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Abstract—In this paper, the blind topology identification
problem for power systems only using power injection data at
each bus is considered. As metering becomes widespread in the
smart grid, a natural question arising is how much information
about the underlying infrastructure can be inferred from such
data. The identifiability of the grid topology is studied, and
an efficient learning algorithm to estimate the grid Laplacian
matrix (i.e., the graph equivalent of the grid admittance matrix)
is proposed. Finally, the performance of our algorithm for the
IEEE-14 bus system is demonstrated, and the consistency of
the recovered graph with the true graph associated with the
underlying power grid is shown in simulations.

I. INTRODUCTION

A major contemporary development associated with the
smart grid is the deployment of rapid phasor measurement
units (PMUs) in the transmission grid, and the advanced
metering infrastructure (AMI) in the distribution system. The
value of having the large volume of data generated by the
deployment is to provide the basis for informative analytics
for various purposes. The most important analytic in the
grid is the state of the system, which is usually obtained at
the Energy Management System (EMS) by performing state
estimation (SE) for monitoring and control [1], [2]. State
estimates and other analytics enable better load predictions for
market decisions [3], perform contingency analysis, and detect
anomalies in the grid (i.e., failures, attacks, etc.). The latter has
gained considerable interest recently because the expansion of
information systems in the smart grid also has the potential of
exposing it to cyber or physical attacks on the grid [4].

A. Challenges and Motivation

The study of malicious attacks is quite recent in power
grids [5]. A form of attack that has received considerable
attention in the literature consists of injecting bad data into
the measurement systems to misguide the results of SE [6].
For instance, there have been extensive studies on designing
data attacks on power measurements and topology to pass the
bad data test [7]–[9], or influence market operations [10], [11],
as well as physical attacks that are unobservable to monitoring
devices such as PMUs [12].

Most designs and countermeasures for failures and attacks
are based on the assumption that the topology data are given,
which is not true in many applications (e.g., the distribution
system [13]). In transmission networks, topology data are
gathered from the field by the Supervisory Control and Data
Acquisition (SCADA) system, and sometimes estimated by
performing generalized state estimation that includes breaker
statuses as variables [1], [14]. Nevertheless, while this infor-
mation is in general known in transmission networks by the

This work was supported by the U.S. Department of Energy through the
Trustworthy Cyber Infrastructure for Power Grid (TCIPG) program.

operators, it is more likely that malicious attackers have access
to scattered field data instead of the processed data at the
EMS, which is supposedly better protected [4]. This is also a
perspective that this paper is trying to offer, which is to study
whether it is possible for an attacker to learn the topology with
accessible but limited data.

Taking the perspective of complex systems, studies have
shown that topology data also allows to pinpoint critical nodes
via centrality measures [15]. It has been shown in [15]–[17]
that nodes with high centrality carry substantially higher risk in
triggering cascading failures when experiencing disturbances,
failures or attacks. In light of this line of research, this work
also shows that such measures can be effectively learned.

B. Related Works and Contributions

Existing works on topology estimation are usually focused
on estimating or detecting the changes that occur in the
topology via line outage and fault detection [18]–[20] and
generalized state estimation involving circuit breaker statuses
[21], and similar issues. Recently, there has been some work
on identifying the entire topology under various assumptions
[13], [22]. Specifically, [13] assumes that the power injec-
tions follow certain probability distributions and uses the
voltage correlation to identify the topology in the distribution
grid, while [22] uses the transmission time on the power
lines to identify the topology in a microgrid environment
via hypothesis testing. However, the assumption in [13] on
power injections is in general not true and the requirement
of being able to use accurate timing information in power
line communications [22] and perform complicated hypothesis
testing is not easy to implement.

Our contribution in this paper is to cast topology estimation
in the framework of blind system identification [23]. We focus
specifically on leveraging exclusively on the power injections
at different buses without any other data to estimate the
weighted graph Laplacian (i.e., analogous to the admittance
matrix) associated with the underlying power grid. Although
our analysis shows that the Laplacian of a general graph
cannot be uniquely identified using solely power injection data,
it is also proved in this paper that the eigenvectors of the
Laplacian can be uniquely identified. To resolve the ambiguity
in the eigenvalues of the Laplacian, we propose to use the
sparsity of the grid as a constraint and formulate the topology
identification problem as a blind learning problem, which can
estimate the graph Laplacian accurately. All the claims have
been verified in simulations using IEEE test case data with the
14-bus system as an example.

II. SYSTEM MODELS

Power systems are characterized by buses that represent
interconnections, generators or loads, denoted by the set N �
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{1, · · · , N}. The wiring between buses is determined by the
edge set E � {{n, m}} with cardinality |E| = E, which
corresponds to the wiring between bus n and m. Each line
is characterized by the line impedance Znm = Rnm + iXnm,
{n, m} ∈ E in the Π-model of line {n, m} ∈ E .

A. Power Systems as Graphs

A power system can be effectively described as an undi-
rected graph G = (N , E) with the node set N and edge
set E . The associated topology can be further described by
the oriented incidence matrix consisting of columns mnm ∈
{−1, 0, 1}N×1 for each edge {n, m} ∈ E defined as follows

[mnm]i =






1, i = n
−1, i = m
0, otherwise

. (1)

Accordingly, the N × E incidence matrix of G is given by

M � [· · · ,mnm, · · · ], n < m and {n, m} ∈ E , (2)

Using the incidence matrix, the weighted Laplacian of the
graph is a symmetric matrix defined as

L � MWMT , (3)

where W = diag[· · · , Wnm, · · · ] is a diagonal weight matrix
containing individual weights Wnm for each edge in the set
{n, m} ∈ E . Note that by definition the Laplacian is positive
semi-definite L � 0 and has the following null space property:

L1 = 0, LT 1 = 0. (4)

In power grids, the weight on each edge is tied to the physical
parameter of the line, namely the electrical admittance of each
line Wnm = Z−1

nm, {n, m} ∈ E . Therefore, the negative of
the weighted Laplacian −L is often called the admittance
matrix1, and the electrical properties of the system become
deterministic once L is given.

B. Data Model

Here we consider a limited data situation in which no
direct information on the grid topology is given, and the only
available data are the power injections Pn at each bus n. For
simplicity, we consider the linear DC power flow model over
a period t = 1, · · · , T ,

pt = Bθt + rt, t = 1, · · · , T, (5)

where pt � [P1(t), · · · , PN (t)]T , θt � [θ1(t), · · · , θN (t)]T
and rt = [r1(t), · · · , rN (t)]T correspond respectively to the
power injections, voltage phase angles and measurement noise
at each time t. The matrix B is the load flow matrix given by

B � −MX−1MT (6)

with X = diag[· · · , Xnm, · · · ] by ignoring all the resistances
Rnm ≈ 0. Note that the DC model in (5) is not invertible due
to the null space property

B1 = 0, BT 1 = 0, (7)

1Note that the admittance matrix also contains bus admittance-to-ground,
which is neglected here for convenience.

and hence it is common practice to choose a reference bus
angle (i.e., the slack bus) to resolve the ambiguity in Θ:

ΘT 1ref = θref (8)

where 1ref = [1, 0, · · · , 0]T and usually θref = 0.

By stacking the T snapshots of injection data {pt}T
t=1 in

an N×T data matrix P = [p1, · · · ,pT ], the block data model
in this paper is given by

P = BΘ + R, (9)

where Θ = [θ1, · · · ,θT ] is the phase angle matrix and R =
[r1, · · · , rN ] is the noise matrix. Furthermore, we impose the
following condition on the input Θ phase angles.

Condition 1. (Sufficient Excitation) The phase angle matrix

Θ ∈ RN×T
is full rank such that T ≥ N and rank(Θ) = N .

This condition can be met by taking measurements with
sufficient angle variations over time. Furthermore, for sim-
plicity, we assume that the noise samples are independent
and identically distributed (i.i.d.) zero mean Gaussian random
variables, and hence the noise covariance becomes E{rtrT

τ } =
σ2Iδ[t− τ ] for t, τ = 1, · · · , T .

III. BLIND TOPOLOGY IDENTIFICATION

A. Topology Identifiability

In this paper, we aim to identify the topology of the grid
by learning the matrix B based solely on the injection data
P without any knowledge of Θ. In other words, apart from
certain structures of B implied by the null space property in
(4) and the negative semi-definiteness B � 0 by definition in
(6), this is a completely blind estimation problem with respect
to B. Clearly, this is a challenging task which may not be
solvable. In the following, we first prove an important result
regarding the identifiability of the topology.

Theorem 1. Given the Laplacian matrix B of a general graph

G = {N , E}, then under the null space property (7) and B �
0, the matrix B cannot be uniquely unidentified using solely

injection data P in (9) satisfying Condition 1.

Proof: See Appendix A.

Although it is impossible to recover the exact Laplacian
matrix B using only power injection data, we prove in the
following theorem that the identified Laplacian matrix �B has
the same eigenvectors as the true Laplacian B.

Theorem 2. Given the Laplacian matrix B of a general graph

G = (N , E) and its eigenvalue decomposition B = UΣUT
,

then under the null space property (7) and B � 0, if the

injection data P in (9) are used, the Laplacian matrix �B =
U�ΣUT

is identifiable up to a scale in the eigenvalues �Σ =
DΣ (i.e., D is an arbitrary positive definite diagonal matrix).

Proof: See Appendix B.

It is asserted in Theorem 2 that the matrix B is always
ambiguous up to a diagonal scaling in the eigenvalues, which
is non-unique. Therefore, to better refine the estimate, other
constraints are needed. An important feature of the power grid
that can aid the identification is the sparsity of the graph G, as



studied in [24] and [25]. Given a graph G with |E| = E edges,
we have the following sparsity constraint on B below:

�vec(B)�0 ≤ 2E. (10)

However, imposing the sparsity constraints forces to solve
complex combinatorial searches. Therefore we relax the re-
quirement by choosing a sparsity-enhancing prior on the
elements in B, which is the Laplace distribution

P(B) =
1
2b

exp
�
−1

b
�vec(B)�1

�
(11)

with sparsity parameter b > 0.

B. Problem Formulation as Sparse Subspace Learning

By assuming the voltage phase angles Θ to be deterministic
unknowns, the unknown B and Θ can be jointly estimated in
the maximum a posteriori (MAP) framework by maximizing
the posterior probability

P(B|P;Θ) ∝ P(P|B;Θ)P(B) (12)

subject to the null space property in (7), the negative semi-
definiteness B � 0, and the slack reference of Θ in (8). Hence,
under the Gaussian noise assumption and the sparsity prior in
(11), the constrained MAP estimator is formulated as

�
�B, �Θ

�
= min

B,Θ
�P−BΘ�2F + µ �vec(B)�1 (13)

s.t. ΘT 1ref = θref

B1 = BT 1 = 0, BT = B, B � 0,

where µ = σ2/b is the sparsity regularization parameter.
Note that the sparsity regularization �vec(B)�1 helps further
resolve the ambiguity of the estimates {�B, �Θ} from (13) by
constraining the eigenvalue scaling �Σ.

The topology identification problem in (13) bears a cer-
tain resemblance to dictionary learning [26] with major dis-
tinctions. Typically, in such problems the excitation Θ is
given by a set of sparse vectors that are projected onto an
overcomplete dictionary B. The matrix B is normally non-
sparse and represents what is often called the dictionary (or
sensing matrix in the compressed sensing literature). In our
problem, instead, the system B is sparse, and it has additional
structural constraints (7). In contrast, the excitation matrix Θ
is generally overcomplete and closer to playing the role of the
unknown dictionary. The above issues make our problem more
challenging. Also, it is to be noted that (13) is non-convex,
and it is computationally prohibitive to solve for both B and
Θ jointly. Therefore, following the rationale of alternating
projections as commonly used in dictionary learning [26], we
switch between estimating Θ and B to update the input signals
Θ and the sparse subspace B iteratively.

C. Learning by Block Coordinate Descent (BCD)

Similar to the block coordinate descent approach used for
dictionary learning [26], we propose to decouple the problem
in (13) in a two-step manner with some initial guess on B0:

1) Phase updates:

Θk = min
Θ
�P−BkΘ�2F , s.t. ΘT 1ref = θref .

Algorithm 1 Learning Algorithm for Topology Identification
1: obtain data P in (9)
2: set k = 0 and initialize B0;
3: while k ≤ Kmax do
4: initialize B(0)

k = Bk−1

5: repeat
6: the i-th subgradient descents (15) and (16);
7: until i ≤ Imax or �Θ(i)

k −Θ(i−1)
k �F ≤ �

8: obtain Θk = Θ(i)
k ;

9: repeat
10: the i-th subgradient descents (20), (21) and (22);
11: until i ≤ Imax or �B(i)

k −B(i−1)
k �F ≤ �

12: obtain Bk = B(i)
k ;

13: if �Bk −Bk−1� ≤ � then
14: terminate while loop
15: end if
16: k = k + 1;
17: end while

2) Topology updates:

Bk = min
B
�P−BΘk�2F + µ �vec(B)�1

s.t. B1 = BT 1 = 0, BT = B, B � 0.

In this way, each update becomes a constrained convex opti-
mization problem, which can be solved efficiently by primal-
dual subgradient methods [27] specified below.

1) Phase Updates: Introducing the dual variables ξ ∈
RT×1

+ for the slack reference constraint for Θ, the Lagrangian
function of the k-th phase update optimization is obtained as

Lk(Θ, ξ) = �P−BkΘ�2F + ξT (ΘT 1ref − θref). (14)

Then starting with an initial Θ(0)
k and ξ(0)

k , the i-th primal-dual
subgradient updates for the k-th phase update are written as

Θ(i+1)
k = Θ(i)

k − αi
∂

∂Θ
Lk(Θ(i)

k , ξ(i)
k ) (15)

ξ(i+1)
k =

�
ξ(i)

k − αi
∂

∂ξ
Lk(Θ(i)

k , ξ(i)
k )

�+

, (16)

where the step-size satisfies
�∞

i=1 αi =∞ and
�∞

i=1 α2
i <∞,

and the subgradients are given as follows:
∂

∂Θ
Lk(Θ, ξ) = 2BT

k (BkΘ−P) + 1refξ
T (17)

∂

∂ξ
Lk(Θ, ξ) = ΘT 1ref − θref . (18)

2) Topology Updates: Similarly, introducing dual variables
ρ ∈ RN×1

+ and Λ ∈ RN×N
+ , the Lagrangian function of the

k-th topology update optimization is written as

Lk(B,Λ,ρ) = �P−BΘk�2F + µ �vec(B)�1 (19)
+ ρT (B1 + BT 1) + Tr

�
Λ(BT −B)

�

over the constraint set B � {B : B � 0}. For convenience,
we define the projection operator PB [·] onto the subspace B
by retaining the eigenvectors of a certain matrix corresponding
to the non-zero eigenvalues.
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Fig. 1. Recovered bB and the true B

Given the initial points ρ(0)
k and Λ(0)

k , the updates for the
k-th topology update optimization are thus obtained as

B(i+1)
k = PB

�
B(i)

k − βi
∂

∂B
Lk(B(i)

k ,Λ(i)
k ,ρ(i)

k )
�

(20)

Λ(i+1)
k =

�
Λ(i)

k − βi
∂

∂Λ
Lk(B(i)

k ,Λ(i)
k ,ρ(i)

k )
�+

(21)

ρ(i+1)
k =

�
ρ(i)

k − βi
∂

∂ρ
Lk(B(i)

k ,Λ(i)
k ,ρ(i)

k )
�+

, (22)

where the step-size satisfies
�∞

i=1 βi =∞ and
�∞

i=1 β2
i <∞.

The subgradients are given by
∂

∂B
Lk(B,Λ,ρ) = 2(BΘk −P)ΘT

k + (Λ−ΛT ) (23)

+ (ρ1T + 1ρT ) + µF(B) (24)
∂

∂Λ
Lk(B,Λ,ρ) = B−BT (25)

∂

∂ρ
Lk(B,Λ,ρ) = B1 + BT 1, (26)

where F(B) = ∂�vec(B)�1/∂B is the subgradient of �1 norm
with respect to B.

IV. SIMULATIONS

In this section, we illustrate the identification performance
of the grid topology using our proposed method. In the
simulations, we use the MATPOWER 4.0 test case IEEE-14
(N = 14) system. We take the load profile from the UK
National Grid [28] and scale the base load from MATPOWER
on load buses. Then the Optimal Power Flow (OPF) determines
the generation dispatch over this period using an AC model.
This gives us the true state θt and the injection data pt for
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Fig. 2. Principal eigenvectors of the identified matrix bB and the true B

t = 1, · · · , T , with T = 100 snapshots. To implement our
algorithm in Algorithm 1, we choose αi = βi = 0.1/i for the
phase and topology updates using the primal-dual subgradient
method with � = 10−6, Imax = 100 and Kmax = 100.

A. Recovery Performance

Since the weighted Laplacian matrix cannot be perfectly
recovered, the first point of interest is to examine how well it
captures the connectivity E and the relative weights Bnm on
the links {n, m} ∈ E of the underlying graph. In Fig. 1, we plot
the matrix �B using sparsity regularization µ = 10, 13 and 15
respectively, as two- dimensional functions with the elements
�Bnm as the intensity at location {n, m}. It can be seen from
the sparsity pattern and the image intensity that the graph
Laplacians can be identified quite accurately except for the
scale, which demonstrates that our algorithm can effectively
learn the grid topology by simply taking power injection data.

B. Subspace Identification Performance

Although the identified Laplacian �B is always ambiguous
with B in the eigenvalue scaling, the eigenvectors are uniquely
identifiable. Therefore, Fig. 2 demonstrates the identification
performance of our learning algorithm by comparing the
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Fig. 3. Centrality measures of the recovered graph associated with bB and
the true graph associated with B

principal eigenvectors {un}5
n=1 of �B and B. Based on Fig. 1,

only the results obtained with µ = 13 are presented here while
other cases are omitted because of similar performances.

The reason for showing the principal components is mainly
due to the fact that grid Laplacian has been shown in [25]
to have rapidly decaying eigenvalues and sparse eigenvectors,
and also due to space limitation. Therefore, if the principal
components are identified correctly, critical information on
the topology of the graph can be obtained accordingly. It
can be seen from Figs. 2(b) to 2(f) that our method is
effective and efficient in capturing the subspace of the graph
since the estimated eigenvectors almost overlap with the true
eigenvectors {±un}5

n=1. Last but not least, we also compare
the normalized eigenvalues of both matrices in Fig. 2(a), which
have been rescaled by the respective maximum eigenvalue. It
is clear that the recovered normalized eigenvalues follow a
decaying pattern similar to that of the true graph.

C. Properties of the Identified Graph

Apart from the graph pattern and the subspace identi-
fication performance, it is also interesting to examine how
the recovered graph retains some important graph properties.
As pointed out in [24], [25] and [15], a critical measure
in determining the risk of having cascading failures is the
centrality of the grid [15]. In particular, we examine the
weighted degree centrality

Cd(n) =
|Bnn|
N − 1

(27)

and the weighted eigenvector centrality of the grid

Cu(n) =
1

max(σ(n)
A )

A(n,:) [UA](:,1) , (28)

which is the n-th entry of the most significant eigenvector
of the weighted adjacency matrix A � B − diag(B) with
eigenvalue decomposition A = UAΣAUT

A. The degree cen-
trality represents the connectivity of a node to the rest of the
network and reflects the immediate chance for a node to exert
its influences on the rest of the network or to be exposed to
whatever is flowing through the network, while the eigenvector
centrality is a measure of the importance of a node in a network
according to its adjacency matrix.

In Fig. 3, we plot the centrality measures for the recovered
graph and the true graph. It can be seen that although there is

a scale difference, the relative scale on the centrality measures
are retained satisfactorily. Therefore, by acquiring the injection
data, we can identify the critical nodes in the power grid for
security purposes.

V. CONCLUSIONS

In this paper, we have proposed a learning algorithm for
blind topology identification of power grids. Rigorous analysis
has been presented on the identifiability of grid topology, and
the performance of our algorithm has been well illustrated in
simulations.

APPENDIX A
PROOF OF THEOREM 1

We prove our claim by contradiction. Assume that the
topology B can be uniquely identified from P. This implies
that for any B �= �B, the following always holds for any �Θ:

BΘ �= �B �Θ, (29)

which leads to
�
B �B

� �
Θ
− �Θ

�
�= 0. (30)

This is true for any �Θ only if the null space dimension of the
matrix [B �B] is less than the range space dimension of the
matrix [ΘT − �Θ

T
]T . It is well known that

νB � dim ker [B �B] = 2N − rank[B �B] (31)

and for any �Θ, from Condition 1 there is

νΘ � inf
eΘ

rank
�

Θ
− �Θ

�
= N, (32)

and therefore by the assumption imposed in (30) we have

νB < νΘ =⇒ rank[B �B] > 2N − νΘ ≥ N. (33)

Now, since both B and �B are both graph Laplacians and
satisfy the null space property in (7) and the negative semi-
definiteness of B, it is clear that

span(B), span(�B) ⊆ span
�
IN − 11T /N

�
(34)

which results in

rank[B �B] ≤ N − 1. (35)

This clearly contradicts the result rank[B �B] > N in (33)
derived from (30). Therefore, with only the null space property
in (7) and negative semi-definiteness, it is impossible to recover
B uniquely from the injection data P.

APPENDIX B
PROOF OF THEOREM 2

Suppose there exists another distinct pair �B �= B and �Θ �=
Θ that satisfies P = �B �Θ and therefore

BΘ = �B �Θ. (36)

By Condition 1, the matrix Θ is of full rank and therefore the
right pseudo-inverse exists, which gives

B = B̃ �ΘΘT
�
ΘΘT

�−1
. (37)



By right multiplying Θ on both sides, we have from (36) that

BΘ = B̃ �ΘΘT
�
ΘΘT

�−1
Θ = B̃ �Θ. (38)

The above equality on the right hand side is equivalent to

B̃
�

�Θ− �ΘΘT
�
ΘΘT

�−1
Θ

�
= 0. (39)

From the null space property (7) of �B, we can conclude that

�Θ
�
I−ΘT

�
ΘΘT

�−1
Θ

�
= 1cT , (40)

where c is an arbitrary constant vector that is not in the row
space of Θ (i.e., c /∈ span(ΘT )). It is to be noted that the right
hand side of �Θ is a projection onto the orthogonal subspace to
the row space of Θ. Therefore, it is clear that the row span of
Θ is orthogonal to 1cT and there exists a non-singular linear
transform T that relates Θ and �Θ as

�Θ = TΘ + 1cT . (41)

Substituting (41) back into (36), we have

BΘ = �B
�
TΘ + 1cT

�
= �BTΘ, (42)

which leads to
�
B− �BT

�
Θ = 0. (43)

Since Θ is of full rank by Condition 1, the equivalent condition
for (36) to hold is to have

B = �BT. (44)

By definition, B is symmetric and satisfies the null space
property (7), and hence the ambiguous solution of �B needs
to further satisfy

�BT = (�BT)T = TT �BT , T1 ∝ 1, TT 1 ∝ 1. (45)

A sufficient condition for the above equalities to hold is to
have T jointly diagonalizable with B = UΣUT using U

T = UD−1UT , (46)

where D = diag[d1, · · · , dN ] with dn > 0 for n = 1, · · · , N .
Therefore, the ambiguous solution �B has a special structure

�B = U�ΣUT , (47)

where �Σ = DΣ.
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