

AHEMS: Asynchronous Hardware-Enforced Memory Safety

Kuan-Yu Tseng, Dao Lu, Zbigniew Kalbarczyk, Ravishankar Iyer

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana, IL 61801, USA

mycallmax@gmail.com, {daolu1, kalbarcz, iyer}@illinois.edu

Abstract— This paper presents AHEMS (Asynchronous

Hardware-Enforced Memory Safety), an architectural support

for enforcing spatial and temporal memory safety to protect

against memory corruption attacks. We integrated AHEMS

with the Leon3 open-source processor and prototype on an

FPGA. In an evaluation of the detection coverage using 677

security test cases (including spatial and temporal memory

errors), selected from the Juliet Test Suite, AHEMS detected

all but one memory safety violation. The missed test case

involves overflow of a sub-object in a data structure whose

detection is not supported by the current prototype.

Performance assessment using the Olden benchmarks shows

an average 10.6% overhead, and negligible impact on the

processor-critical path (0.06% overhead) and power

consumption (0.5% overhead).

I. INTRODUCTION

Attackers break into computer systems by exploiting

security vulnerabilities due to low-level memory corruption

errors, e.g., buffer overflow or format strings. Memory

errors can be categorized into (i) spatial errors which occur

when a pointer is used to access memory beyond the bounds

of its intended referent (e.g., buffer overflows), and (ii)

temporal errors which occur when a pointer is used to

access an object that no longer exists (e.g., use-after-free or

dangling-pointer).

While many defensive techniques against memory

corruption attacks have been proposed, most of them are not

comprehensive enough. For example, protection schemes

that enforce code integrity only prevent code-injection

attacks. Defenses that guarantee control-flow integrity can

prevent many memory corruption attacks. Unfortunately,

they cannot detect non-control-data attacks that do not

divert the legal control flow [1].

In this paper, we introduce AHEMS (Asynchronous

Hardware-Enforced Memory Safety), which implements

asynchronous memory safety checking. Asynchronous

checking allows AHEMS to offload the bounds-checking

operations that occur on each pointer dereference to a

security engine, which is a customized hardware

implemented as a coprocessor. Since the security engine can

be decoupled from the processor chip, AHEMS can reduce

the complexity and resource overhead of the main

processor. AHEMS places a lightweight runtime monitor in

the pipeline of the main processor to facilitate notification of

the security engine about memory events (e.g., memory

load, store, allocation, and deallocation) and propagate the

metadata on each memory pointer. Unlike all other

approaches, AHEMS stores the metadata in dedicated

physical memory not visible to the main processor. That

ensures that the metadata cannot be tampered with by the

attacker. To the best of our knowledge, AHEMS is the first

hardware approach that allows completely asynchronous

runtime checking to ensure both spatial and temporal

memory safety with very low overhead. Evaluation of an

AHEMS prototype on benchmark programs shows an

average 10.6% runtime overhead. While the asynchronous

property of AHEMS may result in delayed detection of an

attack, we show that the detection latency is generally too

short to allow an attacker to launch an attack. Furthermore,

the latency can be reduced by increasing the size of the

FIFO queue that keeps the information on the memory

events.

II. RELATED WORK

In this section, we discuss software and hardware
approaches that have been proposed to enforce spatial and/or
temporal memory safety.

A. Fat-pointer Approaches
SafeC [2], Cyclone [3], CCured [4], and Fail-Safe C [5] use

the concept of a fat pointer for bound checking. A fat

pointer contains not only the address of its intended object

but also the base and the bound. It is an efficient data

structure that is used by type-safe languages, e.g., Java, to

perform bound checking. However, because the

representation of a pointer in the memory has changed, fat

pointer approaches are not source-compatible
1

 and not

binary-compatible
2
 with precompiled binaries.

B. Object-based Approaches
Object-based approaches maintain an object table that maps

an address range to an object. When a pointer is

dereferenced, the object table is used to determine the

intended target for the bound checking. J&K [6], CRED [7],

Mudflap [8], and SAFECode [9], BBC [10],

AddressSanitizer [11], and PAriCheck [12] are examples of

object-based approaches. The primary limitation of these

approaches is very high performance overhead. For

1 A source-incompatible approach requires manual changes to the source

code.
2 A binary-incompatible means that the protected code cannot interoperate
with unprotected code (e.g., precompiled third-party libraries).

Submitted for publication. Author copy - do not redistribute.

example, J&K has 5x to 6x overhead, while CRED has 11x

to 12x overhead (on Olden benchmarks). BBC, Address-

Sanitizer, and PAriCheck represent another class of object-

based approaches that manipulate the arrangement of

objects in the memory to improve efficiency. The change of

the memory layout makes protected code binary-

incompatible with unprotected code, e.g., precompiled

libraries. In general, while the object-based approaches

detect most spatial memory errors (except sub-object

overflows), they provide only limited protection for

temporal memory errors. For example, if the intended

referent of a pointer (p) is freed and subsequent allocation

reuses the same memory region as the freed object to create

an unrelated object, the access to the unrelated object using

p causes a temporal memory error that evades the detection

of object-based approaches.

C. Pointer-based Approaches
In contrast to object-based approaches, pointer-based

approaches (P&F [13], MSCC [14], SoftBound [15], CETS

[16], and MemSafe [17]) associate the base and the bound

metadata with the pointer instead of the object. Runtime

checks are performed only on pointer dereferences, because

an out-of-bounds pointer does not harm anything as long as

it is not dereferenced. While pointer-based approaches can

provide both spatial and temporal memory safety without

combining with other methods, their binary compatibility is

limited. Since pointer-based approaches need to propagate

the base and the bound metadata along with the pointer

arithmetic but the propagation of metadata is not performed

in the unprotected code, the metadata of a pointer may

become outdated after a function call to unprotected code.

In contrast, AHEMS provides better binary compatibility in

that the metadata can be updated even in the unprotected

code, because the propagation is handled by the hardware.

Furthermore, AHEMS can perform the bound checks on

pointer dereferences of pointers generated by protected code

and used in the unprotected code.

D. Hardware Approaches
SafeMem [18] utilizes the ECC bits existing in memory to

detect memory leaks and some classes of memory errors.

The advantage of SafeMem is that it does not require

installation of additional hardware. MemTracker [19] is a

hardware-programmable state machine residing in memory

that associates each byte of memory with a state and treats

each access to the memory as an event. Both SafeMem and

MemTracker fail to detect attacks that allow arbitrary

memory writes. Clause et al. [20] associate each pointer and

each byte of memory with a taint mark and only allow

pointers that have the same taint mark to access the

memory. Chuang et al. [21] accelerate the metadata lookup

of a pointer-based approach similar to SafeC to improve

performance overhead. Arora et al. [22] propose an

architectural support on embedded processors to reduce the

performance overhead of CCured. The two techniques in

[20] and [22] employ the fat-pointer approach, which makes

them not binary-compatible. SafeProc [23] extends the ISA

of a processor with safety instructions and adds architectural

support to the processor to detect memory errors. SafeProc

also proposes an optimization to delay memory error

detection whenever possible, which is similar to the

asynchronous property of AHEMS. However, the degree of

asynchrony in SafeProc is very limited compared to that of

AHEMS, because SafeProc cannot delay the detection if

dependency between instructions exists. HardBound [24] is

essentially a hardware version of SoftBound that enforces

spatial memory safety. Watchdog [25] improves HardBound

by implementing a hardware version of CETS that ensures

temporal memory safety to achieve temporal and spatial

memory safety when combined with HardBound. AHEMS

achieves the same level of memory safety and runtime

overhead as Watchdog while having additional advantages.

For example, AHEMS needs to widen the size of each

register by bits (where N is the number of registers in

a processor), while Watchdog needs to quintuple the size of

each register to keep its metadata. Not only is that a

prohibitively high hardware resource overhead to the on-

chip memory, but it is lethal to the critical path of the

processor. Besides, AHEMS has physical metadata

isolation, while Watchdog may suffer from metadata

tampering.

III. APPROACH OVERVIEW

Figure 1 illustrates the architecture of AHEMS. The

AHEMS framework consists of two major parts: (i) the

hardware responsible for the runtime checking of memory

safety and (ii) the source-code instrumentation responsible

for establishing the interface between the program and the

hardware.

Figure 1: AHEMS Architecture

A. Source Code Instrumentation
A program source code is instrumented with alloc(),

dealloc(), and subcreate() functions using the CIL

source-to-source compiler [26]. The purpose is to enable the

runtime notification of the hardware about memory

allocation events, memory deallocation events, and sub-

object creation, respectively (See Figure 2). To track the

birth and death of every memory reference, we instrumented

(i) the malloc() and free() functions for tracking

dynamically allocated references, (ii) local variables and

function parameters, (iii) global and static variables, (iv) the

sub-objects in a data structure, and (v) integer-to-pointer

casts. The instrumented code is compiled with the GCC

compiler to generate a binary executable.

1) malloc() and free()

AHEMS instruments the malloc() and free() functions

with alloc() and dealloc(), respectively (see Figure 3).

In that way, the hardware is informed about every memory

allocation and deallocation event.

2) Local Variables and Function Parameters

Function parameters are treated the same as local variables,

and we use local variables to represent both. In order to

track local variables, AHEMS (i) inserts an additional local

pointer ptr for each local array and each local variable

whose address is taken, (ii) inserts alloc() in the prologue

of the function to initialize ptr with base and bound, (iii)

replaces all uses of the local array with the added local

pointer that points to the local array, (iv) replaces each use

of a local variable with the added pointer that points to the

local variable, and (v) inserts dealloc() in the epilogue of

the function to mark ptr as dead. Note that AHEMS does

not track local variables whose addresses are not taken,

because their accesses are always memory-safe. Figure 4

shows an example of local variable instrumentation.

3) Global Variables and Static Variables

The tracking of global or static variables is similar to that of

local variables except for the insertion positions of alloc()

functions. There is no need to insert dealloc() functions.

4) Sub-objects in the Structure

AHEMS instruments a sub-object of a structure with a

subcreate() function when the sub-object is an array or

the address of the sub-object is taken (thus associating the

sub-object with a sub-base and a sub-bound). The lifetime

of a sub-object is the same as that of its parent object, so

dealloc() is not needed for sub-objects. Figure 5 shows

an example program before and after the sub-object

instrumentation.

5) Integer-to-Pointer Casts

In order to allow integer-to-pointer casts, AHEMS allows

programmers to manually insert the alloc() function to

notify AHEMS that an integer value represents a valid

address with a programmer-specified base and bound.

A. Hardware Architecture
There are three main hardware components: main

processor, runtime monitor, and security engine. The main

processor is responsible for program execution. The runtime

monitor (embedded in the main processor) collects memory

events (memory loads, stores, allocations, deallocations, and

sub-object creations) and sends these events to the security

engine for memory safety checking. When a violation of

memory safety is detected, the security engine raises an

exception, which is communicated to the main processor

either to stop the program or invoke an exception handler.

The main processor does not need to wait for any

information from the security engine except the exceptions,

which are rare during normal (i.e., error-free) execution.

// return the new pointer to an object associated

// with (base, bound)

void* alloc(void *base, size_t bound);

// mark the reference as a dead object

void dealloc(void *reference);

// Create a pointer to an sub-object associated

// with (subbase, subbound)

void* subcreate(void *subbase, size_t subbound);

Figure 2: Definition of Three Instrumentation Functions

void *malloc(size_t size) {

 // ... (omitted)

 // compute the return value ret_val

 return alloc(ret_val, size);

}

void free(*ptr) {

 // ... (omitted)

 dealloc(ptr);

}

Figure 3: Instrumentation of malloc() and free()

void foo(int in1) {

 int lvar = 5, *ptr, *ptr2;

 int lary[100];

 ptr = &lvar;

 ptr2 = &in1;

 sum = lary[5];

 // use sum and ptr

}

(a) Before Instrumentation

void foo(int in1) {

 int lvar = 5, *ptr;

 int lary[100];

 int lptr1 = alloc(&lvar, 4);

 int lptr2 = alloc(lary, 40);

 int lptr3 = alloc(&in1, 4);

 ptr = lptr1;

 ptr2 = lptr3;

 sum = lptr2[5];

 // use sum and ptr

}

(b) After Instrumentation

Figure 4: An Example of Local Variable Instrumentation

struct Node {

 int nm[10];

 int *ptr;

 int value;

};

void foo() {

 struct Node n;

 n.nm[5] = 3;

}

(a) Before Instrumentation

struct Node {

 int nm[10];

 int *ptr;

 int value;

};

void foo() {

 struct Node n;

 struct Node *np;

 int (*nmp)[10];

 np = alloc(&n, sizeof(n));

 nmp = subcreate(&np->nm,40);

 (*nmp)[5] = 3;

}

(b) After Instrumentation
Figure 5: An Example of Sub-object Instrumentation

Figure 6: Relation among Register Values, TIDs, and OIDs

1) New machine instructions

To implement the alloc(), dealloc(), and

subcreate() functions needed to track pointers, AHEMS

adds three new machine instructions, alloc, dealloc, and

subcreate, to the main processor.

2) Temporary Identifier and Object Identifier

Each register in the main processor is associated with a

temporary identifier (TID). If a register represents a pointer

in the program, its TID is used to identify the object to

which the register is pointing. Specifically, the security

engine uses the TID to look up the object identifier (OID),

which is unique for an object, in the security engine’s

lookup table, TID2OID. Figure 6 illustrates the

relationship among the register values, the TIDs, and the

OIDs. If two registers point to different objects, they have

different OIDs in the TID2OID table. Conversely, if two

registers point to the same object, they may have different

TIDs, but they have the same OID even if their offsets into

the object are different. For example in Figure 6, registers

%g1 and %g2 point to different offsets of the same object

with OID = 15; register %g3 points to a different object

with OID = 7. Note that although %g1 and %g2 have

different TIDs, they are linked to the same OID in the

TID2OID table. When a register is used as an address for a

load or store instruction, the security engine can find the

object’s (base, bound) to check whether the pointer is

within legal range by going through the lookup process

tidoid(base, bound).

3) TID and OID Generation and Propagation Rules

For each of the six operations in the main processor

(memory allocations/deallocations/loads/stores, pointer

arithmetic, and sub-object creations), additional actions

need to be executed along with the original operation to

maintain the relationship between OID and TID and to

check memory safety. Table I summarizes those actions and

their actors. We describe each of the actions in detail below.

Memory allocation (see “alloc Instruction” in Table I).

When an object (or a region of memory) is allocated, alloc

is executed (i) to associate the pointer pointing to the object

with a new TID (Step 1 in Table I); (ii) to notify the security

engine to assign a new OID to that object and map the new

TID to the new OID in the TID2OID table (Step 2 in Table

I); and (iii) to associate the (base, bound, NOPARENT)

information of the object with the OID in the

OID2BaseBound table (where NOPARENT means that this

object is not a sub-object). These actions provide the mother

pointer
3
 that points to an object with a new TID. The

security engine can use this TID to look up the status of an

object using the TID2OID and OID2BaseBound tables

when the pointer is dereferenced.

3
 The pointer obtained at the time memory was allocated for an object.

Pointer arithmetic (see “Pointer Arithmetic” in Table I).

To ensure that each pointer is associated with the correct

object, AHEMS needs to propagate the TID when the

pointer arithmetic is performed. For example, if the

instruction “ADD rd, rs, imm” is performed (i.e., rd =

rs + imm) and rs represents a pointer to an object, the

destination register rd should also point to the same object

as rs. Hence, the TID of rs should be copied to that of rd.

Since source code instrumentation enforces the requirement

that all subsequent pointers to an object be derived from the

mother pointer to the object, every subsequent access to the

object can always use the propagated TID to look up the

OID in the TID2OID table to check the object’s liveness and

boundary.

TABLE I: TID AND OID GENERATION AND PROPAGATION RULES

alloc Instruction Actor

ALLOC rd, base, bound Main Processor

1. rd.tid = tid = tid_gen() Runtime Monitor

2. TID2OID[tid] = oid = oid_gen()

3. OID2BaseBound[oid] = (base, bound, NOPARENT)
Security Engine

Pointer Arithmetic Actor

ADD rd, rs1, rs2 Main Processor

if rs1.tid != INVALID then rd.tid = rs1.tid

else rd.tid = rs2.tid
Runtime Monitor

ADD rd, rs1, imm Main Processor

rd.tid = rs1.tid Runtime Monitor

MOV rd, rs Main Processor

rd.tid = rs1.tid Runtime Monitor

dealloc Instruction Actor

DEALLOC rd Main Processor

1. oid = TID2OID[tid]

2. OID2BaseBound[oid] = INVALID

3. TID2OID[tid] = INVALID

Security Engine

subcreate Instruction Actor

SUBCREATE rd, subbase, subbound Main Processor

1. rd.tid = tid = tid_gen() Runtime Monitor

2. parent_oid = TID2OID[subbase.tid]

3. TID2OID[tid] = oid = oid_gen()

4. OID2BaseBound[oid]=(subbase,subbound,parent_oid)

Security Engine

store Instruction Actor

STORE [addr], rs Main Processor

1. addr_oid = TID2OID[addr.tid]

2. (base,bound,parent_oid)= OID2BaseBound[addr_oid]

3. if (base,bound,parent_oid) = INVALID

 then raise exceptions

4. if (parent_oid != NOPARENT and

 OID2BaseBound[parent_oid]==INVALID)

 then raise exceptions

5. if (addr < base) or addr > (base + bound)

 then raise exceptions

6. MEM2OID[addr] = TID2OID[rs.tid]

Security Engine

load Instruction Actor

LOAD rd, [addr] Main Processor

1. rd.tid = tid_gen() Runtime Monitor

2. addr_oid = TID2OID[addr.tid]

3. (base,bound,parent_oid)= OID2BaseBound[addr_oid]

4. if (parent_oid != NOPARENT and

 OID2BaseBound[parent_oid] == INVALID)

 then raise exceptions

5. if (base, bound) = INVALID

 then raise exceptions

6. if (addr < base) or addr > (base + bound)

 then raise exceptions

7. TID2OID[rd.tid] = MEM2OID[addr]

Security Engine

Memory deallocation (see “dealloc Instruction” in Table

I). When an object is freed, dealloc is executed to

invalidate the object so that any subsequent access to the

object triggers an alarm. Specifically, dealloc notifies the

security engine to mark TID2OID[tid] and

OID2BaseBound[oid] entries as invalid.

Sub-object creation (see “subcreate Instruction” in

Table I). Creation of a pointer to a sub-object is similar to

memory allocation except that the sub-object should also be

associated with the OID of its parent object (steps 2 and 4 in

Table I) so that the security engine can use the OID of its

parent object (denoted by parent_oid) to determine the

lifetime of the sub-object on loads and stores by checking

whether OID2BaseBound[parent_oid] is INVALID.

Therefore, the OID of the sub-object is associated with

(base, bound, parent_oid) instead of (base,

bound, NOPARENT) in the OID2BaseBound table.

Store (see “store Instruction” in Table I). Two additional

actions are required along with a store: (i) checking the

liveness and the boundary of the accessed object, and (ii)

mapping in the MEM2OID table the memory address (addr)

to the OID of the object to which the register rs points.

For the first action, the information on the accessed object is

found through the following lookup process: addr.tid 

oid  (base, bound) (steps 1 and 2 in Table I). Then

the validity of (base, bound, parent_oid) is checked

to see whether the object is still live (steps 3 and 4 in Table

I). Finally, addr is compared with the (base, bound) to

see whether the memory address is within the range of the

object (step 5 in Table I). If the object is not live or the

addr is out of bounds, the security engine raises an

exception. For the latter action (step 6 in Table I), the

MEM2OID table allows the security engine to recover the

mapping between TID and OID when the register value

being stored in the memory is loaded back to the register.

(See the next paragraph for details.)

Load (see “load Instruction” in Table I). Actions needed

along with load involve checking the liveness and

boundary of the accessed object in the same way as store

does. In addition, two other actions are performed: (i)

association of the destination register (rd) with a new TID

(step 1 in Table I) and (ii) association of the new TID with

the OID of the pointer stored at the memory address addr

(step 7 in Table I). The load instruction loads the pointer

stored at addr into the destination register (rd). Those two

actions recover the association between the stored pointer

and the object to which the stored pointer points. That way

AHEMS keeps track of a pointer even if the pointer is stored

in the memory and loaded back for later use.

IV. IMPLEMENTATION

Figure 7 illustrates the implementation of AHEMS on top of

the open-source Leon3 architecture [27]. Leon3 is a 32-bit

processor compliant with the SPARC V8 instruction set.

The runtime monitor is embedded in the main processor to

generate and propagate the TID. It also sends the memory

events to the security engine via a FIFO buffer with

configurable size. The security engine maintains the

metadata, checks memory safety violation, and raises an

exception to notify the runtime monitor about any violation.

Figure 7: AHEMS on Leon 3 Architecture

Main Processor. When pointer arithmetic such as rd = rs

+ 8 is executed, the TID of rs needs to be copied to the

TID of rd (rd and rs are destination and source registers,

respectively). To support TID propagation, each register in

the main processor is widened by bits to record the

associated TID (N is the total number of registers).

Accordingly, the ALU of the Leon3 processor and the

instructions used for pointer arithmetic are also changed.

We modified the Leon3 processor to treat cpop2 with

opc=0x01, and opc=0x02, opc=0x03 as alloc,

dealloc, and subcreate instructions, respectively.

Normally the Leon3 processor treats cpop2 as a nop

instruction. Note that our prototype does not support

subcreate.

Runtime Monitor. The runtime monitor is responsible for

TID generation and data transmission to the security engine.

A new TID is generated and associated with the destination

register when a load or alloc instruction is executed. The

Leon3 processor is connected to the security engine through

a FIFO with configurable size. The size of the FIFO affects

the detection latency of the memory safety violations. Each

entry of the FIFO contains the metadata of a memory event.

Figure 8 shows the FIFO entry format for memory events,

where newtid is the TID generated by the TID Generator;

rs.tid is the TID associated with the source register of the

store instruction; addr is the address value of the load or

store instruction; addr.tid is the TID associated with

the address; PC is the address of the instruction.

Security Engine. The security engine is implemented as a

state machine responsible for checking memory safety and

maintaining the consistency of the TID2OID,

OID2BaseBound, and MEM2OID tables. All three tables

reside in the dedicated memory of the security engine. The

TID2OID contains 136 entries (the number of registers in

the main processor). Each entry is 32 bits wide and stores an

OID. The OID is directly used as the address to locate the

base and bound. Each entry of the OID2BaseBound table

is 8 bytes (4 bytes each for the base and bound). The MSB

(Most Significant Bit) of the bound is used to indicate

whether an entry is valid. Each entry of the MEM2OID table

stores an OID (32 bits wide).

The actions executed along with each instruction (i.e.,

alloc, dealloc, load, or store) to complete the

memory safety checks are implemented by hardware state

machines in the security engine. Some actions require

memory access, while others only need register file access.

Table II summarizes the execution time and memory

overhead of actions performed for each instruction.

Figure 8: Format of FIFO Entry for Memory Events.

TABLE II: TIME OF ACTIONS PERFORMED FOR EACH INSTRUCTION

Instruction Type Execution Time

load instruction 5 cycles + 2 memory accesses

store instruction 4 cycles + 2 memory accesses

alloc instruction 3 cycles + 1 memory accesses

dealloc instruction 4 cycles + 2 memory accesses

V. EXPERIMENTAL EVALUATION

We synthesized the AHEMS prototype and ran it on an

FPGA board Xilinx Virtex-5 FXT ML510 with 80 MHz

CPU frequency and two DIMMs of 512 MB DDR2

memory. Note that our prototype does not instrument global

or static variables and does not detect sub-object overflows.

Detection Coverage. To evaluate the detection coverage of

the AHEMS prototype, we employed the Juliet Test Suite

version 1.2 provided by NIST [28]. The Test Suite contains

a total of 61,387 test cases from 118 different CWEs

(Common Weakness Enumerations) for C/C++. We

assessed the AHEMS prototype by running representative

test CWEs cases that can potentially lead to memory

corruption attacks. In particular, the selected CWEs assess

defenses against stack/heap-based overflow, integer

overflow, use-after-free, double-free, and dangling pointers.

We have tested a total of 677 test cases and only one case

went undetected (see Table III). The undetected test case

overflows a sub-object in a structure to overwrite the pointer

in the next field of the structure. Although sub-object

overflow detection is currently not supported by our

AHEMS prototype that is not a limitation of the AHEMS

architecture.

Runtime Overhead on the Olden Benchmark. We

measured the runtime performance overhead of our AHEMS

prototype on Olden benchmarks [29]. The benchmarks

contain pointer-intensive programs with an average of 711

LOCs (Lines of Code), and many researchers have used

Olden benchmarks for performance evaluation (e.g., [9]

[24]). Figure 9 shows the runtime overhead of AHEMS on

Olden benchmarks. AHEMS exhibits, on average, 10.6%

runtime overhead (with a maximum of 38.4%). For most of

the programs in Olden, the security engine overlaps memory

safety checking with main processor execution time very

well, so the runtime overhead is low. However, for

programs that are memory-intensive, such as bisort, the

security engine may not have enough time to perform

memory safety checking. The main processor stalls waiting

for the security engine, because the consumption rate of

memory events (from the FIFO buffer) by the security

engine is lower than the production rate of memory events

by the main processor.

TABLE III: CWES FROM JULIET TEST SUITE TESTED ON AHEMS

Spatial Memory Errors

CWE No. Description Tested Detected

CWE121 Stack-based Buffer Overflow 209 208

CWE122 Heap-based Buffer Overflow 18 18

CWE124 Buffer Underwrite 102 102

CWE126 Buffer Overread 145 145

CWE127 Buffer Underread 33 33

CWE588 Attempt to Access Child of Non-
structure Pointer

34 34

CWE680 Int. overflow to Buffer Overflow 38 38

CWE761 Free Ptr Not at Start of Buffer 38 38

Subtotal 617 616

Temporal Memory Errors

CWE No. Description Tested Detected

CWE415 Double-free 38 38

CWE416 Use-after-free 20 20

CWE562 Return of Stack Variable Address 2 2

Subtotal 60 60

Total 677 676

Figure 9: AHEMS Runtime Overhead

Performance Comparison with Other Approaches. In order

to compare AHEMS with state-of-the-art memory safety

approaches, we ran the following four approaches on Olden

benchmarks: Mudflap [8], Softbound+CETS [15] [16],

SAFECode [9], and AddressSanitizer [11]. We chose to run

the measurements on an x86 Linux machine because (i) that

is the primary platform for software-based approaches, and

(ii) most of these approaches are not stable and not fully

optimized for the SPARC platform. Consequently, testing

those methods on the SPARC platform could potentially

bias the results to our advantage. In Table IV, the runtime

overhead of the AHEMS prototype is compared with the

other four approaches. It can be seen that the runtime

overhead of AHEMS is more than an order of magnitude

lower than that of any of the other approaches. AHEMS has

an average of 10.6% overhead, while Mudflap,

Softbound+CETS, SAFECode, and AddressSanitizer have

17,420%, 381%, 340%, and 144% overhead, respectively.

TABLE IV: COMPARISON OF RUNTIME OVERHEAD

Programs AHEMS Mudflap Softbound+CETS SAFECode AddressSanitizer

Bh 0.2% 13655.2% Compiler error Runtime error 41.9%

bisort 38.4% 3114% 341.1% 154.3% 74.7%

em3d 10.5% 705.0% 473.0% 192.1% 89.5%

health 17% 13343.9% 737.8% 943.2% 361.5%

Mst 4.3% 1169.2% 395.1% 644.1% 92.2%

perimeter 22.2% 32317.8% 443.1% 212.7% 142.8%

power 0.0% 263.9% 1.2% 1.0% 2.7%

treeadd 8.6% 106008% 448.1% 518.8% 398.7%

tsp 0.0% 1404.9% 206.9% 57.5% 76.8%

voronoi 4.6% 2224.2% False alarm Runtime error 156.5%

Average 10.6% 17420% 381% 340% 144%

For hardware approaches, Arora [22] reports 10% and 100%

overhead on em3d and health, respectively. That is higher

than the AHEMS overhead corresponding to those two

programs. SafeProc [23] achieves 9% overhead on average,

which is slightly lower than AHEMS’s overhead. However,

it requires nontrivial source code modification, which may

impede its deployment. Hardbound [24] has an average of

9% overhead; however it only enforces spatial memory

safety. Watchdog [25] reports an average runtime overhead

of 24% on 20 SPEC benchmarks. SafeMem [18] has 6.3%

overhead on average on nonstandard benchmarks, and

MemTracker [19] has 2.7% on SPEC benchmarks.

However, their memory safety protection is less

comprehensive than that of AHEMS. For example,

SafeMem does not detect attacks that allow arbitrary

memory writes, while MemTracker fails to detect the buffer

overflow that overwrites decision-making variables on the

stack to launch non-control data attacks.

Critical Path. We synthesized the Leon3 system with and

without AHEMS to compare the post-place-and-route static

timings using the Xilinx ISE tool. The delays on the critical

path with and without AHEMS were 12.47 ns (equivalent to

80.192 MHz) and 12.463 ns (equivalent 80.238 MHz),

respectively. AHEMS has a negligible (0.06%) impact on

the critical path of the Leon3 system.

Hardware Resource Overhead and Power Consumption.

We estimated the hardware resource and power

consumption overhead of the AHEMS prototype by

comparing the results from the Leon3 system synthesized

with and without AHEMS. AHEMS adds about 13.8%

overhead in terms of occupied FPGA slices. In terms of

power consumption, AHEMS has 94.3% and 22.3%

overhead on signals and logic, respectively. Those estimates

were obtained using the Xilinx XPower Analyzer. However,

the total power consumption overhead is only 0.5%, because

signals and logic contribute to a very small portion of the

total power consumption.

Detection Latency. The downside of an asynchronous

approach is that detection of memory violations may be

delayed. Increasing the size of the FIFO buffer used to keep

the data on memory events improves the performance of

AHEMS. We estimated the minimum (empty FIFO) and

maximum (full FIFO) detection latency of AHEMS. Since

load and store instructions occupy most of the FIFO entries

(alloc and dealloc are much less frequent), we used

the average time needed to process load and store

instructions to approximate the detection latency.

Specifically, we calculated the detection latency of AHEMS

on the Intel Core 2 Duo E6400 processor with a 2.13 GHz

clock. The specifications of the system, including IPC

(instructions per cycle) and cache miss rate, are listed in

Table V. Using the values in Table V and Table II, we get:
 ()
 ()

 ()

To launch an attack, an attacker has an average time

window corresponding to the execution of 16 instructions

and 16,817 instructions when the FIFO is empty and when

the FIFO is full, respectively. It takes 7.66 μs to execute

16,817 instructions, which is too short to launch an attack in

practice, even if it is fully automated. For example, a call to

a libc function system(“ ”)with an empty string as a

command takes more than 1 ms on a machine with the Intel

Core i5-3470 3.2 GHz CPU. That means that a shell cannot

be launched within 7.66 μs. More importantly, the FIFO

size is configurable, and system designers can adjust the

size of the FIFO based on the tradeoff between performance

and detection latency.

TABLE V: SPECIFICATIONS OF AN INTEL CORE 2 PROCESSOR-BASED

SYSTEM RUNNING SPEC2006 BENCHMARK

Attribute Value

Memory 2GB (1GB*2) DDR2 533MHz

L1/L2 Cache Hit Time 3 cycles/12 cycles

L2 Cache Miss Penalty 165 cycles

IPC4 0.97

L1/L2 Miss Rate 2.25%/0.41%

AHEMS FIFO Size 1024 entries * 16 bytes/entry

VI. CONCLUSIONS

This paper presents AHEMS, an architectural support for

asynchronous checking to ensure both spatial and temporal

memory safety. Evaluation of the prototype AHEMS

implementation shows an average 10.6% overhead on Olden

benchmarks, and negligible impact on the processor’s

critical path (0.06% overhead) and power consumption

(0.5% overhead).

4 We use SPEC2006 benchmarks as the representative programs to
approximate the IPC and cache miss rates of real-world programs.

VII. ACKNOWLEDGMENTS
This work was supported in part by the Department of

Energy under Award Number DE-OE0000097, by the Air

Force Research Laboratory and the Air Force Office of

Scientific Research under agreement No. FA8750-11-2-

0084, and the Defense Threat Reduction Agency under

award number HDTRA1-11-1-0008. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author and do not necessarily

reflect the views of the sponsoring organizations.

REFERENCES
[1] S. Chen, X. Jun, E. Sezer, P. Gauriar and R. Iyer, “Non-

control-data attacks are realistic threats,” in USENIX

SecuritySymposium, 2005.

[2] T. M. Austin, S. E. Breach and G. S. Sohi, “Efficient

detection of all pointer and array access errors,” in Proc. of

the ACM SIGPLAN Conf. on Programming Language Design

and Implementation, 1994.

[3] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney

and Y. Wang, “Cyclone: a safe dialect of C,” in Proc. of the

General Track of the USENIX Annual Technical Conf., 2002.

[4] G. C. Necula, J. Condit, M. Harren, S. McPeak and W.

Weimer, “CCured: type-safe retrofitting of legacy software,”

ACM Trans. on Prog. Lang. and Sys., vol. 27, no. 3, 2005.

[5] Y. Oiwa, “Implementation of the memory-safe full ANSI-C

compiler,” in Proc. of the 2009 ACM Conf. on Prog. Lang.

Design and Impl., 2009.

[6] R. W. M. Jones, P. H. J. Kelly, “Backwards-compatible

bounds checking for arrays and pointers in C programs,” in

Third Int'l Workshop on Automated Debugging, 1997.

[7] O. Ruwase and M. S. Lam, “A practical dynamic buffer

overflow detector,” in Proc. of the 11th Net. and Dist. Sys.

Sec. Symp., 2004.

[8] F. C. Eigler, “Mudflap: pointer use checking for C/C++,” in

GCC Developer Summit, 2003.

[9] D. Dhurjati and V. Adve, “Backwards-compatible array

bounds checking for C with very low overhead,” in Proc. of

the Int'l Conf. on Software Engr., 2006.

[10] P. Akritidis, M. Costa, M. Castro and S. Hand, “Baggy

bounds checking: an efficient and backwards-compatible

defense against out-of-bounds errors,” in Proc. of the 18th

Conf. on USENIX Sec. Symp., 2009.

[11] K. Serebryany, D. Bruening, A. Potapenko and D. Vyukov,

“AddressSanitizer: a fast address sanity checker,” in Proc. of

the USENIX Annual Technical Conf., 2012.

[12] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F.

Piessens and W. Joosen, “PAriCheck: an efficient pointer

arithmetic checker for C programs,” in Proc. of the 5th ACM

Symp. on Info., Comput. and Comm. Sec., 2010.

[13] H. Patil and C. Fischer, “Low-cost, concurrent checking of

pointer and array accesses in C,” Softw. Pract. Exper., 27(1),

1997.

[14] W. Xu, D. C. DuVarney and R. Sekar, “An efficient and

backwards-compatible transformation to ensure memory

safety of C programs,” in Proc. of the 12th ACM SIGSOFT

Int'l Symp. on Foundations of Software Engr., 2004.

[15] S. Nagarakatte, J. Zhao, M. Martin and S. Zdancewic,

“SoftBound: highly compatible and complete spatial memory

safety for c,” in Proc. of the ACM Conf. on Prog. Lang.

Design and Impl., 2009.

[16] S. Nagarakatte, J. Zhao, M. Martin and S. Zdancewic, “CETS:

compiler enforced temporal safety for C,” in Proc. of the Int'l

Symp. on Memory Management, 2010.

[17] M. S. Simpson and R. K. Barua, “MemSafe: ensuring the

spatial and temporal memory safety of C at runtime,” Softw.

Pract. Exper., 43(1), 2013.

[18] F. Qin, S. Lu and Y. Zhou, “SafeMem: exploiting ECC-

memory for detecting memory leaks and memory corruption

during production runs,” in 11th Int'l Symp. on High-Perf.

Comput. Archit., 2005.

[19] G. Venkataramani, I. Doudalis, Y. Solihin and M. Prvulovic,

“MemTracker: An accelerator for memory debugging and

monitoring,” ACM Trans. Archit. Code Optim., 6(2), 2009.

[20] J. Clause, I. Doudalis, A. Orso and M. Prvulovic, “Effective

memory protection using dynamic tainting,” in Proc. of the

22nd Int'l Conf. on Automated Software Engr., 2007.

[21] W. Chuang, S. Narayanasamy and B. Calder, “Accelerating

Meta Data Checks for Software Correctness and Security,”

Journal of Instruction-Level Parallism, vol. 9, 2007.

[22] D. Arora, A. Raghunathan, S. Ravi and N. K. Jha,

“Architectural support for safe software execution on

embedded processors,” in Proc. of the 4th Int'l Conf. on

Hardware/Software Codesign and System Synthesis, 2006.

[23] S. Ghose, L. Gilgeous, P. Dudnik, A. Aggarwal and C.

Waxman, “Architectural support for low overhead detection

of memory violations,” in Proc. of the Conf. on Design, Auto.

and Test in Europe, 2009.

[24] J. Devietti, C. Blundell, M. M. K. Martin and S. Zdancewic,

“Hardbound: architectural support for spatial safety of the C

programming language,” in Proc. of the 13th Int'l Conf on

Archit. Support for Prog. Lang. and Operating Sys., 2008.

[25] S. Nagarakatte, M. Martin and S. Zdancewic, “Watchdog:

hardware for safe and secure manual memory management

and full memory safety,” in Proc. of Int'l Symp. on Comput.

Archit., 2012.

[26] G. C. Necula, S. McPeak, S. P. Rahul and W. Weimer, “CIL:

Intermediate language and tools for analysis and

transformation of C programs,” in Proc. of the 11th Int'l Conf.

on Compiler Construction, 2002.

[27] Aeroflex Gaisler AB, Leon3 Processor.

[28] NIST, “Juliet Test Suite for C/C++”.

[29] M. C. Carlisle, “Olden: parallelizing programs with dynamic

data structures on distributed-memory machines,” PhD

Thesis, Princeton University Department of Computer

Science, June 1996.

