
Safety in Discretionary Access Control
for Logic-based Publish-Subscribe Systems

Kazuhiro Minami, Nikita Borisov, and Carl A. Gunter
University of Illinois at Urbana-Champaign

{minami, nikita, cgunter}@illinois.edu

ABSTRACT
Publish-subscribe (pub-sub) systems are useful for many applica-
tions, including pervasive environments. In the latter context, how-
ever, great care must be taken to preserve the privacy of sensitive
information, such as users’ location and activities. Traditional ac-
cess control schemes provide at best a partial solution, since they
do not capture potential inference regarding sensitive data that a
subscriber may make. We propose a logic-based pub-sub system,
where inference rules are used to both derive high-level events for
use in applications as well as specify potentially harmful inferences
that could be made regarding data. We provide a formal defini-
tion of safety in such a system that captures the possibility of in-
direct information flows. We show that the safety problem is co-
NP-complete; however, problems of realistic size can be reduced
to a satisfiability problem that can be efficiently decided by a SAT
solver.

Categories and Subject Descriptors: C.2.4 [Distributed Systems]:
Distributed applications; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection

General Terms: Security

Keywords: Access control, inference control, safety, logical lan-
guage, publish-subscribe systems

1. INTRODUCTION
Applications in pervasive environments will often take advan-

tage of context information regarding their users and the surround-
ing environment to change their behaviors dynamically and bet-
ter meet users’ needs. To support such context-aware applications,
several researchers have proposed an information dissemination mid-
dleware [3, 4] based on the publish-subscribe (pub-sub) model.
A pub-sub middleware [2] supporting many-to-many communica-
tions between entities can efficiently disseminate events from envi-
ronmental sensors to context-aware applications.

Pervasive environments also introduce considerable privacy con-
cerns [8]. Sensors can provide detailed information about users’ ac-
tivities, and even sensors that monitor the environment, rather than
the user directly, can provide information that reveals much about

c© ACM, 2009. This is the authorâ^s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the proceedings of SACMAT’09
http://doi.acm.org/10.1145/1542207.1542211.

the users. For example, sensor readings on power consumption [13]
or air conditioning differential pressure [12] can be used to detect
not only the presence of activities, but the types of the activities in
great detail. Therefore, it can be difficult to set up appropriate con-
fidentiality policies on sensor readings, especially if discretionary
control is to be given to users, who may find it difficult to reason
about possible inferences.

To address this problem, we propose adding a logical framework
to the pub-sub system in order to model inferences. The pub-sub
system can use derivation rules to generate high-level events based
on low-level ones it receives from sensors. For example, a system
that receives an event from a key-card reader on a door followed
by a motion sensor detector may generate a high-level event stating
that the key-card owner is inside the office. This allows applica-
tions to subscribe to high-level events, rather than raw sensor val-
ues. It also allows the system to model the inference of sensitive
information that can be derived from lower-level events.

For example, if a person’s location is sensitive, the above infer-
ence suggests that the key-card and motion-sensor events may also
be sensitive. We suggest that experts define a set of event derivation
rules modeling how sensitive information may be derived in the
system. Ordinary users can then define discretionary access control
policies that protect high-level events about them, without worry-
ing about the low-level sensor events; e.g., each user can specify a
discretionary policy on their own location.

To enforce these discretionary policies, we must be able to tell
when they might be violated. We introduce a formal definition
of safety of a set of subscriptions with respect to a discretionary
policy and a set of derivation rules based on the notion of non-
deducibility [18]. Intuitively, a system is safe if, for any possible
view of a subscriber, both the presence of a sensitive event and its
absence are logical possibilities and thus no inference can be made.
Verifying the safety of a policy can be complex, as knowledge of
high-level events can be used to infer low-level ones and vice versa;
indeed, we show that the safety problem is co-NP-complete. How-
ever, we show that we can efficiently reduce a safety problem to a
satisfiability problem that can be used as input to a SAT solver. Our
experiments with the modern SAT solver show policies of small to
moderate size can be decided in a short period of time.

The rest of the paper is organized as follows. In Section 2, we
introduce a reference model of a logic-based pub-sub system and
formally define the safety based on that model. In Section 3, we
present a set of inference rules used by subscribers and prove that
our verification algorithm based on those rules are sound and com-
plete. We also show that the safety problem is co-NP-hard. In Sec-
tion 4, we show that how an instance of the safety problem can be
reduced to the corresponding SAT problem, demonstrating co-NP-
completeness. Our experimental results show that we can solve

http://doi.acm.org/10.1145/1542207.1542211

safety problems of a realistic size with a SAT solver efficiently.
Section 5 discusses related work and Section 6 concludes.

2. SYSTEM MODEL
In this section, we first describe how we model a logic-based

pub-sub system that derives high-level events from raw events us-
ing derivation rules. We next introduce access control policies for
protecting confidential events in the system. Since a malicious sub-
scriber could infer confidential events from other events he or she
receives, we define two access control policies, one that specifies
which events a user is allowed to see directly, and one that specifies
which event a user is allowed to infer. We finally define the safety
of a pub-sub system based on the notion of nondeducibility.

2.1 Logic-based pub-sub system
A pub-sub system receives events from publishers and maintains

those events in its knowledge base. When a subscriber sends the
system a subscription request, the system publishes events that sat-
isfy the requirements of that subscription request to the subscriber.
We assume that each publisher and subscriber is managed by some
principal in the set P of all principals. Also, we assume that a
pub-sub system is managed by a single principal pPS in P; that is,
principal pPS defines all the security policies of the system.

In our model, a pub-sub system represents each event as a fact in
Datalog; that is, each event e is a predicate followed by a parenthe-
sized list of constants. For example, a location event of Bob could
be expressed as loc(Bob, room214). A pub-sub system protects
confidential events with access control policies. We assume that
those policies are public knowledge among subscribers.1 When a
principal wishes to begin a subscription, he issues a subscription
request to the pub-sub system. A subscription request is a set of
principal-event pairs in P × E where E is a set of all events. Re-
ceiving a subscription request, the pub-sub system checks whether
the subscriber satisfies the access control policies on the event in
the subscription request. If the subscriber’s request is granted, the
pub-sub system starts publishing the subscriber the requested event
e with a timestamp t periodically.

2.2 Event derivation rules
We consider a logic-based pub-sub system that derives high-level

events from low-level events that are obtained from publishers (e.g.,
sensors). The system maintains a set I of event derivation rules,
which are Datalog clauses of the form:

e← e1, . . . , en.

Each atom in the rule consists of a predicate and an ordered list of
variables and constants. Each variable in the head of a rule must
also appear in the body of the same rule such that the set of all
facts that can be derived from a set of Datalog clauses is finite. We
represent event e as an atom (fact) containing only constants, and
thus E is defined as a set of all ground facts. For example, a loca-
tion event about Bob can be expressed as location(bob, room25).
Every time the system receives a new event, it derives all the high-
level events by applying all the event derivation rules on that new
event in a bottom-up way. For example, suppose that a pub-sub
system maintains the rule below.

location(P,L)← DoorBell(P,D), partOf (D,L)

1It is not actually necessary that the policies be public; our assump-
tions rather ensures that knowledge of access control policies does
not help a user infer facts in violation of the policy. We also do not
aim to protect policies themselves from inference.

The system derives a location event, location(bob, room25), from
a Doorbell event, doorbell(bob, door25), and a containment event,
partOf (door25, room25), which represents the fact “door25 be-
longs to room25.” (In this case, the containment event is a static
fact maintained by the system permanently.)

A pub-sub system maintains a set of events, EPS , which is a
subset of event set E . Set EPS consists of two disjoint event sets
EL

PS andEH
PS . SetEL

PS contains raw events that a pub-sub system
receives from publishers, and set EH

PS contains events that the sys-
tem derives from events in EL

PS by applying derivation rules. Set
EPS is the least fixed point of the immediate consequence operator
TI below.

TI(E
′) = {eθ | (e← e1, . . . , en) ∈ I and

eiθ ∈ E′ for each i,

or eθ ∈ E′},

where θ is a substitution function that maps variables to constants.

2.3 Discretionary and operational access con-
trol policies

We introduce discretionary access control (DAC) policies that
allow a pub-sub system to protect confidential events from unau-
thorized subscribers. DAC policies specify which events a user is
allowed to learn their truth directly or through inference, and which
events must be kept confidential. We consider that a user learns the
truth of an event if he knows whether the system maintains that
event in its knowledge base. We represent DAC policies by the
function dacl : E → 2P where P is a set of all principals; that is,
a subscriber pi is authorized to know the truth of an event e only if
pi ∈ dacl(e).

We expect that, in practice, DAC policies would be specified
explicitly on some subset of high-level events, with the rest be-
ing left in a permissive state, that is, if an administrator pPS does
not define an DAC policy on event e explicitly, the system assigns
the policy dacl(e) = P . This is because most events are sensi-
tive only insofar as they allow inferences about other events to be
made. For example, the event motionSensor(BobsOffice) might
be used to derive location(Bob,BobsOffice) and thus would need
to be protected. However, by properly specifying inference rules,
we would need to only define the derived event of Bob’s location as
confidential by, for example, giving Bob discretionary control over
dacl(location(Bob, L)). The low-level events that can be used
to derive Bob’s location would be automatically protected by the
pub-sub system through requiring an appropriate operational access
control (OAC) policy, without requiring users to explicitly reason
about low-level events.

The OAC policy represents what events the pub-sub system will
reveal to a user directly. We model it as oacl : E → 2P . The
system will deliver an event e to subscriber pi if and only if:

1. e ∈ EPS ,
2. pi ∈ oacl(e), and
3. pi has subscribed to e.

In other words, users’ subscriptions are restricted by the oacl func-
tion. To protect confidential events from inferences, an OAC pol-
icy must be usually more restrictive than the DAC policy; that is,
oacl(e) ⊆ dacl(e) for every e. We next define what makes an
OAC policy safe.

2.4 Safety conditions
The question we would like to answer is whether OAC policies,

which define the operational semantics of a pub-sub system, pro-
tect facts listed as confidential in the DAC policies from inference.

W

w

X

Y

x = v1(w)

y = v2(w’)

w’

Figure 1: Concept of nondeducibility. For every world w ∈W
and every value y in Y , there must exist world w′ such that
v1(w

′) = v1(w) and v2(w′) = y.

Our safety conditions are based on the notion of nondeducibility
introduced by Sutherland [18]. Sutherland modeled inferences by
considering the set of all possible “worlds”W; i.e., configurations
of the system, and introduced the notion of an information function
that represents a certain view of the system. That is, all the infor-
mation about a given world w ∈ W is provided as the outputs of
information functions that operate on w.

Sutherland describes information flows from function v1 :W →
X to v2 : W → Y in a world w ∈ W as follows. Here W is
a set of all the possible worlds, and X and Y are the ranges of
the functions v1 and v2 respectively. Given x = v1(w), we can
deduce that a world w belongs to a set of worlds S ⊆ W where
S = {w′ | w′ ∈ W, v(w′) = x}. If there is no world w′ ∈ S
such that v2(w′) = y for some y ∈ Y , then we can eliminate the
possibility that v2(w) = y, and we thus learn the information on
v2(w) from v1(w). Sutherland’s nondeducibility in Definition 1
prohibits such information flow from function v1 to v2.

DEFINITION 1 (NONDEDUCIBILITY). Given two information
functions, v1 :W → X and v2 :W → Y , we say that no informa-
tion flows from v1 to v2 if for every world w ∈ W , and for y ∈ Y ,
there exists w′ ∈ W such that v1(w) = v1(w

′) and y = v2(w
′).

We apply the notion of nondeducibility to a pub-sub system to
define the safety of the system. We consider a pub-sub system that
is parameterized with a set of events E , a set of derivation rules
I , DAC policies dacl , and OAC policies oacl . We denote such a
pub-sub system by PS[E , I, dacl , oacl]. We assume that all the
system parameters are public knowledge with subscribers. Partic-
ularly, every subscriber knows a set of derivation rules I , and thus
our safety definition must ensure that no subscriber infers the truth
of confidential events in the system from non-confidential events it
receives by examining the derivation rules in I .

We define the safety of a pub-sub system by defining a set of
possible worldsW , and two information functions v1 and v2 in the
following way. In a pub-sub system, a world w ∈ W corresponds
to a set of events EPS ⊆ E where EPS is a set of events that are
maintained by the system. The function v1 in Definition 2 repre-
sents information that a subscriber pi receives from the pub-sub
system with respect to the system’s OAC policies oacl .

DEFINITION 2. We define function v1 : 2E → 2E such that:

v1(EPS) = {e | e ∈ EPS ∧ pi ∈ oacl(e)}

Note that function v1 is defined with OAC policies oacl , which is
given as a system parameter of the system. The function v1 takes

a set of events EPS in 2E as an input and outputs the set of events
that pi receives from the system.

The function v2 represents a subset of EPS , which contains
events that a subscriber pi is not allowed to learn their truth with
respect to the system’s DAC policies. The range of function v2 is
the set Ei defined as follows.

DEFINITION 3.

Ei = {e | e ∈ E ∧ pi /∈ dacl(e)}

Set Ei contains events in event set E whose truth a subscriber pi is
prohibited to learn according to the dacl policies. The function v2
in Definition 4 takes as an input a set EPS and outputs a set E′ ⊆
E. Set E′ represents confidential events that must be protected
from pi.

DEFINITION 4. We define the function v2 : 2E → Ei such that:

v2(EPS) = {e | e ∈ EPS ∧ pi /∈ dacl(e)}

We now define the safety of a pub-sub system based on nonde-
ducibility in Definition 1.

DEFINITION 5 (SAFETY). We say that a pub-sub system
PS[E , I, dacl , oacl] is safe with respect to a subscriber pi if for
every event set EPS ⊆ E and every event set E′i ⊆ Ei, there exists
another event set E′PS ⊆ E such that:

1. v1(EPS) = v1(E
′
PS), and

2. E′i = v2(E
′
PS).

Intuitively, these safety conditions require a system to ensure that
a principal pi derives the same event set (i.e., v1(EPS)) regardless
of the system’s maintaining any subset of events in Ei as part of
EPS . However, the safety conditions in Definition 5 turn out to be
too strong for most applications in pervasive computing. For exam-
ple, suppose that we consider two types of events location(P,B)
and occupied(B). The event location(P,L) represents the fact
that principal P is in building B, and the event occupied(B) rep-
resents the fact that building B is occupied with someone. We also
have the inference rule occupied(B)← location(P,B) to derive
an occupancy event from an location event. Suppose that location
events about all the users are confidential from a subscriber pi, but
pi receives an occupancy event derived from some confidential lo-
cation event. Although the occupancy event does not reveal the
identity of the person in the building, subscriber pi can infer from
the occupancy event that someone is in the building. According
to the safety conditions in Definition 5, we are not allowed to leak
this information to subscriber pi because we need to construct an
alternate event setE′PS whenE′i is an empty set. However, it is not
possible for the system to send the occupancy event if there is no
location event in E′PS .

Therefore, we consider weaker safety that protects the truth of
each confidential event rather than a set of truth of multiple confi-
dential events. The following weak safety definition ensures that
unauthorized subscribers cannot determine whether a pub-sub sys-
tem maintains a given confidential event or not.

DEFINITION 6 (WEAK SAFETY). We say that a pub-sub sys-
tem PS[E , I, dacl , oacl] is safe with respect to a subscriber pi if
for every event set EPS ⊆ E and every event e ∈ Ei, there exist
two alternate event sets E′PS and E′′PS in 2E such that:

1. v1(EPS) = v1(E
′
PS) = v1(E

′′
PS),

2. e ∈ v2(E′PS), and
3. e /∈ v2(E′′PS).

This weaker safety definition still provides users in pervasive en-
vironments with plausible deniability [7] to avoid unwanted social
obligations or socially embarrassing situations. In the rest of the
paper, we use the term “safety” to refer to the weak safety in Def-
inition 6. Note that we do not address inference using a series of
historical events in this paper.

Example 1: Consider the system PS with the following system
parameters:

E = {location(bob, bldg12), location(alice, bldg12),

occupied(bldg12)},
EPS = {location(bob, bldg12), occupied(bldg12)},
I = {occupied(B)← location(P,B)}, and
dacl = oacl = {((location(bob, bldg12), ∅),

(location(alice, bldg12), ∅),
((occupied , bldg12), {dave})}.

We here assume that every subscriber knows that variables P and
B in the derivation rules of set I can be instantiated only with
constants bob and alice , and constant bldg12 , respectively. Event
occupied(bldg12) is a high-level event, which could be derived ei-
ther from low-level event location(bob, bldg12) or
location(alice, bldg12) with the rule in set I . DAC policies spec-
ify that user dave can learn only the truth of the high-level occu-
pancy event, while he cannot learn the truth of the location events.
OAC policies, which are the same as the DAC policies, allow the
system to publish only the occupancy event to dave. We thus ob-
tain the function v1(EPS) in Definition 2 and the set of confidential
events Ei in Definition 3 as follows:

v1(EPS) = {occupied(bldg12)}
Ei = {location(bob, bldg12), location(alice, bldg12)}

For each event in Ei, we need to construct two event sets E′PS

and E′′PS that satisfy the three conditions in Definition 6. We first
consider event location(bob, bldg12) in Ei and define E′PS and
E′′PS as follows:

E′PS = {location(bob, bldg12), occupied(bldg12)}
E′′PS = {location(alice, bldg12), occupied(bldg12)}

The first condition in definition 6 is satisfied because

v1(E
′
PS) = v1(E

′′
PS) = {occupied(bldg12)};

that is, the occupancy event occupied(bldg12) can be derived from
either of the two location events location(alice, bldg12) or
occupied(bldg12). The second and third conditions in definition 6
are also satisfied because

location(bob, bldg12) ∈ v2(E′PS) and

location(alice, bldg12) /∈ v2(E′′PS).

We can clearly see that the other event location(alice, bldg12)
in Ei satisfies the three conditions with the same event sets E′PS

and E′′PS . Therefore, the system in this example is safe, and this
conclusion matches our intuition that disclosing the occupancy event
is safe if it can be derived from multiple location events about dif-
ferent users.

3. COMPLEXITY ANALYSIS
In this section, we first introduce inference rules that capture

subscribers’ inference. We next define the alternate safety defi-
nition based on those inference rules and show the equivalence of

e← e1, . . . , en ∈ I ∀i : val(ei) = T

val(e) = T
(S1)

e← ei,1, . . . , ei,ni ∈ I for i = 1, . . . ,m
val(ei,j) = F

val(e) = F
(S2)

e← ei,1, . . . , ei,ni ∈ I for i = 1, . . . ,m
val(e) = E (E = T ∨ E = F)

val((e1,1 ∧ . . . ∧ e1,n1) ∨ . . .
∨(em,1 ∧ . . . ∧ em,nm)) = val(E)

(S3)

val(x1 ∨ . . . ∨ xm) = T val(xm) = F

val(x1 ∨ . . . ∨ xm−1) = T
(S4)

val(x1 ∧ . . . ∧ xm) = F val(xm) = T

val(x1 ∧ . . . ∧ xm−1) = F
(S5)

val(x1 ∧ . . . ∧ xm) = T

∀i : val(xi) = T
(S6)

val(x1 ∨ . . . ∨ xm) = F

∀i : val(xi) = F
(S7)

Figure 2: S-inference rules Is.

the alternate definition with the original definition in Definition 6.
Finally, we show that the safety problem is co-NP-hard.

3.1 Inference by subscribers
We first consider what kinds of inferences are possible to a sub-

scriber. We need to be concerned with both forward and backward
inference as follows. We assume that a subscriber knows derivation
rules I used by the system because the subscriber must understand
the semantics of high-level events by knowing how those events are
derived by the system. In the following discussion, we assume that
all the derivation rules only contain constants; we can obtain such
rules by instantiating derivation rules with constants. Consider the
derivation rule below.

e← e1, . . . , en

If a subscriber pi receives events e1, . . . , en, then pi can infer that
e is true even if pi is not authorized to receive e. Similarly, suppose
that the above rule is the only rule to derive event e. If pi does
not receive ej even if pi is authorized to receive events ej (i.e.,
pi ∈ oacl(ej)), then pi can infer that event e is false. Similarly,
if subscriber pi receives e, pi can infer that events e1, . . . , en are
also true. Finally, if pi, who is authorized to receive event e (i.e.,
pi ∈ oacl(e)), does not receive e, then pi can infer that there exists
some event ej , which is false; that is, e1 ∨ . . . ∨ en is false.

We next consider the case where there are multiple derivation
rules for deriving the same event e as follows:

e← e1, e← e2, . . . , and e← em.

In general, each ej could be the conjunction of multiple events
ej,1, . . . , ej,nj . When pi receives event e, pi infers that there is
some event ej , which is true, because at least one of the rules must
be applied to derive event e. However, pi cannot determine which
ej is true. On the other hand, when pi who is authorized to receive
e does not receive e, pi knows that every ej is false for i = 1 to m.

We capture such a subscriber’s inferences with the s-inference
rules in Figure 2. In each s-inference rule, the statements above the
horizontal line are conditions to derive the conclusion below that
line. We use the term, s-inference rules, to distinguish them from
a pub-sub system’s derivation rules in set I . In s-inference rules,

we use the function val : E → {U, T, F} that maps an input event
e into one of the three values. Each value on an event represents
a subscriber’s knowledge about the validity of event e. Statement
val(e) = U represents the facts that the subscriber does not know
the truth of event e. Statements val(e) = T , and val(e) = F
represent the facts that the truth of event e is known to true or false
to the subscriber respectively.

The first two rules S1 and S2 represent forward inferences; the
first rule says that if all of the events on the left-hand side are true,
the right-hand side can be assumed to be true as well, representing
modus ponens. The second rule states that if every rule representing
the derivation of an event e contains an event ei,j that is known to
be false, then the derived event e must be false as well.

Rule S3 captures backward inference. The rule says that the
value of an event e must be equal to that of the disjunction of the
conjuctive clauses, each of which represents the body of a deriva-
tion rule for event e. The rest of the rules are used to perform
simple logical elimination; rules S4 and S5 eliminate an element
from a disjunctive or conjunctive clause if it is known to be false
or true respectively, and rules S6 and S7 show that in a true con-
junction (resp., false disjunction), all the constituent clauses must
be true (resp., false).

Example 2: We give an example that shows how a subscriber
could perform inferences using s-inference rules and deduce the
truth of a confidential event. Consider the system PS with the
following system parameters:

EPS = {location(dave, seclab),

ta(cs461 , alice), ta(cs461 , bob),

ta room(cs461 , seclab),

occupied(seclab)},
I = {occupied(L)← location(P,L),

ta available(C)← ta room(C,L), ta(C,P),

location(P,L)},
dacl = oacl = {(location(P, seclab), ∅),

(ta(cs461 , P), {tom}),
(ta room(cs461 , seclab), {tom}),
(occupied(seclab),P),
(ta available(cs461), {tom})}.

The system maintains the location event about Dave (dave), two
events stating that Alice (alice) and Bob (bob) are a teaching assis-
tant (TAs) for course CS461. The system also maintains the event
about the occupancy of the security laboratory (seclab), which is
derived from the fact that Dave is at the security laboratory (i.e.,
location(dave, seclab)). Subscriber Tom (tom), who has regis-
tered for course CS461, can receive all the events maintained by
the system except for the location event about Dave. However, Tom
can illegally figure out that Dave is in the security laboratory if he
knows that:

val(ta available(cs461)) = F

val(occupied(seclab)) = T

1 Apply s-inference rule S3 to the derivation rule,

occupied(L)← location(P,L),

and infer that either Alice, Bob, or Dave must be in the security
laboratory; i.e.:

val(location(alice, seclab) ∨ location(bob, seclab)

∨ location(dave, seclab)) = T

We here assume that the set of principals P contains only those
three people.

2 Apply s-inference rule S3 to the derivation rule,

ta available(C)← ta room(C,L), ta(C,P), location(P,L),

to obtain:

val((ta room(cs461 , seclab) ∧ ta(cs461 , alice)

∧location(alice, seclab))

∨(ta room(cs461 , seclab) ∧ ta(cs461 , bob)

∧location(bob, seclab))) = F

Applying rule S7, Tom determines that:

val(ta room(cs461 , seclab) ∧ ta(cs461 , alice)

∧location(alice, seclab)) = F

val(ta room(cs461 , seclab) ∧ ta(cs461 , bob)

∧location(bob, seclab)) = F

3 According to the oacl rules, Tom knows that
ta room(cs461 , seclab), ta(cs461 , alice), and ta(cs461 , bob)
are all true. Therefore, he can use rule S5 to determine that:

val(location(alice, seclab)) = F

val(location(bob, seclab)) = F

4 Finally, Tom uses uses rule S4, applied to his finding from the first
step, to obtain that:

val(location(dave, seclab)) = T

Notice that, even in this simple example, knowledge of TA assign-
ments and possible occupants of seclab was necessary to determine
that this policy violates safety. In general, we want an algorithm for
verifying safety automatically.

3.2 Safety verification algorithm
We show the algorithm for verifying the safety in Definition 6.

Figure 3 is a pseudocode of the function VERIFYSAFETY, which
takes as inputs a set of events E , DAC policies dacl , OAC policies
oacl , a set of derivation rules I , and a subscriber pi. The func-
tion VERIFYSAFETY returns TRUE if the system satisfies the safety
condition with respect to subscriber pi.

The algorithm iterates the following process for every T/F -
value assignment function A : {e | pi ∈ oacl(e)} → {T, F}.
In the beginning of each iteration, the algorithm assigns a boolean
value A(e) to event e if pi ∈ oacl(e), and a value U to the other
events. The function next updates values of events by applying the
s-inference rules in Figure 2. The function RULEAPPLICATION(r, r′)
applies an s-inference rule r in Figure 2 on a derivation rule r′ ∈ I
and updates the values of events involved in the rule, and outputs
a set of events e′ whose values have been updated. Every time the
value of an event e is updated, the algorithm checks whether pi
belongs to dacl(e) or not. If pi /∈ dacl(e), the algorithm returns
FALSE meaning that the system is unsafe. Since the number of
events to be updated is finite, the algorithm eventually terminates.

VERIFYSAFETY(E, dacl, oacl, I, pi)

1 for each T/F-value assignment A for events whose oacl includes pi

2 do � Initialize the value of each event e to U .
3 for each e ∈ E where pi /∈ oacl(e)
4 do val(e)← U
5 for each e ∈ E where pi ∈ oacl(e)
6 do val(e)← A(e)
7 Changed ← TRUE
8 � Update the values of events with s-inference rules in Is
9 while Changed

10 Changed ← FALSE
11 do for each s-inference rule r in Is and each derivation rule r′ in I
12 do s← RULEAPPLICATION(r, r′)
13 � s contains a set of events whose values are updated
14 if s 6= ∅
15 then Changed ← TRUE
16 if there is some event e in s where pi /∈ dacl(e)
17 then return FALSE
18 return TRUE

Figure 3: Algorithm for safety verification

If there is no illegal assignment of value T or F , the function re-
turns TRUE at the end. The algorithm is super-polynomial because
the algorithm examines every possible value assignment function.

We show that a pub-sub system satisfies the safety condition in
Definition 6, if and only if there is no confidential event derived by a
subscriber applying the s-inference rules to a set of events received
from the pub-sub system.

THEOREM 1 (SOUNDNESS). If the function VERIFYSAFETY
(E , dacl , oacl , I, pi) returns TRUE, then a pub-sub system
PS[E , I, dacl , oacl] is weakly safe with respect to a subscriber pi.

PROOF. We prove the theorem by induction as follows.
Base case: Suppose that the function VERIFYSAFETY returns TRUE
with no iteration in the for-block in lines 11–17 for every assign-
mentA. That implies that there is no derivation rule e← e1, . . . , en
in I where pi ∈ oacl(e) or pi ∈ oacl(ej) for j = 1 to n. There-
fore, we can construct two event sets EPS and E′PS as follows:

EPS = {e ∈ E | pi ∈ oacl(e)} ∪ {e ∈ E | pi /∈ dacl(e)} and

E′PS = {e ∈ E | pi ∈ oacl(e)}.

Two sets EPS and E′PS satisfy the three conditions in Definition 6
for every confidential event ec where pi /∈ dacl(ec).
Induction step: Suppose that the system is safe if the function
VERIFYSAFETY returns TRUE with no more than k iterations in the
for-block in lines 11–17 for every assignment A. Then, if the value
of event e is T or F , subscriber pi belongs to dacl(e). Suppose that
we get a confidential event ec violating the safety of the system at
step k+ 1. Subscriber pi must infer the truth of ec from the events
whose values become T or F at the kth iteration of the for-block.
Otherwise, pi should be able to infer the truth of ec at an earlier
iteration.

We claim that there must exist derivation rule r involving the
confidential event ec whose value is U because it is impossible to
infer the truth of an event that does not have any logical dependency
with other events. If subscriber pi learns the truth of event ec, it
must use a different form of inference that is not captured by s-
inference rules in Figure 2. However, this is not possible; we show
that if subscriber pi performs such inference, we can construct two
event sets EPS and E′PS that satisfy the conditions in Definition 6.
We first consider the case that the confidential event ec appears in
the head of rule r and next consider the case that ec appears in
the body of rule r. When event ec is the head of rule r, the body

of r contains events with value T and other events with value U .
Otherwise, the function VERIFYSAFETY assigns value T or F by
applying s-inference rule S1 or S2 on rule r respectively. We can
construct two event sets EPS and E′PS for event ec satisfying the
safety conditions in Definition 6 as follows:

EPS ={e | val(e) = T} ∪ {ec}
∪ {ei | ec ← e1, . . . , ei, . . . , en ∈ I ∧ val(ei) = U},

E′PS ={e | val(e) = T}.

Set EPS contains all the events with a value T after we run the
function VERIFYSAFETY, the confidential event e, and the events
with a value U in the body of rule r for deriving e. Set E′PS only
contains events with a value T .

Next, we consider the case that confidential event ec appears in
the body of derivation rule r for deriving event e0. If the value of
event e0 is F , there must exist another event ei whose value is ei-
ther F or U in the body of rule r. Then, we can construct two event
sets EPS and E′PS for event ec satisfying the safety conditions as
follows:

EPS ={e | val(e) = T} ∪ {ec},
E′PS ={e | val(e) = T} ∪

{ei | e0 ← e1, . . . , ei, ec, . . . , en ∈ I ∧ val(ei) = U}.

Set E′PS contains the events with a value U in the body of rule r as
well as all the events with a value T . If the value of event e is T ,
there must exist another rule e0 ← e′1, . . . , e

′
n where val(e′i) = T

or val(e′i) = U for i = 1 to n. Then, we can construct two event
sets EPS and E′PS satisfying the safety conditions as follows:

EPS ={e | val(e) = T} ∪ {ec},
E′PS ={e | val(e) = T} ∪

{e′i | e0 ← e′1, . . . , e
′
n ∈ I ∧ val(e′i) = U}.

We also need to consider the case that subscriber pi infers the truth
of event ec by knowing a conjunction or disjunction of events in-
volving ec. However, we can easily construct two event sets satisfy-
ing the safety when subscriber pi does not use s-inference rules S4–
S7. Since we show that there is no confidential event ec with a value
T or F at step k+1, we conclude that the function VERIFYSAFETY
is sound.

THEOREM 2 (COMPLETENESS). If a pub-sub system
PS[E , I, dacl , oacl] is weakly safe with respect to a subscriber
pi, then the function VERIFYSAFETY(E , dacl , oacl , I, pi) returns
TRUE.

PROOF. We show that if the function VERIFYSAFETY returns
FALSE, the system is not safe. If the function updates the value of
an event e to either T or F where e /∈ dacl(e), it is clearly impos-
sible to construct an alternate world where e has the opposite value.
For example, consider the rule S1. If a subscriber pi knowing the
inference rule e← e1, . . . , en receives events e1, . . . , en, pi learns
that event e is also true. Even if pi /∈ dacl(e), we cannot construct
an alternate event set E′PS , which does not include e while system
PS publishes e1, . . . , en to pi. The same argument holds for the
the other s-inference rules, and thus the safety verification with the
function VERIFYSAFETY is complete.

3.3 Complexity of the safety problem
We define the UNSAFE problem, which is the complement of

the safety problem, as follows:

UNSAFE = {(PS[E , I, dacl, oacl], pi) |
VERIFYSAFETY(E , dacl, oacl, I, pi) = FALSE}

THEOREM 3. UNSAFE is NP -complete.
PROOF. We first show that the UNSAFE problem is inNP . We

consider a particular T/F-value assignment A as a certificate that
shows that a given system PS is unsafe. We remove the outer most
for-loop in the function VERIFYSAFETY such that it only computes
the values of events from the initial value assignment given by par-
ticular A. This algorithm, which is similar to the computation of a
fixpoint in Datalog, runs in polynomial time.

Next, we prove that UNSAFE is NP -hard by showing 3-CNF-
SAT is polynomial-time reducible to the UNSAFE problem (i.e.,
3-CNF-SAT ≤P UNSAFE). Let φ = C1 ∧ . . . ∧ Cn be a boolean
formula in 3-CNF with k clauses. Our goal is to construct a set of
derivation rules I , DAC policies dacl , and OAC policies oacl for
the UNSAFE problem such that the formula φ is satisfiable if and
only if a pub-sub system PS[E , I, dacl , oacl] is unsafe. To achieve
this goal, we introduce a confidential event s such that a subscriber
learns the truth of s if and only if the formula φ is satisfiable.

We first show the construction of such a system
PS[E , I, dacl , oacl]. We use the following formula φ as a running
example.

φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).

Let A be a set of literals that appear in φ. We introduce a set of
events corresponding to literals in A, another set of events corre-
sponding to clause Ci in φ, and a confidential event that is used
to violate the safety conditions. We introduce an event xi for each
variable xi in A and introduce nxj for each atom ¬xj in A. We
need event nxj to handle the negation of a variable in φ. In the
example, A = {x1,¬x1, v2,¬x2, x3,¬x3}, and thus we include
{x1, nx1, x2, nx2, x3, nx3} in event set E . System PS publishes
both xi and nxi to subscriber pi; that is,

pi ∈ oacl(xi) and pi ∈ oacl(nxi).

We also introduce a triplet of events (ui, zi, z
′
i) for each event xi

and introduce a triplet of events (nui, nzi, nz
′
i) for each event nzi.

In the above example, we introduce pairs of events (u1, z1, z
′
1),

(nu1, nz1, nz
′
1), (u2, z2, z

′
2), (nu2, nz2, nz

′
2), (u3, z3, z

′
3), and

(nu3, nz3, nz
′
3). The purpose of those triplets of events will be-

come clear when we define derivation rules in I below. System
PS does not publish events of the types ui, zi, z′i, nui, nzi, nz′i
to subscriber pi. However, DAC policies do not prohibit pi from
knowing the truth of those types of events; that is, for every i:

pi /∈ oacl(ui), pi ∈ dacl(ui),
pi /∈ oacl(zi), pi ∈ dacl(zi),
pi /∈ oacl(z′i), pi ∈ dacl(z′i),
pi /∈ oacl(nui), pi ∈ dacl(nui),
pi /∈ oacl(nzi), pi ∈ dacl(nzi),
pi /∈ oacl(nz′i), pi ∈ dacl(nz′i).

We also introduce two events yi and wi corresponding to clause
Ci in φ. System PS does not publish yi and wi to subscriber pi,
but DAC policies do not prohibit pi from knowing the truth of yi
and wi respectively; that is,

pi /∈ oacl(yi), pi ∈ dacl(yi),
pi /∈ oacl(wi), pi ∈ dacl(wi).

We finally introduce confidential event s that subscriber pi is not
allowed to know its truth; that is, pi /∈ dacl(s).

Next, we describe how we define derivation rules in I . For each
clauseCi, we define three rules for deriving event yi corresponding

to clause Ci. For example, if C1 = x1 ∨ ¬x2 ∨ ¬x3 as in the
example above, we have three rules as follows:

y1 ← x1, y1 ← nx2, and y1 ← nx3.

We need to make sure that each pair of events (xi, nxi) are consis-
tent; that is, xi = ¬nxi for every xi in E . For example, variable x1
appears in clause C1 and ¬x1 appears in C2. Therefore, we have
to define rules such that x1 = ¬nx1. We define a pair of rules for
each event in the body of each rule above as follows:

x1 ← nx1, z1, x1 ← u1, z
′
1,

nx2 ← x2, nz2, nx2 ← nu2, nz
′
2,

nx3 ← x3, nz3, nx3 ← nu3, nz
′
3.

The first two rules ensure that subscriber pi infers that event u1

is true only when event x1 is true and nx1 is false. If pi knows that
x1 is true, he infers that either nx1∧z1 or u1∧z′1 is true. If pi also
knows that nx1 is false, then he concludes that u1∧z′1 must be true,
and thus u1 is true. If x1 is false, pi infers that both conjunctions
nx1 ∧ z1 and u1 ∧ z′1 are false, but pi cannot determine whether
u1 is true because pi does not know the truth of the other event z′1.
If event nx1 as well as x1 is true, pi cannot infer the truth of event
ui because which one of the first two rules is used to derive x1.

We add rules for deriving wi for clause Ci. For clause C1, we
define the rules below:

w1 ← u1, w1 ← nu2, and w1 ← nu3.

The above three rules ensure that subscriber pi knows that event
w1 is true if and only if event y1, which corresponds to the truth
of clause C1, is true and there is no inconsistent assignment with a
pair of (xi, nxi) in event set E . We can define derivation rules for
clause C2 in the same way.

y2 ← nx1, y2 ← x2, y2 ← x3,
nx1 ← x1, nz1, nx1 ← nu1, nz

′
1,

x2 ← nx2, z2, x2 ← u2, z
′
2,

x3 ← nx3, z3, x3 ← u3, z
′
3,

w2 ← nu1, w2 ← u2, w2 ← u3.

We finally add the following derivation rule for a confidential event
s, which requires wi is true for every clause Ci in φ.

s← w1, w2.

We introduce five events for each variable xi in φ, two events for
each clauseCi in φ, and a single event for φ. We also define a DAC
and a OAC policy of a constant size for each event. We introduce
nine rules of a constant size for each clause Ci and a single rule
whose size is proportional to the number of clauses in φ. Therefore,
this reduction can be performed in polynomial time.

We now show that if a formula φ is satisfiable, then subscriber
pi can infer the truth of confidential event s, which violates the
safety conditions of the pub-sub system PS. If φ is satisfiable,
there exists truth/false assignments to the variables in φ such that
every clause Ci is true. If we assign the truth of events in E such
that val(xi) = T and val(nxi) = F if and only if xi is assigned
to be true in φ, then, as we describe above, subscriber pi can infer
that val(s) = T . Now we prove the converse. If system PS is
unsafe, event s is known to be true because s is the only event in
E where subscriber pi does not satisfy its DAC policies. Also, if
s is known to be true, every event wi must be known be true. If
wi is known to be true, then one of the three events for clause Ci

must be known to be true while satisfying constraints regarding the
negation of an atom in formula φ.

4. EXPERIMENTS
In this section, we first show the reduction from the UNSAFE

problem to the SAT problem to leverage the techniques of SAT
solvers. We next show our experimental results using a SAT solver.

4.1 Reduction to the SAT problem
We convert a pub-sub system PS(E , I, dacl , oacl) into a SAT

formula φj such that there is safety violation with respect to prin-
cipal pj if and only if the formula φj is satisfiable. Our basic ap-
proach is to have φj encode the application of a sequence of s-
inference rules leading to a safety violation.

To model this, we introduce for each event ei ∈ E two variables,
Tei and Fei, modeling the final state of the variable after applica-
tion of the inference rules. We add a clause that ensures that each
event ei is known to be either true or false, but not both:

ei ∈ E =⇒ (¬Tei ∨ ¬Fei) (1)

We represent a conversion rule from PS to formula φj using a long
right arrow ‘=⇒’; that is, for each element in PS on the left-hand
side of an arrow, we add a clause on the right into formula φj . For
an event ei that is released (i.e., pj ∈ oacl(ei)), we also include
the constraint:

ei ∈ E ∧ pj ∈ oacl(ei) =⇒ (Tei ∨ Fei) (2)

to represent that the subscriber knows that the event is either true
or false.

We then add constraints representing the s-inference rules. To
simplify the problem, we first rewrite the inference rules into a nor-
malized form such that, for every event ei ∈ E , there is either a
single rule with ei on the left-hand side (ei ← e1, . . . , en) or all of
the rules with ei on the left-hand side contain a single event on the
right-hand side (ei ← e1 ; . . . ; ei ← en), by means of introducing
auxiliary variables. This ensures that each conjunction that appears
in s-inference rule S3 is represented by a single event, and hence
has a corresponding Tei and Fei variable.

Rules S1 and S2 are modeled in φj as follows:

ei ←e1, . . . , en ∈ I =⇒
((Te1 ∧ . . . ∧ Ten)⇒ Tei) ∧ (3)
((Fe1 ∨ . . . ∨ Fen)⇒ Fei) (4)

For a conjunctive rule, we insert clauses to φj modeling rule S3
combined with rules S6 and S5:

ei ←e1, . . . , en ∈ I =⇒
(Tei ⇒ (Te1 ∧ . . . ∧ Ten)) (5)
∧ ((Fei ∧ Te2 ∧ . . . ∧ Ten)⇒ Fe1) (6)
· · ·
∧ ((Fei ∧ Te1 ∧ . . . ∧ Ten−1)⇒ Fen) (7)

Disjunctive clauses are modeled analogously:

(ei ←e1; . . . ; ei ← en) ∈ I =⇒
(Fei ⇒ (Fe1 ∧ . . . ∧ Fen)) (8)
∧ ((Tei ∧ Fe2 ∧ . . . ∧ Fen)⇒ Te1) (9)
· · ·
∧ ((Tei ∧ Fe1 ∧ . . . ∧ Fen−1)⇒ Ten) (10)

We also add a clause to φj modeling a safety violation:

ei ∈ E ∧ pj /∈ dacl(ei) =⇒ (Tei ∨ Fei) (11)

A combination of these clauses ensures that, whenever there is
a sequence of inference rules that produces a safety violation, φj

is satisfiable. However, we need to add more clauses to make sure
that φj is satisfiable only when there is a safety violation. To do
so, we introduce an extra requirement that a variable Tei or Fei be
only true if it was derived by some inference rule, or it was released
through the oacl policies.

For each variable Tei (likewise, Fei) such that pj /∈ oacl(ei),
we collect all the clauses introduced above that have the form x⇒
Tei. Then we introduce an additional clause in formula φj :

Tei ⇒ (x1 ∨ . . . ∨ xn) (12)

If there are no such clauses, then we instead add the clause (¬Tei),
since Tei can never be derived by an inference rule.

This nearly solves the problem, but it introduces the possibilities
of inference loops. For example, if there are two variables, e1 and
e2 with a simple rule e1 ← e2, then we would introduce the clauses
in formula φj :

Te1 ⇒ Te2

Te2 ⇒ Te1

Setting both Te1 and Te2 would be a satisfying assignment,
even if there are no inference rules to derive the values of either
e1 or e2 in the rest of the system. To address this problem, we add
auxiliary variable Bj,i for each event pair (ei, ej) ∈ E that tracks
the order of inference rules used to derive the value of each vari-
able. We update clause (12) to include the requirements that the
variables on the left-hand side be known before event ei:

Tei ⇒ ((x1∧
∧

ej∈V (x1)

Bj,i)∨ . . .∨(xn∧
∧

ej∈V (xn)

Bj,i)), (13)

where V (xk) denotes a set of variables that appear in clause xk.
This ensures that any variable in xk is known before ei. Thus, the
above clauses regarding rule e1 ← e2 are modified as follows:

Te1 ⇒ (Te2 ∧B2,1)

Te2 ⇒ (Te1 ∧B1,2)

We also introduce the requirement that the ‘before’ relation Bi,j

is antisymmetric and transitive:

ei, ej ∈ E =⇒ (¬Bi,j ∨ ¬Bj,i) (14)
ei, ej , ek ∈ E =⇒ ((Bi,j ∧Bj,k)⇒ Bi,k) (15)

Together, these rules ensure that, if any variable Tei (or, like-
wise, Fei) is found to be true in a satisfying assignment, there
exists a sequence of inference rules deriving Tei that starts from
variables release through the oacl policies.

Example 3: Consider a pub-sub system PS with the following
system parameters: E = {e1, e2, e3}, I = {e1 ← e2, e3}, pl ∈
dacl(e1), and pl ∈ oacl(e3). We convert the safety problem in

PS into the following formulas φj .

φj =

[(1)](¬Te1 ∨ ¬Fe1) ∧ (¬Te2 ∨ ¬Fe2)∧
(¬Te3 ∨ ¬Fe3) (16)

[(2)] ∧ (Te3 ∨ Fe3) (17)
[(4)] ∧ (Fe2 ∨ Fe3)⇒ Fe1 (18)
[(3)] ∧ (Te2 ∧ Te3)⇒ Te1 (19)
[(5)] ∧ Te1 ⇒ (Te2 ∧ Te3) (20)
[(6)] ∧ (Fe1 ∧ Te2)⇒ Fe3 (21)
[(7)] ∧ (Fe1 ∧ Te3)⇒ Fe2 (22)
[(13)] ∧ Fe1 ⇒ ((Fe2 ∧B2,1) ∨ (Fe3 ∧B3,1)) (23)
[(13)] ∧ Te1 ⇒ ((Te2 ∧ Te3 ∧B2,1 ∧B3,1)) (24)
[(13)] ∧ Te2 ⇒ (Te1 ∧B1,2) (25)
[(13)] ∧ Fe2 ⇒ (Fe1 ∧ Te3 ∧B1,2 ∧B3,2) (26)
[(14)] ∧ (¬B1,2 ∨ ¬B2,1) ∧ (¬B1,3 ∨ ¬B3,1)∧

(¬B2,3 ∨ ¬B3,2) (27)
[(15)] ∧ (∀i, j, k : (Bi,j ∧Bj,k)⇒ Bi,k) (28)
[(11)] ∧ (Te2 ∨ Fe2). (29)

This formula is unsatisfiable, and hence the system is safe. To
see this, suppose Te2 were true. Then Te1 and B1,2 must be true
(25). This implies that (Te2 ∧ Te3 ∧ B2,1 ∧ B3,1) must be true
(24). But B1,2 and B2,1 cannot be true at the same time (27).

On the other hand, if Fe2 is true, then we must also set Fe1,
Te3, B1,2, and B3,2 all to be true (26). On the other hand, Fe1
requires that (Fe2∧B2,1) be true or (Fe3∧B3,1) is true (23). The
former clause violates antisymmetry (27) and the latter requires that
e3 be both true and false at the same time (16).

4.2 Experimental results
We measured latency for solving the SAT problems, which are

reduced from UNSAFE problems. We used SAT4J [1], which is
a Java-based SAT solver, and conducted our experiments with a
machine running Mac OS X version 1.4.2 and Sun Microsystem’s
Java runtime (v.1.5.0) with 2GHz Intel Core Duo processor and
1.5GB RAM.

We generated system parameters, event set E , derivation rules I ,
DAC policies dacl and OAC policies oacl randomly by specifying
the number of events in E (ENUM), the number of derivation rules
in I (INUM), the number of events (OAC NUM) that subscriber pl
receives, the number of events (NO DAC NUM) that pl is not au-
thorized to learn with respect to DAC policies, and the average size
of events in the bodies of the derivation rules (SIZE). We used the
parameters in Table 1. Although those parameters do not consider
particular applications, we believe that we covered the case where
number of events and derivation rules are large enough to meet the
needs of practical pub-sub systems in pervasive computing.

Figure 4 shows latencies for evaluating the reduced SAT prob-
lems. We measured the latencies of ten different policies for each
number of events in set E and took the average of them. Although
the latency grows as the number of events grows, the latency for
the SAT problem, which corresponds to 70 events and 56 deriva-
tion rules in a pub-sub system, is still less than ten milliseconds.

We wrote a program for converting a safety problem into the
corresponding SAT problem in Python. The conversion process
took an order of ten minutes when we chose a system configuration
involving 70 events. However, we believe that we can make this
process an order of magnitude or two faster by implementing the
conversion program with a low-level language such as C.

ENUM INUM OAC NUM NO DAC NUM SIZE
10 8 3 1 2
20 16 6 2 2
30 24 9 3 2
40 32 12 4 2
50 40 15 5 2
60 48 18 6 2
70 56 21 7 2

Table 1: Parameters for the experiments.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70

La
te

nc
y

(m
s)

Number of events

Figure 4: Latency for satisfiability check.

5. RELATED WORK
Several researchers [11, 14, 20] have studied policy languages

and enforcement mechanisms for limiting access to events in pub-
sub systems. However, none of the researchers consider safety in a
pub-sub system that derives high-level events using logical deriva-
tion rules.

Inference control has been studied extensively in the field of sta-
tistical database systems [5]. Statistical database systems prevent
unauthorized inferences by limiting certain types of queries (e.g.,
query size and query overlap control) and/or by modifying query
results (e.g., cell suppression and response perturbation). On the
other hand, our approach based on OAC policies does not require
the modification of events to be published.

Inference control in multilevel secure database systems [16, 17]
prevents a low-clearance user from inferring high-classification data
using functional dependencies in the database system. However,
the inference control in those systems does not address the issue of
backward inferences concerning functional dependencies.

Considerable research has been done for safety analysis of DAC
systems (e.g., [6, 9, 15]) that decides whether a system reaches an
unsafe state where an unauthorized subject has a particular access
right. More recently, Li et al. [10] studied the computational com-
plexity of the safety problem for trust management systems where
role memberships (i.e., access rights) of users are updated based on
logical rules. The safety problem in the previous studies is orthogo-
nal to that of ours whose focus is to ensure that discretionary access
control policies are preserved under the presence of malicious users
performing inferences.

Winsborough and Li [19] formally define safety in the frame-
work of automatic trust negotiation. Their safety definition is based
on the notion of indistinguishability about the possession of a set of
credentials by a negotiating party. They studied inferences in ATN
through the behaviors of the negotiating party, whereas our focus

is a subscriber’s inferences that consider the derivation rules of a
pub-sub system.

6. SUMMARY
We consider pub-sub systems that derives high-level events from

raw events using derivation rules, and provide the formal definition
of safety that considers a subscriber’s inferences about confiden-
tial events. We develop a safety verification algorithm, which is
sound and complete, by introducing a set of inference rules that
capture what a subscriber can infer. We prove that the safety prob-
lem is co-NP-complete. However, we show that the safety problem
is polynomially reducible to the SAT problem, which can be solved
efficiently with an existing SAT solver. Our experimental results
show that it is feasible to verify the safety of a pub-sub system with
moderate number of events and derivation rules.

Acknowledgments
We would like to thank Mahesh Tripunitara for his help with the
final version of the paper. This work was supported in part by NSF
CNS 07-16626, NSF CNS 07-16421, NSF CNS 05-24695, ONR
N00014-08-1-0248, NSF CNS 05-24516, NSF CNS 05-24695, DHS
2006-CS-001-000001, and grants from the MacAruthur Foundation
and Boeing Corporation. The views expressed are those of the au-
thors only.

7. REFERENCES
[1] Sat4j: Bringing the power of sat technology to the java

platform, http://www.sat4j.org/.
[2] Antonio Carzaniga, David S. Rosenblum, and Alexander L.

Wolf. Design and evaluation of a wide-area event notification
service. ACM Transactions on Computer Systems,
19(3):332–383, August 2001.

[3] Guanling Chen, Ming Li, and David Kotz. Design and
implementation of a large-scale context fusion network. In
Proceedings of the International Conference on Mobile and
Ubiquitous Systems: Networking and Services, pages
246–255, August 2004.

[4] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A
conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human Computer
Interaction Journal, 16(2-4):97–166, 2001.

[5] Josep Domingo-Ferrer, editor. Inference Control in
Statistical Databases, From Theory to Practice.
Springer-Verlag, London, UK, 2002.

[6] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D.
Ullman. Protection in operating systems. Commun. ACM,
19(8):461–471, 1976.

[7] Jason I. Hong and James A.Landay. An architecture for
privacy-sensitive ubiquitous computing. In Proceedings of
the international conference on Mobile systems,
applications, and services, pages 177–189, New York, NY,
USA, 2004. ACM.

[8] Marc Langheinrich. Privacy by design— principles of
privacy-aware ubiquitous systems. In Proceedings of the
International Conference on Ubiquitous Computing
(Ubicomp), volume 2201 of Lecture Notes in Computer
Science, pages 273–291. Springer-Verlag, 2001.

[9] Ninghui Li and Mahesh V. Tripunitara. On safety in
discretionary access control. In Proceedings of the 2005
IEEE Symposium on Security and Privacy, pages 96–109,
Washington, DC, USA, 2005. IEEE Computer Society.

[10] Ninghui Li, William H. Winsborough, and John C. Mitchell.
Beyond proof-of-compliance: Safety and availability
analysis in trust management. In Proceedings of the 2003
IEEE Symposium on Security and Privacy, page 123,
Washington, DC, USA, 2003. IEEE Computer Society.

[11] Zoltan Miklos. Towards an access control mechanism for
wide-area publish/subscribe systems. In Proceedings of the
International Conference on Distributed Computing Systems,
pages 516–524, Washington, DC, USA, 2002. IEEE
Computer Society.

[12] Shwetak N. Patel, Matthew S. Reynolds, and Gregory D.
Abowd. Detecting human movement by differential air
pressure sensing in HVAC system ductwork: An exploration
in infrastructure mediated sensing. In Proceedings of the
International Conference on Pervasive Computing, Berlin,
Ireland, May 2008.

[13] Shwetak N. Patel, Thomas Robertson, Julie A. Kientz1,
Matthew S. Reynolds1, and Gregory D. Abowd. At the flick
of a switch: Detecting and classifying unique electrical
events on the residential power line. In Proceedings of the
international conference on Ubiquitous computing, pages
271–288, New York, NY, USA, 2007. ACM.

[14] Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. A
capability-based access control architecture for multi-domain
publish/subscribe systems. In Proceedings of the
International Symposium on Applications on Internet, pages
222–228, Washington, DC, USA, 2006. IEEE Computer
Society.

[15] Ravi S. Sandhu. The typed access matrix model. In
Proceedings of the 1992 IEEE Symposium on Security and
Privacy, page 122, Washington, DC, USA, 1992. IEEE
Computer Society.

[16] Mark E. Stickel. Elimination of inference channels by
optimal upgrading. In Proceedings of the IEEE Symposium
on Security and Privacy, page 168, Washington, DC, USA,
1994. IEEE Computer Society.

[17] Tzong-An Su and Gultekin Ozsoyoglu. Controlling FD and
MVD inferences in multilevel relational database systems.
IEEE Transactions on Knowledge and Data Engineering,
3(4):474–485, 1991.

[18] David Sutherland. A model of information. In Proceedings
of the National Computer Security Conference, pages
175–183, September 1986.

[19] William H. Winsborough and Ninghui Li. Safety in
automated trust negotiation. In Proceedings of the 2004
IEEE Symposium on Security and Privacy, pages 147–160.
IEEE Computer Society, May 2004.

[20] Yuanyuan Zhao and Daniel C. Sturman. Dynamic access
control in a content-based publish/subscribe system with
delivery guarantees. In Proceedings of the IEEE
International Conference on Distributed Computing Systems,
page 60, Washington, DC, USA, 2006. IEEE Computer
Society.

	Introduction
	System model
	Logic-based pub-sub system
	Event derivation rules
	Discretionary and operational access control policies
	Safety conditions

	Complexity analysis
	Inference by subscribers
	Safety verification algorithm
	Complexity of the safety problem

	Experiments
	Reduction to the SAT problem
	Experimental results

	Related work
	Summary
	References

