
VM-based Security Overkill: A Lament for Applied Systems
Security Research

Sergey Bratus
Dartmouth College

Michael E. Locasto
University of Calgary

Ashwin Ramaswamy
Dartmouth College

Sean W. Smith
Dartmouth College

ABSTRACT
Virtualization has seen a rebirth for a wide variety of uses; in our
field, systems security researchers routinely use it as a standard tool
for providing isolation and introspection. Researchers’ use of vir-
tual machines has reached a level of orthodoxy that makes it dif-
ficult for the collective wisdom to consider alternative approaches
to protecting computation. We suggest that many scenarios exist
where virtual machines do not provide a suitable tool or appropri-
ate security properties. We analyze the use of virtual machines in
the systems security space and we highlight other work that ques-
tions the current (ab)uses of virtualization.

The takeaway message of this paper is that “self-protection” mech-
anisms still represent an interesting and viable path of research. At
some point, hypervisors (or whatever the lowest layer of software,
firmware, or programmable hardware is) must rely on detection and
protection mechanisms embedded within themselves.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information The-
ory—Value of Information

General Terms
Security, Measurement

Keywords
virtualization, isolation, VM

1. INTRODUCTION
Virtualization is clearly an enabling technology: providing exe-

cution containers can make computing cheaper, more mobile, eas-
ier to back up, share, and archive entire OS environments. Many
variations on the theme of pure virtualization exist, from open-
source CPU emulators like Bochs and QEMU through container-
based systems like User-mode Linux, OpenVZ, and Zap [31] to
more commercial offerings like VMWare and VirtualPC (and their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’10, September 21–23, 2010, Concord, MA, USA.
Copyright 2010 ACM 978-1-4503-0415-3/10/09 ...$10.00.

open-source cousins like VirtualBox). Virtual machine manage-
ment infrastructure has — notably and recently — increased the
practicality of large scale, commodity distributed computing (i.e.,
the “cloud”).

In addition to arguments involving reduced management, admin-
istration, and hardware costs, virtualization technology routinely
sees service in a security context, primarily driven by the assump-
tion that virtualization provides the best approach (for some value
of “best”, whether this means (1) “most practical”; (2) more com-
prehensive than BSD’s jail, chroot(2), Janus, or systrace [35];
or (3) something else) to providing isolation between execution
containers. At an increased cost (typically), a virtual environment
can provide inspection capabilities in addition to basic isolation.
This kind of isolation and trapping of sensitive operations presents
a temptation too sweet for system security researchers to resist (un-
derstandably, since pre-existing environments reduce the workload
of setting up an execution container).

While we agree that virtualization can be quite useful in many
scenarios, we observe that its level of use has approached ortho-
doxy in terms of the appropriate technology for composing secu-
rity systems involving isolation, inspection, introspection, or be-
havioral analysis of execution. In short, as a field, the community
seems to have found the perfect implementation form of a practical
reference monitor.

1.1 Contribution
This paper attempts to question that orthodoxy. Are VM-based

solutions scalable or even economically feasible to enterprise and
SCADA network with respect to management and administration
overhead they require? Are non-VM approaches still a viable and
practical means of achieving isolation, inspection, and other forms
of program behavior analysis? Specifically, in situations where
sliding another security-enforcing layer such as a hypervisor/VMM
might prove too costly for the platform, software might inevitably
fall back to examining itself. We suggest that (1) such a fallback
is inevitable for certain scenarios and so (2) it has to be done with
appropriate engineering principles and care to make it least ad hoc
as possible.

1.2 Motivation: Detecting Malicious Compu-
tation With Little Performance Impact

Our motivation to examine the possibility of non-VM approaches
to software supervision, introspection, mediation, and isolation be-
gan with a consideration of how to implement anti-rootkit detection
capabilities on a range of low-power and low-resource embedded
platforms (e.g., mobile phones, 802.11 access points, SCADA con-
trollers). Such devices typically do not have the resources to run an



entire VM infrastructure. Furthermore, as a practical matter, using
currently available commercial or F/OSS VM technology entails si-
multaneously running and maintaining two operating systems, with
all their attendant services, libraries, and software packages, the
locking down and constant patching of which presents a dramat-
ically increased administrative burden compared with our design
(a relatively simple, self-contained kernel module that has but one
task: monitoring a set of hooks, which we examine in more detail
in our technical reports [38, 37]). As explained below, in that sys-
tem we focus on computation rather than code. In particular, we
focus on detecting violations of an observed, known invariant of
the correct Linux kernel operation.
Rootkit programming Historically, rootkits and exploits tended
to be mistakenly associated with malicious, foreign code intro-
duced into the system; consequently, anti-rootkit efforts focused
on detecting a foreign body of code one way or another. This mis-
taken assumption has been challenged by original hacker research
publications [14, 51, 29, 16] that propose flexible exploit program-
ming techniques that involved no foreign code, and has hopefully
been defeated for good by [44, 13], which made it clear to the aca-
demic community that they were dealing with a Turing-complete
programming and execution model rather than an ad-hoc collection
of obscure hacks.

Hund et al. [22] have further generalized and applied this model
to rootkit programming. They stress that the essence of a rootkit
was not malicious code but rather malicious computation effected
either exclusively or largely with the unanticipated use of existing,
trusted code integral to the exploited system.

We note that the art of co-opting and re-using existing (and there-
fore inherently more stable) code has been an established pattern of
rootkit programming since its early days.1 In fact, we believe that
it would fair to speak of Rootkit Design Patterns, such as “context-
based hot patching”, “multi-layer interception”, and others [33, 48,
32], all dedicated to runtime manipulation of both live code and
live data while lowering the probability of a crash.

1.3 Philosophy on Self-Monitoring and Same-
layer Attacks

Essentially, our previous work [38, 37] proposes an alternative
to VM-based monitoring that uses a ring 0 technique for catching
a particular class of hostile behaviors by ring 0 malcode. Any such
technique has an intrinsic weakness to defend: an attacker with the
capability to arbitrarily modify kernel memory can interfere with
it. The VMM/hypervisor architecture has long been accepted as
the principled cure for this weakness. We thus face a philosophical
question: should we abandon “ring0 vs ring0” techniques entirely,
and consider only those that work under the guaranteed protection
of the hypervisor? Have such techniques nothing to teach us?

We do not believe so, for two reasons. First, in practice, solu-
tions to software security problems rarely have the luxury of restart-
ing from scratch even when a better design is available and well–
understood. In particular, whereas a principled new design would
make undesirable behaviors impossible, a practical security solu-
tion is constrained to instrumenting existing systems to detect and
counteract such behaviors.

A classic example is provided by network stack vulnerabilities:
being “immersed” into the protected network, a NIDS stack can
be just as susceptible to packet-based attacks as the target sys-
tems [21]. Nevertheless, the community does not reject NIDS as a
concept on this basis. Likewise, host-based firewalls, (for example,

1See, e.g., THC’s “(nearly) Complete Linux Loadable Kernel Mod-
ules” rootkit HOWTO, 1999.

so-called “personal firewalls”), despite their history of vulnerabili-
ties, continue to be adopted.

Second, the study of instrumentation for certain classes of unde-
sirable events, even when undertaken in the presence of theoreti-
cally cleaner designs that would obviate the need for such instru-
mentation, often shows the way toward more efficient and econom-
ical designs. Practical OS security engineering offers an an im-
pressive gallery of ideas that started as “hacks” (OpenWall, PaX,
LIDS, BSD Jails and Linux VServer) and ended up informing in-
dustrial solutions like ExecShield, GrSecurity hardening patches,
LSM, SELinux, and AppArmour.

Finally, although one could argue that the components necessary
to support VMMs now exist in commodity hardware, using these
capabilities entails warping legacy systems around them, i.e., either
explicitly rewriting kernels (paravirtualization), or writing device
emulation layers: a heavier proposition than instrumentation-based
self-analysis. We next consider some additional shortcomings of
the VMM-based monitoring philosophy.

2. WHAT EXACTLY IS WRONG WITH VIR-
TUALIZATION?

As organizations increase their adoption of virtualization envi-
ronments, and with the current industry focus on information se-
curity, it is natural to wonder just how a virtualization framework
might pull double duty by improving a security posture as well as
easing management burden and infrastructure costs. Of course,
merely running a virtualized environment does not automatically
entail a guarantee of increased security. As we discuss below, even
the basic isolation properties of a VM framework are questionable;
it remains entirely unclear whether a VMM can get the job of iso-
lation (a job that OS designers and microkernel researchers have
grappled with for years) correct, especially in the absence of hard-
ware primitives for this purpose.2 We also agree with the sentiment
expressed in recent work [6, 11, 24, 40, 17] (some of it our own)
that current VM implementations actually use a flawed event trap-
ping framework that fails to capture events of natural and signifi-
cant interest to security policies.

2.1 “Perfect” Designs
The history of military thought is replete with designs of “overkill”

weapons meant to be overwhelmingly powerful or precise, but in
reality fall far short of their presumed promise, either in the proto-
type tests or (much to the wielders’ disappointment) on the actual
battlefield. Such designs tend to be founded on a crisply formu-
lated, solid, well-established principle or conventional wisdom –
right up until reality presents its bill, showing that the accepted
theory got to be so neat by ignoring some crucial practical consid-
eration. For example, supertanks (1000 metric tons, 15,000 horse-
power) faced problems such as: the weight causing the destruction
of roads, the propulsion requirements exceeding the limits of en-
gine power, and easy targeting by air power. As another example,
the “Tsar Tank” from Russia, at nearly 30 feet tall and 40 feet wide,
the prototype carried 3 cannons and other weaponry, and it was
abandoned after unsuccessful 1915 field tests. Finally, the “Tsar
Cannon”, from 1586 (and on display today) provides an interesting
lesson. At 35-inch caliber and nearly 40 metric tons, it is reportedly
the largest howitzer ever built. It never shot the 2-ton cannon ball
displayed with it; there is no record of it ever being used in battle.

We believe that such a situation is forming in academic research

2http://kerneltrap.org/OpenBSD/
Virtualization_Security



aimed at defeating rootkits – due to a popular misinterpretation of
the initial success of VM-based research prototypes.

A series of influential papers [15, 26, 18, 4, 19] (among others)
demonstrated the power of running the protected software – includ-
ing monolithic OS kernels such as Linux and Windows – within a
virtual machine, which was capable of intercepting and completely
mediating all accesses to all relevant OS objects and data structures.

The underlying host system in its entirety essentially played the
role of a trusted reference monitor for the guest system. In prac-
tice, the host OS is augmented with a reference monitor component
loaded with the “protection map” of the guest’s internals, derived
through either static or dynamic analysis of the latter, or both.

Enforcing a desired security invariant through VM-based com-
plete mediation of a system that can, at any point, be transparently
stopped and examined for its violations, is a powerful technique. It
appears, however, to have become a “gold standard” of invariant-
based policy enforcement research, with anything “less” being con-
sidered unworthy of researchers’ or readers’ time. This view, in our
opinion, ignores the practical considerations we relate below.

2.2 Examples of Emergent VM Complexity
The following five points all possess an underlying theme: that

of burgeoning complexity based on forces such as the need or
desire to add features or create communications channels. The
first two points deal with the forces driving the addition of features
and emergence of complexity in the “underneath” layers of a VM-
based architecture. The latter two examples discuss the pressure to
create complexity within and between execution containers, es-
pecially as it relates to information flow control. The middle exam-
ple finishes the set by dealing with the forces driving the creation of
complexity at the interface or boundary between a VM container
and the execution guests within this container.

This point cannot be overstated: central to this paper is the asser-
tion that despite the benefits of VM-based approaches, they have
very real challenges derived from the forces driving an increase in
their complexity, but these challenges are routinely ignored when
considering VM-based approaches in the abstract as the principled
cure for a security problem.

1. Reliance on virtual machines does not take into
account the need for remote management of protected
platforms.

Many kinds of systems (most prominently embedded systems
but also “headless” compute cluster systems) require remote man-
agement. Embedded systems based on commodity software need
protection as much or more that desktops (e.g., [2, 9]).

In fact, as Dan Geer convincingly argued [20], the design choice
between equipping an embedded system with a remote manage-
ment interface or releasing it without one is an evolutionary choice
– whereas remote management interfaces increase the attack sur-
face and risk remote exploitation, the opposite choice often means
the loss3 of an entire released generation of devices to a change
in their deployment environments or to a new unanticipated attack.
Clearly, leaving the VM environment without a remote manage-
ment interface is unlikely to be a popular option.

With the importance of remote management in mind, VM-based
rootkit protection of a guest OS presents considerable challenges
that, in our opinion, significantly reduce its appeal. If the host OS
is to be remotely managed, where should the management network
stack (including the management application itself) reside?
3At least, for their control components, which will need to be phys-
ically replaced, likely incurring prohibitive labor costs, possibly
making the entire product a financial loss.

In practice, remote administration resides on top of a complex
environment that includes not only a full TCP/IP stack and HTTP
server, but also a CGI scripting platform (which are notoriously
hard to secure due to the lack of a well-defined security model).

Interfaces based on command lines and SSH are somewhat bet-
ter, but still require a full TCP/IP stack and likely also depend on
implementations of SSL, DNS, and other standard Internet host
functionality – all not only theoretically susceptible to attack, but
quite actively exploited in the past.

We can, of course, imagine a highly hardened dedicated con-
trol network stack that mitigates most of these issues, but so far
economic pressures have unceasingly driven vendors to least-effort
commodity software for actual product development and deploy-
ment, and this trend is unlikely to change. Moreover, a developer
willing to invest all the necessary effort into a specialized secure
VM host platform to secure a commodity OS to support an applica-
tion might spend the same effort much more profitably developing
a specialized non-virtualized platform in the first place!

2. Seeing double: twice the maintenance fun.
Securing a remote management interface to the host system is not

the only practical challenge: there is the management itself, such
as applying security updates and handling any underlying network
changes (which are not infrequent in enterprise environments). In
the situation when both the protected guest software and the pro-
tecting host OS are commodity, security updates will likely be re-
quired for both, especially considering the network-facing manage-
ment functionality of the host system.

With an appropriate automated update infrastructure, the effort
needed for doubling the number of maintained systems might not
be doubled, even though in the case when the host and guest com-
modity systems are not the same, two infrastructures would be
needed to support them.

However, whenever update testing is required prior to deploy-
ment – an expected procedure in mission-critical environments such
as SCADA systems – the labor costs of such testing cannot be
substantially reduced. Indeed, even if an organization purchases
management services from a third party, that party will incur them
anyway for each software item, and will have to pass them to the
customer.

3. The temptation of guest-to-host API.
So far, we have considered the host system and the protected

guest as separate, non-communicating entities. In such a model,
the guest OS and its applications are written to be unaware of run-
ning in a virtualized environment, even though this illusion may be
neither perfect nor intended to be perfect, i.e., the designer has no
goal of suppressing any virtualization-revealing “red pills” [41].

In practice, however, the symbiotic relationship between the pro-
tector and the protected presents an almost insurmountable temp-
tation to developers: that of guest–host communications.

Indeed, the typical guest’s raison d’etre is implementing some
complex and valuable functionality, which implies that it is likely
to undergo some complex and important events or state changes.
These events or state changes are best described and detected within
the guest’s internal logic, but the host system might need to be no-
tified of them – from the guest. The typical purpose involves the
export of data formatted by the guest and parsed by the host for
administration, management, or auditing. Examples include: (1)
sharing of high-value or configuration files across filesystems to
avoid the cost of managing several independent copies, (2) migra-
tion of process or data from an overly loaded cluster/cloud node, or
(3) attempts at guest recovery without losing state during a reboot.



Theoretically, any guest–host interfaces are a bad idea because
it breaks the platform’s security model by complicating its isola-
tion assumptions. However, the ongoing record of VM escape at-
tacks [47, 27] shows that the temptation of adding such interfaces
never wanes despite previous adverse experience, and may even be
essential to “cloud” environments.

In the light of the above analysis of practical system manage-
ment challenges, it should be clear that interactions between the
host VMM layer and the protected guest through dedicated inter-
faces will appear as a tempting way of addressing these challenges.
This arrangement, however, will mean passing and parsing of com-
plex inputs, possibly crafted by the compromised guest – with the
usual disastrous consequences for the host’s security.

4. Information Flow Policy.
The use of virtualization to support isolation is really only half a

solution. If system owners take a “deny by default” approach, then
they probably have an interest in what safe interactions the virtu-
alization framework allows. As Bellovin pointed out in his Octo-
ber 2006 CACM article “Virtual Machines, Virtual Security,” [6]
containers need to transfer and exchange information. What cur-
rent virtualization platforms seem to lack is a systematic way to
talk about the flow of information across the isolation boundaries
between containers. He further pointed out that, even if this capa-
bility existed, policy writing is still a hard problem that isn’t very
amenable to automation.

Note that the general form of this problem (controlling informa-
tion flow between task units) exists both within the context of tra-
ditional operating systems (process, filesystem, and memory space
isolation) and in a virtualization environment. Even if a policy
framework for controlling information flows between virtual con-
tainers (e.g., guest OSs) existed, then all the hard work falls on
whoever undertakes the task of policy engineering: specifying the
many ways that two or more threads of execution in a fluid set of
guests might affect some amorphous set of resources across those
guests. The details matter here: the type of events a virtualiza-
tion system observes has an impact on the performance of the sys-
tem designed to measure them and make security-related decisions
about them.

5. Resource Provider and Reference Monitor.
From a certain point of view, the amalgam of virtualization tech-

nology and information security techniques represents a rather strange
blend. What does emulation or multiplexing of physical devices
have to do with the enforcement of a variety of security properties?

As we mention above, the easiest answer (and the most tradi-
tional one) is that virtualization provides an effective means of iso-
lating execution environments; virtualization seems like a natural
way to provide isolation between execution containers. Complete
isolation, however, is the exception rather than the rule (as Bellovin
hints [6]), and customizing the communication between such con-
tainers presents a challenge. Thus, even the “obvious” security ap-
plication of virtualization is fraught with difficulty.

Unfortunately, it appears that little thought has been given to
what the best way is to combine the twin roles of resource provider
and reference monitor within a single virtualization framework. As
a result, virtualization environments can find themselves attempt-
ing to measure security-relevant properties of a system in ways that
are both creative and convoluted. In essence, the set of events that
are interesting from a security viewpoint4 are not necessarily the
set of events that the virtualization framework was built to inter-

4And this set depends on what type of “security” you’re interested

cept and observe with a minimal performance impact. Karger and
Safford’s article [24] details the I/O complexities of most of the
popular approaches to providing virtualization.

In this area, we have previously (1) identified the problem of
designing an efficient event trapping system of use for both secu-
rity policy enforcement and virtualization [11] and (2) considered
new hardware support for fine-grained information flow labeling
and access control that did not involve virtualization [10].

While the suggestion that the design of current virtualization so-
lutions is actually a hindrance to providing security solutions may
not sit well with folks interested in touting a particular virtualiza-
tion solution’s security capabilities, we argue that the community
has a unique opportunity to make sure that VM platforms are de-
signed to do the things we are asking them to do. Now is also a
good time to note that the stunning complexity of VMM I/O sub-
systems, the performance hacks therein, and the backdoor manage-
ment interface all suggest that even the basic isolation story rests on
somewhat shaky ground — a reasonable basis for suggesting that
alternative approaches may deserve some research attention.

We find ourselves at a unique point in time: we can try to identify
the right design for doing these two disparate tasks at once, or we
can muddle through by abusing a framework meant for resource
multiplexing rather than program supervision. In either case, we
still must balance the tradeoff between the virtualization frame-
workâĂŹs I/O architecture and subsystems and the trustworthiness
of the reference monitor. Ironically, as we depend on VM frame-
works to implement more security functionality, these systems be-
come less trustworthy even as they become more trusted.

3. RESEARCH QUESTION
One major theme that arose from the reviewer’s comments on the

submission version of this paper was a desire for more direct com-
parison of the relative performance and efficacy of approaches to
measurements of security-related events. Karger and Safford [24]
have studied this question, and they conclude that:

Modern I/O architectures are quite complex, so keep-
ing a virtual machine monitor (VMM), or hypervisor,
small is difficult. Many current hypervisors move the
large, complex, and sometimes proprietary device drivers
out of the VMM into one or more partitions, leading to
inherent problems in complexity, security, and perfor-
mance.

Their article reviews a variety of virtual machine architectures
and illustrates both the performance challenges and resulting com-
plexity arising from attempting to deal with I/O management and
interception in each virtual machine architecture.

In his 2009 ASIAN keynote [23], Karger goes on to say:

It is widely believed that the use of a virtual machine
monitor (VMM) is at least as secure, if not more secure
than separate systems. A recent Information Week sur-
vey reports that 55% of responding business technol-
ogy professionals believe that a system running in a
virtual machine is as safe as physical servers and 20%
believe it safer than physical servers...in reality, the se-
curity of a single system running in a virtual machine
can never be as secure as that single system running
in its own dedicated physical hardware...because there
are more lines of code that must be correct, the VMM
case always has more opportunity for exploitable flaws.

in measuring...from integrity of control flow or data items to infor-
mation flow to authorization and access control.



3.1 Future Experiments
One reviewer in particular suggested taking measurements sim-

ilar to those that Autoscopy makes [38, 37] from a VM; this es-
sentially requires re-implementing Autoscopy in some VM frame-
work. We agree that this measurement would help support our as-
sertions about Autoscopy performance and intend to conduct such
an experiment in a separate paper on Autoscopy itself.

It would be of interest to conduct experiments that evaluate the
relative performance impact of several different approaches (such
as those reviewed by Karger and Safford in their article) to virtual
machine security — keeping in mind that some of these architec-
tures are used with different security goals in mind (e.g., securing
the hypervisor from guest OSs, securing a guest OS from vulner-
able applications, securing guests from each other, securing a VM
host from another VM host). We did not conduct such experiments
during the submission of this paper, although we agree that they
would be a valuable basis for further research in this area. Whereas
Karger and Safford provide a model-based argument for why per-
formance and efficacy might degrade, their argument can be sup-
plemented with an experimental evaluation of different scenarios.

We plan to conduct experiments dealing with the energy costs of
different secure programming primitives and programming models.
In essence, whatever the CPU has to do to interpret and enforce a
security policy is ultimately a computation. Since a policy is a com-
putation realizing a particular security model [42], the question of
cost of security should be posed in terms of this computation (i.e.,
the nature of security events and state measured by this system).

Most research papers (see Section 6) seem to claim either very
low performance overhead (< 10%) or a significant (order of mag-
nitude or more) slowdown, depending on the invasiveness of the
instrumentation. Direct comparisons might be difficult to draw,
however, given the sometimes differing goals of these systems.

For example, a comparison between a system like Autoscopy [38,
37] (2..5% overhead) and a system like SecVisor [43] is hardly
apples-to-apples; in one instance, self-protection of a commodity
OS on top of bare metal has almost negligible cost, whereas a hy-
pervisor concerned with protecting the kernel integrity of guest OSs
has a performance impact that exceeds 100% (in relation to Xen –
and so, even slower than bare metal) in some cases (see Figure 12
in the SecVisor paper [43]).

In any event, our arguments in Section 2 focus on additional costs
beyond performance concerns. In other words, we believe that self-
monitoring has a substantial performance edge, but for those con-
cerned that it may be vulnerable to attacks or subversion, it has
several other advantages over different forms of VM-based moni-
toring. Even this way of framing the question is not quite satisfac-
tory to critics, who naturally want both zero performance impact
as well as impregnable security and who seem ready to settle for
VM-based solutions that are neither zero performance impact nor
provide anything close to unassailable security.

3.2 Challenges for Self-Monitoring
Two main challenges seem to exist in the space of protecting

low-level or highly-privileged code. First, the embedding of self-
monitoring must in some way attempt to protect itself from mal-
ware (rather, malicious computation) executing at the same level of
privilege. Thus, self-monitoring systems (like Autoscopy), in order
to gain acceptance from the community, must provide an argument
as to why malicious computation will find it difficult (i.e., gen-
uinely hard or impossible, not just laborious) to (1) detect, (2) dis-
able, or (3) blind self-monitoring. In essence, good self-monitoring
instrumentation should be looking at execution events or data arti-

facts which malicious computation must use or modify in order to
gain control.

Second, a race exists here: the detection granularity depends to
a certain extent on performance considerations; should malware be
able to use or modify critical state before detection occurs, then
malware has a potential avenue of attack — it has established it-
self at the same level of privilege. Depending on the architecture of
the system, however, malicious computation might have to perform
additional actions (which may or not be noticed by defensive in-
strumentation) to succeed in disabling the monitoring mechanism
itself. Self-monitoring should have some way of controlling this
race if it is to be effective.

4. REVIEWER COMMENTS
For ease of presentation, we have summarized some of the re-

viewer comments and our responses to them in this section rather
than burying them throughout the paper. One major theme — that
of comparison between approaches to security measurement — we
address in Section 3. The reviews contained three suggestions,
which we term “ease of management”, “interface width”, and “tax-
onomy” and discuss below.

Reviewers noted that focusing on detection rather than control-
ling malicious computation was counterproductive. We concur in
this opinion. One reviewer suggested that an interesting question
for NSPW discussion was the extent to which VMs could and should
be used to support isolation. We do see a place for virtual machines,
but our main point in this paper is to suggest that alternatives have
at least as valid a claim.

4.1 Ease of Management
One reviewer suggested that, contrary to our assertions about in-

creased management complexity, one major selling point for virtual
machine technology has been a reduction in management complex-
ity resulting in the ability to scale up to installations of many thou-
sands of virtual computers, along with the ability to manage easy
migration and suspension of virtual machine state. The reviewer
even offered a suggestion where VMs served a security purpose:
evaluation of patches and then live migration to a patched image.
This is a good example, although we note that systems like Ksplice,
Minix, and our own Katana [12] system — all examples of hot-
patching capabilities that do not require virtualization.

We agree that management has been one of the key features of
the shift toward virtualization. What we are objecting to is the ap-
plication of virtualization to security problems that then introduces
additional complexity where perhaps a simpler, non-VM solution
would not require this complexity.

4.2 Interface Width
The reviews suggested that one reason why the perception VMs

are more secure than “self” monitoring mechanisms exists is that
the attack surface between user space and OS kernels is much wider
than the interface between a guest OS and a VMM. Although we
largely agree with this observation, in Section 2, we suggest that
pressure exists to widen this interface. Furthermore, we claim that
the attack surface is composed of more than just the guest–host API
(it includes the management interface and communications chan-
nels between VMs).

4.3 Taxonomy
As an extension of the “interface width” observation, this review

suggested that a systematic comparison based on an analysis of dif-
ferent attack surfaces might be a valuable contribution. We agree



that this might be an informative way of understanding the benefits
of a particular approach and when to use it.

5. WORKSHOP DISCUSSION
The lively workshop discussion explored different directions and

attempted to understand what alternatives to virtualization-based
supervision might look like.

Sean Peisert asked if the communications boundary between guest
kernels and the host VM (which we termed an “API” and asserted
as one of the places that pressure exists to increase complexity) nec-
essarily had to have the formal undertones of a programming API.
In general, he pointed out, the key problem stems from the observer
effect, in which the host taints the guest in some way. Sean wanted
to know if alternative data extraction mechanisms exist. We con-
curred and suggested that “API” simply provided an easy label for
this kind of interaction. We also emphasized that the danger ex-
ists bidirectionally: in addition to the host perturbing the guest, the
host also consumes input data from the guest as the guest replies to
queries for information to support the host’s supervision/security
decisions about the guest. Anything with a sufficiently interest-
ing parser presents a ripe target for attack. Michael noted that the
subtext of Sean’s question identified a significant semantic gap be-
tween the information that virtualization (generally, systems driven
by some security monitoring policy) monitors for making policy
decisions and information that it can easily, efficiently, and trans-
parently observe. We revisited this point several times in the dis-
cussion, and we cannot emphasize it enough here: hardware com-
panies have designed commodity microprocessors to execute
code quickly. They largely neglect to include programmable,
efficient, and generalizable event extraction and data aggrega-
tion primitives for simultaneously monitoring this execution at
speed.

Someone else observed that since commodity virtualization had
“arrived”, why not just take advantage of these mechanisms (in
essence, grin and bear it). We replied that in certain scenarios, vir-
tualization provides natural advantages. We have nothing against it
in these situations, and it sometimes provides the most convenient
environment for rapidly implementing a prototype or creating a
standard, portable computing environment. We asserted, however,
that a space of systems (e.g., low power, SCADA) exists where
constraints make the use of virtual machines unattractive. We crit-
icize the ease with which people seem to take advantage of a VM
as a reference monitor, even though most of them were designed
to serve as resource emulators and hardware multiplexers. Taking
QEMU, Bochs, or Xen and modifying it slightly often produces a
prototype that is “good enough” for demonstrating some trick or
technique. The issue, of course, is that in an applied setting, the
attack surface explodes because of the “complexity pressures” we
identified.

Certainly, in the research community, using a pre-existing envi-
ronment that is well supported, extensible (or has code available
for modifications), and has a user community presents an almost
perfect vehicle for applied systems research. In essence, since the
main “research” task does not appear to be the construction of the
container or execution environment, but rather the protection tech-
nique, researchers tend to neglect the formulation of the environ-
ment as a distracting systems engineering task (i.e., why re-invent
the wheel) in favor of building the security mechanism within the
context of the pre-existing execution environment. We suggest that
it is critical to the assurance argument for the system that such low-
level considerations be revisited during design.

Richard suggested that if you could randomize the address space
and instruction set and get the hypervisor to support decoding and

relocation, you could have your cake and eat it too. Michael replied
that we would have to be careful in this kind of discussion be-
cause there are almost endless combinations of protection tech-
niques, VMMs, guests, and hosts to construct; we need to be care-
ful about what threats we are concerned with (e.g., against the hy-
pervisor? against the host? against each guest? guests against each
other?). Michael acknowledged that having the hypervisor’s code
transformed by ISR [5, 25] might protect the hypervisor against
code injection attacks, but this protection would not matter if a
guest’s browser or mail client was compromised in some fashion.

Michael Franz pointed out that researchers have invented hard-
ware support and mechanisms for a guest to bypass the hypervisor’s
management of page table permission bits, thereby “disintermedi-
ating the intermediator!” We feel this is a great example that ex-
presses a need so pressing that people had to invent a way around
the overly helpful hypervisor.

Sergey pointed out that the general approach here goes back to
our theme of coordinating trapping granularity with analysis power:
virtualization can trap access at a fine granularity, but it does so in
an expensive way, and it requires code (software) to break through
layers of abstraction, aggregate data and events, and extract these
constructs back up to the level where it makes decisions about
them. An alternative design approach is clamored for by people
who insist that more logic go into the page tables and MMU. We
have previously published a paper that considered an FPGA-based
architecture for allowing some processing logic in the policy to oc-
cur in hardware, thereby eliminating some portion of the pressure
on performance. Again, the overall design of virtualization’s trap-
ping scheme is derived from the need to multiplex resources, not
interpret security properties.

Andre asked about how we might consider virtualizing Hard-
ware Security Modules (HSM). We noted that there has been work
in this area (“Virtualizing the TPM” [7]). The conversation con-
tinued with Andre asking about how to build and configure trusted
compartments on the fly, which is an interesting problem.

Someone asked if we could compare the self-monitoring ap-
proach of Autoscopy with an emulator running on physical hard-
ware. We concur that one experiment we can do (to support Au-
toscopy) is compare an equivalent implementation in other envi-
ronments like an emulator (e.g., Bochs, QEMU) or virtual machine
/ hypervisor (Xen).

Shamal asked about our target environment (e.g., low power sys-
tems, SCADA) and whether we had considered how to justify power
costs in water-related SCADA systems (not power, as most re-
searchers focus on). Michael stated that the authors were not water
SCADA experts and had no idea of the price points there, but that
we are starting by analyzing what this might take on a mobile plat-
form. This question grew from our point about investigating the
cost of security in terms of the energy taken to interpret a part of
a security policy. Sergey clarified that our focus is not SCADA
power systems, but rather the actual amount of energy taken to in-
terpret a security policy in millions of distributed devices. In short,
it costs energy to power a computation, and security-related com-
putation is usually an extra computation proceeding in parallel or
interwoven with the main computation. On a desktop or server, this
drain might be no big deal, but as devices replicate, the cost mounts,
and in some SCADA scenarios, we might wind up with megawatts
spent on security computation. An attendee noted that cost might
be an inappropriate way to validate this hypothesis related to our
point about virtual machines being extra complexity and compu-
tation. Sergey supplied the example of SELinux as one where the
kernel definitely interprets an auxiliary computation (and does not
involve virtualization).



Jed raised the point that container mechanisms that do not use
virtualization exist, such as Google’s Native Client [52] and Linux
Vserver (as well as things like Solaris Zones). David followed up
on this question and asked about whether we thought using alter-
native approaches to lightweight virtualization may have merit and
whether they were useful. Michael’s response was that although
these mechanisms provide containers, our initial problem context
was the problem of detecting and stopping malicious kernel-level
computation. The key research issue going forward is how to an-
swer the question: “how can you have a trustworthy system that
has to protect hooks at the level of attack?”

In our previous work, we have discussed how such container
mechanisms are suitable for isolation; the key research question
is on how to efficiently extend them with inspection mechanisms;
despite their vastly different architectures, what they provide now
is a “labeling” system whereby some extra context information is
embedded in the kernel data structures representing processes or
other important resources. Jed’s question arose from his experience
working with a student to imagine how Unix might be different if
it were not a time-sharing system, and virtualization may actually
provide a step in the right direction when defining multiple rela-
tionships between different systems.

Brian Snow liked our assertion that virtual machines are becom-
ing less trustworthy even as they become more trusted. In essence,
virtual machines provide a good example of a typical overdepen-
dance on a newfound security mechanism: as these mechanisms
see their adoption rates soar, they are pressed into service under
conditions in which their security assumptions or guarantees might
fail catastrophically.

The discussion came back around to the point of virtual ma-
chines being an attractive nuisance; an observer noted that virtual-
ization per se is an OK mechanism, but that the problem was all the
“other stuff” we have thrown into the virtualization bucket along
the way lessens its utility. We asserted that the central problem
arises from the double-duty of a virtual machine as both a resource
multiplexor and a reference monitor. Because a virtual machine is
a piece of software, it is ultimately malleable and relatively easy to
turn into a reference monitor — a seductive path of implementation,
particularly when creating new mechanisms in research efforts.

As the discussion came to a close, Cormac, among others, asked
about our choice of offensive weapons for the presentation slides,
indicating that defensive images such as fortifications or walls might
provide a more precise metaphor. We agree, although pictures of
really large cannons can be more exciting than pictures of buried or
decayed walls.

6. RELATED WORK
While virtualization serves as an enabler for security solutions,

it does not necessarily function as a security provider without some
careful thought about the design and management of the systems,
processes, and people surrounding it.
Security Applications of Virtualization Projects involving as-
pects of virtual machines and security range from those that show
how a VM or VM framework can provide or enhance security func-
tionality intrinsically to those that use VMs as containers to form
part of a larger security system. The former type of project looks at
what functionality can be added to the VM framework’s code to im-
plement things like access control, trusted computing [8], isolation,
malware reverse engineering5, virus scanning, network content fil-
ters, information flow analysis, and anomaly detection.

The latter type of project employs to VMs to provide a conve-

5http://bitblaze.cs.berkeley.edu/

nient disposable container to examine the execution of a guest ap-
plication or OS. Some examples of this use include opening po-
tentially infected emails [46, 45] or web pages [36], testing out
patches or other software fixes, and recording application state for
replay [15].
Rootkit Detection Traditional rootkit detection approaches like
chkrootkit6 and Rootkit Hunter7 tend to look for threat-specific in-
formation: either known rootkit binaries or known alterations of
system binaries, configuration files, or system state (i.e., a net-
work interface set in promiscuous mode). While these tools pro-
vide some assurance against basic kernel or user–level rootkits and
provided a vital defense during the advent of such rootkits, their
general approach is similar to signature-based virus scanning.

Most current approaches to kernel rootkit detection monitor the
“known good state” of some static data. Microsoft’s RootkitRe-
vealer8 compares the results of API calls against on-disk registry
and file data to detect manipulation of this data by a rootkit in the
middle. Other current approaches examine static portions of the
kernel text segment (i.e., kernel code) to detect rootkits that attempt
to overwrite existing kernel functions. Such approaches typically
check cryptographic hashes of kernel text memory ranges against
a whitelist of hash values (a mechanism similar to Tripwire9). As
one example, Petroni et al. [34] suggest using a bus-mastering PCI
card to periodically monitor the contents of kernel memory via a
DMA-like mechanism. Finally, identifying potential kernel hooks
(control flow transfer points that might enable a rootkit to interpose
on kernel execution) for defensive purposes is one interesting av-
enue of recent research [50, 53] because it enables guarding these
locations.

Control flow integrity (CFI) [1] ensures that runtime program ex-
ecution paths conform to a Control Flow Graph (CFG) learned via
static source code analysis. Petroni and Hicks propose State-Based
CFI [30]; their approach validates the data structures in the kernel
instead of tracking individual execution branches. This approach
allows the inspecting process to be external to the system (e.g., in
a VMM or on a PCI card) but opens a window during which an
ephemeral rootkit might be deployed. SBCFI can also incur close
to 40% overhead on a typical machine running Xen (but a major
portion of the overhead is attributed to Xen itself).

Kruegel, Robertson, and Vigna [28] propose the use of symbolic
execution to analyze LKMs before they are loaded into the kernel.
This approach, however, requires a static whitelist of valid memory
regions and kernel symbols in order to distinguish malicious and
benign LKMs. Building such a whitelist can present a challenge
for large, constantly evolving systems.

The NICKLE system [39] implements a shadow memory con-
trolled by a VMM for the entire region of kernel memory in the
guest machine. On guest boot, all known authenticated kernel in-
structions are copied into the shadow memory. At runtime, each
kernel instruction fetch is verified by comparing the shadow mem-
ory maintained by the VMM with the actual physical memory at
that location. Differences indicate the presence of a rootkit. The
difficulty with such shadow memory schemes is how to handle
LKMs: manual certification of an LKM via code signing does not
guarantee the absence of malcode in the LKM. It is possible that the
large body of work done to handle untrusted modules applies here,

6http://www.chkrootkit.org/
7http://www.rootkit.nl/projects/rootkit_
hunter.html
8http://technet.microsoft.com/en-us/
sysinternals/bb897445.aspx
9www.tripwire.org



but it remains an open problem how to integrate these techniques
with current production operating systems.

Paladin [3] divides the system into two protected zones. Pal-
adin safeguards these zones from illegal accesses by malware. The
Memory Protected Zone consists of the kernel hook tables and other
static regions of the kernel that need to be protected from rootkits,
while the File Protected Zone consists of system binaries and li-
braries that need to be prevented against modifications. Given the
specifications of these zones, Paladin uses a VMM to monitor write
accesses across the system for validity. Any time Paladin detects an
invalid access, it identifies and kills the entire process subtree for
the process that invoked the offending write. A Paladin driver re-
sides on the guest machine to facilitate this process and interacts
with the monitor to aid detection. More fundamentally, moni-
toring writes to specified locations does not prevent rootkits from
hijacking function hooks within data structures because these lo-
cations are meant to be overwritten, and malcode can use existing
kernel code to execute the overwrite, thus avoiding detection based
on the “origin” of an instruction.

One closely related piece of work is the HookSafe system [49].
HookSafe maintains a shadow list of hooks in a protected page;
the system is based on the assumption that hooks rarely change
(i.e., they are typically read many times during system execution
but written only a relatively few number of times).

7. CONCLUSION
We suggest that the systems security community should refrain

from preemptively dismissing non-VM approaches to isolation and
inspection, precisely because virtual machines offer a tantalizing
computing primitive. We argue that other ways of assessing trust-
worthy behavior and measuring security properties exist, and we
examined a case study of one way to provide such a monitoring
mechanism at the same privilege level as the malicious computa-
tion it tries to detect. Such an approach seems risky – and to those
steeped in the comforts of a VM mindset, this new kernel-level
self-monitoring mechanism seems wrong. Such a viewpoint says:
“but the problem is already solved by putting the kernel and every-
thing above it in a VM!” and dismisses the arguments as to why
one might not want to depend on a VMM as “handwaving.”

With such a viewpoint, we risk avoiding the natural evolution
of technical approaches. Indeed, why explore other ways of doing
things if one way already exists and “solves the problem”? And
of course a new way has to be proven all-around superior before it
deserves to be communicated. From a certain point of view, there
is always something that appears to “solve the problem.” Why Perl
when shell and grep are already there? Why use Ruby when you
have Perl? The Linux kernel was dead on arrival according to cer-
tain sages (monolithic kernels being so “yesterday”) and so on.

The community runs the danger of failing to realize that virtual
machines, despite their practicality in some situations, are not the
sole method of implementing a reference monitor. Furthermore,
this mechanism has its own risks, shortcomings, and drawbacks.
For example, with a VMM, one must effectively provision two ker-
nels, one of which may be difficult to manage remotely except by
way of the upper-level kernel it protects, or through something like
an extra “OS in the chipset/network card/SMM”, and all this extra
complexity is assumed to come for free.

Acknowledgments
We appreciate the reviewers’ comments and the guidance of our
shepherd, Ben Laurie. We tried to represent and summarize the
reviewers’ comments as best we could and feel that such a pat-

tern (i.e., including review comments and authors’ response and
analysis) would be a useful technique for the community if gen-
erally adopted. We also appreciate the responses and feedback
we received during the workshop: we apologize in advance if we
mis-remembered or misrepresented anyone’s comments or point of
view. Thanks also to the scribes for our session, Matt Bishop and
Mary Ellen Zurko.

NSPW Justification Statement
This work takes a position that questions an existing paradigm: the
use of virtualization to support systems security. Are security and
virtualization really a natural match? Virtual machines have re-
cently revived for a number of applications. Somewhat troubling
to us, virtual machines have also been seen in the systems security
community as the most practical form of a reference monitor, and
have been pressed into service in any number of ways to provide
isolation and introspection.
A Virtual Crutch This paper argues that such a paradigm is inju-
rious to the systems security community: we’ve become addicted to
a crutch that is not suitable for all situations, and it is furthermore
unclear that the many forms of virtualization are the correct tool
for providing isolation and security. VMs are unfit and cumber-
some for security tasks for a number of reasons that we examine
in the paper. Virtualization is a crutch: it may add stability, but
slows down an otherwise healthy system. One whole problem with
the VM-based approach is that they typically ignore the incumbent
complexity of managing the VM infrastructure.

The main contribution of this paper is the argument dealing with
the appropriateness of virtual machines as a security technique. In
other words, the “NSPW” contribution is an exploration of whether
VM alternatives are a feasible and useful avenue of research that
should not suffer a premature death simply because the collective
wisdom assumes VM methods are always appropriate.

8. REFERENCES
[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI,

J. Control-Flow Integrity: Principles, Implementations, and
Applications. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS) (2005).

[2] BAEK, K.-H., BRATUS, S., SINCLAIR, S., AND SMITH, S.
Attacking and Defending Networked Embedded Devices. In
2nd Workshop on Embedded Systems Security (WESS)
(Salzburg, Austria, October 2007).

[3] BALIGA, A., CHEN, X., AND IFTODE, L. Paladin:
Automated Detection and Containment of Rootkit Attacks.
In Technical Report DCS-TR-593, Rutgers University,
Department of Computer Science (2006).

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the Art of Virtualization. In 19th

ACM Symposium on Operating Systems Principles (SOSP)
(October 2003).

[5] BARRANTES, E. G., ACKLEY, D. H., FORREST, S.,
PALMER, T. S., STEFANOVIC, D., AND ZOVI, D. D.
Randomized Instruction Set Emulation to Distrupt Binary
Code Injection Attacks. In Proceedings of the 10th ACM
Conference on Computer and Communications Security
(CCS) (October 2003).

[6] BELLOVIN, S. M. Virtual Machines, Virtual Security.
Communications of the ACM 49, 10 (October 2006).

[7] BERGER, S., CÁCERES, R., GOLDMAN, K. A., PEREZ, R.,
SAILER, R., AND VAN DOORN, L. vTPM: Virtualizing the



Trusted Platform Module. In Proceedings of the USENIX
Security Symposium (2006), pp. 305–320.

[8] BERGER, S., CACERES, R., GOLDMAN, K. A., PEREZ, R.,
SAILER, R., AND VAN DOORN, L. vTPM: Virtualizing the
Trusted Platform Module. In USENIX Security Symposium
(2006).

[9] BICKFORD, J., O’HARE, R., BALIGA, A., GANAPATHY,
V., AND IFTODE, L. Rootkits on smart phones: attacks,
implications and opportunities. In HotMobile ’10:
Proceedings of the Eleventh Workshop on Mobile Computing
Systems &#38; Applications (New York, NY, USA, 2010),
ACM, pp. 49–54.

[10] BRATUS, S., JOHNSON, P., LOCASTO, M. E.,
RAMASWAMY, A., AND SMITH, S. W. The Cake is a Lie:
Privilege Rings as a Policy Resource. In Proceedings of the
2nd ACM Workshop on Virtual Machine Security (VMSec)
held in conjunction with ACM CCS 2009 (October 2009).

[11] BRATUS, S., LOCASTO, M. E., RAMASWAMY, A., AND
SMITH, S. W. Traps, Events, Emulation, and Enforcement:
Managing the Yin and Yang of Virtualization-based Security.
In Proceedings of the 1st ACM Workshop on Virtual
Machine Security (VMSec) held in conjunction with ACM
CCS 2008 (October 2008).

[12] BRATUS, S., OAKLEY, J., RAMASWAMY, A., SMITH, S.,
AND LOCASTO, M. Katana: Towards Patching as a Runtime
Part of the Compiler-Linker-Loader Toolchain. International
Journal of Secure Software Engineering 1, 3 (2010), 1–17.

[13] BUCHANAN, E., ROEMER, R., SHACHAM, H., AND
SAVAGE, S. When good instructions go bad: Generalizing
return-oriented programming to RISC. In Proceedings of
CCS 2008 (Oct. 2008), P. Syverson and S. Jha, Eds., ACM
Press, pp. 27–38.

[14] DESIGNER, S. Getting around non-executable stack (and
fix). Bugtraq mailing list, August 1997.

[15] DUNLAP, G. W., KING, S., CINAR, S., BASRAI, M. A.,
AND CHEN, P. M. ReVirt: Enabling Intrusion Analysis
Through Virtual-Machine Logging and Replay. In
Proceedings of the 2002 Symposium on Operating Systems
Design and Implementation (OSDI) (February 2002).

[16] DURDEN, T. Bypassing PaX ASLR protection. Phrack 59, 5
(July 2002).

[17] GARFINKEL, T., ADAMS, K., WARFIELD, A., AND
FRANKLIN, J. Compatibility is not Transparency: VMM
Detection Myths and Realities. In HOTOS’07: Proceedings
of the 11th USENIX workshop on Hot topics in operating
systems (Berkeley, CA, USA, 2007), USENIX Association,
pp. 1–6.

[18] GARFINKEL, T., AND ROSENBLUM, M. A Virtual Machine
Introspection Based Architecture for Intrusion Detection. In
10th ISOC Symposium on Network and Distributed Systems
Security (SNDSS) (February 2003).

[19] GARFINKEL, T., ROSENBLUM, M., AND BONEH, D.
Flexible OS Support and Applications for Trusted
Computing. In Proceedings of the 9th Workshop on Hot
Topics in Operating Systems (May 2003), pp. 145–150.

[20] GEER, D. Keynote, source boston conference.
http://www.sourceconference.com/2008/
sessions/dan-geer-keynote.html, March 2008.

[21] HANDLEY, M., PAXSON, V., AND KREIBICH, C. Network
Intrusion Detection: Evasion, Traffic Normalization, and
End-to-End Protocol Semantics. In Proceedings of the
USENIX Security Conference (2001).

[22] HUND, R., HOLZ, T., AND FREILING, F. Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection
Mechanisms. In Proceedings of the 18th USENIX Security
Symposium (2009).

[23] KARGER, P. A. Securing virtual machine monitors: what is
needed? In ASIACCS ’09: Proceedings of the 4th
International Symposium on Information, Computer, and
Communications Security (New York, NY, USA, 2009),
ACM, pp. 1–2.

[24] KARGER, P. A., AND SAFFORD, D. R. I/O for Virtual
Machine Monitors: Security and Performance Issues. IEEE
Security and Privacy Magazine 6, 5 (2008), 16–23.

[25] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V.
Countering Code-Injection Attacks With Instruction-Set
Randomization. In Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS) (October
2003), pp. 272–280.

[26] KING, S. T., DUNLAP, G., AND CHEN, P. Operating System
Support for Virtual Machines. In Proceedings of the General
Track: USENIX Annual Technical Conference (June 2003).

[27] KORTCHINSKY, K. Cloudburst: Hacking 3D (and Breaking
Out of VMware. BlackHat USA, July 2009.

[28] KRUEGEL, C., ROBERTSON, W., AND VIGNA, G.
Detecting Kernel-Level Rootkits Through Binary Analysis.
In Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC) (Washington, DC, USA,
2004), IEEE Computer Society, pp. 91–100.

[29] NERGAL. Advanced return-into-lib(c) exploits (PaX case
study). Phrack 58, 4 (December 2001).

[30] NICK L. PETRONI, J., AND HICKS, M. Automated
Detection of Persistent Kernel Control-flow Attacks. In
Proceedings of the 14th ACM conference on Computer and
Communications Security (CCS) (New York, NY, USA,
2007), ACM, pp. 103–115.

[31] OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. The
Design and Implementation of Zap: A System for Migrating
Computing Environments. In Proceedings of the 5th

Symposium on Operating Systems Design and
Implementation (OSDI 2002) (December 2002),
pp. 361–376.

[32] PALMERS. 5 Short Stories about execve (Advances in Kernel
Hacking II). Phrack 59–0x05. Team TESO.

[33] PALMERS. Sub proc_root Quando Sumus (Advances in
Kernel Hacking). Phrack 58–0x06.

[34] PETRONI, N. L., FRASER, T., MOLINA, J., AND
ARBAUGH, W. A. Copilot – a Coprocessor-based Kernel
Runtime Integrity Monitor. In Proceedings of the 13th

USENIX Security Symposium, pp. 179–194.
[35] PROVOS, N. Improving Host Security with System Call

Policies. In Proceedings of the 12th USENIX Security
Symposium (August 2003), pp. 207–225.

[36] PROVOS, N., MAVROMMATIS, P., RAJAB, M. A., AND
MONROSE, F. All Your iFRAMEs Point to Us. In USENIX
Security Symposium (2008).

[37] RAMASWAMY, A. Detecting kernel rootkits. Tech. Rep.
TR2008-627, Dartmouth College, Computer Science,
Hanover, NH, September 2008.

[38] RAMASWAMY, A. Autoscopy: Detecting Pattern-Searching
Rootkits via Control Flow Tracing. Tech. Rep. TR2009-644,
Dartmouth College, Computer Science, Hanover, NH, May
2009.



[39] RILEY, R., JIANG, X., AND XU, D. Guest-Transparent
Prevention of Kernel Rootkits with VMM-based Memory
Shadowing. In RAID (2008).

[40] ROSCOE, T., ELPHINSTONE, K., AND HEISER, G. Hype
and Virtue. In Proceedings of the 11th Workshop on Hot
Topics in Operating Systems (HOTOS XI) (May 2007).

[41] RUTKOWSKA, J. Red Pill... or how to detect VMM using
(almost) one CPU instruction. http://
invisiblethings.org/papers/redpill.html,
November 2004.

[42] SCHNEIDER, F. B. Enforceable security policies. ACM
Trans. Inf. Syst. Secur. 3, 1 (2000), 30–50.

[43] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A.
Secvisor: a tiny hypervisor to provide lifetime kernel code
integrity for commodity oses. In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems
principles (New York, NY, USA, 2007), ACM, pp. 335–350.

[44] SHACHAM, H. The Geometry of Innocent Flesh on the
Bone: Return-into-libc without Function Calls (on the x86).
In Proceedings of the ACM Conference on Computer and
Communications Security (2007), pp. 552–561.

[45] SIDIROGLOU, S., IOANNIDIS, J., KEROMYTIS, A. D., AND
STOLFO, S. J. An Email Worm Vaccine Architecture. In
Proceedings of the 1st Information Security Practice and
Experience Conference (ISPEC) (April 2005).

[46] SIDIROGLOU, S., AND KEROMYTIS, A. D. A Network
Worm Vaccine Architecture. In Proceedings of the IEEE

International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE),
Workshop on Enterprise Security (June 2003), pp. 220–225.

[47] SKOUDIS, E., AND LISTON, T. Virtual Machine Security
Issues. SANS FIRE Conference, July 2007.

[48] STEALTH. Kernel Rootkit Experiences. Phrack 61–0x0e.
[49] WANG, Z., JIANG, X., CUI, W., AND NING, P. Countering

Kernel Rootkits with Lightweight Hook Protection. In
Proceedings of the ACM Conference on Computer and
Communications Security (2009).

[50] WANG, Z., JIANG, X., CUI, W., AND WANG, X.
Countering Persistent Kernel Rootkits Through Systematic
Hook Discovery. In Proceedings of the Symposium on
Recent Advances in Intrusion Detection (RAID) (2008).

[51] WOJTCZUK, R. Defeating solar designer non-executable
stack patch. Bugtraq mailing list, 1998.

[52] YEE, B., SEHR, D., DARDYK, G., CHEN, B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND
FULLAGAR, N. Native Client: A Sandbox for Portable,
Untrusted x86 Native Code. In IEEE Symposium on Security
and Privacy (2009).

[53] YIN, H., LIANG, Z., AND SONG, D. HookFinder:
Identifying and Understanding Malware Hooking Behaviors.
In Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS) (February 2008).


