
Confidentiality-Preserving Distributed Proofs of
Conjunctive Queries

Adam J. Lee†

adamlee@cs.pitt.edu
Kazuhiro Minami‡

minami@cs.illinois.edu
Nikita Borisov‡

nikita@illinois.edu
†University of Pittsburgh

‡University of Illinois at Urbana–Champaign

ABSTRACT
Distributed proof construction protocols have been shown
to be valuable for reasoning about authorization decisions in
open distributed environments such as pervasive computing
spaces. Unfortunately, existing distributed proof protocols
offer only limited support for protecting the confidentiality
of sensitive facts, which limits their utility in many practi-
cal scenarios. In this paper, we propose a distributed proof
construction protocol in which the release of a fact’s truth
value can be made contingent upon facts managed by other
principals in the system. We formally prove that our proto-
col can safely prove conjunctions of facts without leaking the
truth values of individual facts, even in the face of collud-
ing adversaries and fact release policies with cyclical depen-
dencies. This facilitates the definition of context-sensitive
release policies that enable the conditional use of sensitive
facts in distributed proofs.

Categories and Subject Descriptors: C.2.4 [Distributed
Systems]: Distributed applications; D.4.6 [Operating Sys-
tems]: Security and Protection—access controls, authenti-
cation; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Security

Keywords: Consistency, distributed proof, pervasive com-
puting

1. INTRODUCTION
Distributed proof systems allow autonomous agents to

reason about their surrounding environment. In these sys-
tems, an agent can make inferences using facts stored in its
own knowledge base, as well as facts stored in the knowledge
bases of others. This ability to derive new local knowledge
based on remote facts allows external information defining
the context of a given system to be formally included in
the decision making process. As a result, recent years have
seen the use of distributed proof systems become popular

c© ACM, 2009. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the proceedings of ASIACCS’09
http://doi.acm.org/10.1145/1533057.1533096.

for making authorization decisions in open distributed envi-
ronments, such as pervasive computing spaces [1, 2, 7, 22,
29]. Unfortunately, these existing protocols offer only lim-
ited support for protecting the confidentiality of facts whose
release may be sensitive, as is often the case in pervasive
environments.

Many distributed proof construction protocols assume that
every principal is willing to disclose the truth value of any
fact in its knowledge base to other principals in the sys-
tem. Some systems improve upon this by allowing the use
of identity-based access control lists (ACLs) to limit the dis-
closure of sensitive facts. However, these ACLs cannot incor-
porate system context to further limit information flow and
are thus insufficient for many application domains. For ex-
ample, consider a media controller application that controls
a projector in a pervasive computing space. The controller
may wish to allow access to some projector only to users
who are presently located in the same room as the projec-
tor. Using identity-based ACLs, a location tracker would
need to authorize the media controller to check users’ lo-
cations, which means a compromise of the media controller
would result in violation of users’ location privacy. A better
alternative would be to give the media controller access to
users’ locations only when they are requesting access to the
projector in the first place.

Motivated by practical scenarios such as the above, we de-
velop a distributed proof construction protocol that allows
such context-sensitive release policies, where the disclosure
of a fact may be conditional on other facts managed in re-
mote knowledge bases. For example, the disclosure of some
fact f in a principal p’s local knowledge base may depend
upon facts f ′1, . . . , f

′
n that exist in up to n remote knowledge

bases. Our protocol allows access to the truth value of f only
when the other facts f ′1, . . . , f

′
n are also true simultaneously

with f . If the conjunction f ∧ f ′1 ∧ · · · ∧ f ′n is false, then
the status of each individual fact remains hidden. We note
that in our protocol, p need not be able to access the facts
f ′1, . . . , f

′
n itself in order to include them in the release policy

for a given fact. In the context of the above example, this
implies that the location tracker need not learn that a user
is accessing the projector in order to place this contingency
upon the release of the user’s location.

In this paper, we make the following contributions:

• We formalize the notion of confidentiality-preserving
distributed proof, in which the disclosure of a fact’s
status can be made contingent upon the simultaneous
truth of facts maintained in remote knowledge bases.

• We develop a “best case” trusted third party (TTP)
model that embodies the ideal functionality of a
confidentiality-preserving distributed proof system.

• We design a distributed algorithm that can be used to
construct confidentiality-preserving distributed proofs.
We prove that this algorithm reveals no more informa-
tion than can be learned by interacting with the TTP,
even in the face of malicious and colluding protocol
participants.

• We show that our protocol functions correctly even
if the release policies defined by multiple principals
involved in a single proof have circular dependencies.

• We use our TTP model to reason about the types of in-
ferences that can be made regarding confidential facts
if concurrent executions or multiple runs of the dis-
tributed proof process are allowed. We then show that
principals in the system can make local decisions to
limit the types of inference that can be made.

The remainder of this paper is organized as follows. In
Section 2, we formally define both our system model and
the problem of confidentiality-preserving distributed proofs.
Section 3 presents cryptographic primitives and a distributed
algorithm that can be used to construct confidentiality-
preserving distributed proofs. In Section 4, we prove the
soundness of this protocol, even in the face of malicious par-
ticipants. We then explore the types of inferences made pos-
sible by concurrent executions or multiple runs of our proof
protocol. We show that these risks are minimal and can
be greatly reduced through either intelligent release policy
design or query rate limiting. Lastly, we compare our ap-
proach to other related work in Section 5 and present our
conclusions in Section 6.

2. ENVIRONMENT AND DEFINITIONS
In this section, we first describe the system model that

will be used to formally reason about the distributed proof
construction process. Within the context of this model, we
then present a formal definition of the problem that this
paper sets out to solve.

2.1 Basic System Model
We first describe the confidentiality-preserving distributed

proof problem by means of an example that we will return
to throughout this paper. Figure 1 shows several principals
that exist within the same pervasive computing space. In
this example, a user Bob wishes to access a digital projec-
tor located in a conference room. Other principals in the
system include a media controller, mc, which mediates all
access attempts to shared computing resources in the space;
an inventory server, is, that keeps track of which resources
are owned by which principals; a location service, ls, which
tracks the locations of principals and devices in the space;
and a role server, rs, that manages the various roles that
can be taken on by principals in the space.

Each principal in the space manages a Datalog knowledge
base that contains facts and derivation rules that allow the
principal to reason about its surroundings. A Datalog fact
is a predicate symbol followed by zero or more terms, where
each term is either a lower-case or numerical constant, or
a variable (denoted by an upper-case letter). For example,
the location server’s knowledge base contains the base fact

location(bob, 2124), which indicates that Bob is currently
located in room 2124. Derivation rules are used to make in-
ferences based on both facts in a principal’s own knowledge
base, as well as facts that exist in other principals’ knowl-
edge bases. For example, the location server’s derivation
rule colocated(P1, P2)← location(P1, L)∧ location(P2, L) re-
lies on the use of local facts to determine whether two prin-
cipals are colocated. By contrast, the media controller’s
derivation rule grant(U,P) ← “ls says colocated(U,P)” ∧
“rs says role(U, presenter)” uses quoted facts to determine
whether some user can access a given projector based upon
facts in other knowledge bases. Note that P1, P2, U and P
are free variables that can be bound at runtime to allow
these rules to apply to arbitrary principals.

Lastly, we wish to allow principals to control the disclo-
sure of their own local facts to remote parties. This is ac-
complished by means of access control lists (ACLs) that can
be defined by each principal. In general, the ACL for a given
fact identifies the conditions under which that fact can be
disclosed to certain principals. For example, the role server’s
access control list indicates that the media controller is al-
lowed to see all facts of the form role(U, presenter), where
U is a free variable that can be bound at runtime. In short,
the media controller is always allowed to know which princi-
pals can take on the role “presenter.” The location server’s
ACL for facts of the form colocated(U,D) is more restric-
tive, however, as it will only release these types of facts to
the media controller if the inventory server says that the me-
dia controller owns the device that will be bound to the free
variable D and the user U indicates that they are indeed
trying to access the device D. Note that this strictly limits
the ability of the media controller to track the locations of
users in the system. This is in contrast to systems using
only identity-based ACLs (as was discussed in Section 1).

2.2 Formal System Model
We will now more formally define the concepts introduced

in Section 2.1. We will let P represent the set of all princi-
pals in the system. We will assume that any two principals
pi, pj ∈ P can establish a private and authenticated com-
munication channel between them by using a PKI or some
other method of key distribution.

We use the symbol F to denote the set of all facts and
the symbol Q to denote the set of all quoted facts of the
form “pi says fi”; i.e., Q = P ×F . Each principal pi main-
tains a knowledge base KB i ⊂ F ∪R, containing facts and
derivation rules. Since any fact fi stored in the knowledge
base of a principal pi can be written as the quoted fact
“pi says fi”, we model the set R of derivation rules as Horn
clauses whose head is a fact and whose body is a conjunc-
tion of quoted facts; i.e., R = F × 2Q. The ACL protecting
facts managed by principal pi is represented as a function

aclpi : F → 22P×2Q that maps a given fact in f ∈ KB i to a
set of (plist , qlist) pairs. Each plist identifies a set of princi-
pals who can access f if and only if they can also verify that
each qi in the corresponding qlist is also true. For example,
the ACL defined by Bob in Figure 1 allows any principal
P to access facts of the form request(D), provided that the
inventory server asserts that principal P is the owner of the
device D.

In the remainder of this work, we assume that the con-
struction of distributed proofs will take place in an asyn-
chronous distributed system and thus we place no limita-

bob
mc
XXXX

bob
mc
XXXX

request(projector23)

acl(request(D)) = {P}
if “is says owns(P,D)”

grant(U, P) ← “ls says colocated(U, P)” ∧ ”rs says role(U, presenter)”

acl(grant(U, P)) = {U}

?grant(bob, projector23)

is

owns(mc, projector23)

acl(owns(P,D)) = {P}

rs

role(bob, presenter)

acl(role(U, presenter)) = {mc}ls

location(bob, 2124)
location(projector23 , 2124)
colocated(P1, P2) ← location(P1, L) ∧ location(P2, L)

acl(colocated(U, D)) = {mc} if “is says owns(mc, D)” ∧ “U says request(D)”

Figure 1: Knowledge bases and ACLs in an example pervasive computing system. Each principal’s knowledge
bases and ACL are enclosed in a dashed rectangle.

tions on the temporal duration of the distributed proof con-
struction process. Furthermore, we assume that each princi-
pal pi acts autonomously and can add or remove facts from
its knowledge base KB i at any time without notifying other
principals in the system. Lastly, we do not assume that any
level of clock synchronization exists between the principals
in P.

2.3 Confidentiality-Preserving Distributed
Proof

The high-level goal of confidentiality-preserving distributed
proof is maximize the utility of a distributed proof environ-
ment while minimizing the amount of sensitive information
disclosed by principals in the system. Since access control
policies are often considered sensitive (e.g., see [20, 31]), we
assume that ACLs are not publicly available. However, we
do assume that for any two principals pi and pj , pj can ac-
cess the portions of pi’s ACL that are relevant to pj . We
call this the restriction of pi’s ACL relative to principal pj .

Definition 1 (Restricted ACL). For any two prin-
cipals pi and pj, the restriction of pi’s ACL relative to pj

is represented as the function ̂aclpi,pj : F → 22Q , which is
defined as:

̂aclpi,pj (f) ≡ {qlist | (plist , qlist) ∈ aclpi(f) ∧ pj ∈ plist}

Intuitively, the restricted ACL ̂aclpi,pj (fi) specifies a set
of dependencies used to control the disclosure of the quoted
fact “pi says fi” to principal pj . However, each of these
dependencies may also have other dependencies. To ad-
dress this, pj can use repeated application of other princi-
pals’ restricted ACLs to compute all possible sets of quoted
facts upon which the disclosure of “pi says fi” depends.
For example, in the scenario depicted in Figure 1, the me-

dia controller can use ̂acl ls,mc to determine that the disclo-
sure of the fact “ls says colocated(bob, projector23)” depends
upon the truth of facts “is says owns(mc, projector23)” and
“bob says request(projector23)”. The media controller can

then check ̂acl is,mc , and ̂aclbob,mc to verify that no other facts
need to be incorporated in the conjunction to be proved.

As a result of the above observation, it is natural to for-
mally define the ideal functionality of a confidentiality-
preserving distributed proof system in terms of a trusted
third party (TTP) that can be used as an oracle that proves
conjunctions of facts. Prior to specifying this functionality,
we first define the predicates checkAcls : P × 2Q → B and
oracle : 2Q → B as follows.

checkAcls(p0, conj) ≡ ∀“pi says fi” ∈ conj , (1)

∃(plist , qlist) ∈ aclpi(fi) :

p0 ∈ plist ∧ qlist ⊆ conj

oracle(conj) ≡ ∀“pi says fi” ∈ conj : (2)

fi ∈ KB i

For a given principal p0 trying to prove the conjunction of
quoted facts conj , the predicate checkAcls(p0, conj) is true if
and only if allowing p0 access to any “pi says fi” ∈ conj does
not require access to any quoted fact “pk says fk” /∈ conj .
The predicate oracle(conj) is satisfied if and only if each
“pi says fi” ∈ conj exists in the appropriate knowledge base.
We now define the ideal functionality of a confidentiality-
preserving distributed proof system.

Definition 2 (Ideal Functionaliy). A confidentiality-
preserving distributed proof system can be modeled as a trusted
third party that executes conjunctive queries on behalf of the
principals in the system. When a principal p0 wishes to
prove the conjunction C = “p1 says f1”∧· · ·∧“pn says fn”,
the TTP takes the following actions:

• For each “pi says fi” ∈ C, notify pi that p0 has an
interest in pi’s fact fi.

• If checkAcls(p0, C) is false, send a query failure mes-
sage to p0. This failure message is distinct from the
value false.

• If checkAcls(p0, C) is true, reveal the value of
oracle(conj) to p0.

Note that the above definition of a confidentiality-
preserving distributed proof system entails several desirable

properties. First, it allows each principal’s ACL to remain
private, as only access to restricted ACLs is needed to deter-
mine the minimal conjunction associated with a given fact of
interest. Second, the truth value of a conjunction is revealed
if and only if the ACLs of each fact within the conjunction
are satisfied. Third, if the conjunction is false, the querier
does not learn any information about the facts comprising
the conjunction. Fourth, fact providers learn which individ-
uals are interested in the facts in their knowledge bases,
which allows them to audit usage patterns. Lastly, fact
providers learn neither what conjunctions are being proved
nor the status of other facts in the system, and thus cannot
infer portions of other principals’ ACLs. In the remain-
der of this paper, we describe how this functionality can be
achieved in proof systems designed for use in asynchronous
distributed environments.

3. PROOF CONSTRUCTION PROTOCOL
In this section, we describe our confidentiality-preserving

distributed proof protocol. We begin with an overview of our
protocol, which motivates discussion of the cryptographic
primitives that will be used by participants to achieve the
properties described in the previous section. We then present
the algorithmic details of our protocol.

3.1 Protocol Intuition
Our confidentiality-preserving distributed proof protocol

operates in two distinct phases. Assume that some querier
p0 wants to prove the conjunction of facts conj = “p1 says f1”
∧ · · · ∧ “pn says fn”. In the first phase of the protocol, the
querier contacts each pi to indicate an interest in their fact
fi. Each pi generates a random number si,j (henceforth

called a share) for each “pj says fj” in âclpi,p0(fi), encrypts
each random share to its corresponding pj , and returns the
set of encrypted shares to the querier. Principal pi then
generates a final share, si, which is stored locally, such that
the product of all shares is 1.

During the second phase of the protocol, p0 homomor-
phically combines all of the shares encrypted for a partic-
ular principal into a single share; this hides the number of
principals whose release policies depend on a given pi’s fact
fi from non-colluding principals participating in the proto-
col. Additionally, p0 adds a blinding factor to each share
in order to ensure that colluding principals cannot deter-
mine the number of principals whose release policies depend
on the fact “pi says fi”. Each resulting encrypted share is
then forwarded to the corresponding principal pi. Principal
pi decrypts this ciphertext and combines it with the local
secret share si that it generated during phase one of the
protocol. If fact fi was true from the time that phase one
ended until the time that phase two began, pi will return
this newly-generated result. Otherwise, a random value will
be returned. If the product of the results returned by each pi
equals the product of the blinding factors generated by p0,
then p0 can determine that each “pi says fi” ∈ conj was si-
multaneously true at some time t during the protocol. If any
pi returns a random result, p0 will determine that conj is
false, but cannot recover any other information regarding the
truth of subclauses of conj . We now present a cryptographic
construction that allows us to build such a protocol, and
then discuss the full details of our confidentiality-preserving
distributed proof construction protocol.

3.2 Cryptographic Foundations
At a first glance, the encryption scheme can be any public

key scheme that supports homomorphic operations, such as
ElGamal [10] or Pailler [24]. But notice that when pi en-
crypts a share sj for principal pj , this occurs because pi has
an ACL which includes the clause “if pj says fj”. However,
pi has no guarantee that p0 will not forward the share to
pj while asking about some other fact, f ′j , thus violating
the ACL constraints. Therefore, pi needs to bind its en-
crypted share to the particular fact fj . This could be done
by encrypting EKj (sj ||fj) and using a non-malleable en-
cryption scheme [8]. Non-malleability ensures that p0 could
not change an encryption of sj ||fj to an encryption of sj ||f ′j .
However, a non-malleable encryption by definition cannot be
homomorphic and thus cannot satisfy our needs.

Instead, we use a homomorphic identity-based encryption
(IBE) scheme. An IBE scheme has a master public key
(MPK) that can be used to encrypt to a given user ID, with-
out knowing the user’s specific public key: Enc(M,MPK , ID).
The master secret key can be used to derive (extract) a pri-
vate key for a particular user, which can then be used to de-
crypt all messages destined for that ID. In our case, rather
than having a single master key, with identities referring to
individual principals, we have each principal create a mas-
ter key for an IBE scheme, with the facts in its knowledge
base acting as identities. In other words, to encrypt a share
for pj , pi computes Enc(si,j ,Kj , fj), where Kj is the master
public key of principal j. This binds the encrypted share to
the fact fj .

The scheme we use is a homomorphic variant of the Boneh–
Franklin IBE scheme [5], originally proposed by Ivan and
Dodis [12]. The primitive is based on a bilinear mapping
e : G1 ×G1 → G2 that satisfies the Bilinear Diffie–Hellman
assumption [5]. We let g be a generator of G1, and use
a hash function h : {0, 1}∗ → G1 to define identities.The
scheme is defined as follows:

Enc-Gen: Generate a secret key s ∈R G1 and a master pub-
lic key gs.

Extract(ID): Extract the secret key h(ID)s.

Enc(M, gs, ID): (gr,M · e(h(ID)r, gs)), for a random r.

Dec(U, V, ID): V/e(h(ID)s, U) = M .

⊗: (U, V)⊗ (U ′, V ′) = (U · U ′, V · V ′)

This homomorphism over the operator ⊗ works because
the following two equations hold:

U · U ′ = gr · gr
′

= gr+r′ (3)

V · V ′ = M · e(h(ID)r, gs) ·M ′ · e(h(ID)r
′
, gs) (4)

= M ·M ′ · e(h(ID), gs)r · e(h(ID), gs)r
′

= M ·M ′ · e(h(ID), gs)r+r′

= M ·M ′ · e(h(ID)r+r′ , gs)

Theorem 1. The above Homomorphic IBE cryptosystem
is IND-ID-CPA secure.

The theorem can be proven by following the same argu-
ment as the original Boneh–Franklin IBE scheme [5]. This
means that an adversary who has a ciphertext encrypted for
a certain identity ID can perform key extraction queries for

any number of identities ID ′ 6= ID , and yet is unable to infer
anything about the plaintext. Note that the scheme does not
(and cannot) offer chosen ciphertext security (IND-ID-CCA)
because it allows homomorphic operations. To address this
issue, we add a session identifier, sid, to the fact name as
the identity for encryption. In other words, each pi produces
Enc(sj ,Kj , p0||fj ||sid). This ensures that while the under-
lying cryptography is not secure against chosen-ciphertext
attacks, our protocol can guarantee that a principal will only
decrypt a single message for a given identity, thereby ren-
dering chosen ciphertext attacks impossible.

3.3 Protocol Details
We now describe the details of our confidentiality-

preserving distributed proof construction protocol. In the
remainder of this paper, we assume that each fact fi in a
principal p’s knowledge base KB is associated with an iden-
tifier from the set {0, 1}`. Any time that a fact’s status
changes, its corresponding identifier will be changed at ran-
dom. As we will see later in this section, this notion of fact
identifiers will be used to allow queriers to ensure that all
facts comprising the conjunction being proved were valid si-
multaneously during the proof construction protocol. Prior
to explaining the full details of our protocol—which is pre-
sented in Algorithms 1 and 2—we first note the following:

• Each principal pi acts as a key generator for an in-
stance of the IBE scheme described in Section 3.2. The
master public key of this instance of the IBE system
are then made available to other principals in the sys-
tem using the same mechanism used to distribute pi’s
public key Ki.

• The sets M and C represent the message and cipher-
text spaces of the IBE cryptosystem, respectively. (G2

and G1 ×G2.)

• The symbol←R denotes random assignment from some
set. For example, sid ←R Z2128 chooses a random ses-
sion identifier from the set of all 128-bit integers.

• The identifier ME is used as a placeholder for a given
principal’s unique identifier.

• The notation Epi
pj ||fi||sid

(x) is used to denote the en-

cryption of item x to principal pi relative to the IBE
key derived from pj ’s identity, the fact fi, and the
session ID sid. Similarly, Dpi

pj ||fi||sid
(c) represents the

decryption of the ciphertext c by principal pi using the
IBE key derived from pj ’s identity, the fact fi, and the
session ID sid.

Phase One: Share gathering
To initiate the confidentiality-preserving distributed proof
process, the querier p0 runs the code listed in Algorithm 1.
The function StartQuery(conj) is invoked whenever p0
wants to learn the status of some conjunction of quoted
facts conj ∈ 2Q managed in one or more remote knowl-
edge bases. The querier first generates a random session
identifier1 and creates a random blinding factor for each
quoted fact “pi says fi” ∈ conj . Each random blinding fac-
tor is homomorphically encrypted using the session identi-
fier sid . These encrypted blinding factors are then stored

1Z2128 is chosen to make the odds that two sessions will use
the same identifier negligible.

Algorithm 1 Functions used by the querier to build a proof.

1: // Phase 1: Indicate interest in variables in conj , collect en-
crypted shares.

2: Function StartQuery(conj ∈ 2Q)
3: sid ←R Z2128 ; expected ← 1; encShares ← ∅; contacted ← ∅
4: for all “pi says fi” ∈ conj do
5: r ←R M
6: expected ← expected × r
7: encShares(pi, fi)← E

pi
ME||fi||sid

(r)

8:
9: for all “pi says fi” ∈ conj do

10: Choose depends ⊆ conj such that depends ∈ ̂aclpi,ME (fi)

11: resp ← Ask(pi, fi, depends, sid)
12: if resp = ERROR then
13: for all (pk, fk) ∈ contacted do
14: RecoverShare(pk, fk, sid, encShares(pk, fk))
15: return FAIL
16: contacted.add(pi, fi)
17:
18: // Update encrypted secret shares
19: for all (pj , fj , E

pi
ME||fj ||sid

(sj)) ∈ resp do

20: encShares(pj , fj)← encShares(pj , fj)⊗ E
pj
ME||fj ||sid

(sj)

21: return (sid, expected, encShares)
22:
23: // Phase 2: Send out decryption requests for encrypted shares
24: Function EndQuery(sid ∈ Z2128 , expected ∈M,

encShares ∈ 2P×F×C)
25: share ← 1; failed ← false
26: for all (pi, fi, ci) ∈ encShares do
27: r ← RecoverShare(pi, fi, sid, ci)
28: if r = ERROR then
29: failed ← true
30: else
31: share ← share × r
32:
33: // Return value
34: if failed then
35: return FAIL
36: else
37: return (share = expected)

in the encShares table, which is used to keep track of the
secret shares collected during phase one of the protocol. For
each quoted fact “pi says fi” ∈ conj , the querier then uses
̂aclpi,p0 to determine the subset of conj representing the re-

lease policy for “pi says fi”; in Algorithm 1, this subset is
referred to as depends. The remote procedure call (RPC)
stub Ask is then used to inquire about the status of fi at
pi. All RPC communications are carried out over private
and authenticated channels.

Principal p0’s call to Ask(pi, fi, depends, sid) then invokes
the function AskResponse(p0, fi, depends, sid) at the prin-
cipal pi (see Algorithm 2). If p0 has already asked about the

status of fact f during session sid or if depends /∈ ̂aclpi,p0(fi),
this function raises an error. If the request is legitimate, pi
generates a random secret share for each “pj says fj” ∈
depends. Each share is homomorphically encrypted to its
corresponding pj using the key whose identifier is generated
by concatenating the querier’s identifier p0, the fact fj , and
the session identifier sid . A final secret share is then gener-
ated such that the product of all secret shares is 1, and is
saved in the shares table.

If fi is a fact in pi’s extensional knowledge base (i.e., it is
a base fact, not the head of some rule r ∈ R), the current
truth value of fi and its corresponding fact identifier are re-
trieved from pi’s knowledge base and stored in the ids table;
in the second stage of the protocol, pi will use this informa-
tion to determine whether the truth value of fi changed
during the protocol. If, on the other hand, fi is part of pi’s

intensional knowledge base (i.e., fi is the head of a deriva-
tion rule), pi executes the first stage of the distributed proof
process recursively using the StartQuery function. The
intermediate results returned by StartQuery are stored in
the proofState table. At this point, pi returns the list of
quoted facts and secret shares to p0.

If p0’s call to Ask(pi, fi, depends, sid) returns the code
ERROR, the StartQuery function will fail and p0 will ask
all previously contacted principals to decrypt the facts that
they had previously disclosed. This ensures that the failed
protocol execution appears indistinguishable from a success-
ful protocol execution to all fact providers previously con-
tacted. Otherwise, p0 makes a note in the contacted table
stating that principal pi was successfully contacted regard-
ing the fact fi. The principal p0 then uses the homomor-
phic property of the IBE cryptosystem to combine the secret
shares returned by pi with any corresponding secret shares
or blinding factors already stored in the encShares table.
At this point, each principal contributing a fact to conj has
been contacted by p0 and has set up the local state necessary
to execute phase two of the protocol.

Phase Two: Consistency check and secret recovery
To start phase two of the protocol, p0 invokes the End-
Query function using the intermediate state returned by
the StartQuery function. This function uses the Recov-
erShare RPC stub to ask each fact provider to decrypt the
aggregate secret shares that p0 has accrued. This invokes
the RecoveryResponse function at each fact provider. If
the fact provider has previously decrypted any other results
related to this (p0, sid , fi) triple, an error is raised. If it is
safe to proceed, the fact provider pi decrypts the cipher-
text provided by the querier, combines the result with the
locally-stored secret share previously generated, and records
the fact that it has now decrypted a secret share for the ses-
sion described by the triple (p0, sid , fi). If the fact fi is part
of pi’s extensional knowledge base and either fi is false or the
identifier associated with fi has changed since the AskRe-
sponse function was invoked, then the previously-computed
secret share is replaced with a random value. Similarly, if
fi is part of pi’s intensional knowledge base and either the
first stage of the distributed proof process fails or the second
stage of the distributed proof process determines that fi is
false, then the previously-computed secret share is replaced
with a random value. The secret share (or random value) is
then returned to the querier.

If the product of all the responses gathered from each fact
provider is equal to the product of the blinding factors gen-
erated prior to stage one of the protocol, the querier can
determine that each fact in the conjunction conj was simul-
taneously true at some point during the protocol execution.
If any fact provider returns a random value during stage two
of the protocol, the value computed by p0 will be random-
ized and conj will be determined to be false.

Note that principals must remember all session identifiers
they have previously observed. If loose clock synchroniza-
tion is available, the amount of state to be maintained can
be reduced by using the current time for the session identi-
fier. If ∆ is the largest expected difference between any two
principals’ clocks, a principal can remove from the shares
table any sessions that are more than ∆ old, and simultane-
ously forbid any queries that use a session identifier that is
more than ∆ time ago. Similarly, a principal that has lost

Algorithm 2 Functions used by fact providers to
(conditionally) contribute information regarding locally-
maintained facts to a proof being constructed by another
principal.

1: // This function is used by principals to respond to queries
2: // issued using the Ask function.

3: Function AskResponse(p0 ∈ P, f ∈ F , depends ∈ 2Q,
sid ∈ Z2128)

4: // Make sure that this is a fresh request and p0 is
5: // (conditionally) authorized to see f

6: if (shares(p0, sid, f) 6= ⊥) ∨ (depends /∈ ̂aclME,p0 (f)) then

7: return ERROR
8:
9: resp ← ∅; product ← 1
10: for all “pj saysfj” ∈ depends do
11: sj ←R M
12: product ← product × sj

13: resp.add(pj , fj , E
pj
p0||fj ||sid

(sj))

14: Choose s such that s× product = 1
15: shares(p0, sid, f)← s
16:
17: if KB.managesFact(f) then
18: (status, id)← KB.lookup(f)
19: ids(p0, sid, f)← id
20: else
21: Use derivation rules and restricted ACLs to find a

conjunction, conj , of all facts and dependencies needed to
derive f

22: proofState(p0, f, sid)← StartQuery(conj)
23: return resp
24:
25:
26: // This function is used by principals to respond to queries
27: // issued using the RecoverShare function.
28: Function RecoveryResponse(p0 ∈ P, f ∈ F , sid ∈ Z2128 ,

c ∈ C)
29: // Make sure that this is a fresh request
30: if (shares(p0, sid, f) = ⊥) ∨ (decrypted.contains(p0, sid, f))

then
31: return ERROR
32:
33: d← DME

p0||f||sid
(c)

34: s← (d× shares(p0, sid, f)); decrypted.add(p0, sid, f)
35: if KB.managesFact(f) then
36: (status, id)← KB.lookup(f)
37: if ¬status ∨ (id 6= ids(p0, sid, f)) then
38: s←R M such that s 6= d× shares(p0, sid, f)
39: else
40: if (proofState(p0, f, sid) = FAIL) ∨

¬EndQuery(proofState(p0, f, sid)) then
41: s←R M such that s 6= d× shares(p0, sid, f)
42: return s

its previous state can ensure security by refusing to answer
queries for the first ∆ period of time after it is back up.

3.4 An Example
We now revisit the example depicted in Figure 1 of Sec-

tion 2.1 to explain in more detail an example execution
of the protocol described above. In the interest of space
and clarity of presentation, we consider only a subset of
this scenario in which the media controller wishes to prove
“bob says request(projector23)”. After using its access to
̂aclbob,mc and ̂acl is,mc , the media controller learns that it

must actually prove the conjunction of quoted facts “bob says
request(projector23)′′ ∧ “is says owns(mc, projector23)′′.

Figure 2 depicts the execution of phase one of the pro-
tocol from Section 3.3, using fbob and fis as abbreviations
for request(projector23) and owns(mc, projector23), respec-
tively. During this stage of the protocol, the media controller
first generates two blinding factors bbob and bis . The blinding
factor bbob (resp. bis) is then stored in the encShares table

expected = bbobbis

encShares(bob, fbob , sid) =

Ebob
mc||fbob ||sid(bbob)

encShares(is, fis , sid) =

Eis
mc||fis ||sid(bissbob,is)

contacted = {(bob, fbob), (is, fis)}

bob
mc
XXXX

Ask(bob, fbob , fis , sid)
bob

mc
XXXX

Ask(is, fis , ∅, sid)
is

respbob

respis

product = sbob,issbob

s.t. sbob,issbob = 1

shares(mc, sid , fbob) = sbob

respbob = {is, fis , E
is
mc||fis ||sid(sbob,is))}

product = 1

sis = 1

shares(mc, sid , fis) = sis

respis = ∅

Figure 2: A sample execution of phase one of the protocol.

after being encrypted to Bob (resp. the inventory server) us-
ing a key bound to the media controller’s identifier, the fact
request(projector23) (resp. owns(mc, projector23)), and the
session identifier sid . The media controller then uses the
Ask function to notify Bob and the inventory server that
it is interested in the status of certain facts stored in their
respective knowledge bases.

Since Bob’s disclosure of the fact request(projector23) de-
pends on the status of the fact owns(mc, projector23) in
the knowledge base of the inventory server, Bob generates
a secret share sbob,is that is then encrypted to the inven-
tory server using a key derived from the media controller’s
identifier, the fact owns(mc, projector23), and the session
identifier sid . Bob then generates a secret share sbob such
that sbob × sbob,is = 1. The secret share sbob is stored lo-
cally in the shares table, while the encrypted share for the
inventory server is disclosed to the media controller. This
encrypted secret share is then homomorphically combined
with the inventory server’s encrypted blinding factor that is
stored in the encShares table. Since the inventory server’s
disclosure of the fact owns(mc, projector23) has no depen-
dencies, it stores the value 1 in its shares table and discloses
an empty set of dependencies to the media controller. At
this point, the media controller updates its contacted list
and phase one of the protocol is complete.

During stage two of the protocol, the media controller asks
Bob to decrypt the value Ebob

mc||fbob ||sid(bbob) and asks the in-

ventory server to decrypt the value Eis
mc||fis ||sid(bissbob,is).

Both principals decrypt the requested values and combine
them with the secret shares stored in their shares tables.
The values bbobsbob and bissbob,is are then returned to me-
dia controller by Bob and the inventory server, respectively.
Since bbobsbobbissbob,is = (bbobbis)(sbob,issbob) = bbobbis , which
is the expected value generated by the media controller prior
to the start of the protocol, the media controller can con-
clude that the conjunction “bob says request(projector23)”∧
“is says owns(mc, projector23)” is true.

4. DISCUSSION
In this section, we formally discuss the properties of the

confidentiality-preserving distributed proof protocol that was
presented in Section 3. We begin by discussing the sound-
ness and completeness of this protocol, and conclude by ex-
amining limitations of confidentiality-preserving distributed
proof in scenarios involving multiple concurrent runs.

4.1 Protocol Characteristics
We begin our treatment of the formal properties of our

confidentiality-preserving distributed proof protocol by mak-

ing the following claim regarding the correctness of this pro-
tocol. A full proof of this claim can be found in the extended
version of this paper [14].

Theorem 2 (Soundness). Given a conjunction of
quoted facts conj ∈ 2Q, if EndQuery(StartQuery(conj))
returns true, then there exists some time t during the execu-
tion of the protocol at which every quoted fact “pj says fj” ∈
conj was simultaneously true.

Although above theorem asserts the soundness of this
proof construction protocol, it is not complete. That is, if
EndQuery(StartQuery(conj)) returns false, there could
still have existed some time t during the execution of the
protocol at which each quoted fact in conj was simultane-
ously true. In the general case, designing a sound and com-
plete distributed proof system requires synchronized clocks,
which is contrary to the definition of an asynchronous sys-
tem. Due to space limitations, we do not prove this claim,
but instead refer the reader to [16] where a similar claim
was proven for trust negotiation systems (e.g., [28]), which
are a specific type distributed proof system. However, we
can make a more limited claim regarding the soundness and
completeness of our proof construction protocol, the proof
of which can be found in the extended version of this pa-
per [14].

Theorem 3 (Stable Proof Behavior). Assume that
a querier p0 wants to prove the conjunction of facts conj ,
̂aclpi,p0(fi) ⊆ conj for each “pi says fi” ∈ conj , and there

exists a well-formed proof graph for the conjunction of facts
conj whose leaves are stable between times t1 and t2. In this
case, EndQuery(StartQuery(conj)) ↔ conj if Start-
Query is invoked after time t1 and EndQuery returns be-
fore time t2.

While completeness cannot be established in the general
case, the above theorem shows that the protocol presented
in this paper is both sound and complete under realistic
assumptions. This is in contrast to a trivial protocol that
always returns false. Such a protocol is sound, but cannot
be shown to be complete under any realistic assumptions.

Finally, we note that our protocol preserves the necessary
constraints from the ideal functionality. We do this through
a series of theorems, the proofs of which can be found in the
extended version of this paper [14].

Theorem 4 (Query Privacy). During the construc-
tion of a distributed proof, a malicious subset of providers
p1, . . . , pm will learn which local facts each pi provides, but
will learn nothing about the other facts comprising the con-
junction being proved.

Theorem 5 (Query Validity). During the construc-
tion of a distributed proof, given a subset of malicious fact
providers, p1, . . . , pm, if one of the honest fact providers, pi,
provides a false fact, the conjunction received by the querier
p0 is false.

Note that a malicious fact provider can always falsify a
conjunction by simply performing the protocol as if its fact
is false. However, the same is true inside the TTP model.

Theorem 6 (Limited Disclosure). During the con-
struction of a distributed proof, a malicious querier p0, col-
luding with set of fact providers, p1, . . . , pm, learns the same
amount of information as it would by interacting with the
TTP functionality, as long as the ACLs of honest fact
providers form a strongly-connected component.

Here, we consider ACLs to form a graph, where if pi’s ACL
includes the condition pj says fj , then there is a directed
arrow from pi to pj . Note that our protocol provides a form
of limited disclosure when the ACLs do not form a strongly-
connected component, but we will reserve the discussion of
the exact security property to Section 4.3.

The above theorems guarantee that, as long as the strongly-
connected condition is satisfied, the protocol presented in
Section 3 provides principals with the same guarantees af-
forded by the ideal functionality discussed in Section 2.3.
Namely, each principal’s ACLs remain private, the truth
value of a conjunction is revealed if and only if each fact
comprising the conjunction is simultaneously valid, and fact
providers learn neither what conjunctions are being proved
nor the status of other facts in the system.

4.2 Concurrency and Multiple Runs
It is important to note that the ideal functionality de-

scribed by Definition 2 is concerned with the construction of
a single proof. As a result, the semantics of a confidentiality-
preserving distributed proof treat only the confidentiality of
facts within a single run of any given proof protocol. This
implies that although one failed proof does not leak any in-
formation regarding the status of the facts making up the
conjunction being proved, it may be possible to use infor-
mation collected during multiple proofs to infer the status of
sensitive facts. For example, consider the case in Figure 3, in
which the disclosure of the quoted fact “p1 says f1” depends
upon the quoted fact “p2 says f2”. If a proof in the TTP
model fails, the querier will learn only that the conjunction
“p1 says f1” ∧ “p2 says f2” is false. However, if the same
principal then attempts to prove “p2 says f2” and succeeds,
he can conclude that “p1 says f1” was likely false during his
previously attempted proof.

Notice that in this case, the ACLs are weakly connected,
and thus Theorem 6 says nothing about the security of the
query. However, as we will show in Section 4.3, even when
ACLs are not strongly connected, a single run of our protocol
reveals only as much information as several non-overlapping
queries of the TTP (i.e., queries that do not share facts).
Since combining multiple non-overlapping queries into one
does not offer a querier any advantage, for the rest of this
sub-section we will assume that the querier is only able to
learn the truth value of a single conjunction during each run
of the protocol.

Note that the above types of leakage scenario are similar to
attacks in which individual records in an “anonymized” data

source are identified by combining access to the anonymized
data with external knowledge (e.g., see [13] and [23]). Re-
cently, a number of syntactic [17, 21, 26, 30] and seman-
tic [9] approaches have been proposed to limit these types
of inferences. However, the inference problem in distributed
proof systems differs from this existing work in two impor-
tant ways: (i) fact status values change over time and (ii)
principals in the system control the functional dependencies
used to infer data (i.e., ACL constraints). These two impor-
tant differences from the more traditional data anonymiza-
tion domain can be leveraged to develop realistic inference
mitigation approaches.

Strict Reference Monitors. The only way to strictly pre-
vent inferences made using the observations from multiple
distributed proofs is to partition the set of allowable proofs
based upon previous history. This can be accomplished by
keeping track of previous queries. Each principal pi can
locally enforce the constraint that no other principal pj is
allowed query the status of fact fi ∈ KB i more than once.
This prevents inference, but it does so at the cost of making
the proof system less useful over time. Note that if we want
to guard against colluding principals, pi must allow only a
single query for fi from any principal, further limiting the
utility of the system.

Epoch-Based Reference Monitors. To increase system
utility over the strict reference monitor model, we can lever-
age the observation that in many proof systems, the sta-
tus of facts is expected to fluctuate over time (e.g., con-
sider facts representing user and device locations, room oc-
cupancy predicates, or other physical phenomena). As a re-
sult, reference monitors can actually enforce the above types
of constraints on a sliding-window basis. The length of such
a window allows the uncertainty introduced by the transient
nature of fact status values to occlude inferences to whatever
level is deemed necessary.

Policy Design. In certain circumstances, principals in the
system may be able to prevent inferences made during the
construction of multiple proofs by intelligent policy engi-
neering decisions. Specifically, if the dependency graph whose
nodes are quoted facts in the conjunction to be proved and
whose edges are entailed by the ACL entries protecting these
facts is strongly-connected, then requesting any fact in the
conjunction requires the disclosure of all other facts in the
conjunction. For example, Figure 4 applies this principle to
prevent the inference made possible in Figure 3. Obviously,
this method prevents the inference problem, but can only
be applied in the event that facts in a given conjunction are
never used outside of the context of that conjunction.

The choice of inference control mechanism to apply in
any given situation is highly dependent on the environment
within which a given proof system is to be deployed. Fur-
thermore, the three approaches to inference control described
above afford a range of trade-offs that can be taken into con-
sideration by system architects at deployment time. As a re-
sult, we argue that the notion of confidentiality-preserving
distributed proof described in this paper is in fact quite rea-
sonable. It provides much more protection for confidential
facts than existing proof systems, and can be further tuned
to adjust the privacy/utility trade-off as needed for any par-

p1 says f1 p2 says f2

Figure 3: An example ACL dependency
graph that permits inference.

p1 says f1 p2 says f2

Figure 4: An example ACL dependency
graph that prevents inference.

ticular deployment environment.

4.3 Multiple-Run Restrictions
Theorem 6 makes no statement about the security of the

conjunction in the case where the ACLs are not strongly
connected. Ideally, we would like to be able to prove the
same statement in this case; however, the statement turns
out to be not true.

First, it is easy to see that if the ACLs of facts in the con-
junction are not weakly connected, the querier learns the
truth of each weakly connected component separately. This
is because there are no encrypted values that are sent from
principals in one component to principals in another. Hence,
the execution of the protocol is equivalent to multiple par-
allel executions of the protocol on each weakly connected
component. In fact, the querier could use different session
IDs for each component without being detected. Second,
even within a weakly connected component, the querier has
the ability to learn conjunctions other than the one that is
ostensibly being queried. For example, if the conjunction in
question is “p1 says f1”∧“p2 says f2”, and acl2(f2) = {p0},
then p0 can execute the protocol in such a way that it learns
“p2 says f2”. Both of these problems are a direct conse-
quence of hiding the full conjunction that is being proven
from the fact providers: by design, p2 should not be able to
tell whether p0 is trying to prove “p1 says f1”∧“p2 says f2”
or just “p2 says f2”.

Fortunately, we can still state a useful security property
that is provided by our protocol: the protocol allows a
querier to learn as much as could be learned by multiple
non-overlapping interactions with the TTP.

Theorem 7. During a single construction of a distributed
proof, given a conjunction C, a malicious querier p0 can
learn the truth of a set of conjunctions C1, . . . , Cn ⊂ C, un-
der the condition that the ACLs of all the facts comprising
each conjunction Ci are weakly connected, Ci ∩ Cj = ∅ for
i 6= j, and checkAcls(p0, Ci) = true. No other conjunctions
will be revealed by the construction of a distributed proof.

This means that in the above example, p0 can learn the
truth of “p1 says f1”∧ “p2 says f2” or “p2 says f2”, but not
both. Therefore, the strict or epochal reference monitor poli-
cies suggested in Section 4.2 will still work, since any time
a principal learns a conjunction C, whether it be the one it
ostensibly queried or not, all the principals who have facts
in C will be notified and will forbid any further conjunc-
tions that overlap with C. An ad-hoc proof of this theorem
is presented in the extended version of this paper [14].

5. RELATED WORK
Although earlier distributed proof construction systems [1,

2, 7, 22, 29] are clearly related to the notion of confidentiality-

preserving distributed proof, the work presented in this pa-
per differs in two important ways. First, most existing sys-
tems have no mechanism for protecting the release of sen-
sitive facts. Other proof systems allow fact disclosures to
be protected by identity-based ACLs [22] or more complex
release policies that must be centrally verified by the fact
provider [29]. Our proof system allows fact providers to be
assured that complex conditions protecting the disclosure of
their facts will be enforced without requiring central verifica-
tion. This allows fact providers to write release policies that
reference quoted facts in the system to which they them-
selves do not have access. Second, existing proof systems
do not consider the issue of simultaneous truth of facts, and
simply assume that the proof construction protocol samples
a consistent system state. In [15], the authors show how a
distributed proof system [22] can be extended to ensure the
simultaneous truth of facts sampled in a given proof. The
proof system presented in this paper considers this goal from
the outset.

In trust negotiation approaches to authorization (e.g., see
[3, 4, 20, 27, 28]), principals can protect access to sensitive
credentials using complex release policies similar to those
described in this paper. However, once again, evidence at-
testing to the fact that these policies are satisfied must be
collected and centrally verified by the entity disclosing the
credential. This has two implications: evidence of partial
policy satisfaction can be learned by principals in the sys-
tem and principals can only write release policies that they
are authorized to verify. The proof system presented in this
paper addresses both of these problems by using a two-phase
approach to distributed policy enforcement, which has the
benefit of not leaking any partial state.

Brands’s digital credential scheme [6] allows a credential
owner to selectively reveal information encoded in the at-
tributes of that credential. The credential owner can demon-
strate that confidential attributes in the credential satisfy
a linear relation or some expression in propositional logic
without disclosing additional information about the individ-
ual attributes. This is similar to the guarantees afforded by
our system, but it does not address the case where confiden-
tial attributes are maintained by multiple parties in a de-
centralized environment. The oblivious commitment-based
envelope (OCBE) construction proposed by Li and Li [19,
18] provides similar guarantees, again, at a per-credential
granularity.

Our problem can be viewed as a special case of the secure
multi-party computation (SMC) problem. In this class of
problems, some collection of principals wishes to calculate
the result of a public function of n private inputs. General
solutions exist for this class of problems [11], but can be
quite inefficient for large problem sizes. These solutions also
assume that all principals involved in a computation are

aware of one another, which is something that our protocol
seeks to avoid. Prabhakaran and Rosulek propose a specific
SMC algorithm for computing aggregated OR that is similar
to our construction [25], but in their construction the fact
providers communicate directly to each other.

6. CONCLUSIONS
In this paper, we develop the notion of a confidentiality-

preserving distributed proof system, in which the disclosure
of a sensitive fact f can be made contingent upon facts
f ′1, . . . , f

′
n managed by other principals in the system. In

this type of proof system, the querier learns only the truth
value of the conjunction f ∧ f ′1 ∧ · · · ∧ f ′n, which limits
the knowledge leaked during the proof construction process.
This enables controlled usage of sensitive facts, thereby in-
creasing the utility of the proof system while minimizing
the effects of this process on user privacy. We first for-
malized this notion of confidentiality-preserving distributed
proof using a trusted third party (TTP) model of com-
putation, and then developed a distributed algorithm for
constructing confidentiality-preserving distributed proofs in
asynchronous distributed systems.

We formally proved that our confidentiality-preserving dis-
tributed proof algorithm is sound, and that it reveals no
more information than can be learned by interacting with
the ideal functionality embodied by the TTP model. We
then examined potential avenues of inference made possi-
ble in the ideal model—and thus in our proof construction
algorithm—through multiple or concurrent proof construc-
tions. Although these information leaks are worrisome, we
showed that they can be limited based on local decisions
made by fact providers.

Acknowledgements
We would like to thank Manoj Prabhakaran and Mike Ro-
sulek for their discussions about the cryptographic primi-
tives used in our protocol and the security proofs, and the
anonymous reviewers for their helpful suggestions. This re-
search was supported in part by the National Science Foun-
dation under award CNS–0716421.

7. REFERENCES
[1] A. W. Appel and E. W. Felten. Proof-carrying

authentication. In Proceedings of the Sixth ACM
Conference on Computer and Communications
Security, Nov. 1999.

[2] L. Bauer, S. Garriss, and M. K. Reiter. Distributed
proving in access-control systems. In Proceedings of
the 2005 IEEE Symposium on Security and Privacy,
pages 81–95, 2005.

[3] E. Bertino, E. Ferrari, and A. C. Squicciarini.
Trust-X: A peer-to-peer framework for trust
establishment. IEEE Transactions on Knowledge and
Data Engineering, 16(7):827–842, July 2004.

[4] P. Bonatti and P. Samarati. Regulating service access
and information release on the web. In Proceedings of
the Seventh ACM Conference on Computer and
Communications Security, pages 134–143, 2000.

[5] D. Boneh and M. Franklin. Identity based encryption
from the Weil pairing. SIAM Journal of Computing,
32(3):586–615, 2003.

[6] S. A. Brands. Rethinking Public Key Infrastructure
and Digital Certificates. MIT Press, Cambridge, MA,
USA, 2000.

[7] J. DeTreville. Binder, a logic-based security language.
In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, page 105, 2002.

[8] D. Dolev, C. Dwork, and M. Naor. Non-malleable
cryptography. In STOC ’91: Proceedings of the
twenty-third annual ACM symposium on Theory of
computing, pages 542–552, New York, NY, USA, 1991.
ACM.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In Proceedings of the Third Theory of
Cryptography Conference, pages 265–284, Mar. 2006.

[10] T. Elgamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472,
1985.

[11] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proceedings of the 19th
annual ACM Conference on Theory of Computing,
pages 218–229, New York, NY, USA, 1987. ACM
Press.

[12] A. Ivan and Y. Dodis. Proxy cryptography revisited.
In Proceedings of the 10th Annual Network and
Distributed System Security Symposium (NDSS 2003),
Feb. 2003.

[13] T. Kohno, A. Broido, and K. Claffy. Remote physical
device fingerprinting. IEEE Transactions on
Dependable and Secure Computing, 2(2):93–108, 2005.

[14] A. J. Lee, K. Minami, and N. Borisov.
Confidentiality-preserving distributed proofs of
conjunctive queries (extended version). Department of
Computer Science Technical Report TR-08-161,
University of Pittsburgh, Dec. 2008.

[15] A. J. Lee, K. Minami, and M. Winslett. Lightweight
consistency enforcement schemes for distributed
proofs with hidden subtrees. In Proceedings of the 12th
ACM Symposium on Access Control Models and
Technologies, pages 101–110, 2007.

[16] A. J. Lee and M. Winslett. Enforcing safety and
consistency constraints in policy-based authorization
systems. ACM Transactions on Information and
System Security, to appear.

[17] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan.
Mondrian multidimensional k-anonymity. In
Proceedings of the 22nd International Conference on
Data Engineering (ICDE), Apr. 2006.

[18] J. Li and N. Li. A construction for general and
efficient oblivious commitment based envelope
protocols. In Proceedings of 8th International
Conference on Information and Communications
Security (ICICS), pages 122–138, Dec. 2006.

[19] J. Li and N. Li. OACerts: oblivious attribute
certificates. IEEE Transactions on Dependable and
Secure Computing (TDSC), 3(4):340–352, Oct. 2006.

[20] J. Li, N. Li, and W. H. Winsborough. Automated
trust negotiation using cryptographic credentials.
ACM Transactions on Information and System
Security, to appear.

[21] A. Machanavajjhala, J. Gehrke, D. Kifer, and

M. Venkitasubramaniam. `-diversity: Privacy beyond
k-anonymity. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE), Apr. 2006.

[22] K. Minami and D. Kotz. Secure context-sensitive
authorization. Journal of Pervasive and Mobile
Computing, 1(1):123–156, Mar. 2005.

[23] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets (how to
break anonymity of the Netflix prize dataset). In
Proceedings of 29th IEEE Symposium on Security and
Privacy, May 2008.

[24] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Proceedings of
EUROCRYPT—Advances in Cryptology, 1999.

[25] M. Prabhakaran and M. Rosulek. Cryptographic
complexity of multi-party computation problems:
Classifications and separations. Electronic Colloquium
on Computational Complexity (ECCC), 15(50), 2008.

[26] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal on Uncertainty,
Fuzziness and Kowledge-based Systems, 10(5):557–570,
2002.

[27] W. H. Winsborough and N. Li. Towards practical
automated trust negotiation. In Proceedings of the
Third IEEE International Workshop on Policies for
Distributed Systems and Networks, pages 92–103, June
2002.

[28] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. In Proceedings of the
DARPA Information Survivability Conference and
Exposition, pages 88–102, Jan. 2000.

[29] M. Winslett, C. C. Zhang, and P. A. Bonatti.
PeerAccess: a logic for distributed authorization. In
Proceedings of the 12th ACM Conference on Computer
and Communications Security, pages 168–179, 2005.

[30] X. Xiao and Y. Tao. m-invariance: Towards privacy
preserving re-publication of dynamic datasets. In
Proceedings of the ACM Conference on Management
of Data (SIGMOD), pages 689–700, June 2007.

[31] T. Yu, M. Winslett, and K. E. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust
negotiation. ACM Transactions on Information and
System Security, 6(1):1–42, Feb. 2003.

