Authenticated Streamwise On-line Encryption*

Patrick P. Tsang! Rouslan V. Solomakhin and Sean W. Smith

Department of Computer Science
Dartmouth College
Hanover, NH 03755

USA

Dartmouth Computer Science Technical Report
TR2009-640

March 28, 2009

Abstract

In Blockwise On-line Encryption, encryption and decryption return an output block as soon
as the next input block is received. In this paper, we introduce Authenticated Streamwise On-
line Encryption (ASOE), which operates on plaintexts and ciphertexts as streams of arbitrary
length (as opposed to fixed-sized blocks), and thus significantly reduces message expansion and
end-to-end latency. Also, ASOE provides data authenticity as an option. ASOE can therefore
be used to efficiently secure resource-constrained communications with real-time requirements
such as those in the electric power grid and wireless sensor networks.

We investigate and formalize ASOE’s strongest achievable notion of security, and present a
construction that is secure under that notion. An instantiation of our construction incurs zero
end-to-end latency due to buffering and only 48 bytes of message expansion, regardless of the
plaintext-size.

Keywords: blockwise on-line encryption, authenticated encryption, ciphers, provable security,
critical infrastructure protection

*This work was supported in part by the National Science Foundation, under grant CNS-0524695, the U.S.
Department of Homeland Security under Grant Award Number 2006-CS-001-000001, and the Institute for Security
Technology Studies, under Grant number 2005-DD-BX-1091 awarded by the Bureau of Justice Assistance. The views
and conclusions do not necessarily represent those of the sponsors.

fCorresponding author. Email him at patrick@cs.dartmouth.edu.

patrick@cs.dartmouth.edu

Contents

1 Introduction
1.1 On-line Encryption o e
1.2 (Authenticated) Blockwise On-line Encryption
1.3 A New Cryptographic Primitive: Authenticated Streamwise On-line Encryption . . .

2 The ASOE Encryption and Decryption Devices
2.1 The encryption device L L e
2.2 The decryption device e e e

3 Security Goals
3.1 Data Privacy
3.2 Data authenticity L L

4 An Overview of Our ASOE Construction

5 Formalizing ASOE
5.1 Syntaxo e e
5.2 Securityo

6 Details of Our ASOE Construction
6.1 Building Blocks Lo
6.2 The Encryption and Decryption Devices
6.3 Securityo e

7 Performance Evaluation
7.1 Imstantiation L e e e
7.2 Message Expansiono
7.3 End-to-end Latency
7.4 Further Optimizations e

8 Application Scenarios
8.1 Scenario I: Security Retrofit for Legacy SCADA Communications
8.2 Scenario II: Secure and Real-time Wireless Sensor Networks
8.3 A Caveat on early availability of potentially unauthentic data

9 Conclusions

A Proof of Theorem 1 (Sketch)
A1 Data Privacy e e
A.2 Data Authenticity

1 Introduction

1.1 On-line Encryption

In applications such as the Secure Shell (SSH), the symmetric encryption and decryption
algorithms—or equivalently, the devices executing them—operate in an “on-line” manner: indi-
vidual plaintext- and ciphertext-blocks are processed and output as soon as the next input block
is received (i.e., without waiting until the receipt of the entire plaintext or ciphertext). On-line en-
cryption and decryption are a desirable feature, as they significantly reduce the end-to-end latency
due to buffering — as well as the storage needed — at the encryption and decryption devices (from
depending on the size of the ciphertext/plaintext to depending on the size of only a single block).
In SSH, such feature is crucial as it permits the simulation of a real-time tunnel for interactive
traffic.

The study of on-line encryption started in 2002 when Bellare et al. [1] published an attack
on the provably CPA-secure (i.e., secure against Chosen-Plaintext Attacks) symmetric encryption
used in SSH. The attack, and similar attacks on several other symmetric encryption identified soon

after [12], were possible despite the provable security due to a discrepancy between the model under
which the encryption is proven secure and how the encryption is actually used.
Specifically, it had traditionally been assumed [2, 16] that the encryption (resp. decryption)

device in a symmetric encryption operates in an “off-line” manner: it takes a plaintext (resp.
ciphertext) in its entirety as input, after which it outputs the corresponding ciphertext (resp.
plaintext); an adversary can thus observe the corresponding ciphertext (resp. plaintext) only after
he has submitted the plaintext (resp. ciphertext) in its entirety to the device. On-line encryption
and decryption, however, allow the adversary to observe the encryption (resp. decryption) of
individual plaintext- (resp. ciphertext-) blocks and craft the remaining blocks adaptively, thereby
giving him more power than assumed in the model when launching an attack.

These attacks thus called for the study of on-line encryption [6], a symmetric encryption scheme
which is secure even if both the encryption device and the decryption device are operated in an
on-line manner. We note that some have referred to their construction as on-line encryption [9, 10],
even though only encryption is on-line. As it turns out, it is relatively easy to construct a secure
scheme when only encryption is on-line. Nonetheless, such scheme is not that useful: the end-to-end
latency still depends on the size of the plaintext/ciphertext; it does not permit the simulation of a
real-time tunnel, either. In this paper, we call a scheme on-line encryption only if both encryption
and decryption are on-line.

1.2 (Authenticated) Blockwise On-line Encryption

Today, all existing on-line encryption constructions have been built from some secure block cipher,
e.g., AES [13], and have been blockwise: their encryption device and decryption device take as
input, operate on, and return as output fixed-sized blocks of data, where the size of each block is
the same as the block-size of the underlying block cipher. These on-line encryption schemes are
known as Blockwise On-line Encryption (BOE).

Authenticated Blockwise On-line Encryption (ABOE) is like BOE, but additionally provides data
authenticity, in a way analogous to how Authenticated Encryption [5] (AE) adds data authenticity to
conventional Symmetric Encryption (SE). In particular, the decryption device additionally outputs

!The block-size equals that of the underlying block cipher, e.g., 128 bits for AES.

a boolean value at the end of a decryption, indicating whether the output plaintext, is authentic.
(We will give a precise definition of data authenticity later in the paper).

Boldyreva and Taesombut [0] first formalized the strongest achievable notion of security, namely
IND-BLK-CCA (more details on this later), for BOE and presented a BOE construction that is
secure under that notion. In the same paper, they also presented an ABOE construction.

There are several other existing (A)BOE-related constructions. Bard [1] studied the construc-
tion of BOE from various modes of operation, but the construction has only CPA-security. Fouque
et. al proposed an “ABOE” construction that is secure against chosen ciphertext attacks [9], but
decryption is not on-line. Similarly, decryption is also not on-line in the work due to Fouque et
al. [10].

1.2.1 The Challenge

(A)BOE processes and outputs plaintext-/ciphertext-blocks as soon as the next input block is
received. A natural question — the answer to which has both theoretical and practical interests —
to ask is then: “what if the input is smaller than a block?” More generally,

“What if the input is a stream of bits of arbitrary length?”

Such situations occur in practice, when the input plaintext/ciphertext is broken up into streams
of varying lengths (as small as 1 bit) before it arrive at the encryption/decryption device, one stream
at a time. In Section 8, we discuss two examples, one in the electric power grid and the other in
wireless sensor networks (WSNs).

1.3 A New Cryptographic Primitive: Authenticated Streamwise On-line En-
cryption

To answer the challenge above, we introduce Authenticated Streamwise On-line Encryption
(ASOE), an authenticated encryption scheme with the following features:

e Zero buffering latency Plaintexts and ciphertexts may be fragmented into streams of
arbitrary lengths. Upon receiving an input stream, the encryption and decryption devices
return an output stream immediately, i.e., before the arrival of the next input stream.

In particular, the fragmentation of the ciphertext when input to the decryption device can
be different from its fragmentation when output by the encryption device. This may occur
when the ciphertext is in transit due to, e.g., IP fragmentation in the Internet Protocol (IP).

e Constant message expansion The ciphertext resulted from encrypting a plaintext is of
size larger than the plaintext-size by at most a fixed amount, independent of the plaintext-
size. Consequently, the incurred latency due to message expansion is also independent of the
plaintext-size.

e Constant storage size The encryption and decryption devices have a fixed amount of
storage, independent of the maximum allowable size of the plaintexts and ciphertexts. Hence,
even devices with limited storage such as sensor nodes can encrypt and authenticate long
messages.

1.3.1 Paper Organization

The rest of the paper starts with a brief description of how our proposed ASOE encryption de-
vice and decryption device operate (Section 2). This provides us with a basis and the necessary
vocabulary for explaining the challenges in constructing ASOE that meets the desired security,
functionality and performance goals (Section 3). We then highlight the core ideas in our solution to
overcome those challenges (Section 4). After that, we formalize the syntax and security of ASOE
(Section 5), before we provide the details of our ASOE construction (Section 6) and evaluate its
performance (Section 7). Finally, we discuss two application scenarios that can benefit from ASOE
(Section 8), and conclude the paper (Section 9).

2 The ASOE Encryption and Decryption Devices

A pair of an ASOE encryption device £ and its corresponding ASOE decryption device D are
installed with a shared key k.

2.1 The encryption device

To encrypt a plaintext m € {0,1}*, € operates in three stages as follows.

1. (Initialization.) € is first initialized with an initialization vector (IV) v. As a result, £ outputs
a ciphertext header h of a fixed size. For security reasons, no IV should be reused to initialize
£ installed with the same key.

2. (Stream encryption.) The plaintext m may be arbitrarily fragmented into ¢ plaintext streams
my,ma,...,mg € {0,1}* such that m = mq||ma]|...||ms, which become available to £ for
encryption one stream at a time, in that order. When plaintext stream m; becomes available,
& encrypts m; and outputs a corresponding ciphertexrt stream x; immediately, i.e., before the
next plaintext stream becomes available. The constant message expansion property requires
that |m;| = |x;|.

3. (Finalizing.). When & finished encrypting the last plaintext stream my, it finalizes the en-
cryption and outputs a ciphertext trailer t of a fixed size.

We call the in-order concatenation of all ciphertext streams the ciphertext body x, ie., x =
x1||z2|| ... ||ze. The entire ciphertext ¢ as a result of ASOE-encrypting plaintext m is hence the
header-body-trailer triple (h,x,t).

2.2 The decryption device

To decrypt a ciphertext ¢ = (h,x,t), the corresponding ASOE decryption device D operates in
three stage as follows.

1. (Initialization.) D is first initialized with the ciphertext header h. The initialization may or
may not succeed. If it fails, D immediately terminates the decryption of ¢ as failure, and
hence refuses to decrypt ¢. As will become clear later, this step is the cornerstone of a secure

ASOE.

2. (Stream decryption.) The ciphertext body x may be arbitrarily fragmented into ¢’ ciphertext
streams @, 25, . .., @) such that 2’ = 2/ ||25]| . .. |[2},, which become available to D for decryp-
tion one stream at a time, in that order. When ciphertext stream z} becomes available, D
decrypts x} and outputs a corresponding plaintext stream m/ immediately. Again we require
that |2} = |m})|.

3. (Finalizing.) When D finished decrypting the last ciphertext stream xj,, it finalizes the de-
cryption and outputs either true or false as its decision on the authenticity of the recovered
plaintext m’ = m/||mb]|...||m},.

Any ASOE construction should have completeness: in the absence of an adversary, (1) the
recovered plaintext m’ equals the original plaintext m, and (2) D outputs true at the finalizing
stage, indicating that m’ is authentic.

3 Security Goals

To construct a secure ASOE, one must first understand what security means for ASOE. As it
turns out, the data authenticity requirement in ASOE is a pretty standard one. Below we thus
first focus on the data privacy requirement.

3.1 Data Privacy

Boldyreva and Taesombut [0] first rigorously argued that it is impossible for BOE to have IND-
CCA security?, and formalized the strongest notion of data privacy achievable by BOE known as
IND-BLK-CCA security®. Since BOE is an ASOE operated as a special case (when the plaintext-
/ciphertext- streams have the same fixed size), it follows immediately that it is also impossible for
ASOE to have IND-CCA security.

Below, we consider an attack that an IND-CCA-attacker can launch but no ASOE construction
can defend against. The attack thus serves two purposes: (1) it proves that no ASOE can be IND-
CCA-secure, and (2) it helps us define the strongest achieveable notion of data privacy.

3.1.1 A chosen-ciphertext attack

The attacker first initializes £ with any IV v and gets in return a ciphertext header h. Next, the
attacker chooses two 2-bit plaintext streams m) = 01 and m ;) = 11 and is given back (as part
of the “challenge ciphertext”) a 2-bit ciphertext stream () = x()[1]||z()[2], which is the stream
encryption of m,), where b = 0 or 1 equally likely. In other words, the challenge ciphertext has
the form ¢ = (h, z)l|...,").

Now the attacker attempts to break IND-CCA-security by correctly guessing b* without asking
D to decrypt ¢. To do so, he first initializes D with h. ASOE’s completeness implies that such ini-
tialization of D will succeed. He then feeds D with the ciphertext stream z) [1]||z5)[2] (i-e., () with
the second bit negated) and gets back the corresponding stream decryption m’(b) = m’(b) 1]]m’(b) [2].

2IND-CCA stands for Ciphertext indistinguishability against adaptive chosen-ciphertext attacks, a standard notion
of data privacy for (non-on-line) symmetric encryption

3 Ciphertext Indistinguishability against Blockwise Chosen Ciphertext Attacks.

4with probability non-negligibly better than random guessing

Conventional On-line
Decryption Device Decryption Device

—> >
Arbitrary access Arbitrary access
. except on input ’ except on input ciphertexts
Arbitrary access the ciphertext ¢ Arbitrary access with header h
> time } } > time
Ciphertext c atomically becomes Ciphertext c=(h,x,t) gradually becomes
available to the adversary available to the adversary

Figure 1: To maintain the data privacy of a ciphertext, conventional symmetric encryption (left)
and on-line encryption (right) impose different restrictions on the access to the decryption device.

ASOE’s completeness implies that m’(b)[l] = my)[1] always. Therefore, he can always make the
correct guess of b = m’(b)[l].

In a nutshell, the attack above demonstrates that, for any ASOE, once the header h of an
ASOE ciphertext ¢ becomes available to the attacker, he can always use D initialized with A to
break the indistinguishability of c.

3.1.2 Strongest achievable data privacy in ASOE

The strongest achievable data privacy in ASOE is hence IND-CCA-security, but with one restriction
on the attacker’s power:

The attacker may query D arbitrarily. Nevertheless, once the header h of the chal-
lenge ciphertext ¢ = (h,x,t) becomes known to the attacker, he is forbidden to use D to
decrypt any ciphertext with the same header h.

We call this notion of data privacy the Ciphertext Indistinguishability against Streamwise Chosen-
Ciphertext Attacks, (IND-STR-CCA security). IND-STR-CCA security is strictly weaker than
IND-CCA security: our own ASOE construction to be presented later in this paper is secure under
IND-STR-CCA but not IND-CCA. Figure 1 constrasts the two security notions.

3.1.3 IND-STR-CCA v.s. IND-CCA

It might appear to some that IND-STR-CCA security provides much weaker data privacy than
IND-CCA security does, and too quickly believe that an encryption scheme that is only IND-
STR-CCA-secure — in particular, any ASOE — is of little use in practice. We refute such belief
by closely examining the gap between the two notions below and, in Section 8, considering two
real-world scenarios in which an IND-STR-CCA-secure encryption provides sufficient data privacy.

IND-STR-CCA security appears to be weaker because the attacker may manage to do the
following with an IND-STR-CCA-secure encryption. Given a ciphertext ¢ = (h, z,t), he comes up
with some other ciphertext ¢ with the same header h, i.e. ¢ = (h,2’,t') for some (2/,t') # (z,1),
feeds the decryption device D with ¢/, and somehow succeeds in cracking c.

Nevertheless, while it is true that the attacker may be able to crack ¢ without feeding ¢ into D,
the IND-STR-CCA security guarantees that to be able to crack ¢, the attacker must at least feed
D with one ciphertext with the same header (i.e., ¢ in the above). As a result, IND-STR-CCA
security offers a data-privacy guarantee that has little practical difference from what IND-CCA
security offers. Specifically, to crack a ciphertext ¢, the attacker must still (temporarily) get hold

Encryption Device Ciphertext Decryption Device

plaintext
stream

plaintext
stream Jf

©7

i)
trailer =7 true/false

Figure 2: A block-diagram presentation of our ASOE construction. Encrypting a plaintext involves
(a) an initialization step, (b) one or more iterations of encrypting a stream of the message, and (c)
finalizing the encryption.

of D after c is given, and if D has a secure way of logging input ciphertexts, then we know exactly
the set S of ciphertext(s) that may have been cracked — in case of IND-CCA security, S equals
the set of all ciphertexts that the attacker has input to D; in case of IND-STR-CCA security, S
equals the set of all ciphertexts with the same header of any of the ciphertexts that the attacker
has input to D.

3.2 Data authenticity

We define the data authenticity requirement of ASOE as a variant of the notion of “integrity of
plaintexrts” (INT-PTXT security). INT-PTXT security was previously used to define data authen-
ticity in (non-on-line) authenticated encryption [5]. It requires that if the decryption device D
decides that the plaintext it outputs is authentic, then the plaintext must have been an input to
the corresponding encryption device £.

Intuitively, since D does not make the decision until it has received the entire ciphertext, the
on-line nature of ASOE does not prevent ASOE from being INT-PTXT-secure. In fact, our ASOE
construction to be presented in this paper does achieve INT-PTXT security. As we shall see, the
real challenge has been how to achieve it along with other features, namely, zero buffering latency
and constant message expansion and storage requirement.

4 An Overview of Our ASOE Construction

4.0.1 Achieving data privacy

As the skeleton of our ASOE construction, we use a secure stream cipher to provide some basic
data privacy — our ASOE encryption device £ uses the stream cipher to encrypt the plaintext to
form the body of the ciphertext. The choice of a stream cipher is almost obvious: it readily gives
us the streamwise on-line property, and does not violate the requirements of zero buffering latency
and constant message expansion and storage.

Accumulator

FIFO

—+ F|Fo|—g—>| t > |—>[hash]J~—>

Figure 3: The accumulator fills the FIFO queue with input bits until it becomes full, and then
concatenates its content with the current hash, updates the hash by hashing the concatenation,
and finally empties the queue.

In our construction, the stream cipher is instantiated as XOR’ing the input plaintext stream
with the key-stream output by a secure pseudorandom number generator.

See Figure 2(b).

A secure stream cipher in itself, however, is inadequate to provide IND-STR-CCA security, just
like an CPA-secure symmetric encryption is inadequate to provide IND-CCA security. In particular,
an attacker who gets hold of the corresponding ASOE decryption device D can learn the key-stream
that will be used during an encryption in the future, and hence can break IND-STR-CCA security.

Our mechanism of using a ciphertext header fixes this problem. Specifically, the header h of
a ciphertext ¢ = (h, z,t) consists of two components: the IV v used during the encryption, and a
MAC a on v; D will decrypt ¢ only if h is valid, where h is valid if and only if a is a valid MAC
on v. The security of MAC assures that any valid h must have come from £ without modification.
Hence, D will reveal the key-stream for decrypting a ciphertext only if £ has started outputting
a ciphertext with the same header. Consequently, the attacker can’t use D to learn a key-stream
that will be used in the future.

See Figure 2(a).

4.0.2 Achieving data authenticity

To equip our ASOE construction with INT-PTXT security, we adopt the “encrypt-then-mac”
approach [5], which was originally formalized as a generic method to construct authenticated en-
cryption. The approach is simple: £ symmetrically encrypts the plaintext m into ciphertext ¢ and
compute a MAC t on ¢; D decides that the plaintext into which ¢ decrypts is authentic if ¢ is a
valid MAC on c.

There is, however, one issue to be resolved: £ and D in ASOE only have a storage of con-
stant size, i.e., independent of the longest possible plaintext/ciphertext, and hence can’t store the
entire ciphertext for computing its MAC. In our solution, instead of storing the incomplete cipher-
text computed/received thus far, £ and D store a constant-sized “digest” of it. When the next
arbitrarily-sized ciphertext stream becomes available, £ and D can incrementally update the digest.
Finally, when the ciphertext is completely known, the MAC ¢ is computed on its digest, instead of
on the ciphertext itself.

We call the algorithm that produces a digest for a given (incomplete) ciphertext an accumula-
tor. Obviously, if the accumulator is collision-resistant®, such “encrypt-then-accumulate-then-mac”
approach to data authentication remains INT-PTXT-secure.

See Figure 2(c).

It now suffices to find an accumulator for our ASOE construction. One possibility is
this: given a ciphertext body z fragmented into = = xi||z2||...,xy, compute its digest as

Si.e., it is hard to find two inputs that get accumulated to the same digest

H(...H(H(z1)||z2)...||xe), where H is a collision-resistant hash function such as SHA-1. Com-
puting the digest this way can obviously be done incrementally as new ciphertext streams become
available.

Nonetheless, this method does not immediately work because the computed digest depends
on how x is fragmented, which violates our zero buffering latency requirement. Therefore, in our
construction, instead of inputting ciphertext streams to the hash function H directly, £ and D first
redirect them into a fixed-sized FIFO queue; every time the queue becomes full, £ and D hash the
content of the queue and then flush the queue. This way, £ and D still use a constant amount of
storage, and the digest of x is the same no matter how it is fragmented.

See Figure 6.

5 Formalizing ASOE

We have already given a high-level description of the syntax and security of ASOE in Section 2
and 3 respectively. This section formalizes them.

5.1 Syntax

An Authenticated Streamwise On-line Encryption (ASOE) scheme is a pair of an encryption device
& and a decryption device D. The encryption device £ is a finite state machine that implements
three algorithms: the encryption initialization algorithm E£Z, the stream encryption algorithm £S
and the encryption finalizing algorithm £F. The decryption device D is a finite state machine
that implements three other algorithms: the decryption initialization algorithm DZ, the stream
decryption algorithm DS and the decryption finalizing algorithm DJF.

Let Key = {0,1}*%, IV = {0, 1}V, State = {0, 1}*s, Header = {0,1}*#, Trailer = {0, 1}** and
Stream = {0, 1}*\{e}, where Ag, Ay, Ag, Ay, Ap € N are security parameters. Below we describe
the syntax of each algorithm.

e &7 : Key x IV — State x Header On input a key k € Key and an IV v € IV, the algorithm £7
returns an initialized current state s € State of £, and a ciphertext header h € Header.

o £S : State x Stream — State X Stream On input £’s current state s € State and a plaintext
stream m;, the algorithm £S outputs £’s new current state s’ € State, and the corresponding
ciphertext stream x; € Stream.

o £F :State — Trailer On input the current state s € State of £, the algorithm £F outputs a
ciphertext trailer t € Trailer.

e DT : Key x Header — State x {true,false} On input a key k € Key and a ciphertext header
h, the algorithm DZ returns an initialized current state s € State of D, and a boolean value
b € {true,false}.

e DS : State x Stream — State X Stream On input D’s current state s € State and an encrypted
stream x;, the algorithm DS outputs D’s new current state s’ € State, and the corresponding
cipehertext stream m; € Stream.

e DF : State x Trailer — {0,1} On input the current state s € State of D and a ciphertext
trailer ¢ € Trailer, the algorithm DF outputs a boolean value b € {true,false}.

10

Oracle Ogz(v)

if v € V then
return L

else
V —VuU{v}
(se,h) — EI(k,v)
fe «— true
return h

Oracle Opz(h)
(Spv f'D) — DI(k¢ h)

Oracle Ogs(m)

if fc = false then
return L

else
(sg,c) «— ES(sg, m)

return c

Oracle Ops(c)
if fp = false then

Oracle Ogx()

if fc = false then
return L

else
t— EF(s¢)
fc «— false
return ¢

Oracle Ops(t)

if fp = false then

return fp return L return L
else else
(sp,m) < DS(sp,c) b— DF(sp,t)
return m fp «— false
return b

Figure 4: Various oracles modeling the adversary’s capabilities when attempting to attack ASOE.
Variables in bold face are internal and persistent shared states.

Operation of the devices To &£, the very first operation and any operation immediately fol-
lowing an £F invocation must be an £Z on invocation on a new IV, and any £F invocation must
immediately follow an £S invocation. To D, the very first operation and any operation immediately
following a DF invocation must be a DZ invocation during which DZ output (-, true), and any
DF invocation must immediately follow a DS invocation.

Note that one may invoke EZ (resp. DI) at any time to abandon the current encryption (resp.
decryption) and re-initialize the device for a new encryption (resp. decryption).

IV-explicit Encryption The encryption-related algorithms £Z, £S and £F and thus the entire
process of encrypting a message in ASOE are a deterministic function on inputs the key, the IV and
the plaintext. This is known as IV-exzplicit encryption in conventional symmetric encryption [10].
IV-explicit encryption such as ASOE has the advantage of not needing a cryptographic random
number generator (RNG) in the encryption device.

5.2 Security
5.2.1 Adversarial Capabilities

The adversary has black-box access to a pair of an encryption device and a decryption device
installed with the same key k. The six oracles O¢z, Ocs, Ogr, Opz, Ops and Opr as defined in
Figure 4 formally model the adversary’s capability to operate the devices via the invocation of the
algorithms €7, €S, EF, DI, DS and DF respectively.

We denote by {Og} the set of encryption-related oracles {Ogz (), Oss(-), Ocx()}, by {Op} the
set of decryption-related oracles {Opz(-,-), Ops(+), Opr()}, and by {O} the set of all oracles {O¢}
U {OD}

11

IND-STR-CCA (A)

Experiment Exp jsor STR-INT-PTXT 4)

Experiment ExpHgsos

kiKey; fe, fp <+ false; sg,sp < ¢ kﬁKey; fe. fp < false: sg,sp «
V—0;sgcei—0 Ve 0;s4 e i—0
bi{O, 1} ghv ¢1,84) - AlO} (forge,sa)
(9,54) — A9} (findy,s4); h — Ogz(0) bo < Opz(h)
(mgo) mgl) SA) — if by = false then
A{O}\{ODI(E)}(findl, 3 s4) return 0
repeat repeat
i—i+1 i—itl]
if |m'(0)| # |m.(1)| then n?i « Ops(&) o A
retlllrn 0 1 (141,84, €) — Al (forge;, i, s4)

(b)) until e=1

i

¢ — Ogs(m

(mz('g)lv mz(}r)psfhe)f_ it — A9} (forge,s4); b — Opx(f)
ALONMODz(M} (£ind; 1, &,54) if b=0 then
until e=1 return 0
t— Ogr()) m «— my|mal] ... ||y
Be__A{CU\{ODZUQ}(gu9557{7SA) denote the sequence of {O¢}
if b="b then queries by: .
return 1 (Oex(), (Oestmi)2, Oer(),
else) i=1
return 0 mi<—mi1Hmi2H...HmiLi,V2€[1, }
if Vi € [1,L],m; # 7 then
return 1
else
return 0

Figure 5: Experiments defining ASOE’s data privacy (left) and data authenticity (right).

5.2.2 Data Privacy
We define data privacy in ASOE as follows.

Definition 1 (IND-STR-CCA) An ASOE construction has ciphertext-indistinguishability
against streamwise-adaptive-chosen-ciphertext attacks (IND-STR-CCA security) if, for all PPT
adversary A, the advantage of A defined as

AdvHZSTRCoH(4) _ 9. Py [1 — ExphBaThoot(4)] — 1

is a negligible function in the security parameter \.

In the above, the experiment ExpﬂlgggR‘CCA(A) is listed in Figure 5. Very briefly, it proceeds

as follows. The adversary first picks an IV of his choice to initialize the encryption device and gets
back the resulting ciphertext header. The adversary then finds a pair of two equal-length streams

12

mgo) and mgl) of his choice and gets back from the encryption device the ciphertext stream ¢;

of Thgb), where b = 0 or 1 with equal probability. He may then keep finding another pair of two

(0))

.~ and i, of his choice, potentially adaptive to the value of the previous

equal-length streams m

ciphertext streams, thereby getting back the ciphertext stream ¢; of mg”). (Note that b is the same
throughout.) Eventually, the adversary declares that he has finished inputting the two plaintexts
and gets back from the encryption device the ciphertext trailer. ASOE has data privacy if the
adversary cannot correctly tell what b was better than random guessing.

5.2.3 Data Authenticity
We define data authenticity of ASOE as follows.

Definition 2 (STR-INT-PTXT) An ASOE construction has streamwise integrity of plaintexts
(STR-INT-PTXT security) if, for all PPT adversary A, the advantage of A defined as

AdVEEGETTIT(A) = Pr [1 — ExpSE(A)

s a negligible function in the security parameter \.

In the above, the experiment Exp?fgggT"PTXT(A) is listed in Figure 5. Very briefly, it proceeds

as follows. The adversary is given arbitrary access to the encryption and decryption devices un-
til he decides to start forging a ciphertext by providing a ciphertext header and the first forged
ciphertext stream. From this moment on, he is restricted to only access the encryption device.
He fails immediately if the header is determined to be unauthentic by the decryption device when
initialized with the IV and the header. Otherwise, the forged ciphertext stream is input the the
decryption device and the corresponding output is given to the adversary. He may keep inputting
a forged ciphertext stream to the decryption devices and gets back the corresponding decryption.
The adversary finishes the forging by returning a forged trailer. The adversary fails immediately
if the trailer is determined by the decryption device as invalid. Otherwise the forged ciphertext is
authentic. Now the adversary has successfully attacked data authenticity of ASOE if the corre-
sponding original message of the forged ciphertext as decrypted by the decryption device has never
been input to the encryption device during the experiment.

5.2.4 Relations to Other Schemes

A secure ASOE construction trivially implies a secure AE (authenticated encryption) construction,
as well as a secure ABOE (authenticated blockwise on-line encryption) construction. Specifically,
if we require that there is at most one £S (resp. one DS) immediately following an £Z (resp. a
DI) in a secure ASOE construction, we obtain a secure AE construction. If we define Stream as
{0,1}® instead of {0,1}*\{e}, a secure ASOE construction becomes a secure ABOE construction,
with a block-size of B bits.

Also, a secure ASOE construction becomes a secure SOE construction, if one ignores the
output of DF. By similar arguments, a secure ASOE construction also implies a secure symmetric
encryption construction and a secure BOE construction.

13

Algorithm Acc.Init() Algorithm Acc.Add(b)

1: buf,md:=¢ 3: buf := buf||b
4: if |buf| = B then
Algorithm Acc.Get() 5: md := H(md||buf)
2: return H(md||buf) 6: buf ;=€

Figure 6: The algorithms that constitute to our Acc construction.

6 Details of Our ASOE Construction

6.1 Building Blocks

Pseudorandom Number Generator A Pseudorandom Number Generator PRNG provides
two algorithms PRNG.Init() and PRNG.Get. To initialize PRNG, one invokes PRNG.Init() with a key
and a seed. Then, each invocation of PRNG.Get(¢) returns a string of ¢ pseudorandom bits. Our
ASOE construction utilizes a secure PRNG [3, 15].

Message Authentication Scheme A message authentication scheme MA provides an algorithm
MA.MAC, which computes an authentication tag on input a key and a message. Our ASOE
construction uses a secure MA [3].

Accumulator As have explained in Section 4, our ASOE construction uses a secure accumulator
Acc. Here we explain how to build one. Acc maintains two variables buf and md as persistent
states. buf is a B-bit buffer that acts as a FIFO queue, and md is the digest of the bit-stream
added into the accumulator so far. Acc provides three algorithms Acc.Init, Acc.Add and Acc.Get
defined in Figure 6.

6.2 The Encryption and Decryption Devices

6.2.1 Key Generation

In our ASOE construction, the encryption/decryption key k is a triple of (kg, kg, k), where kg
and kr are MAC keys, and kg is a PRNG key. Thus, one generates an ASOE key by generating
a PRNG key and two MAC keys, which can in turn be done by picking random binary strings of
appropriate length.

6.2.2 The Encryption and Decryption Devices

In figure 7, we list the algorithms that together constitute to our ASOE construction. It is trivial to
see that our construction has completeness, zero buffering latency, and constant message expansion
and constant storage size.

6.3 Security

We state the following theorem regarding the security of our ASOE construction and sketch its
proof in Appendix A.

14

Algorithm EZ(k,v) Algorithm DI(k,h)
1: (/‘JH, kE, kT) =k 16: (kH, kE, kT) = k; (’U, CL) =h
2: PRNG.Init(kg,v) 17: PRNG.Init(kg,v)
3: Acc.Init() 18: Acc.Init()
4: a:= MAMAC(kg,v) 19: o := MA.MAC(kg,v)
5: return h:= (v,a) 20: return a — a
Algorithm £S(k,m) Algorithm DS(k,z)
6: (kHvkE7kT) =k 21: (k‘H,kE,]{JT) =k
7: s:= PRNG.Get(|m|) 22: s := PRNG.Get(|z|)
8: xi=sGm 23: m:=s®x
9: for j=1 to |z| do 24: for j=1 to || do
10: Acc.Add(z[j]) 25: Acc.Add(z[5])
11: return 26: return m
Algorithm EF(s) Algorithm DF(s,t)
12: (kHvkEva) =k 27: (kH,kE,]fT) =k
13: digest := Acc.Get() 28: digest := Acc.Get()
14: ¢ := MA.MAC(kr, digest) 29: t' := MA.MAC(kr, digest)
15: return ¢ ?
30: return t=t¢

Figure 7: The algorithms that constitute to our ASOE construction.

Theorem 1 (Security) Our construction of the ASOE encryption scheme is IND-STR-CCA-
secure and STR-INT-PTXT-secure if the underlying PRNG, MA and H are secure.

7 Performance Evaluation

7.1 Instantiation

We instantiate PRNG with the AES block cipher with 128-bit keys (thus, |kg| = 128). As a
result, XOR’ing the plaintext /ciphertext streams with a PRNG output is precisely operating AES in
counter mode. We instantiate MAC with HMAC-SHA-1 with 160-bit keys (thus, |kg| = |kr| = 160).
Also HMAC-SHA-1 outputs are 160-bit long. We choose I'Vs to be 64-bit long, which should prevent
the need of device re-keying due to the running out of fresh I'Vs.

We instantiate the hash function H in the accumulator Acc with SHA-1. We choose the buffer
size B to be 512 — 160 = 352 bits for the following reason. SHA-1 has a block-size of 512 bits and
output-size of 160 bits. A buffer size of 352 bits makes sure that H(md||buf) will always hash an
input at most one block in size.

15

7.1.1 Hardware Costs

When implemented in hardware such as FPGA, each of the ASOE encryption and decryption
devices have one AES core (a.k.a., coprocessor or engine) and one HMAC-SHA-1 core’, in addi-
tion to some controller logic and registers. None of these components has size (in terms of, e.g.,
gate counts) dependent on the maximum allowable size of plaintext/ciphertext. Furthermore, no
(cryptographic) RNG is needed.

7.2 Message Expansion

The ciphertext body has the same size as the plaintext. The message expansion is thus due solely
to the ciphertext header and trailer. The header is 64 4+ 160 = 224 bits, and the trailer is 160 bits.
The message expansion is hence 224 4+ 160 = 384 bits, or 48 bytes.

7.3 End-to-end Latency

The total end-to-end latency (¢7) incurred by ASOE is measured by the latency due to buffer-

ing (tg)) and processing (tg)) at the encryption device, the latency due to buffering (tSBD)) and

processing (tgjp)) at the decryption device, and the latency due to message expansion (tg), i.e.,
= 18 4 4©) 4 (D)D)

The latency due to message expansion tg is 48 byte times, where 1 byte time denotes the time
it takes for the communication channel to send 1 byte. There is zero latency due to buffering at
both devices, i.e., tg) = tg)) = 0.

The latencies due to processing (tgf) and tggp)) require a bit more analysis.

ES and DS involve (1) generating the key-stream, (2) XOR’ing two bit-streams and (3) adding
input bits into the accumulator. The key-stream generation can be precomputed and is hence
not on the critical path. As long as the generation rate can keep up with the rate at which
plaintext /ciphertext streams are fed into the devices, key-stream generation incurs no non-hide-
able latency. For example, there are commercial AES cores for Gigabit Ethernet (and hence have
throughput up to 1 Gbit/s). On the other hand, the XOR’ing operation is on the critical path, but
only incurs a negligible latency. Finally, accumulating the input bits invokes one HMAC-SHA-1
operation per B = 352 bits. Again, using a core with sufficiently high throughput, one can hide
the incurred latency.

Each of €7, DI, EF and DF essentially involves one non-precomputable invocation of HMAC-
SHA-1 on an input no more than one HMAC-SHA-1 block in size, effectively incurring a non-hide-
able latency roughly equivalent to two SHA-1 operations, which is again insignificantly small with
a fast HMAC-SHA-1 core.

Now that we have argued that tgf) and tg)) are insignificantly small, the total end-to-end latency
tr is thus dominated by the latency due to message expansion tp = 48 byte times.

50ne HMAC-SHA-1 is sufficient because the computation of the MAC in the header does not overlap in time with
that in the trailer.

16

7.4 Further Optimizations

In certain applications such as those in which ciphertexts are transmitted in order with little loss,
the decryption device often can correctly predict the IV used in an incoming ciphertext. One could
thus reduce message expansion and hence also the latency it incurs by omitting sending the IVs
(most of the time, and sending them only occasionally during idle times for synchronization).

Alternatively, if the communication protocol encapsulates each ciphertext into a packet and uses
sequence numbers to enable out-of-order delivery of packets, one can use the sequence numbers as
IVs and hence again omit sending the IVs, as long as the sequence numbers never repeat before
device re-keying.

To further reduce message expansion, one could use shorter IVs such as 32 bits (potentially
at the expense of more frequent device re-keying) and MAC with shorter outputs such as HMAC-
SHA-1-96". The message expansion is reduced from 48 bytes by 20 bytes to 28 bytes instead. As
a result, the end-to-end latency is also reduced by 20 byte times to roughly 28 byte times.

8 Application Scenarios

In this section, we provides two application scenarios that can benefit from ASOE. We then point
out one caveat when using ASOE.

8.1 Scenario I: Security Retrofit for Legacy SCADA Communications

Supervisory Control And Data Acquisition (SCADA) systems are process control systems used to
monitor and control devices in critical infrastructures such as the electric power grid, of which many
are legacy, use low-bandwidth links (e.g., 9600 baud/sec leased telephone lines) and are vulnerable
to attacks such as traffic eavesdropping and tampering.

In the “Bump-In-The-Wire” (BITW) approach to secure the communications in such existing
insecure legacy SCADA systems, two hardware BITW modules are inserted into the link connecting
two communicating SCADA devices, one next to each device. Via encryption and data authenti-
cation, these modules retrofit security to the communications transparently, except that they incur
end-to-end communication latency due to processing and buffering.

Buffering alone, however, can incur a prohibitively high latency in low-bandwidth links, ren-
dering a BITW solution inapplicable to secure SCADA communications with stringent latency
constraints [11]. In fact, most existing BITW solutions do not provide sufficient security within
timing constraints. For example, the SCADA Cryptographic Module (SCM) [1&] can be classified
as an ABOE, but has only 16-bit security under a threat model too weak to be realistic. YASIR [17]
operates as an ASOE, and is hence the most related work to our ASOE construction. YASIR does
provide data authenticity with high security assurance, but its security is proved with assumptions
about the specifics of the application and the communication protocols.

Therefore, BITW modules built with our ASOE can retrofit sufficient security to legacy SCADA
links with a minimal impact on end-to-end communication latency. The BITW module at the
recipient end — which encloses the ASOE decryption device — passes on the decrypted plaintext
streams to the recipient SCADA device without buffering them, and informs the SCADA device
immediately if the plaintext turns out to be unauthentic, in which case the SCADA device drops
the plaintext and never acts on it.

"THMAC-SHA-1-96 is HMAC-SHA-1, but with outputs truncated to the first 96 bits [14].

17

8.2 Scenario II: Secure and Real-time Wireless Sensor Networks

A class of Wireless Sensor Networks (WSNs) demand not only security (data integrity, and/or data
confidentiality), but also high timeliness (real-time or close to real-time) in data collection, such as
those for fire monitoring [19], border surveillance, medical care, and highway traffic coordination [7].

In such applications, sensors often need to report readings as short as 4-byte integers or even
1-bit boolean values. When (A)BOE is used to secure the transmission of those readings, one would
need to either pad a reading into a 128-bit AES block or aggregate multiple readings over time.
The former approach wastes bandwidth and thus energy of the sensors; the latter one can violate
the real-time requirements as readings are not immediately sent.

ASOE provides the security without padding or aggregation.

8.3 A Caveat on early availability of potentially unauthentic data

The decryption device in ASOE (and ABOE) can only decide on the authenticity of the output
plaintext afterwards, any application that exploits the on-line feature and make “early” use of the
output plaintext streams must thus use caution. This also means ASOE/ABOE is not a more-
efficient replacement of /&, and some applications shouldn’t use ASOE/ABOEF for security reasons.
We illustrate this with an example below.

Consider a server streaming the stock quotes of the NASDAQ stock market to its clients.
Authenticated encryption can be used to provide the desired data privacy (only subscribers can
read) and data authenticity (the quotes haven’t been tampered during transit). One might, however,
want to use ASOE to take advantage of its earlier data availability: as the individual stock quotes
arrive, they can immediately be displayed to the client, without having to wait until the complete
download of the entire list of quotes. Such use of ASOE, however, could be dangerous because the
authenticity of these “early-displayed” quotes can’t be verified until later, before which the client
may be tempted to quickly execute a trade based on the potentially false information.

9 Conclusions

We have introduced Authenticated Streamwise On-line Encryption (ASOE), the first authenticated
encryption scheme that has zero buffering latency, and constant message expansion and storage
requirement, and can thus efficiently secure resource-constrained communications with stringent
real-time requirements.

We have investigated and formalized the strongest achievable notion of security for ASOE,
provided an ASOE construction secure under such a notion. An instantiation using AES and
HMAC-SHA-1 incurs only 48 bytes of message expansion.

18

References

1]

[2]

G. V. Bard. Blockwise-Adaptive Chosen-Plaintext Attack and Online Modes of Encryption.
In IMA Int. Conf., volume 4887 of LNCS, pages 129-151. Springer, 2007.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Symmetric
Encryption. In FOCS, pages 394-403, 1997.

M. Bellare, J. Kilian, and P. Rogaway. The Security of Cipher Block Chaining. In CRYPTO,
volume 839 of LNCS, pages 341-358. Springer, 1994.

M. Bellare, T. Kohno, and C. Namprempre. Authenticated Encryption in SSH: Provably Fixing
the SSH Binary Packet Protocol. In ACM Conference on Computer and Communications
Security, pages 1-11. ACM, 2002.

M. Bellare and C. Namprempre. Authenticated Encryption: Relations among Notions and
Analysis of the Generic Composition Paradigm. In ASIACRYPT, volume 1976 of LNCS,
pages 531-545. Springer, 2000.

A. Boldyreva and N. Taesombut. Online Encryption Schemes: New Security Notions and
Constructions. In CT-RSA, volume 2964 of LNCS, pages 1-14. Springer, 2004.

P. Chen, S. Oh, M. Manzo, B. Sinopoli, C. Sharp, K. Whitehouse, O. Tolle, J. Jeong, P. Dutta,
J. Hui, S. Schaffert, S. Kim, J. Taneja, B. Zhu, T. Roosta, M. Howard, D. Culler, and S. Sastry.
Instrumenting Wireless Sensor Networks for Real-time Surveillance. Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 3128-3133, 0-0
0.

A. Desai and S. K. Miner. Concrete Security Characterizations of PRFs and PRPs: Reductions
and Applications. In ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages
503-516. Springer, 2000.

P.-A. Fouque, A. Joux, G. Martinet, and F. Valette. Authenticated On-Line Encryption. In
Selected Areas in Cryptography, volume 3006 of LNCS, pages 145-159. Springer, 2003.

P.-A. Fouque, G. Martinet, and G. Poupard. Practical Symmetric On-Line Encryption. In
FSE, volume 2887 of LNCS, pages 362-375. Springer, 2003.

IEEE Standard Communication Delivery Time Performance Requirements for Electric Power
Substation Automation. IEEE Std 1646-2004, 2005.

A. Joux, G. Martinet, and F. Valette. Blockwise-Adaptive Attackers: Revisiting the
(In)Security of Some Provably Secure Encryption Models: CBC, GEM, TACBC. In CRYPTO,
volume 2442 of LNCS, pages 17-30. Springer, 2002.

NIST. FIPS 197: Announcing the ADVANCED ENCRYPTION STANDARD (AES). Tech-
nical report, National Institute of Standards and Technology (NIST), 2001. http://csrc.
nist.gov/publications/fips/fips197/fips-197.pdf.

19

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[14]

[15]

[16]

[17]

NIST. FIPS 198: The Keyed-Hash Message Authentication Code (HMAC). Technical re-
port, National Institute of Standards and Technology (NIST), 2002. http://csrc.nist.gov/
publications/fips/fips198/fips-198a.pdf.

D. H. Phan and D. Pointcheval. About the Security of Ciphers (Semantic Security and Pseudo-

Random Permutations). In Selected Areas in Cryptography, volume 3357 of LNCS, pages
182-197. Springer, 2004.

P. Rogaway. Nonce-Based Symmetric Encryption. In FSE, volume 3017 of LNCS, pages
348-359. Springer, 2004.

P. P. Tsang and S. W. Smith. YASIR: A Low-Latency, High-Integrity Security Retrofit for
Legacy SCADA Systems. In 238rd International Information Security Conference (IFIP SEC
2008), IFIP. Springer, 2008.

A. K. Wright, J. A. Kinast, and J. McCarty. Low-Latency Cryptographic Protection for
SCADA Communications. In ACNS, volume 3089 of LNCS, pages 263—-277. Springer, 2004.

L. Yu, N. Wang, and X. Meng. Real-time Forest Fire Detection with Wireless Sensor Net-
works. Wireless Communications, Networking and Mobile Computing, 2005. Proceedings. 2005
International Conference on, 2:1214-1217, 23-26 Sept. 2005.

20

http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

A Proof of Theorem 1 (Sketch)

A.1 Data Privacy

Assume that there exists a probabilistic poly-time (PPT) adversary A such that the experiment
Expo5it-C(A) returns 1 with non-negligible probability, we show how to construct an PPT
simulator S that uses A to break the security of PRNG or MA with non-negligible probability.

CasE 1. In an attempt to break the security of MA, S obtains a ciphertext header from A and
uses it to come up with a valid authentication tag on a string it has never queried. S first sets
up the experiment. Note that the MA problem instance implicitly fixes kg in the ASOE key and
S does not know kp. During the experiment, S simulates all oracles honestly, except those that
involve invoking MA.MAC, which S relays to the MA.MAC oracle. This way, if A ever queries Opz
with a valid header h = (v, a) such that v has never been an input to Ogz (we call this condition
1), S can always use the pair (v, a) to solve the MA problem instance.

CASE II. In an attempt to break the security of PRNG, S’s goal is to distinguish the output
of PRNG.Get(¢) from a random /¢-bit string. S first sets up the experiment. Note that the PRNG
problem instance implicitly fixes kg in the ASOE key and S does not know kg. During the
experiment, S simulates all oracles honestly for A, except those that involves invoking PRNG.Get(-),
which S relays to the PRNG.Get(-) oracle. At some point during the experiment, A submits two
non-null challenge plaintext message streams mgo) and mgl) of equal length /7. This occurs at least
once. We consider the first occurrence. S challenges the PRNG problem instance and get back a
string s, where s is either PRNG.Get(¢) or a random ¢-bit string with equal probability. S uses
this as the key-stream for the encryption of the entire challenge ciphertext. In other words, the S
XOR’s s with mgb), where b is a fair coin flip. Note that S does not know at this point the length £
of the key stream that will be needed, but the simulation will work as long as S chooses ¢ to be no
less the length of the challenge plaintext. If condition 1 does not hold, then S has never query the
PRNG.Get() oracle initialized with the same key and seed. If eventually A makes the right guess,
then S guesses that s is indeed PRNG.Get(¢). Otherwise, S guesses that s is PRNG.Get(¢) with a
probability of 1/2.

The success probability of S is calculated as follows. If s is indeed PRNG.Get(¢), then A has a
non-negligible probability of guessing b right, and S has the same probability of guessing that s is
PRNG.Get(¥).

COMBINING TwoO CASES. Since S’s simulation is correct in both cases, A can’t correctly tell
which cases it is during the experiment better than random guessing. Therefore, if condition 1
holds, S breaks MA with non-negligible probability; if condition 1 does not hold, S breaks PRNG

with non-negligible probability.

A.2 Data Authenticity

Assume that there exists an PPT algorithm A such that the experiment ExpSiaps’ X1 (A) return
1 with non-negligible probability, we show how to construct an PPT simulator S that uses A to
break the security of MA or H with non-negligible probability.

S sets up the experiment by generating only kg and kg in the ASOE key; S does not know k7.
S simulates all oracles honestly, except that it must relay all MA.MAC computation for ciphertext
trailers to the MA.MAC oracle. If the experiment eventually returns with 1, then A must have
given S a ciphertext ¢ = (h, z,t) that decrypts to m and such that y is a digest of accumulating =

21

and MA.MAC(y) = t. S can use the pair (y,t) as an answer to the MA problem instance. Now it
suffices to show that S had queried the MA.MAC oracle on input y with negligible probability.

Assume the contrary that S queried the MA.MAC oracle on input y with non-negligible proba-
bility, then it must have happened either when S was simulating Ogr or Opr. If it was during an
Og¢# simulation, then A must have used the encryption oracle to encrypt a message m’ such that y
is the digest of m’ @ s, where s is the corresponding key-stream. Due to the collision-resistance of
Acc and the unforgeability of the MA used to compute ciphertext headers, m # m’ with negligible
probability, which contradicts to the fact that A had won the game. On the other hand, if it was
during an Opzx simulation, one can show that the same had happened during an Opx simulation
too, with non-negligible probability. The result follows.

22

	Introduction
	On-line Encryption
	(Authenticated) Blockwise On-line Encryption
	A New Cryptographic Primitive: Authenticated Streamwise On-line Encryption

	The ASOE Encryption and Decryption Devices
	The encryption device
	The decryption device

	Security Goals
	Data Privacy
	Data authenticity

	An Overview of Our ASOE Construction
	Formalizing ASOE
	Syntax
	Security

	Details of Our ASOE Construction
	Building Blocks
	The Encryption and Decryption Devices
	Security

	Performance Evaluation
	Instantiation
	Message Expansion
	End-to-end Latency
	Further Optimizations

	Application Scenarios
	Scenario I: Security Retrofit for Legacy SCADA Communications
	Scenario II: Secure and Real-time Wireless Sensor Networks
	A Caveat on early availability of potentially unauthentic data

	Conclusions
	Proof of Theorem 1 (Sketch)
	Data Privacy
	Data Authenticity

