
and r0b illustrate that there are two possible DoS vulnerabilities (depicted by
square brackets) in the Modbus protocol the Relay is using. Sending a Modbus
TCP message with an invalid header or a 08Diagnostic message would cause
the Relay to be unresponsive. The aggregator that logs events, talks directly

35



to all the relays and a root privilege on it can be achieved if the attacker can
exploit a remote heap-overflow vulnerability in its modbus service. Finally the
attacker can cross over the firewall to get to the aggregator by compromising
the historian on the EN that has a service relationship with it. The attacker can
gain access to the historian via its rlogin trust relationship with the admin PC
which has an OpenSSL service with a buffer overflow vulnerability. Notice that
in this scenario the attacker does not need to be an insider with user or root
access to any of the machines. Not shown due to space limitation are graphs
for DS8, NR2 and NR3. NR3’s risk tree is the same as that of DS12 because
they are connected to the same vulnerable relay. DS8 on the other hand has a
direct Ethernet access from the compromised aggregator and its integrity can be
easily breached by the attacker. A high integrity risk unlike an availability risk
is very dangerous as we will see in the workflows later because it means that the
attacker has complete control and can thwart an operator’s attempts to open
or close a switch whether he does it manually or via SCADA commands.

Figure 5.6: Logical Attack Graph for a DoS attack on a PLC

A more compact version of the attack graph is shown in Figure 5.6 that
uses circles to represent derived facts, squares to represent derivation rules and
filled circles to show primitive facts. This graph shows the calculation of the
security label for DS12. The leaf nodes representing exploits are labelled with
exploitability probabilities obtained from the CERT Vulnerability calculator
[54].

Figure 5.7 shows the recovery procedure that an operator has to follow to
bring up a transformer. These procedures are independent of the specific config-
uration of the sub-station and the actual running of the workflow depends on the
possible actions at any given task (not depicted in the picture). For instance, the
workflow task “Select Transformer” consists of two actions “ChooseTR2” and
“ChooseTR3”. Depending on the current configuration, the task “Transformer
Grounded” can either split to “Ground Transformer” or directly to “Energize
Transformer”. Both splits and actions depend on the context, i.e., which trans-
former was chosen earlier at “Select Transformer” and whether according to the

36



Table 5.3: Device Risk Evaluated and Assigned to Actions
Task Context Required Action Risk

Select Transformer ChooseTR2 No Risk

Select Transformer ChooseTR3 No Risk

Ground Transformer ChooseTR3 at GroundTR3 Low Availability
Select Transformer NR3:0.27

Close Manually ChooseTR3 at Close Switch No Risk
Select Transformer DS12 Manually

Close Manually ChooseTR2 at Close Switch High Integrity
Select Transformer DS8 Manually DS8:0.34

Close Via ChooseTR3 at Close Switch Low Availability
SCADA “Select Transformer” DS12 by SCADA DS12:0.27

Close Via Choose TR2 at Close Switch High Integrity
SCADA “Select Transformer” DS8 by SCADA DS8:0.34

Figure 5.7: Procedure to Enable a Backup Transformer

current configuration the transformer chosen was grounded or not. A subset 1

of actions possible at any given task along with their given risks is calculated by
the network-analysis tool and is given in Table 5.3. The list of possible actions
also depends on the current state of the system. For instance, considering the
configuration described in Figure 5.3 (TR3 is not grounded while TR2 is not),
the “workflow analysis” tool can model-check if the final state is reachable from
the initial state (i.e., there are no deadlocks etc.,). Furthermore, we can check if
there is any path that can finish the workflow with “No Risk”. Searching for the
paths that fulfill the workflow in Maude gives us a list of paths each with its own
risk. For instance, searching for the path with “No Risk” fails in this scenario
because there is no set of choices that can fulfill the workflow with no risk at all.
Searching for paths with Availability and Integrity Risks for the configuration
in (Fig:5.3) gives us the paths as shown in in Table 5.2. Essentially we see that

1We do not show other actions possible at other tasks for instance “Close Transformer
Protection Breaker”

37



if we choose TR2, then we have a potential integrity risk 2 (because device DS8
has an integrity risk), whereas if we choose the TR3, we have a potential avail-
ability risk (because Grounding the Transformer, uses switch NR3 which has
an availability risk). There are also other possible evaluations (such as using
SCADA to close the switch at the task “Close Transformer Bus Breaker”, which
we haven’t shown).

Transformer
Grounded

�� �O
�O
�O

Close Transformer
Protection Breaker

&&NNNNNNNNNNN

Select
Transformer

TR2

None

88rrrrrrrrrr
Select Bus
To Energize

77ooooooooooo
///o/o/o/o/o/o Close
Manually

DS8

Integrity
///o/o/o/o/o/o Energize

Bus
Transformer
Grounded

��

Close Transformer
Protection Breaker

&&NNNNNNNNNNN

Select
Transformer

TR3

None

88rrrrrrrrrr
Ground

Transformer
NR3

Availability
// Select Bus
To Energize

77ooooooooooo
///o/o/o/o/o/o Close
Manually

DS12

None
///o/o/o/o/o/o Energize

Bus
Transformer
Grounded

��

Close Transformer
Protection Breaker

&&LLLLLLLLLLLL

Select
Transformer

TR3

None

99sssssssssss Energize
Backup

Transformer
None

// Select Bus
To Energize

88qqqqqqqqqqqq
///o/o/o/o/o/o Close
Manually

DS12

None
///o/o/o/o/o/o Energize

Bus

Table 5.4: Possible Ways to Fulfill the Workflows

Since, the minimal risk for any workflow run is “Availability” , we recom-
mend that the operator choose “TR3” and (due to the dependency on the trans-
former chosen), close switch “DS12” manually. The third workflow shown, shows
the evaluation after a change in the configuration (where TR3 is grounded).
Note that because of the fact that the Transformer TR3 is already grounded,
we no longer need to run the task “Ground Transformer” and therefore the min-
imal risk run is the one that chooses “TR3” transformer (as before) and there
is a set of choices which the operator can take which have no risk at all.

2Recall that the evaluated risk of a given workflow run is the least upper bound of all the
risks of the individual actions performed during that run

38



6 Optimal Security Hardening
of the Power Grid

The preceding discussion has so far shared the firm posture adopted by CIP
advisory agencies such as FERC and NERC regarding best-practice compliance
meaning that a power utility will either comply or will not comply to a security
standard. For instance a security assessment by the tool-chain on a control
network will return a report indicating all the access points that should have
been protected by firewalls but were not. While the notion that all vulnera-
ble holes should be plugged is ideal, in reality security comes at a cost (time,
resources, efficiency etc) and security administrators will often find themselves
faced with the challenge of having to conduct a cost-benefit analysis before they
can comply with a best-practice.

In 2007 when NERC issued an advisory to 1,800 power operators and owners
outlining immediate and longer term steps they should take to address cyberse-
curity vulnerabilities, one of them being the protection against an Aurora[37]-
style attack, compliance with the advisory was voluntary. A recent FERC audit
of 30 utilities found that most were not in compliance with the advisory [26, 28].
Discussion with the security engineers showed that the majority was still unsure
about the nature and direction of the possible attack vector that could exploit
this vulnerability as well as whether the criticality of their generators merited
such an exercise.

This chapter extends the logical models presented earlier to try and quan-
tify the cost of implementing a security scheme and the benefit it provides in
terms of protection against possible attacks. To this effect the scope of the
control network models from earlier have been narrowed to a particular set of
control device type i.e. relays R where R ⊂ Dc and a realistic threat model
for relay networks is presented. Best practice schemes as applied to relays are
presented and algorithms are described that automate the cost-benefit analysis
exercise required when up against multiple factors: several power network vul-
nerabilities, and different schemes with their varying degrees of protection and
implementation costs and lastly a budget constraint.

6.1 Role of Relay Networks in the Power Grid

Power flow (energized or deenergized) in a power device is controlled by break-
er/relay combinations, henceforth called just relays at the point the power device
connects to a bus and is governed by the controls relationship rNd where r ∈ R

39



and d ∈ Dp \B and can be queried by the following function 6.1.

controls : R → (Dp \B,B) relay to device, bus mapping; (6.1)

Relays belonging to the same substation (pred 6.8) communicate in real-
time pilot protection schemes[33] via multicast protocols (for example 61850
GOOSE [4] messages) using the publish-subscribe paradigm over a broadcast
medium such as Ethernet (pred 6.2). Relays across different substations can
communicate if there is a wide area network (WAN) connection via modem
lines between the two substations (pred 6.3). A WAN network access usually
exists between an unmanned substation and a control center for purposes of
remote engineering access, monitoring and alarms. Unless otherwise indicated
on the power network schematic, we assume that a substation’s control center
is the powerplant with the largest generation connected to it via transmission
lines (pred 6.6). The logical predicates below dictate when network access exist
between two relays. Note that network access for instance for TCP/IP commu-
nication should not be confused with electrical power connections.

ethernetlink(ri , rj ) =ri, rj ∈ R ∧ ∃s ∈ S (6.2)

[s ∈ belongsto(ri) ∧ s ∈ belongsto(rj )];

modemlink(ri , rj ) =ri, rj ∈ R ∧ (modem(ri , rj ) ∨modem(rj , ri)) (6.3)

netaccess(ri , rj ) =ri, rj ∈ R ∧ (ethernetlink(ri , rj ) ∨modemlink(ri , rj ));
(6.4)

where we have the helper functions:

modem(ri , rj ) =ri, rj ∈ R ∧ ∃si ∈ S[si ∈ belongsto(ri)∧ (6.5)

substation(si) ∧ ∃sj ∈ S[sj ∈ controlctr(si)∧

sj ∈ belongsto(rj )]]

controlctr(si)
si∈S

={sj ∈ S|sj ∈ adjacentpplants(si) ∧ ∀sk ∈ S (6.6)

[sk ∈ adjacentpplants(si) ∧ (power(sj ) ≥ power(sk ))]};

adjacentpplants(si)
si∈S

={sj ∈ S|powerplant(sj ) ∧ ∃bi ∈ si,∃bj ∈ sj (6.7)

[linesin(bi) ∩ linesin(bj ) 6= ∅]};

belongsto(ri)
ri∈R

={si ∈ S| ∃di∃bi
di∈Dp,bi∈B

[(di, bi) ∈ controls(ri) ∧ bi ∈ si]};

(6.8)

40



6.2 Contingency Losses: A Metric to Quantify

Cyber-Attack Damage

Definition 1 A contingency is a condition where a set of devices Di are taken
out of service during power system operation by misconfiguration of their con-
trolling relays Ri that causes a violation in a set of other devices Dj where
Di ∪Dj = ∅ i.e. the set of devices Dj exceed their maximum operating limits.

In any electric network, current and voltage are governed by Kirchhoff’s
current and voltage law and the current flow through the branches is governed
by a generalization of Ohm’s resistive law. Therefore there is a current limit on
each line. If one line is not operational due to some contingency, the current
flow will take a different path in the network. This may cause a current in a
branch to increase to a dangerous level and might cause a heating and melting
of the wires. Similarly if a transformer or a generator is forced to operate
beyond its intended capacity violations may occur causing malfunctioning, for
instance burnt insulation and wiring. Since relays can be operated remotely, the
ability to cause contingencies offers the malicious adversary an excellent avenue
of attack. Function 6.9 returns the device violations which occur when a set of
devices have a contingency.

conting(Ri) : Ri → Dj where Ri ⊂ R,Dj ⊂ Dp; (6.9)

Definition 2 Loss is a metric to estimate the extent of the damage caused
by violations and is directly proportional to the product of the cost (per hr) of
unmet demand costumd, the load shed (per hr) and the time (per hr) to repair
the violations of all n devices under violation:

loss(D′
p)

D′
p⊂Dp

=
∑

di∈D′
p

power(di).costumd .timerepair (di); (6.10)

6.3 Threat Model

We assume a non-global, partial adversary who does not monitor all links. He
is limited to one tap which can be put on any substation ethernet and between
modem-to-modem links but not powerplants. He is familiar with the power
network schematics and knows the exact contingencies that will cause the max-
imum loss, which is also his objective. He is however limited by a cost that he
has to pay every time he compromises a relay needed for a contingency and this
cost is deducted from the number of resources he has available. He must have
network access to all relays needed to cause contingencies. Finally we assume
that he has two kinds of attacks at his disposal- DoS and Masquerade attacks.
The former can be protected against by firewalls and traffic segregation and

41



latter via encryption. We assume the attacker has 2 resources and each relay
compromise has a cost of 1. Under these assumptions predicate 6.12 returns
all the pairs of relays possible to attack for an unprotected substation while
predicate 6.11 determines the contingency relay pair with the maximum loss.

maxattack(s)
s∈S

={(rk, rl) ∈ attack(s)|∀(ri, rj) ∈ attack(s)

[∃Dn ∈ conting(rk , rl)[∀Dm ∈ conting(ri , rj )

[loss(Dn) ≥ loss(Dm)]]]};

(6.11)

where we have the helper predicate

attack(s)
s∈S

= {(r1, r2) ∈ R×R|netaccess(r1 , r2 )∧

∃(d1, b1) ∈ controls(r1 )[∃(d2, b2) ∈ controls(r2 )

[((b1 ∈ s ∧ b2 ∈ s)∨

(b1 ∈ s ∧ b2 ∈ controlctr(s))∨

(b1 ∈ controlctr(s) ∧ b2 ∈ s))]]};

(6.12)

We will now present a short discussion on why such an adversary model is
realistic. Substations are unmanned, with little or no enclosure because of their
large size. Modems relay substation messages across large distances mostly using
telephone cables or the public internet infrastructure. Taping into either one
is trivial for a determined attacker. Powerplants on the other hand are harder
to infiltrate because they are usually manned with physical security in place to
protect generators and the fuel. Pilot protection schemes used by relays have
stringent demands such as low-latency communication and high susceptibility
to replay and error propagation (small blocks of data transmitted in real-time)
so traffic manipulation attacks can severely impact system reliability. Once the
adversary taps into a substation he only employs cyber-attacks as apposed to
physical because a) cyber attacks have the potential to cause considerably more
damage (as will be evident later in the paper) and b) they are more subtle.
Consider the attention drawn by attempting to damage a transformer using a
shotgun as apposed to causing it overload by a simple command sent to a relay.

6.4 Security Best-Practice Schemes for Attack

Damage Mitigation

Given the adversary model we describe the options available to the security
engineer to mitigate the damage caused.

Definition 3 A security scheme li can be applied to a substation sj to limit the

42



adversary’s network access. Each scheme once applied to a particular substation
has an associated implementation cost cij and attack coverage aij. aij provides
an estimate of the average revenue loss if the substation gets attacked despite
the security scheme in place.

The next couple of sections elaborate on the terms used in this definition
by describing some schemes formalized from NIST’s security best practices and
how their costs and attack coverages are determined.

6.4.1 Intrasubstation Traffic Segregation via Virtual

LANs

Ethernet on its own provides little security from malicious intruders and seg-
regating it into multiple IP subnets is one approach to narrowing an electronic
security parameter. The NIST [59] guide on SCADA security states that:

“VLANs allow switches to enforce security policies and segregate traffic at the

Ethernet layer mitigating the risks of broadcast storms that may result from port

scanning or worm activity.”

The vlan predicate 6.13 maps a substation ethernet into n multiple broadcast
lan segments separated by vlan switches such that no groups of relays whose
contingencies will together cause a violation belong in the same segment.

vlan(s)
s∈S

≥ min{n|X1, ...Xn
Xi∈P{R}

,
⋃
∀i

Xi = relaysin(s), Xi ∩Xj = ∅
i 6=j

∀rl∀rk ∈ Xi
l 6=k

[conting(rl , rk ) = ∅]};
(6.13)

where we define the helper function:

relaysin(s) = {r ∈ R|s ∈ belongsto(r)}; (6.14)

Figure 6.1 illustrates how a vlan supporting switch and router combination
can be used (right) to replace a simple hub-spoke ethernet configuration (left)
to segment the network into multiple broadcast domains such that dependent
relay combinations needed to cause violations are isolated.

43



Figure 6.1: Intrasubstation Traffic Segregation using VLANs

attackvlan(s)
s∈S

={(r1, r2) ∈ attack(s)|

∃(d1, b1) ∈ controls(r1 )[∃(d2, b2) ∈ controls(r2 )[

(ethernetlink(r1 , r2 ) ∧ ∃Xi ∈ vlan(s)[r1, r2 ∈ Xi ∧ b1, b2 ∈ s])∨

(modemlink(r1 , r2 ) ∧ ((b1 ∈ s ∧ b2 ∈ ctrlcenter(s))∨

(b2 ∈ s ∧ b1 ∈ ctrlcenter(s))))]]};
(6.15)

As shown in pred 6.15 the attacker is restricted in the network access he has,
and can only compromise devices if they are in the same vlan as his initial tap
or accessible via a modem link.

6.4.2 Intersubstation Traffic Segregation via Firewalls

While the vlan scheme limits the adversary from attacking multiple targets
within a substation it provides little or no protection against attacks traversing
multiple connected substations. According to NIST’s CIP best security prac-
tices rules [43, 22] firewalls should be used to segregate traffic between process
control networks (PCN), and engineering and monitoring access. Predicate 6.16
shows that in a firewall protected modem link the only avenue of attack is the
substation ethernet.

attackfirewall(s)
s∈S

= {(r1, r2) ∈ attack(s)|ethernetlink(r1 , r2 )∧

∃(d1, b1) ∈ controls(r1 )[∃(d2, b2) ∈ controls(r2 )[

(b1, b2 ∈ s)]]};

(6.16)

Figure 6.2 illustrates how a three-port firewall segregates control traffic into
multiple domains; HMI/local generation control, transmission and remote mon-
itoring preventing the attacker from using a compromised modem connection to
exploit a cross substation contingency i.e. between relays 1 and 4.

44



Figure 6.2: Intersubstation Traffic Segregation using Firewalls

6.4.3 Intersubstation Traffic Encryption via Link

Encryption

Security best-practice guides recommend encrypting traffic when sending control
messages over a WAN connection. Since most relays do not support encryption
schemes, special devices may be installed next to modems to encrypt all outgo-
ing traffic. A serial encrypting transceiver [55] is an example of such a device
which acts as a ‘bump in the wire’ standalone cryptographic module designed
to protect latency-sensitive devices. A logic function to determine where to
place an encrypting transceiver would be similar to the one above shown for
firewalls except that there would be one placed on either side of a WAN link
to perform both encryption and decryption functions. Note that a encryption
transceiver does not duplicate the functionality of a firewall in fact both devices
are complementary. This fact becomes clearer in the evaluation section where
we show how a composite firewall plus link encryption scheme provides more
security then any one scheme used in isolation.

6.5 Implementation Costs and Attack

Coverage of Security Schemes

For the purpose of the security analysis, the result of the implementation of
the security schemes in a substation is the determination of attack coverage
reduction and implementation cost. We determine implementation cost of a
scheme to be the sum of the cost of security control devices used in implementing
that scheme. For instance the cost of implementing VLANs in a substation sj

would use the predicate 6.13 to determine the number of switches needed.
For a scheme li implemented on substation sj , predicate 6.17 gives a set of

relay pairs V that are vulnerable to attack because they cause contingencies
and V ′ = attackli(sj) ∩ vuldevpairs(sj) gives the pairs that are not protected

45



by the security scheme.

vuldevpairs(sj) = {(rx, ry) ∈ attack(sj )|conting(rx, ry) 6= ∅}; (6.17)

Since the adversary will always try to exploit the contingencies in order
of greatest to least damage, we can sort the relay pairs R1, R2, ..., Rn where
R1, R2, Rn ⊂ R returned by predicate 6.17 according to loss damage (pred-
icate 6.10) loss(D1 ), loss(D2 ), ..., loss(Dn) where D1 = conting(R1), D2 =
conting(R2), and Dn = conting(Rn). We can associate to every contingency
Di a parameter αi ∈ R+

≤1 that represents the scheme’s inability of preventing
the exploiting of the contingency. Then the attack coverage aij is given by
equation 6.18.

ai,j =α1 · loss(D1) + (1− α1) · α2 · loss(D2) + (1− α1) · (1− α2) · α3 · loss(D3)

+ . . . + (1− α1) · · · (1− αn−1) · αn · loss(Dn)
.

(6.18)

Generally the set of relay pairs V ′ would have an α = 1 indicating that
an attack can exploit this contingency successfully every time, while the set
V \ V ′ would have a lower α value. A value of 0 indicates that the scheme
completely protects against attacks. The computation of aij can be considered
as a probability that the attacker is able to exploit the given contingency during
the attack. The attacker tries to exploit the contingency associated with the
maximum coverage. The success of this action is determined by the probability
α1. In case of failure (due to network access denied by a security scheme), the
attacker would try to exploit the next contingency with the maximum loss and
so on, until one exploitable contingency is found.

6.6 Optimal Security Hardening Algorithm

Given a set of substations and a set of independent strategies each with its
unique implementation cost and coverage against malicious attacks the bud-
get problem is to search for the optimal combination of strategies to apply at
each individual substation so as to maximize the overall network security while
remaining within a fixed budget.

6.6.1 Reduction from Multiple-Choice Knapsack

Assuming that only one strategy can be applied at each substation it is easy
to see that enumerating all possibilities is an NP-hard problem. The proof lies
in a straightforward reduction from the Multiple-Choice 0-1 Knapsack problem
(MCKS). The goal of a general 0-1 Knapsack problem is to select a set of objects,

46



each with an associated weight and a revenue, such that the sum of the weight is
below a predefined bound and the total revenue is maximized. In the Multiple
- Choice variation of this problem, the objects are partitioned into n groups,
and only a single object can be chosen from each group. This problem can be
reduced to our formulation by considering each object to be a different security
scheme and each substation to be one of the groups in which the objects are
partitioned. The weight of each object becomes the cost of the implementation
of the security scheme and the revenue is the opposite of the attack coverage (i.e.,
such that the maximization of the revenue can be expressed as a minimization
of the attack coverage). By selecting the security schemes that minimize the
attack coverage under a specified budget, we are solving the general MCKS
problem.

The formulation of the optimal security hardening problem is defined as
follow. Given the schemes l1, . . . , lm and given a set of substations s1, . . . , sn,
we define a variable xij ∈ {0, 1} to be equal to 1 if the security scheme li

is applied to the substation sj , 0 otherwise. Each security scheme li, when
applied to a substation sj , has an associated implementation cost cij and an
associated attack coverage aij . The budget allocated for security hardening is
expressed as budget. The problem can be expressed as in equation 6.19.

min
m∑

i=1

n∑
j=1

aij · xij

m∑
i=1

n∑
j=1

cij · xij ≤ budget

For xij ∈ {0, 1} where ∀j
m∑

i=1

xij = 1

(6.19)

6.6.2 Dynamic Programming Solution

However by assuming that the principal of optimality holds i.e. the optimal
security strategy decided at a particular substation only depends upon the bud-
get spent so far and is independent of all previous strategy decisions at other
substations, a recursive dynamic programming solution can be formulated.

We divide the recursive solution into multiple states xj where j denotes
the substation number currently under consideration in that state and x is the
remaining budget. Similarly a(lj) denotes the attack coverage for strategy lj ,
and c(lj) the corresponding cost. If fj(xj) is final attack coverage for the state
xj then we have the dynamic programming solution given by the recurrence
relations in equation 6.20.

f1(x) = min
l1:c(l1)≤x1

{a(l1)}

fj(xj) = min
lj :c(lj)≤xj

{a(lj) + fj−1(xj − c(lj))} for j > 1
(6.20)

47



The first equation in 6.20 is the base case for one substation which returns
the security scheme with the minimum attack coverage whose cost is below the
budget. The second equation depicts the forward recursion returning the mini-
mum a(lj) of the current state plus the minimum of the last state. It is easy to
see that the fj(xj)s can be stored in a table (or memorized in logical program-
ming as will become apparent in our Prolog implementation later) preventing a
state explosion and allowing a polynomial time evaluation.

6.7 Implementation Details

This section describes how the proposed metrics for the cost-benefit security
analysis were easily incorporated in the Logic-based tool chain described in
Chapter 4.

6.7.1 Contingency Analysis

Various power-flow simulation software both commercial e.g. Powerworld[48]
and opensource e.g. InterPSS[65] exist that allow contingency analysis of power
networks. A contingency analysis via a power-flow simulation software will take
out of service each device, one-by-one, resolve the power flow, and then check
that no violations have occurred e.g no lines have exceeded their rated capacity.
Industry planning and operating criteria often refer to the n − 1 rule, which
holds that a system must operate in a stable and secure manner following any
single transmission or generation outage. We scripted the Powerworld software
to do an n − 1 and an n − 2 contingency analysis on each substation and its
associated control center in a power network schematic essentially returning
the tuples (contingentdevices, violations) to be stored in the Prolog knowledge
base. Predicate 6.9 essentially searches through this table for its solution.

6.7.2 Security Analysis Implementation as Logical Rules

This section describes how the various logic predicates are implemented as Pro-
log rules using two representative examples that of VLAN security scheme se-
lection (Eq. 6.13) and the max-security fixed budget optimization problem (Eq.
6.20.

Device to VLAN Assignment

The cost of implementation of this scheme varies depending on the number of
VLANs used to secure the substation: high number of VLANs requires more
equipment and higher set up costs. For this reason, it is necessary to provide
an estimate of the number of VLANs needed. In order to minimize the number
of VLANs, the scheme proposes to segregate only devices that, if exploited
together, can create a violation. This problem can be mapped into a graph

48



Algorithm 2 Greedy algorithm for assigning VLANs to devices
/* At the start, all nodes do not have a label associated with them */
l(n) = -1, ∀n
/* Start the algorithm by assigning label = 1 */
c = 1
Order nodes in non-increasing degree order
/* until all nodes have labels */
while ∃n : l(n) == −1 do

for each node n do
if l(n) == −1 and ∀ neighbor nodes j, l(j) 6= c then

Assign c to n
end if

end for
c = c + 1

end while

coloring problem. In this model, each device is a node in the graph and edges
are created according to the contingency analysis: if two devices can be used
together to create a violation, then an edge exists between the them. The goal
of this problem is to find the minimum number of labels (i.e., VLANs) that we
need to assign to each node such that two connected nodes do not share the
same label. For determining the solution to this problem, we used a greedy
algorithm for graph coloring, shown in Figure 2.

Optimal Selection of Security Schemes

Table 6.1 describes part of the implementation of the optimal security scheme
selection algorithm described previously. Note that some of the predicates and
attributes have been taken out for brevity. We describe the listing bottom
up. Line 29 is the base case and line 34 the recursive case of equations 6.20.
They take as arguments the state J and the total budget constaint Xj and
return the overall Loss in Result and a list representing the schemes applied
at each substation. The mklist rule is called (line 37) in the recursive case
to merge the list of current attack coverages with that of the most optimal
results in the last state subject to the budget constaint. Lines 16 and 22 detail
the implementation of the mklist rule, the former dealing with the boundary
condition of the budget running out while the latter deals with the regular
case. Once the attack coverages list has been completely processed the mklist
predicate on line 14 unifies the under process lists Acc and Acc3 with the result
MergeAj and SLst. Note the memorization function used in line 24 and declared
on line 2 that allows computed solutions to be stored in a look-up table enabling
the dynamic programming optimization.

49



Table 6.1: Optimal Security Scheme Selection: Prolog Implementation

1 :− dynamic s t o r e d /1 .
2 memo( Goal ) :−
3 ( s t o r e d ( Goal ) −> t r u e ;
4 Goal , a s s e r t z ( s t o r e d ( Goal ) ) ) .
5
6 % cmin ( Aj , Cj , Resu l t , Xj , I ndex )
7 % r e t u r n s min o f L i s t Aj and i t s
8 % index s . t . c o r r e s p ond i n g
9 % Cj [ i nd ex ] < Xj

10
11 % sub s t a t i o n ( ID , L i s t o f S c h eme c o s t s ,
12 % L i s t o f s c h em e a t t c k c o v g s )
13
14 mkls t ( , [ ] , [ ] , , L2 , L2 , L3 , SLst ) :− ! .
15
16 mkls t ( J , [ CH|CT ] , [ |AT] , Xj , Acc , MergeAj , Acc3 , SLst ) :−
17 Y i s Xj−CH, Y < 0 ,
18 append (Acc , [ −1 ] , L i s t 1 ) ,
19 append (Acc3 , [ [ 0 ] ] , L i s t 2 ) ,
20 mkls t ( J ,CT,AT, Xj , L i s t 1 , MergeAj , L i s t 2 , SLst ) .
21
22 mkls t ( J , [ CH|CT ] , [AH|AT] , Xj , Acc , MergeAj , Acc3 , SLst ) :−
23 J1 i s J−1, Y i s Xj−CH, Y > −1,
24 memo( f ( J1 ,Y, Fjminus1 , PrevSchemeLst ) ) ,
25 NewH i s AH+Fjminus1 ,
26 append (Acc , [ NewH] , L i s t 1 ) ,
27 append (Acc3 , [ PrevSchemeLst ] , L i s t 2 ) ,
28 mkls t ( J ,CT,AT, Xj , L i s t 1 , MergeAj , L i s t 2 , SLst ) .
29
30 f (1 ,X1 , Resu l t , [ I ndex ] ) :−
31 s u b s t a t i o n (1 ,C1 , A1) ,
32 cmin (A1 , C1 , Resu l t , X1 , I ndex ) .
33
34
35 f ( J , Xj , Resu l t , [ I ndex | Scheme ] ) :−
36 J > 1 ,
37 s u b s t a t i o n ( J , Cj , Aj ) ,
38 mkls t ( J , Cj , Aj , Xj , [ ] , MergeAj , [ ] , SLst ) ,
39 cmin ( MergeAj , Cj , Resu l t , Xj , I ndex ) ,
40 e l emen t a t ( Scheme , SLst , F) .

.

50



7 Case Study: Optimal
Security Hardening of the
118-Bus
The IEEE 118 Bus test case was used to test and analyze the optimal security
hardening problem formulation. Data for the IEEE 118 bus test case represent-
ing a portion of the American Electric Power System in the Midwestern US, was
downloaded from the University of Washington Power System [62]. The system
consists of 118 buses, 186 transmission elements, 19 committed generators with
a total capacity of 5,859 MW, and 99 load buses with a total load of 4,519 MW.
The complete power flow simulation along with the line limits that we used
can be found at the Powerworld website [19]. Since our threat model assumes
the adversary has two resources, we did a N-1 and an N-2 contingency analy-
sis. While our tests were run on the entire network whose results are presented
at the end, we initially walk the reader through just a portion of the analysis
(south-west part of the network) shown in figure 7.1 for easy understanding.

Figure 7.1: Contingency Analysis of A Portion of the 118-Bus Test Case

51



7.1 Security Schemes Employed

Suitable candidate devices were picked for each of the security strategies identi-
fied. We use the label VLAN to indicate the intra-substation traffic segregation
via Virtual LANs scheme, the label FWALL to indicate the intersubstation
traffic segregation via firewall scheme, and FLINK for the composite scheme of
firewall and link encryption combined. Table 7.1 gives a descriptive summary
of each of security schemes applied along with its coverage and an estimate of
individual device cost required to implement each one. In the case of composite
strategies, the devices shared among the two security solutions are counted only
once. For example, in the case of the VLAN + FWALL strategy, the CISCO
1760 router can be used, at the same time, for implementing both the VLAN
and the FWALL strategies. Hence, its cost is counted only once.

Table 7.1: A Cost-Benefit Comparison of Security Schemes
Security
Scheme

Scheme VLAN Scheme FWALL Scheme FLINK

Description Intra-substation traf-
fic segregation using
VLANs

Inter-substation traffic
segregation using fire-
walls

Firewall and link en-
cryption across substa-
tion boundary

Mitigated
Threats

Traffic Manipulation Traffic Manipulation Traffic Manipulation +
Masquerade Attacks

Typical
Deployment
Budget

•Cisco 1760 router $1k •Cisco 1760 router $1k •Cisco 1760 router $1k

•Cisco Catalyst switch
2950 each VLAN ($500)

•Stateful Firewall Inte-
grated Router ($200)

•Stateful Firewall Inte-
grated Router ($200)

•Serial Transceiver
SEL-3021 ($540)

Once the security strategies have been defined, the first step of the analysis
is determining the attack coverages and overall loss for each substation. This
process is split into two parts. In the first part of the analysis each contingency
is analyzed to determine the degree of protection that a given security scheme
provides. During this process, each security scheme associates a value of α to
each contingency. In the second phase of the analysis, the substation attack
coverage is computed using Eq 6.18.

7.2 Case Study Results

Tables 7.2 (a), (b), (c) and (d) show the results of the analysis. In each table,
the devices that are part of each contingency are shown on the first column,
Contingency. The second column, Loss, reports an estimation of the loss caused
by an exploitation of the associated contingency, as defined in Section 6.2. In
this subset of the power grid, all violations affect lines. In the estimation of the
loss we assume an unmet demand cost of $1000 per hour and a time to repair
of 10 hours for all violations. Different choices of coefficients would affect the
losses of all contingencies in the same way, hence not affecting the final results.

52



Coefficients would have been different for violations that affect transformers,
but the overall analysis procedure would not change. The attack coverage is
expressed in ten thousand dollar units. The last columns of each table report
the degree of exploitability of each contingency using different security schemes.

The results for the analysis of substation 92 Saltville are reported in Ta-
ble 7.2a. For each security scheme, each consistency has been analyzed using
the logic rules described in Section 6.4. We consider an α value of 1 for contin-
gencies that are not protected by the security scheme, a value of 0.5 if protected
by the VLAN or FWALL scheme. A value of 0 is assigned if the contingency is
protected by the FLINK : this security scheme provides more protection than
FWALL alone as it protects against both traffic manipulation and masquerade
attacks.

In substation 92 Saltville, the security scheme VLAN does not protect
against the contingency with the highest loss. Hence, the overall attack cover-
age for the VLAN strategy is $1,777,000, as if no security scheme were used.
Security scheme FWALL partially protects against the contingencies with more
losses, and we obtain an overall attack coverage of $1,502,000. Security schemes
VLAN + FWALL and FLINK and VLAN + FLINK improve the protection,
leading to lower overall attack coverages.

Table 7.2 (a) also reports the cost of applying each strategy and the substa-
tion attack coverage, obtained using Eq 6.18.

The same process has been applied to substations 69 Philip Sporn, 75 6Point,
92 Saltville and 110 Pielbale (the greyed substations shown in Figure 7.1). Re-
sults of this analysis are reported in Tables 7.2 (b),(c) and (d).

Given the values of Tables 7.2 (a), (b), (c) and (d) and a finite budget, the
optimal security hardening algorithm finds the optimal assignment of security
schemes to substations that minimizes the overall attack coverage.

Without the application of any security scheme, the overall attack coverage
is $5,964,000. As an example, the results for a budget of $7000 are elaborated in
Table 7.3. The symbol ′−′ represents the choice of not implementing a security
scheme.

As Table 7.3 shows, the optimal allocation of the budget (method A) is to
implement scheme VLAN + FLINK in substation 75 6Point, scheme FLINK
in substation 92 Saltville and scheme VLAN in substation 110 Pielbale. No
security scheme has been applied to substation 69 Philip Sporn. This solution
has an overall attack coverage of $3,681,000, the minimum value obtainable
using this budget. The fact that no security scheme has been applied to one
of the substation might seem counterintuitive, however this is a consequence of
having a finite budget. If we were to apply any security scheme to substation
69, the cost of the solution would go over the budget. On the other hand, if
we define a new security scheme assignment method (method C) where some
security scheme must be applied to each substation, we obtain the solution
reported in Table 7.4. The overall attack coverage of this solution is $4,073,000,

53



Contingency Loss VLAN FWALL VLAN + FLINK VLAN +
[$10k] FWALL FLINK

6,13 112.5 1 0.5 0.5 0 0
6,14 177.5 1 0.5 0.5 0 0
6,15 128 1 0.5 0.5 0 0
9,10 100.9 0.5 1 0.5 1 0.5
13,16 57.3 0.5 1 0.5 1 0.5
13,15 57.3 0.5 1 0.5 1 0.5
14,16 62.8 0.5 1 0.5 1 0.5
14,15 112.5 0.5 1 0.5 1 0.5

6 65.2 1 0.5 0.5 0 0

Scheme cost $2000 $1200 $2200 $1740 $2740

Overall Attack Coverage 177.7 150.2 148.2 112.5 94.7

(a) Substation 92 Saltville

Contingency Loss VLAN FWALL VLAN + FLINK VLAN +
[$10k] FWALL FLINK

41,37 153.8 0.5 1 0.5 1 0.5
46 94.4 1 1 1 1 1
26 52.5 1 0.5 0.5 0 0

32,46 7.8 0.5 1 0.5 1 0.5
48,46 7.8 0.5 1 0.5 1 0.5

Scheme cost $2000 $1200 $2200 $1740 $2740

Overall Attack coverage 124.1 153.8 124.1 153.8 124.1

(b) Substation 69 Philip Sporn

Contingency Loss VLAN FWALL VLAN + FLINK VLAN +
[$10k] FWALL FLINK

41,37 153.8 1 0.5 0.5 0 0
36 62.4 1 0.5 0.5 0 0

37,34 62.4 0.5 1 0.5 1 0.5
41,38 51.9 1 0.5 0.5 0 0

Scheme cost $2000 $1200 $2200 $1740 $2740

Overall Attack coverage 153.8 108.1 103.5 62.4 31.2

(c) Substation 75 6Point

Contingency Loss VLAN FWALL VLAN + FLINK VLAN +
[$10k] FWALL FLINK

56,58 111.3 0.5 1 0.5 1 0.5
57,58 59.7 0.5 1 0.5 1 0.5

Scheme cost $ 2000 $1200 $2200 $1740 $2740

Overall Attack coverage 70.6 111.3 70.6 111.3 70.6

(d) Substation 110 Pielbale

Table 7.2: Attack Coverage Quantification of Security Schemes

Substation Selected scheme Overall Attack Coverage Scheme Cost
[$10k] Total Budget $7k

69 Philip Sporn - 153.8 $0
75 6Point VLAN + FLINK 31.2 $ 2740
92 Saltville FLINK 112.5 $1740
110 Pielbale VLAN 70.6 $2000

Table 7.3: Method A: Optimal Assignment of Security Schemes

54



 300

 350

 400

 450

 500

 550

 600

 1  2  3  4  5  6  7  8  9  10

O
v
er

al
l 

A
tt

ac
k
 C

o
v
er

ag
e 

[$
1
0
k
]

Budget [$1000]

Method A
Method C

Greedy

Figure 7.2: Cost-Benefit Comparison of Scheme Selection Methodologies.

which is higher than our original solution.

Substation Selected scheme Overall Attack Coverage Scheme Cost
[$10k] Total Budget $7k

69 Philip Sporn VLAN 124.1 $2000
75 6Point FLINK 62.4 $1740
92 Saltville FWALL 150.2 $1200
110 Pielbale VLAN 70.6 $2000

Table 7.4: Method C: Optimal Complete Assignment of Security Schemes

Given no constraints over the budget, the best allocation of security schemes
is reported in Table 7.5. We call this security scheme allocation method B and,
in this case, this allocation is possible only with a budget of $9480.

Figure 7.2 reports the total attack coverage for all substations when differ-
ent budgets are allocated for security hardening. Method C results start only
after a budget of $4800: before that value there is no assignment that provides
a security scheme to each substation. It can be seen that method C provides
an higher overall attack coverage for the same budget. A and C are also com-
pared to a greedy scheme selection methodology, namely making the best local
decisions at each state without considering the previously computed results. It
is clear from the traces that not only does this scheme have an overall higher
attack coverage than the rest e.g. $3925k for a budget of $7000 but it also some-
times ends up making incorrect decisions so that for an increase in budget the
attack coverage increases as well. This is apparent from the spike at a budget

55



Substation Selected scheme Substation Attack Coverage Scheme Cost
[$10k]

69 Philip Sporn VLAN 124.1 $2000
75 6Point VLAN + FLINK 31.2 $2740
92 Saltville VLAN + FLINK 94.7 $2740
110 Pielbale VLAN 70.6 $2000

Table 7.5: Method B: Unlimited Budget Assignment of Security Schemes.

of $4,800 to $5,900 resulting from a lucrative local decision that doesn’t leave
enough revenue for reasonably securing other states.

Security Schemes Substation Deployment Attack Coverage Cost
[$10k]

VLAN 18 2436.1 $16000
FWALL 0 0 $0
VLAN+FWALL 22 2546.7 $43360
FLINK 14 654.2 $15920
VLAN+FLINK 28 3322.8 $49580

Table 7.6: Security Hardening Results of the Entire 118-Bus

The results of the security hardening exercise of the entire 118-Bus system
are shown in table 7.6. We wanted to see the total protection that could be
achieved without any budget constraints, hence the reason for FLINK scheme
always being the preferred over FWALL. 82 total substations were secured with
a overall cost of $124,860 and a total attack coverage of $89,598,000.

56



8 Conclusion and Future
Work

8.1 Conclusion

In this work we propose a security model that incorporates descriptions of the
SCADA infrastructure and its workflow activities. Using Logic-based models of
security schemes we can evaluate the compliance of the infrastructure to security
best-practices. In addition by extending existing techniques for scalable attack
graph generation we evaluate risks and give advisories on which workflows are
safer than others based on a cost-lattice. We implemented a tool-chain that
automates most of the process of generating our models from CIM specifications.
Moreover the tool chain updates configuration information dynamically from an
event aggregator allowing our security model to give accurate results.

Besides security assessment, we also addressed the Power Grid security ad-
ministrators’ dilemma, namely, how to select, an optimal combination of secu-
rity hardening schemes from a set of choices so that not only the total attack
coverage is minimized but also the total installation cost remains within a cer-
tain budget. The security-budget optimization was formulated as a dynamic
programming knapsack problem allowing it to be solvable in pseudo-polynomial
time. The tool-chain was evaluated on the IEEE 118-bus test case with five
different security schemes.

8.2 Future Work

In the future the scalability of this approach can be evaluated by using bigger
models and seeing the impact on the model checking time. Currently actions
are limited to security properties associated with devices. A more realistic
model would be to incorporate side effects of actions and their impact on the
state of the system. That model could potentially allow feedback modelling
(e.g. via SMTP monitoring software) of the impact of firing certain actions in a
workflow and recalculation of the new security risks. The feedback mechanism
would allow detection of changes in not only the status of devices but also of
security provisions. Finally the cost-lattice could be expanded to include more
properties of interest.

Our model for estimating cost of installing a security scheme is a little sim-
plistic taking into account only the total monetary value of the security devices
required. In reality there may be a lot more cost factors involved such as that

57



of installation, system downtime, incompatibility, training and effort. In our
case study, our threat model only covered cyber attacks on relays, because the
IEEE Power System Test case archive did not contain any other control device
information. In actuality there are a host of cyber devices e.g. PLCs, RTUs,
Data Historians etc. in a power network that control power assets in a variety
of ways. We believe our model can encompass these devices but more detailed
networks are needed for evaluation. The assignment of degree of protection to
the various security schemes for the 118-bus test case is course grained based
only on the type of attacks the scheme protects. For Power Grid schematics
with more detailed control network information this calculation would involve
more complicated attack trees.

Finally modelling distributed attacks that exploit temporal dependencies,
would enable the tool-chain to evaluate possibilities of cascading failures akin
to the series of timed electric surges seen across the Power Grid during the 2003
blackout[38].

58



References

[1] The Foundation for Scientific and Industrial Research at the Norwegian
Institute of Technology. www.sintef.no/.

[2] British Columbia Institute of Technology Industrial Security Incident
Database. http://www.bcit.ca /appliedresearch/ security/, 2001.

[3] RFC 1157. Simple network management protocol (snmp).

[4] IEC 61850-SER. IEC 61850 Communication networks and systems in sub-
stations parts. http://www.61850.com, 2004.

[5] American Gas Association (AGA). Cryptographic Protection of
SCADA Communications, Part 1: Background, Policies and Test Plan.
www.aga.org, March 2006.

[6] Z. Anwar and R. H. Campbell. Automated Assessment of Critical Infras-
tructures for Compliance to Best Practices. IFIP WG 11.10 International
Conference on Critical Infrastructure Protection, March 2008.

[7] Z. Anwar, M. Montanari, A. Gutierrez, and R. H. Campbell. Budget
Constrained Optimal Security Hardening of Control Networks for Criti-
cal Cyber-Infrastructures. International Journal of Critical Infrastructure
Protection, 2008.

[8] Z. Anwar, R. Shankesi, and R. H. Campbell. Automatic Security Assess-
ment of Large-Scale Cyber-Infrastructures. International Conference on
Dependable Systems and Networks, June 2008.

[9] B. Axel, R. Fredriksen, and A. Thunem. An Approach for Model-based risk
management. Springer LNCS, 2004.

[10] P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN From a
Rewriting Logic Point of View. Theoretical Computer Science, 285:155–185,
2002.

[11] E.J. Byres, M. Franz, and D. Miller. The Use of Attack Trees in Assessing
Vulnerabilities in SCADA Systems. International Infrastructure Survivabil-
ity Workshop, 2004.

[12] Edmund .M. Clarke, Orna. Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, 2001.

[13] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Mart́ı-Oliet, and
C. Talcott. All About Maude – A High-Performance Logical Framework.
Springer LNCS Vol. 4350, 2007.

[14] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. The Maude 2.0 System.
In Rewriting Techniques and Applications, LNCS, pages 76–87. Springer-
Verlag, June 2003.

59



[15] Federal Energy Regulatory Commission. Mandatory Reliability Standards
for Critical Infrastructure Protection. Docket No. RM06-22-000; Order No.
706 http://ferc.gov/whats-new/comm-meet/2008/011708/E-2.pdf, January
2008.

[16] United States Nuclear Regulatory Commission. Potential Vulnerability of
Plant Computer Network to Worm Infection. NRC Information Notice
2003-14, 2003.

[17] R. F. Dacey. Critical Infrastructure Protection: Challenges in Securing
Control Systems. 2004. GAO-04-140T.

[18] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley. Optimal security hard-
ening using multi-objective optimization on attack tree models of networks.
Proceedings of the 14th ACM conference on Computer and communications
security, 2007.

[19] POWERWORLD Educator. The Visual Approach to Analyzing Power
Systems. http://www.powerworld.com/cases/118bus.zip, 2007.

[20] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude
LTL model checker. In F. Gadducci and U. Montanari, editors, Proc. 4th.
Intl. Workshop on Rewriting Logic and its Applications. ENTCS, Elsevier,
2002.

[21] D. L. Evans, P. J. Bond, and A. L. Bement. Standards for Security Catego-
rization of Federal Information and Information Systems. Feburary 2004.
FIPSPUB199.

[22] D. L. Evans, P. J. Bond, and A. L. Bement. Standards for Security Cat-
egorization of Federal Information and Information Systems,. Computer
Security Division, Information Technology Laboratory, National Institute
of Standards and Technology, september 2006.

[23] K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific,
AMAST Series, 1998.

[24] Joseph Goguen and José Meseguer. Order-Sorted Algebra I: Equational
Deduction for Multiple Inheritance, Overloading, Exceptions and Partial
Operations. Theoretical Computer Science, 105(2):217–273, 1992.

[25] Mark Grimes. SCADA Exposed. TOORCON, September 2005.

[26] Juliana Gruenwald. Power grid vulnerable to cyberattacks, commit-
tee told. CongressDaily, September 2008. http:// www.govexec.com/
story page.cfm? articleid= 40940.

[27] J. D. Guttman and A. L. Herzog. Rigorous automated network security.
International Journal for Information Security, 2004.

[28] Dave Hendricks. Fear About Cyberattacks Against Power Grid
Prompts Proposal for New Regulation. InfoZine, September 2008.
http://www.infozine.com/news/stories/op/storiesView/sid/30602/.

[29] Industrial Automation Open Networking Association (IAONA).
Draft/RFC v0.4. The IAONA Handbook for Network Security, 2003.

[30] Distributed Management Task Force, Common Information Model (CIM).
DSP 0004- CIM Infrastructure Specification 2.14, October 2005.

60



[31] Systems Instrumentation and Automation Society (ISA). Security
Technologies for Manufacturing and Control Systems. March 2004.
ISATR99.00.012004.

[32] R. L. Krutz. Securing SCADA Systems. WILEY, 2006.

[33] J. Lewis and T. Domin. Protective Relaying: Principles and Applications.
2006.

[34] D. Maynor and R. Graham. SCADA Security and Terrorism: We’re Not
Crying Wolf! Black Hat, 2006.

[35] Miles A. McQueen, Wayne F. Boyer, Mark A. Flynn, and George A. Beitel.
Quantitative Cyber Risk Reduction Estimation Methodology for a Small
SCADA Control System. 39th Annual Hawaii International Conference on
System Sciences, 2006.

[36] José Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theor. Comput. Sci., 96(1):73–155, 1992.

[37] J. Meserve. Sources: Staged Cyber Attack Reveals Vulnerability in Power
Grid. CNN Article, September 2007. http:// www.cnn.com/ 2007/ US/
09/ 26/ power.at.risk/.

[38] H. Michael and D. Klaidman. Blackout 2003: What Went Wrong. Newsweek
25 Aug. 2003, 2004.

[39] E. Nakashima and S. Mufson. Hackers Have Attacked Foreign Utilities.
Washington Post, January 2008.

[40] Electric Energy Industy News. NERC Cyber Security Standards to Become
Mandatory in United States. http:// www. electricenergyonline. com/ In-
dustryNews, 2008.

[41] Steven Noel and Sushil Jajodia. Attack Graphs for Sensor Placement,
Alert Prioritization, and Attack Response. Cyberspace Research Workshop
(AirForce Cyberspace Symposium), 2007.

[42] Steven Noel, Eric Robertson, and Sushil Jajodia. Correlating Intrusion
Events and Building Attack Scenarios through Attack Graph Distances.
Computer Security Applications, 2004.

[43] British Columbia Institute of Technology (BCIT). NISCC Good Practice
Guide on Firewall Deployment for SCADA and Process Control Networks.
February 2005.

[44] R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting with Quantita-
tive Evaluation Tools for Monitoring Operational Security. IEEE Trans.
Software Eng, 25(5): 633-650, 1999.

[45] Physical Vulnerability of Electric Systems to Natural Disasters and Sabo-
tage. OTA-E-453, 1990.

[46] X. Ou, W. F. Boyer, and M. A. McQueen. A Scalable Approach to Attack
Graph Generation. 13th ACM conference on Computer and communica-
tions security, 2006.

[47] C. Phillips and L. Swiler. A Graph-based System for Network-Vulnerability
Analysis. New Security Paradigms Workshop, 1998.

61



[48] POWER WORLD The Visual Approach to Analyzing Power Systems.
http://www.powerworld.com/, July 2007.

[49] ATT Research. Graphviz - Graph Visualization Software. http://
www.graphviz.org/, 2006.

[50] A. Risley and K. Carson. Low or No-Cost CyberSecurity Solutions
for Defending the Electric Power System Against Electronic Intrusions.
Schweitzer Engineering Laboratories, Inc., 2008.

[51] R. Ross, M. Swanson, G. Stoneburner, S. Katzke, and A. Johnson. Rec-
ommended Security Controls for Federal Information Systems. Feburary
2005. NIST Special Publication 800-53.

[52] R. Ross, M. Swanson, G. Stoneburner, S. Katzke, and A. Johnson. Guide
for Assessing the Security Controls in Federal Information Systems. June
2007. NIST Special Publication 800-53A.

[53] J. Salmeron, K. Wood, and R. Baldick. Analysis of Electric Grid Security
Under Terrorist Threat. IEEE Transactions On Power Systems, Vol. 19,
No. 2, 2004.

[54] M. Schiffman, G. Eschelbeck, D. Ahmad, A. Wright, and S. Romanosky.
CVSS: A Common Vulnerability Scoring System. http:// www.first.org
/cvss/ cvss-guide.html, 2007.

[55] Inc Schweitzer Engineering Laboratories. SEL-3021: Serial Encrypting
Transceiver Security Policy. https:// www.ee.washington.edu/ research/
pstca/ index.html, 2008.

[56] Homeland Security. CS2SAT Control System Cyber Security Self-
Assessment tool. http:// www.us-cert.gov/ control systems/ pdf/
CS2SAT.pdf, 2008.

[57] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated
Generation and Analysis of Attack Graphs. IEEE Symposium on Security
and Privacy, 2002.

[58] Stephanou and Tony. Assessing and exploiting the internal security of an
organization. The SANS Institute, 2001.

[59] K. Stouffer, J. Falco, and K. Kent. Guide to Supervisory Control and
Data Acquisition (SCADA) and Industrial Control Systems Security. NIST
Special Publication 800-82, september 2006.

[60] United States Computer Emergency Readiness Team. Us-cert vulnerability
note field descriptions. http://www.kb.cert.org/vuls/html/fieldhelp, 2007.

[61] C. W Ten, C. C. Liu, and M. Govindarasu. Vulnerability Assessment of
Cybersecurity for SCADA Systems Using Attack Trees. Power Engineering
Society General Meeting, July 2007.

[62] Dept of Electrical Engineering University of Washington. Power System
Test Case Archive. https:// www.ee.washington.edu/ research/ pstca/ in-
dex.html, 2007.

[63] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Inf. Syst., 30(4):245–275, 2005.

62



[64] QUT BPM Research group and Eindhoven University’s YAWL Editor.
http://www.yawl-system.com/, 2007.

[65] M. Zhou and S. Zhou. Internet, Open-source and Power System Simulation.
IEEE Power Engineering Society General Meeting, June 2007.

63



Author’s Biography

Zahid Anwar was born in Rawalpindi, Pakistan in 1979. He graduated on the
Dean’s honor role from Ghulam Ishaq Khan Institute of Engineering Sciences
and Technology in 2001 with Bachelors in Computer Systems Engineering. After
working for a couple of years in the software industry, Zahid rejoined academia
and completed his graduate studies in Computer Science at the University of
Illinois at Urbana-Champaign, receiving the M.S. and Ph.D. degrees in Au-
gust 2005 and December 2008, respectively. During the course of his graduate
studies, Zahid received several research honors including a Sarah and Sohaib
Abbasi Graduate Fellowship from the Department of Computer Science, an In-
tel Corporate Services Award, and a Teachers and Researchers Fellowship from
the Ministry of Science, Government of Pakistan. Zahid has several success-
ful publications in leading ACM and IEEE International Conferences on net-
work security and dependability such as DSN and MMCN. He also received the
Graduate Teaching Certificate award from the University of Illinois at Urbana-
Champaign. In the final years of his PhD, Zahid got a chance to exchange ideas
and apply his research while working for some of the largest leading research
labs such as IBM T.J Watson Research, NY, Intel Research Labs, OR, Motorola
Labs Wireless Center of Excellence, Schaumburg, IL and the National Center
for Supercomputing Applications (NCSA), Urbana, IL.

Zahid’s research interests lie in the fields of the computer security, networks,
wireless and distributed systems. He is particularly interested in formal methods
of automated security assessment for large networks and protection of real-time
protocols such as Voice over IP.

64


