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Abstract

Ethernet is the most widely implemented low-level net-
working technology used today, with Gigabit Ethernet seen
as the emerging standard implementation. The backbones
of many large scale networks (e.g., data centers, metro-
area deployments) are increasingly made up of Gigabit
Ethernet as the underlying technology, and Ethernet is
seeing increasing use in dynamic and failure-prone set-
tings (e.g., wireless backhaul, developing regions) with high
rates of churn. Correspondingly, when using simulation to
study such networks and applications that run on them, the
switching makes up a significant fraction of the model, and
can make up a significant amount of the simulation ac-
tivity. This paper describes a unique testbed that gathers
highly accurate measurements of loss and latency through
a switch, experiments that reveal the behavior of three com-
mercial switches, and then proposes simulation models that
explain the observed data. The models vary in their com-
putational complexity and in their accuracy with respect to
frame loss patterns, and latency through the switch. In par-
ticular, the simplest model predicts a frame’s loss and la-
tency immediately at the time of its arrival, which keeps the
computational cost close to one event per frame per switch,
provides excellent temporal separation between switches
(useful for parallel simulation), while providing excellent
accuracy for loss and adequate accuracy for latency.

1. Introduction

Large-scale networks such as enterprise networks and
data centers are frequently built using switched Gigabit Eth-

ernet technology. While the Ethernet standard allows for
multiple taps onto a shared line, in switched Ethernet con-
figurations a wired line is dedicated to the connection of the
two devices at its endpoints. This essentially eliminates col-
lisions caused by the Carrier Sense Multiple Access with
Collision Detection(CSMA/CD) technology in the tradi-
tional Ethernet. The behavior of transport layer protocols
(e.g. TCP) and applications (e.g. interactive multi-mediaap-
plications) are sensitive to loss and delay, it is important
to understand these characteristics for developing, testing
and validating new techniques and technologies running on
large-scale Gigabit Ethernet.

Because of its low cost and flexibility, network simula-
tion is widely used to study protocols and applications run-
ning on large-scale networks. However, the cost of simu-
lating the network can easily overwhelm the overall cost
of performing the simulation experiment. In a moderately
sized network a frame may transit 4 or 5 switches on its
journey from source to destination (host to LAN switch,
LAN switch to WAN, 2 WAN switches to destination LAN.)
There can easily be three or four discrete events associ-
ated with a frame’s passage through the switch (arrival, pri-
ority queuing, beginning of transmission, ending of trans-
mission). Twenty events may be involved just to move one
frame’s worth of information from source to destination.
Simulators like OPNET[11] and OMNeT++[10] have de-
tailed switch models that capture complex internal architec-
tures for different types of switches. With high fidelity of
architectural specifics comes significant computation cost.
However, from an application’s point of view traffic might
logically be thought of in terms of files or streams. The ap-
plication events that are really of interest may be a small
fraction of the events the simulation is executing. Therefore,
we seek an efficient and accurate switch model for simula-



tions where the interest is less on the network and more on
the applications and protocols running on the network. Vari-
ous types of switch models already exist in network simula-
tors and emulators. In ns-2[9] and DETER[1], a simple first-
come, first-served (FCFS) queuing model is used for every
type of switch. As have others[3], we will see in our ex-
periments for one switch type clear evidence of non-FCFS
behavior, such that assumptions of FCFS may produce unre-
alistic results. Development of device-independent queuing
models based on empirical observations was investigated in
[4][7]. Accuracy is improved by taking specific data from
real devices into consideration. However, it is still hard to
adapt one model to all type of switches once the placement
of the queues are fixed, and the simulation speed is slower
than that of the simple FCFS queue model.

When a frame arrives, a switch examines the destina-
tion MAC address in the frame header and uses a forward-
ing table to determine the output port; if the MAC ad-
dress is missing the frame is broadcasted through all other
ports. When multiple frames compete for a common out-
put port, switches have different scheduling policies such
as First Come First Serve(FCFS), Round Robin(RR), Fair
Queueing(FQ), Weighted Round Robin(WRR)[12]. When
the buffer is full, any new arrival frames are dropped. The
inter-arrival times may be viewed as random—as may pro-
cessing timing. Therefore, it is natural to use queueing mod-
els to describe a switch. Most switches consist of three com-
ponents: buffers to handle congestion; algorithms to make
scheduling and switching decisions; and switching fabric to
forward data from one port to another. The buffering strate-
gies include shared buffering, pure input queueing, pure
output queueing, input queueing with virtual output queues
to avoid head-of-line blocking, and combined input and out-
put queueing. Unfortunately, the precise details of a given
switch are often not publicly available, a fact which hinders
high fidelity description of a given switch’s operation.

Our goal is to develop switch models that support

• fast simulation, e.g., one event per frame per switch,

• accuracy in latency and frame loss prediction that is
sufficient for studies of applications and protocols run-
ning on the network,

• straight forward model development for new switches.

We prioritize accuracy in frame loss over accuracy in la-
tency. A single frame loss can cause a significant alteration
in the size of a TCP send window, whereas the time-scale of
activity in an application may be measured in milliseconds
while the time-scale of switch latency is a few microsec-
onds. For example, acceptable delay and jitter for audio and
video conferencing is on the order of 150 ms and 30 ms
respectively according to Cisco’s recommendation[13].

In this paper we describe a means of measuring a
switch’s latency and frame loss characteristics with ex-
tremely high fidelity. We performed comprehensive experi-
ments on commercial Gigabit switches to collect traces and
obtain sequences of delay and loss patterns. Based on this
data, we develop two types of models. One is a simplified
queuing model, the other is an algebraic model based on re-
lationship between input rates and output behavior. These
models are validated with real traffic, and then compared
with each other with respect to execution complexity.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the experiment setup. Section 3 analyses the
experimental data and presents the models we have devel-
oped to explain the data. Section 4 evaluates the simulation
speed and model accuracy. Section 5 discusses the future
work.

2. Measurement

A comprehensive study of frame loss and delay patterns
in a Gigabit Ethernet switch requires a testbed to

• generate traffic up to line rate with user configured pa-
rameters such as frame size, sending rate and inter-
frame gap,

• record frame delays and arrival orderings with mi-
crosecond resolution,

• capture frames at line rate with little loss.

We built a testbed that uses hardware to instrument,
transmit, and capture Ethernet frames at line rates. Figure
1 depicts our solution. Traffic is generated using a 4-port
NetFPGA card[6][14]; the frames to send can be loaded
from a pcap file, and the sending rate is specified. The obvi-
ous way to measure delay is to time-stamp a frame at trans-
mission and after passage through the switch, but this ap-
proach has its own challenges, not least of which is that
our traffic generator could not easily generate time-stamps!
Even if it could, we would have to synchronize the clock
on the NetFPGA card with the clock on the receiver, in this
case a 4.5G4 Endace DAG card[2]. The Endace card stamps
received frames with a clock having a 10-nanosecond reso-
lution; the card can also capture and store millions of frames
with zero loss at 1Gb/s. In order to time the passage of a
frame through a switch, we took advantage of the NetFPGA
card’s ability to simultaneously send identical flows from
each port. Once two identical flows are generated from the
NetFPGA to the same destination, one through wire, and the
other through the switch, the difference of the two receiving
timestamps is the delay through the switch. For example, in
Figure 1 a “Traffic 1” frame is sent simultaneously out on
ports 1 and 3 of the NetFPGA card. One instance arrives at
port 2 of the DAG and is time-stamped on receipt. The other



enters the switch via port 2, is routed out via port 8, and ar-
rives at the DAG on port 1 where it is time-stamped. The
difference in time-stamps is the delay through the switch
(and time on the wire from switch to DAG). To validate the
approach, we replaced the switch with a wire and calcu-
lated the difference under a 1Gb/s sending rate. The mea-
sured delay has mean 0 ns and standard deviation 0.004 ns,
which is low enough given the microsecond delay in the
switch. By utilizing all four ports of the NetFPGA card as
shown in Figure 1, the testbed can monitor two flows in real
time. Both cards are placed on the same PC (four dual-core
2.0GHz CPUs running CentOS 5.2). We captured data from
three 8-port Gigabit Ethernet switches: 3COM 3CGSU08,
NetGear GS108v2 and TrendNet TEGS80G. They are all
simple low-end commodity switches with no configuration
interface available. All ports were connected by cat-6 Eth-
ernet cables.

The data flows generated in the experiments were Con-
stant Bit Rate (CBR) Ethernet raw frames in pcap format,
and a sequence number was added into each frame. The
NetFPGA card transmits frames as specified in the pcap
file out on two different ports. The copy which travels im-
mediately to the DAG card is always received; the copy
that passes through the switch might possibly be dropped.
Post analysis of the received frames thus identifies the miss-
ing frames. Likewise the difference between timestamps on
frames with identical sequence numbers (one which passed
directly to the DAG, the other which passed first through the
switch) gives that frame’s delay. The frame size is fixed at
1500 bytes to achieve maximum sending/receiving rate by
minimizing the affect of the inter-frame gap. We generated
one million frames for the “Traffic 1” flow, and also for the
“Traffic 2” flow.

While we performed experiments on three different
switches, the behavior of the TrendNet and NetGear
switches were entirely similar in all cases. Correspondingly,
the rest of the paper will only show results from the NetGear
and 3COM switches.

3. Analysis and Modeling

3.1. Data Analysis

The first set of experiments monitored a single flow
whose sending rate varies from 100Mb/s to 1Gb/s with
100Mb/s increment, and no background traffic is generated.
The idea is to establish a baseline delay, in a context where
there is no contention, and the input rate is no greater than
line rate. Figure 2 shows the frame delay of the monitored
single flow collected from both switches. The delay in both
switches behaves constantly with no loss. The delay has the
same mean value under any sending rate up to 1Gb/s and
the variance is close to 0µs. We learned from this that the
switches indeed handle line rate without loss, the switches
have significantly different delays, and that with determin-
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Figure 1. Testbed Setup

istic inter-arrival times those delays are constant.

In the second set of experiments we kept the single flow,
and added various combination of background traffic flows
going through other ports, such as three parallel 1Gb/s CBR
flows and five 1Gb/s CBR flows from five input ports to
one output port (see again Figure 1),other thanthe one tar-
geted by the monitored flow. These experiments revealed
the same behavior of delay and loss on the monitored flow
as we saw in the first experiments when there were no back-
ground flows. From these experiments we learned that both
switches can handle nearly 1Gb/s flows at each output—
no frame losses were observed until the input rate reached
987 Mb/s. We are secure in using the constant value shown
in Figure 2 as the baseline non-queuing delay added by a
switch.

The third set of experiments monitored two flows (“Traf-
fic 1” and “Traffic 2” in Figure 1) from two input ports to the
same output port; we varied the sending rates on both flows
from 100Mb/s to 1Gb/s with a 100Mb/s increment. Traces
were collected entirely at the DAG card and post-processed
to compute delay and loss patterns. When total input rate
of the two injected flows does not exceed the switch’s ser-
vice capacity (which is 1Gb/s in theory and 987 Mb/s as
observed), both switches experienced small delay and zero
loss. The delay is at most two times the minimum delay as
shown in Figure 2, which means at most one early frame is
queued upon arrival and the switch is not congested. This is
valuable information, particularly when we are able to tol-
erate a 100% error in frame latency—if the output port is
not congested, we can model the delay through the switch
with a constant, and see no frame loss.

The more interesting and challenging case is of course
when the total input rate exceeds the maximum service rate,
both switches experienced large delay and loss. However,
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Figure 2. Frame Delay for Single Traffic Flow

the two switches have significantly different delay and loss
patterns. Figure 5(a1) and (b1) show one sample pattern of
two input flows with sending rates 900Mb/s and 300Mb/s—
5(a1) describes the 3COM switch and 5(b1) describes the
NetGear switch. Frames are ordered according their arrival
timestamp. The delay is plotted on the y-axis and a value
zero represents a loss.

A very interesting difference is that the NetGear switch
dropped frames from both 900Mb/s and 300Mb/s flows, in
bursts, while the 3COM switch dropped frames only from
the 900Mb/s flow, not in bursts. Indeed, as we increased the
rate of the slower flow, the 3COM switch did not drop any
frames from it until it reached 500Mb/s (not shown here).
The delays of both flows increase together and stabilize at
same level for the NetGear switch, while the delay of the
two flows stabilized at different values in the 3COM switch.
From these experiments we learn that

• an accurate model needs to be aware of differences be-
tween switches,

• an accurate model needs to use parameters derived
from experimental data,

• loss patterns indicate that something very different is
happening inside the two switches, and we ought to be
able to explain it.

3.2. Queueing Model

The loss and delay pattern observed in the NetGear
switch can be well explained by FCFS output queue as
shown in Figure 3(a), in which the two flows can be ef-
fectively replaced by one flow with the aggregated sending
rate. The large loss episode observed can be explained by
a policy that once loss occurs, the switch will continue to
drop further incoming frames until the queue length drops
below a thresholdQR. The device-specific parameters of
this model include the service rateRS , the queue sizeQS

andQR. From the experimental data of NG, we estimated
RS = 987Mb/s,QS = 22 frames andQR = 11 frames.

S

Flow 1

Flow 2

Flow 1

Flow 2

WRR S

Output Queue

Input Queue

(a)

(b)

QR

Figure 3. (a) Output Queue Model for NetGear
GS108v2 (b) Input Queue Model with WRR for
3COM 3CGSU08

Behavior of the 3COM switch can be explained by an
architecture (see Figure 3(b)) where frames are in queues
associated with their input ports (or possibly queues for in-
dividual flows), and some scheduling algorithm is used that
gives priority to input queues based on weights that are pro-
portional to flow rates or queue length. Such a scheduling
algorithm could give service to the slow flow often enough
that it does not drop frames until it requires more than half
the bandwidth; frames in the slower flow could have smaller
latencies than frames in the fast flow because the queue is
smaller and enough attention is given to the slow queue.
A number of different policies might be at play here, par-
ticularly those that providerate proportional service[12].
In thegeneral casethe choice of next frame to transmit is
a function of the whole switch state at the time of the deci-
sion, and is made for each frame. This means thatin general
the time at which a frame is served is not predictable. This
in turn implies thatat a minimumthere are two events per
frame—its arrival, and its departure (because the departure
time cannot be determined at the frame’s arrival.) A notable
exception to the general case is FCFS of course.

We don’t know exactly what policy is implemented
within the 3COM switch to achieve equal bandwidth reser-
vation for every flow; from among the potential service dis-
ciplines we investigated use of the weighted round robin
(WRR) scheduling policy[8]. Actually, many commercial
switches are using round robin based scheduling due to the
low time complexity O(1) and low implementation cost[5].
Under WRR each input queue is visited in a round-robin
fashion, but queues may have different numbers of frames
served each visit. One computes the number of frames
to transmit from a queuei as ⌊Qi/Qmin⌋, whereQi is
its queue length, andQmin is the minimum queue length
among all non-empty queues competing for service. For ex-



ample, if⌊Q2/Q1⌋ = N , thenN frames from queue 2 are
served while one frame from queue 1 is served.

With a 900Mb/s sending rate in flow 1 and 300Mb/s
in flow 2, the ratio of queue lengths should be approxi-
mately 3:1 in steady state, and the effective service rates
are 700Mb/s and 300Mb/s respectively. Therefore, for the
300Mb/s flow, no loss was observed and the stabilized de-
lay should be smaller than that of the 900Mb/s flow since
its queue is not yet full. With this model, the low load flow
will encounter loss once its sending rate is above 500Mb/s,
which matches our experimental data. From our data we es-
timated the same device-specific parameters for the 3COM
switch to describe post-loss behavior :RS is 987Mb/s,QS

is 9 frames andQR is QS − 1.
We developed discrete-event simulation models of both

switches and repeated the third set of experiments using the
traces as input to the switches, and used this queuing model
to select lost frames and compute delay.

Figure 5(a2) and (b2) plot the delays corresponding to
the same real switch test case as shown in Figure 5(a1)
and (b1). Excellent—indeed, nearly perfect—agreement is
found between simulation and real data on the NetGear
switch model. The FCFS assumption appears to be well-
founded. The agreement is also quite good between real
data and simulated 3COM switch. The average delays for
both flows match well, and the simulated model dropped
frames only from the faster flow, and at the same rate as the
faster flow. There is not however a frame-by-frame match-
ing as we observed in the NetGear switch model.

Our simulation model of the 3COM switch has two
events per frame. One event occurs when the frame ar-
rives, another when a selected frame completes transmis-
sion. Scheduler action is initiated either when a frame ar-
rives (and the system is empty) or at the completion of a
frame transmission, and so while it adds some computa-
tional weight to the events, there are but two events per
frame. This implementation makes it straightforward to re-
place WRR with a different scheduling policy, and the ex-
ecution cost of the implementation is a reasonable rep-
resentation of switches that provide rate-proportional ser-
vice. However, observe that under the structure of WRR,
the departure times of all frames scheduled to be served in
one scheduling round are known at the conclusion of the
scheduling decisions. This makes possible an implemen-
tation where there is one event per frame arrival, and one
event per scheduling round. Our performance analysis will
include consideration of this optimization.

The simulation model of the NetGear switch can be
implemented using one event per frame. On arrival, all
the information needed to determine when the frame en-
ters service and departs is known, and so its arrival at the
next switch in the sequence can be scheduled immediately.
This “one-event cost” property is possible only with FCFS

scheduling however.

3.3. Latency-Approximate Models

In our drive to achieve high performance switch simu-
lations we will at some point have to knowingly tradeoff
accuracy of some attribute for gained speed. Of latency and
loss, for our intended use we would sacrifice latency. The
time scale at which applications run is at least two orders of
magnitude slower than switches, so a factor of two error in
switch latency is lost in the noise at that scale. Loss how-
ever can trigger new behaviors in applications, and so we
attempt to be as faithful to it as we can.

We now develop for both the NetGear and 3COM
switches models that we call “Latency-Approximate” mod-
els. At one event per frame per switch the NetGear model
is already efficient; our latency-approximate model for it
is more in line with future work where latency and loss
will be extracted more from flow rate characteristics than
from frame-by-frame simulation. Still, it is appropriate here
to develop the model and comment on its accuracy. Our
latency-approximate model for the 3COM switch maintains
accurate queue length state information, and can infer what
the true latency for a frame is, but will estimate that latency
at the time of arrivaland will immediately schedule the ar-
rival of the frame at the next switch. The latency estimate is
based on recenttrue latencies in the recent past.

3.3.1. Simplified Aggregated FCFS with Draining

As we have seen, the NetGear data suggests an internal
queueing architecture where flows with a common desti-
nation port are aggregated and served in FCFS fashion.
A frame loss triggers a “draining” phase, where addi-
tional frames are dropped until the queue size reaches some
threshold. Some sequence of frames are accepted, and then
another loss triggers another draining stage. In addition,we
observed in the NetGear data a transient period where the
queue warms up to the congestion stage. We describe this
pattern in Figure 4.
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Figure 4. Simple Model

The pattern may be parametrized by the variables below:
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NetGear Analytical Model



A Minimum latency, (see Figure 2)
B Mean latency in the “warmed” stage
T0 Time duration for first stage
TL Avg. time of loss episode
TD Avg. time between neighboring loss episodes
RA Aggregated arrival rate
RS Service rate of a switch
QS Maximum queue size per port
QR Required queue size for readmitting incoming

frames after frame drop
Y Delay/Loss value, with delay> 0 and loss= 0

Y =


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A+(B−A)×t

T0

t ∈ [0, T0]

0 t ∈ (T0 + n(TL + TD),
T0 + TL + n(TL + TD)],
for somen ∈ N

B t ∈ (T0 + TL + n(TL + TD),
T0 + (n + 1)(TL + TD)],
for somen ∈ N

The idea is to keep track of where the output queue is
in this pattern, and when an arrival occurs apply the equa-
tion for Y to determine whether it is lost, and if not, what
its (constant) latency will be. Computationally this is sim-
pler than queueing frames explicitly and computing precise
latencies. It also fits in well with a flow-rate oriented formu-
lation where input flow rates affect state variableRA.

Figure 5(b3) show the loss and delay generated by the
analytical model when used as the basis of a simulation
driven by the gathered traces. Compared with the real trace
in Figure 5(b1) we see that the model accurately captures
the loss rate, the length of the loss episode, and the time
between successive loss episodes. We could easily modify
the formula for latency to estimate queue length at the time
of an arrival and fine-tune the latency estimate correspond-
ingly. We decided (perhaps arbitrarily) to use a constant,
looking ahead to the future use of this model we have al-
ready mentioned.

3.3.2. Latency-Approximate WRR

The latency-approximate model of a WRR managed switch
will faithfully maintain queue state of all input queues, and
so when a frame arrives it can faithfully determine whether
a frame arriving at the instance would be dropped. At the
arrival time it alsoestimatesa latency, which enables one
to schedule the arrival of that frame at the next switch or
host immediately. This has the obvious advantage of avoid-
ing a later “frame departure” event, but also has the perhaps
not-so-obvious benefit of creating a larger temporal separa-
tion between the switch and the time-stamps on the events
it forwards. This larger temporal separation has benefit in
parallel simulation—that event passing through that output

port with that time-stamp is a promise to its recipient that
the switch will not post another event through that port with
smaller time-stamp. Exactly this kind of information is key
for many conservative synchronization strategies. Finally,
the latency-approximate switch model has a lower overhead
simply by not managing the explicit queueing of frames.

WRR works in rounds. At the scheduling point of each
round, the number of frames from each queue that will be
served in that round is computed. It is possible to determine
the state of every queue at all points during the upcoming
round except for arrivals. We can compute the length of
the queue upon new arrivals and hence accurately decide
whether it is queued or dropped. The algorithm updates the
following state variables when a frame arrives, and when a
scheduling round executes:

Ns,j(t) #frames scheduled atj, but not sent by timet
Nu,j # frames left unscheduled atj
Na,j # frames arriving atj after previous round
Qj # frames in queuej
Qmax j(t) threshold atj for accepting frames, at timet
Qmin Min. # frames among all non-empty queues
S service time for a frame

Executed when framei arrives at input queuej at timet:
Qj = Ns,j(t) + Nu,j + Na,j

if Qj ≥ Qmax j(t) then
Drop framei

else
Estimate delayd
Schedule arrival of framei at next switch,d time in
future
Na,j++

end if
if server is idlethen

Start the scheduling round
end if
Executed as the scheduling round:
if ∃j s.t. Qj is not emptythen

for all queuesj do
Nj = ⌊Qj/Qmin⌋
Record departure times of theNj frames
Nu,j = Qj − Nj

Na,j = 0
end for
Schedule the next round at timeS

∑

Nj

end if

In the above algorithm, some computation is required to de-
termineNs,j(t), based ont and the saved list of departure
times of scheduled frames. Likewise,Qmax j(t) varies be-
tween the maximum queue length andQR, depending on
whether the queue is in the draining state (triggered by a
loss) or not.

A scheduling round is activated either when a frame ar-



rives and the server is idle or when the current schedul-
ing round finishes and there are still frames waiting to be
served. For correct modeling of loss, all we need to keep
track of is the queue length using a few counters; in partic-
ular it is unnecessary to queue and deque the frames.

One interesting point is that at the time of a frame’s ar-
rival we can determine whether it is dropped or not, but we
cannot determine exactly when the frame will be served, be-
cause that time is dependent on future arrivals up until the
time of the next scheduling round. However, we can create
an estimate that is accurate in a statistical sense by utilizing
the historical delay information computed at each schedul-
ing round.

DefineMj to be the exponentially decayed average la-
tency of frames in queuej as follows. Suppose thatNj

frames are scheduled for transmission at queuej, and for
j = 1, 2, . . .Nj , let Lk,j be the delay ofkth of these. At
each scheduling round,

Mj = α(1/Nj)
∑

(L1,j +L2,j + ...+LNj,j)+(1−α)M ′

j

whereM ′

j is the latency average for queuej last computed
by this formula. When a frame arrives at queuej, Mj is
used as the latency estimator. A large value ofα is desirable
to make the latency estimator responsive to queue size.

Figure 5(a3) shows the simulation results using the
3COM latency-approximate model withα=0.9 for the same
test case in Figure 5(a2). The simplified model generates
frame loss patterns as accurate as those of the detailed
model, with no losses in the low load flow and and the same
loss rate in the high load flow. With respect to delay, both
flows stabilized near the values seen in the real data and in
the detailed model, but the fluctuation is slightly less than
what is observed in the real data, as one would expect from
this smoothing.

4. Evaluation

4.1. Simulation Speed

We have implemented all models discussed in our sim-
ulation framework and now evaluate their relative speeds.
The framework is built using C++, and includes a significant
amount of infrastructure for simulating large-scale wire-line
networks. Our speed evaluations are based on a topology
that chains a number of switches, illustrated in Figure 6. For
each switch, two constant bit rate flows were injected using
different input ports, and directed to the same output port.
The first switch in the sequence takes two flows with bit
rates 900Mb/s and 300Mb/s. The remainder take one flow
from the previous switch, and also another 300Mb/s flow.
1Gbytes were sent in every flow. The wall-clock time and
number of events were recorded for comparison.

There is a certain overhead due to traffic generation that
is amortized as we increase the number of switches. We get

900 Mb/s
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2
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300 Mb/s

1

2

3

300 Mb/s

1

2

3

300 Mb/s

Switch 1 Switch 2 Switch N

Figure 6. Architecture for Simulation Speed
Tests

the best sense of relative overheads of switch models by
increasing the number of switches in sequence.

From the point of view of events, the detailed NetGear
implementation has already one event per frame, and al-
ready eschews the overhead of queuing. The real poten-
tial for performance improvement of the NetGear latency-
approximate model will come later (in ways described as
“Future Work”.

We turn instead to the 3COM switch, where we have
implemented and compared the performance of three mod-
els.Q3 denotes the detailed queueing model, in the gener-
alizable module where each frame has a departure event,
and an arrival event.Q2 denotes the module that at the
completion of a scheduling round schedules the arrival of
frames at their downstream switches, and thus avoids the
cost of additional events. Finally,Q1 denotes the latency-
approximate model. Figure 7 gives raw performance figures
for theN = 20 topology, and relative performance figures
obtained by varyingN . The experiments were executed on a
PC with 2.8GHz dual core processor and 2GB RAM. Look-
ing at the raw performance, we see events are relatively
lightweight. The larger average event cost of Q2 over Q3
is due to the fact that half the events in Q3 are departure
events which have very little work associated with them.
There are after all almost twice as many events under Q3
as there are under Q2. Looking at the relative performance
we note that by increasing the numbers of switches we in-
crease the relative proportional of simulation workload car-
ried by the network simulation, and see that it pretty well
dominates the simulation by the time we are simulating 15
or 20 switches under these loads. The latency-approximate
models take only 60% of the time that the full queuing mod-
els require, while the optimized latency-accurate versionof
the 3COM switch takes a little over 75% of that time. The
difference in performance between Q1 and Q2 is due to
Q1’s lack of explicit queue management code. We see that
our objectives in decreasing the execution requirements of
a switch have been accomplished. Perhaps with some clev-
erness we could speedQ1 andQ2 further by piggy-backing
invocation of scheduler logic entirely onto arrival events.
However, the lowest ratio of execution time we can hope
for is 50%, so the remaining possible performance benefits



are considerably less than what we have already achieved.

Model Events Exc. Time Time/Event
Q1 12.7M 32.15s 2.53µs
Q2 12.7M 38.36s 3.04µs
Q3 19.9M 54.04s 2.70µs
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Figure 7. 3COM 3CGSU08: Performance

4.2. Frame Loss Modeling Accuracy

We may think of loss behavior of a flow in both the Net-
Gear and 3COM switches in terms of cyclic alternating peri-
ods; in one period all frame arrivals are buffered. In the next
period all frame arrivals are dropped, and so on. We char-
acterize the statistical behavior of loss in the data, and in
different models by analyzing three metrics : loss rate (av-
erage number of frames lost per accept/loss cycle), the loss
episode (average number of frames lost in burst in the loss
state), and the time between loss episodes (i.e., time during
which frames are accepted). We perform the evaluation on
one switch like that in Figure 1, with the same configuration
of inputs (with no background flow). Ten million frames
were generated for each flow. The sending rate of flow 1 was
fixed at 900Mb/s, while the sending rate of flow 2 was var-
ied with each experiment, ranging from 100Mb/s to 1Gb/s,
with a 100Mb/s increment. These rates ensure frame loss
in each configuration, and can be compared with real traces
run with the same input rates.

Figure 8 presents the results for both switches, plotting
the mean and standard deviation of each metric. For the Net-
Gear switch, the mean value of all the three loss metrics
generated by both models perfectly match the real data. For
the 3COM switch, the loss rates perfectly match real data.
The real data shows some variation in loss episode at the
higher load levels (when both flows experience loss) that
the models do not track. The raw magnitude of the differ-

ence is not large—1 frame essentially—this data serves to
re-emphasize the point that we don’t know what is inside
the 3COM switch, but have managed a fairly good repre-
sentation of it.

The results show that the simplified switch models are
as accurate as the detailed queueing models in terms of the
overall and long-term loss metrics. However, the simplified
models do not capture the transient behavior of delay as ac-
curately as do the detailed models as shown in Figure 5(a3)
and (b3). Still the agreement is quite good, and we accept
the inaccuracy as a fair price paid for significant speedup.

There are of course limitations to the experiments and
models we present. Real traffic is bursty, and the hardware
traffic generator we use generates frames at a constant rate.
We are looking into mechanisms for creating more irregu-
larly shaped traffic with the NetFPGA card. The introduc-
tion of burstiness will almost surely affect the accuracy of
latency and loss our models can achieve. We need still to un-
derstand how the switches behave with more severe cross-
traffic than we have created to date. We have also to discover
whether the scheduling performed within the 3COM switch
is applied per logicalflow, or perinput-queue to output port
pair.

5. Conclusion and Future Work

The work we report is unique in creating a testbed where
we can generate Gigabit Ethernet traffic at line rates, and
measure precisely what the latency and loss patterns are
through a switch, for sequences of millions of frames. We
took the measurements from commercial switches, found
two very distinct behaviors, and proposed queuing mod-
els to represent the switches. For both switches we created
one model that faithfully determines both frame loss and la-
tency under its modeling assumptions, and another model
that faithfully determines frame loss but uses an estimate
for latency. Our goal in creating the simpler model is to re-
duce the execution cost of handling a frame to almost one
event per frame per switch. We validated all models against
the real observed traffic, and reduced execution time to 60%
of its original value.

Future work lies in reducing the cost of switched net-
work simulation further. Our goal is to approach the simu-
lation of detailed foreground traffic using an approach sim-
ilar to that developed by Nicol and Yan [15]. Rather than
separate the simulation of a frame’s passage across a net-
work with event(s) at each switch, we aim to take advan-
tage of congestion-free subpaths and accelerate the passage
of a frame between switches where congestion creates loss
and some care is needed in selecting which frames from
which flows are lost. The key to such an approach is finding
ways of computing sufficiently accurate latencies without
detailed simulation, and to finding ways of faithfully cap-
turing loss patterns at congested switches. The present pa-
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Figure 8. Frame Loss Accuracy Evaluation

per shows how to accelerate the usual approach to network
simulation, but also aims at this important piece of future
work.
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