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Abstract— This paper presents AHEMS (Asynchronous 

Hardware-Enforced Memory Safety), an architectural support 

for enforcing spatial and temporal memory safety to protect 

against memory corruption attacks. We integrated AHEMS 

with the Leon3 open-source processor and prototype on an 

FPGA. In an evaluation of the detection coverage using 677 

security test cases (including spatial and temporal memory 

errors), selected from the Juliet Test Suite, AHEMS detected 

all but one memory safety violation. The missed test case 

involves overflow of a sub-object in a data structure whose 

detection is not supported by the current prototype. 

Performance assessment using the Olden benchmarks shows 

an average 10.6% overhead, and negligible impact on the 

processor-critical path (0.06% overhead) and power 

consumption (0.5% overhead). 

I. INTRODUCTION 

Attackers break into computer systems by exploiting 

security vulnerabilities due to low-level memory corruption 

errors, e.g., buffer overflow or format strings. Memory 

errors can be categorized into (i) spatial errors which occur 

when a pointer is used to access memory beyond the bounds 

of its intended referent (e.g., buffer overflows), and (ii) 

temporal errors which occur when a pointer is used to 

access an object that no longer exists (e.g., use-after-free or 

dangling-pointer).  

While many defensive techniques against memory 

corruption attacks have been proposed, most of them are not 

comprehensive enough. For example, protection schemes 

that enforce code integrity only prevent code-injection 

attacks. Defenses that guarantee control-flow integrity can 

prevent many memory corruption attacks. Unfortunately, 

they cannot detect non-control-data attacks that do not 

divert the legal control flow [1].  

In this paper, we introduce AHEMS (Asynchronous 

Hardware-Enforced Memory Safety), which implements 

asynchronous memory safety checking. Asynchronous 

checking allows AHEMS to offload the bounds-checking 

operations that occur on each pointer dereference to a 

security engine, which is a customized hardware 

implemented as a coprocessor. Since the security engine can 

be decoupled from the processor chip, AHEMS can reduce 

the complexity and resource overhead of the main 

processor. AHEMS places a lightweight runtime monitor in 

the pipeline of the main processor to facilitate notification of 

the security engine about memory events (e.g., memory 

load, store, allocation, and deallocation) and propagate the 

metadata on each memory pointer. Unlike all other 

approaches, AHEMS stores the metadata in dedicated 

physical memory not visible to the main processor. That 

ensures that the metadata cannot be tampered with by the 

attacker. To the best of our knowledge, AHEMS is the first 

hardware approach that allows completely asynchronous 

runtime checking to ensure both spatial and temporal 

memory safety with very low overhead. Evaluation of an 

AHEMS prototype on benchmark programs shows an 

average 10.6% runtime overhead. While the asynchronous 

property of AHEMS may result in delayed detection of an 

attack, we show that the detection latency is generally too 

short to allow an attacker to launch an attack. Furthermore, 

the latency can be reduced by increasing the size of the 

FIFO queue that keeps the information on the memory 

events. 

II. RELATED WORK 

In this section, we discuss software and hardware 
approaches that have been proposed to enforce spatial and/or 
temporal memory safety. 

A. Fat-pointer Approaches 
SafeC [2], Cyclone [3], CCured [4], and Fail-Safe C [5] use 

the concept of a fat pointer for bound checking. A fat 

pointer contains not only the address of its intended object 

but also the base and the bound. It is an efficient data 

structure that is used by type-safe languages, e.g., Java, to 

perform bound checking. However, because the 

representation of a pointer in the memory has changed, fat 

pointer approaches are not source-compatible
1

 and not 

binary-compatible
2
 with precompiled binaries. 

B. Object-based Approaches 
Object-based approaches maintain an object table that maps 

an address range to an object. When a pointer is 

dereferenced, the object table is used to determine the 

intended target for the bound checking. J&K [6], CRED [7], 

Mudflap [8], and SAFECode [9], BBC [10], 

AddressSanitizer [11], and PAriCheck [12] are examples of 

object-based approaches. The primary limitation of these 

approaches is very high performance overhead. For 

                                                           
1 A source-incompatible approach requires manual changes to the source 

code. 
2 A binary-incompatible means that the protected code cannot interoperate 
with unprotected code (e.g., precompiled third-party libraries). 
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example, J&K has 5x to 6x overhead, while CRED has 11x 

to 12x overhead (on Olden benchmarks). BBC, Address-

Sanitizer, and PAriCheck represent another class of object-

based approaches that manipulate the arrangement of 

objects in the memory to improve efficiency. The change of 

the memory layout makes protected code binary-

incompatible with unprotected code, e.g., precompiled 

libraries. In general, while the object-based approaches 

detect most spatial memory errors (except sub-object 

overflows), they provide only limited protection for 

temporal memory errors. For example, if the intended 

referent of a pointer (p) is freed and subsequent allocation 

reuses the same memory region as the freed object to create 

an unrelated object, the access to the unrelated object using 

p causes a temporal memory error that evades the detection 

of object-based approaches. 

C. Pointer-based Approaches 
In contrast to object-based approaches, pointer-based 

approaches (P&F [13], MSCC [14], SoftBound [15], CETS 

[16], and MemSafe [17]) associate the base and the bound 

metadata with the pointer instead of the object. Runtime 

checks are performed only on pointer dereferences, because 

an out-of-bounds pointer does not harm anything as long as 

it is not dereferenced. While pointer-based approaches can 

provide both spatial and temporal memory safety without 

combining with other methods, their binary compatibility is 

limited. Since pointer-based approaches need to propagate 

the base and the bound metadata along with the pointer 

arithmetic but the propagation of metadata is not performed 

in the unprotected code, the metadata of a pointer may 

become outdated after a function call to unprotected code. 

In contrast, AHEMS provides better binary compatibility in 

that the metadata can be updated even in the unprotected 

code, because the propagation is handled by the hardware. 

Furthermore, AHEMS can perform the bound checks on 

pointer dereferences of pointers generated by protected code 

and used in the unprotected code. 

D. Hardware Approaches 
SafeMem [18] utilizes the ECC bits existing in memory to 

detect memory leaks and some classes of memory errors. 

The advantage of SafeMem is that it does not require 

installation of additional hardware. MemTracker [19] is a 

hardware-programmable state machine residing in memory 

that associates each byte of memory with a state and treats 

each access to the memory as an event. Both SafeMem and 

MemTracker fail to detect attacks that allow arbitrary 

memory writes. Clause et al. [20] associate each pointer and 

each byte of memory with a taint mark and only allow 

pointers that have the same taint mark to access the 

memory. Chuang et al. [21] accelerate the metadata lookup 

of a pointer-based approach similar to SafeC to improve 

performance overhead. Arora et al. [22] propose an 

architectural support on embedded processors to reduce the 

performance overhead of CCured. The two techniques in 

[20] and [22] employ the fat-pointer approach, which makes 

them not binary-compatible. SafeProc [23] extends the ISA 

of a processor with safety instructions and adds architectural 

support to the processor to detect memory errors. SafeProc 

also proposes an optimization to delay memory error 

detection whenever possible, which is similar to the 

asynchronous property of AHEMS. However, the degree of 

asynchrony in SafeProc is very limited compared to that of 

AHEMS, because SafeProc cannot delay the detection if 

dependency between instructions exists. HardBound [24] is 

essentially a hardware version of SoftBound that enforces 

spatial memory safety. Watchdog [25] improves HardBound 

by implementing a hardware version of CETS that ensures 

temporal memory safety to achieve temporal and spatial 

memory safety when combined with HardBound. AHEMS 

achieves the same level of memory safety and runtime 

overhead as Watchdog while having additional advantages. 

For example, AHEMS needs to widen the size of each 

register by       bits (where N is the number of registers in 

a processor), while Watchdog needs to quintuple the size of 

each register to keep its metadata. Not only is that a 

prohibitively high hardware resource overhead to the on-

chip memory, but it is lethal to the critical path of the 

processor. Besides, AHEMS has physical metadata 

isolation, while Watchdog may suffer from metadata 

tampering. 

III. APPROACH OVERVIEW 

Figure 1 illustrates the architecture of AHEMS. The 

AHEMS framework consists of two major parts: (i) the 

hardware responsible for the runtime checking of memory 

safety and (ii) the source-code instrumentation responsible 

for establishing the interface between the program and the 

hardware.  

 

Figure 1: AHEMS Architecture 

A. Source Code Instrumentation  
A program source code is instrumented with alloc(), 

dealloc(), and subcreate() functions using the CIL 

source-to-source compiler [26]. The purpose is to enable the 

runtime notification of the hardware about memory 

allocation events, memory deallocation events, and sub-



 

 

object creation, respectively (See Figure 2). To track the 

birth and death of every memory reference, we instrumented 

(i) the malloc() and free() functions for tracking 

dynamically allocated references, (ii) local variables and 

function parameters, (iii) global and static variables, (iv) the 

sub-objects in a data structure, and (v) integer-to-pointer 

casts. The instrumented code is compiled with the GCC 

compiler to generate a binary executable. 

1) malloc() and free() 

AHEMS instruments the malloc() and free() functions 

with alloc() and dealloc(), respectively (see Figure 3). 

In that way, the hardware is informed about every memory 

allocation and deallocation event. 

2) Local Variables and Function Parameters 

Function parameters are treated the same as local variables, 

and we use local variables to represent both. In order to 

track local variables, AHEMS (i) inserts an additional local 

pointer ptr for each local array and each local variable 

whose address is taken, (ii) inserts alloc() in the prologue 

of the function to initialize ptr with base and bound, (iii) 

replaces all uses of the local array with the added local 

pointer that points to the local array, (iv) replaces each use 

of a local variable with the added pointer that points to the 

local variable, and (v) inserts dealloc() in the epilogue of 

the function to mark ptr as dead. Note that AHEMS does 

not track local variables whose addresses are not taken, 

because their accesses are always memory-safe. Figure 4 

shows an example of local variable instrumentation.  

3) Global Variables and Static Variables 

The tracking of global or static variables is similar to that of 

local variables except for the insertion positions of alloc() 

functions. There is no need to insert dealloc() functions. 

4) Sub-objects in the Structure 

AHEMS instruments a sub-object of a structure with a 

subcreate() function when the sub-object is an array or 

the address of the sub-object is taken (thus associating the 

sub-object with a sub-base and a sub-bound). The lifetime 

of a sub-object is the same as that of its parent object, so 

dealloc() is not needed for sub-objects. Figure 5 shows 

an example program before and after the sub-object 

instrumentation. 

5) Integer-to-Pointer Casts 

In order to allow integer-to-pointer casts, AHEMS allows 

programmers to manually insert the alloc() function to 

notify AHEMS that an integer value represents a valid 

address with a programmer-specified base and bound. 

A. Hardware Architecture 
There are three main hardware components: main 

processor, runtime monitor, and security engine. The main 

processor is responsible for program execution. The runtime 

monitor (embedded in the main processor) collects memory 

events (memory loads, stores, allocations, deallocations, and 

sub-object creations) and sends these events to the security 

engine for memory safety checking. When a violation of 

memory safety is detected, the security engine raises an 

exception, which is communicated to the main processor 

either to stop the program or invoke an exception handler. 

The main processor does not need to wait for any 

information from the security engine except the exceptions, 

which are rare during normal (i.e., error-free) execution.  

// return the new pointer to an object associated 

// with (base, bound) 

void* alloc(void *base, size_t bound); 

// mark the reference as a dead object 

void dealloc(void *reference); 

// Create a pointer to an sub-object associated  

// with (subbase, subbound) 

void* subcreate(void *subbase, size_t subbound); 

Figure 2: Definition of Three Instrumentation Functions 

void *malloc(size_t size) { 

  // ... (omitted) 

  // compute the return value ret_val 

  return alloc(ret_val, size); 

} 

void free(*ptr) { 

  // ... (omitted) 

  dealloc(ptr); 

} 

 
Figure 3: Instrumentation of malloc() and free() 

void foo(int in1) { 

  int lvar = 5, *ptr, *ptr2; 

  int lary[100]; 

 

 

 

  ptr = &lvar; 

  ptr2 = &in1; 

  sum = lary[5]; 

  // use sum and ptr 

} 

 
(a) Before Instrumentation 

void foo(int in1) { 

  int lvar = 5, *ptr; 

  int lary[100]; 

  int lptr1 = alloc(&lvar, 4); 

  int lptr2 = alloc(lary, 40); 

  int lptr3 = alloc(&in1, 4); 

  ptr = lptr1; 

  ptr2 = lptr3; 

  sum = lptr2[5]; 

  // use sum and ptr 

} 

 
(b) After Instrumentation 

Figure 4: An Example of Local Variable Instrumentation 

struct Node { 

  int nm[10]; 

  int *ptr; 

  int value; 

}; 

void foo() { 

  struct Node n; 

 

 

 

 

  n.nm[5] = 3; 

} 

(a) Before Instrumentation 

struct Node { 

  int nm[10]; 

  int *ptr; 

  int value; 

}; 

void foo() { 

  struct Node n; 

  struct Node *np; 

  int (*nmp)[10]; 

  np = alloc(&n, sizeof(n)); 

  nmp = subcreate(&np->nm,40); 

  (*nmp)[5] = 3; 

} 

(b) After Instrumentation 
Figure 5: An Example of Sub-object Instrumentation 

 
Figure 6: Relation among Register Values, TIDs, and OIDs 



 

 

1) New machine instructions 

To implement the alloc(), dealloc(), and 

subcreate() functions needed to track pointers, AHEMS 

adds three new machine instructions, alloc, dealloc, and 

subcreate, to the main processor.  

2) Temporary Identifier and Object Identifier 

Each register in the main processor is associated with a 

temporary identifier (TID). If a register represents a pointer 

in the program, its TID is used to identify the object to 

which the register is pointing. Specifically, the security 

engine uses the TID to look up the object identifier (OID), 

which is unique for an object, in the security engine’s 

lookup table, TID2OID. Figure 6 illustrates the 

relationship among the register values, the TIDs, and the 

OIDs. If two registers point to different objects, they have 

different OIDs in the TID2OID table. Conversely, if two 

registers point to the same object, they may have different 

TIDs, but they have the same OID even if their offsets into 

the object are different. For example in Figure 6, registers 

%g1 and %g2 point to different offsets of the same object 

with OID = 15; register %g3 points to a different object 

with OID = 7. Note that although %g1 and %g2 have 

different TIDs, they are linked to the same OID in the 

TID2OID table. When a register is used as an address for a 

load or store instruction, the security engine can find the 

object’s (base, bound) to check whether the pointer is 

within legal range by going through the lookup process 

tidoid(base, bound). 

3) TID and OID Generation and Propagation Rules 

For each of the six operations in the main processor 

(memory allocations/deallocations/loads/stores, pointer 

arithmetic, and sub-object creations), additional actions 

need to be executed along with the original operation to 

maintain the relationship between OID and TID and to 

check memory safety. Table I summarizes those actions and 

their actors. We describe each of the actions in detail below. 

Memory allocation (see “alloc Instruction” in Table I). 

When an object (or a region of memory) is allocated, alloc 

is executed (i) to associate the pointer pointing to the object 

with a new TID (Step 1 in Table I); (ii) to notify the security 

engine to assign a new OID to that object and map the new 

TID to the new OID in the TID2OID table (Step 2 in Table 

I); and (iii) to associate the (base, bound, NOPARENT) 

information of the object with the OID in the 

OID2BaseBound table (where NOPARENT means that this 

object is not a sub-object). These actions provide the mother 

pointer
3
 that points to an object with a new TID. The 

security engine can use this TID to look up the status of an 

object using the TID2OID and OID2BaseBound tables 

when the pointer is dereferenced. 

                                                           
3
 The pointer obtained at the time memory was allocated for an object. 

Pointer arithmetic (see “Pointer Arithmetic” in Table I). 

To ensure that each pointer is associated with the correct 

object, AHEMS needs to propagate the TID when the 

pointer arithmetic is performed. For example, if the 

instruction “ADD rd, rs, imm” is performed (i.e., rd = 

rs + imm) and rs represents a pointer to an object, the 

destination register rd should also point to the same object 

as rs. Hence, the TID of rs should be copied to that of rd. 

Since source code instrumentation enforces the requirement 

that all subsequent pointers to an object be derived from the 

mother pointer to the object, every subsequent access to the 

object can always use the propagated TID to look up the 

OID in the TID2OID table to check the object’s liveness and 

boundary. 

TABLE I: TID AND OID GENERATION AND PROPAGATION RULES 

alloc Instruction Actor 

ALLOC rd, base, bound Main Processor 

1. rd.tid = tid = tid_gen() Runtime Monitor 

2. TID2OID[tid] = oid = oid_gen()  

3. OID2BaseBound[oid] = (base, bound, NOPARENT) 
Security Engine 

Pointer Arithmetic Actor 

ADD rd, rs1, rs2 Main Processor 

if rs1.tid != INVALID then rd.tid = rs1.tid 

else rd.tid = rs2.tid 
Runtime Monitor 

ADD rd, rs1, imm Main Processor 

rd.tid = rs1.tid Runtime Monitor 

MOV rd, rs Main Processor 

rd.tid = rs1.tid Runtime Monitor 

dealloc Instruction Actor 

DEALLOC rd Main Processor 

1. oid = TID2OID[tid] 

2. OID2BaseBound[oid] = INVALID 

3. TID2OID[tid] = INVALID 

Security Engine 

subcreate Instruction Actor 

SUBCREATE rd, subbase, subbound Main Processor 

1. rd.tid = tid = tid_gen() Runtime Monitor 

2. parent_oid = TID2OID[subbase.tid] 

3. TID2OID[tid] = oid = oid_gen() 

4. OID2BaseBound[oid]=(subbase,subbound,parent_oid) 

Security Engine 

store Instruction Actor 

STORE [addr], rs Main Processor 

1. addr_oid = TID2OID[addr.tid] 

2. (base,bound,parent_oid)= OID2BaseBound[addr_oid] 

3. if (base,bound,parent_oid) = INVALID 

   then raise exceptions 

4. if (parent_oid != NOPARENT and 

       OID2BaseBound[parent_oid]==INVALID) 

   then raise exceptions 

5. if (addr < base) or addr > (base + bound) 

   then raise exceptions 

6. MEM2OID[addr] = TID2OID[rs.tid] 

Security Engine 

load Instruction Actor 

LOAD rd, [addr] Main Processor 

1. rd.tid = tid_gen() Runtime Monitor 

2. addr_oid = TID2OID[addr.tid] 

3. (base,bound,parent_oid)= OID2BaseBound[addr_oid] 

4. if (parent_oid != NOPARENT and 

       OID2BaseBound[parent_oid] == INVALID) 

   then raise exceptions 

5. if (base, bound) = INVALID 

   then raise exceptions 

6. if (addr < base) or addr > (base + bound) 

   then raise exceptions 

7. TID2OID[rd.tid] = MEM2OID[addr] 

Security Engine 



 

 

Memory deallocation (see “dealloc Instruction” in Table 

I). When an object is freed, dealloc is executed to 

invalidate the object so that any subsequent access to the 

object triggers an alarm. Specifically, dealloc notifies the 

security engine to mark TID2OID[tid] and 

OID2BaseBound[oid] entries as invalid.  

Sub-object creation (see “subcreate Instruction” in 

Table I). Creation of a pointer to a sub-object is similar to 

memory allocation except that the sub-object should also be 

associated with the OID of its parent object (steps 2 and 4 in 

Table I) so that the security engine can use the OID of its 

parent object (denoted by parent_oid) to determine the 

lifetime of the sub-object on loads and stores by checking 

whether OID2BaseBound[parent_oid] is INVALID. 

Therefore, the OID of the sub-object is associated with 

(base, bound, parent_oid) instead of (base, 

bound, NOPARENT) in the OID2BaseBound table. 

Store (see “store Instruction” in Table I). Two additional 

actions are required along with a store: (i) checking the 

liveness and the boundary of the accessed object, and (ii) 

mapping in the MEM2OID table the memory address (addr) 

to the OID of the object to which the register rs points. 

For the first action, the information on the accessed object is 

found through the following lookup process: addr.tid  

oid  (base, bound) (steps 1 and 2 in Table I). Then 

the validity of (base, bound, parent_oid) is checked 

to see whether the object is still live (steps 3 and 4 in Table 

I). Finally, addr is compared with the (base, bound) to 

see whether the memory address is within the range of the 

object (step 5 in Table I). If the object is not live or the 

addr is out of bounds, the security engine raises an 

exception. For the latter action (step 6 in Table I), the 

MEM2OID table allows the security engine to recover the 

mapping between TID and OID when the register value 

being stored in the memory is loaded back to the register. 

(See the next paragraph for details.) 

Load (see “load Instruction” in Table I). Actions needed 

along with load involve checking the liveness and 

boundary of the accessed object in the same way as store 

does. In addition, two other actions are performed: (i) 

association of the destination register (rd) with a new TID 

(step 1 in Table I) and (ii) association of the new TID with 

the OID of the pointer stored at the memory address addr 

(step 7 in Table I). The load instruction loads the pointer 

stored at addr into the destination register (rd). Those two 

actions recover the association between the stored pointer 

and the object to which the stored pointer points. That way 

AHEMS keeps track of a pointer even if the pointer is stored 

in the memory and loaded back for later use. 

IV. IMPLEMENTATION 

Figure 7 illustrates the implementation of AHEMS on top of 

the open-source Leon3 architecture [27]. Leon3 is a 32-bit 

processor compliant with the SPARC V8 instruction set.  

The runtime monitor is embedded in the main processor to 

generate and propagate the TID. It also sends the memory 

events to the security engine via a FIFO buffer with 

configurable size. The security engine maintains the 

metadata, checks memory safety violation, and raises an 

exception to notify the runtime monitor about any violation. 

 

Figure 7: AHEMS on Leon 3 Architecture 

Main Processor. When pointer arithmetic such as rd = rs 

+ 8 is executed, the TID of rs needs to be copied to the 

TID of rd (rd and rs are destination and source registers, 

respectively). To support TID propagation, each register in 

the main processor is widened by       bits to record the 

associated TID (N is the total number of registers). 

Accordingly, the ALU of the Leon3 processor and the 

instructions used for pointer arithmetic are also changed. 

We modified the Leon3 processor to treat cpop2 with 

opc=0x01, and opc=0x02, opc=0x03 as alloc, 

dealloc, and subcreate instructions, respectively. 

Normally the Leon3 processor treats cpop2 as a nop 

instruction. Note that our prototype does not support 

subcreate. 

Runtime Monitor. The runtime monitor is responsible for 

TID generation and data transmission to the security engine. 

A new TID is generated and associated with the destination 

register when a load or alloc instruction is executed. The 

Leon3 processor is connected to the security engine through 

a FIFO with configurable size. The size of the FIFO affects 

the detection latency of the memory safety violations. Each 

entry of the FIFO contains the metadata of a memory event. 

Figure 8 shows the FIFO entry format for memory events, 

where newtid is the TID generated by the TID Generator; 

rs.tid is the TID associated with the source register of the 

store instruction; addr is the address value of the load or 

store instruction; addr.tid is the TID associated with 

the address; PC is the address of the instruction. 

Security Engine. The security engine is implemented as a 

state machine responsible for checking memory safety and 

maintaining the consistency of the TID2OID, 

OID2BaseBound, and MEM2OID tables. All three tables 

reside in the dedicated memory of the security engine. The 

TID2OID contains 136 entries (the number of registers in 

the main processor). Each entry is 32 bits wide and stores an 



 

 

OID. The OID is directly used as the address to locate the 

base and bound. Each entry of the OID2BaseBound table 

is 8 bytes (4 bytes each for the base and bound). The MSB 

(Most Significant Bit) of the bound is used to indicate 

whether an entry is valid. Each entry of the MEM2OID table 

stores an OID (32 bits wide).  

The actions executed along with each instruction (i.e., 

alloc, dealloc, load, or store) to complete the 

memory safety checks are implemented by hardware state 

machines in the security engine. Some actions require 

memory access, while others only need register file access. 

Table II summarizes the execution time and memory 

overhead of actions performed for each instruction. 

Figure 8: Format of FIFO Entry for Memory Events.  

TABLE II: TIME OF ACTIONS PERFORMED FOR EACH INSTRUCTION 

Instruction Type Execution Time 

load instruction 5 cycles + 2 memory accesses 

store instruction 4 cycles + 2 memory accesses 

alloc instruction 3 cycles + 1 memory accesses 

dealloc instruction 4 cycles + 2 memory accesses 

V. EXPERIMENTAL EVALUATION 

We synthesized the AHEMS prototype and ran it on an 

FPGA board Xilinx Virtex-5 FXT ML510 with 80 MHz 

CPU frequency and two DIMMs of 512 MB DDR2 

memory. Note that our prototype does not instrument global 

or static variables and does not detect sub-object overflows.  

Detection Coverage. To evaluate the detection coverage of 

the AHEMS prototype, we employed the Juliet Test Suite 

version 1.2 provided by NIST [28]. The Test Suite contains 

a total of 61,387 test cases from 118 different CWEs 

(Common Weakness Enumerations) for C/C++. We 

assessed the AHEMS prototype by running representative 

test CWEs cases that can potentially lead to memory 

corruption attacks. In particular, the selected CWEs assess 

defenses against stack/heap-based overflow, integer 

overflow, use-after-free, double-free, and dangling pointers. 

We have tested a total of 677 test cases and only one case 

went undetected (see Table III). The undetected test case 

overflows a sub-object in a structure to overwrite the pointer 

in the next field of the structure. Although sub-object 

overflow detection is currently not supported by our 

AHEMS prototype that is not a limitation of the AHEMS 

architecture. 

Runtime Overhead on the Olden Benchmark. We 

measured the runtime performance overhead of our AHEMS 

prototype on Olden benchmarks [29]. The benchmarks 

contain pointer-intensive programs with an average of 711 

LOCs (Lines of Code), and many researchers have used 

Olden benchmarks for performance evaluation (e.g., [9] 

[24]). Figure 9 shows the runtime overhead of AHEMS on 

Olden benchmarks. AHEMS exhibits, on average, 10.6% 

runtime overhead (with a maximum of 38.4%). For most of 

the programs in Olden, the security engine overlaps memory 

safety checking with main processor execution time very 

well, so the runtime overhead is low. However, for 

programs that are memory-intensive, such as bisort, the 

security engine may not have enough time to perform 

memory safety checking. The main processor stalls waiting 

for the security engine, because the consumption rate of 

memory events (from the FIFO buffer) by the security 

engine is lower than the production rate of memory events 

by the main processor.  

TABLE III: CWES FROM JULIET TEST SUITE TESTED ON AHEMS 

Spatial Memory Errors 

CWE No. Description Tested Detected 

CWE121 Stack-based Buffer Overflow 209 208 

CWE122 Heap-based Buffer Overflow 18 18 

CWE124 Buffer Underwrite 102 102 

CWE126 Buffer Overread 145 145 

CWE127 Buffer Underread 33 33 

CWE588 Attempt to Access Child of Non-
structure Pointer 

34 34 

CWE680 Int. overflow to Buffer Overflow 38 38 

CWE761 Free Ptr Not at Start of Buffer 38 38 

Subtotal 617 616 

Temporal Memory Errors 

CWE No. Description Tested Detected 

CWE415 Double-free 38 38 

CWE416 Use-after-free 20 20 

CWE562 Return of Stack Variable Address 2 2 

Subtotal 60 60 

Total 677 676 

 

Figure 9: AHEMS Runtime Overhead  

Performance Comparison with Other Approaches. In order 

to compare AHEMS with state-of-the-art memory safety 

approaches, we ran the following four approaches on Olden 

benchmarks: Mudflap [8], Softbound+CETS [15] [16], 

SAFECode [9], and AddressSanitizer [11]. We chose to run 

the measurements on an x86 Linux machine because (i) that 

is the primary platform for software-based approaches, and 

(ii) most of these approaches are not stable and not fully 

optimized for the SPARC platform. Consequently, testing 



 

 

those methods on the SPARC platform could potentially 

bias the results to our advantage. In Table IV, the runtime 

overhead of the AHEMS prototype is compared with the 

other four approaches. It can be seen that the runtime 

overhead of AHEMS is more than an order of magnitude 

lower than that of any of the other approaches. AHEMS has 

an average of 10.6% overhead, while Mudflap, 

Softbound+CETS, SAFECode, and AddressSanitizer have 

17,420%, 381%, 340%, and 144% overhead, respectively.  

TABLE IV: COMPARISON OF RUNTIME OVERHEAD 

Programs AHEMS Mudflap Softbound+CETS SAFECode AddressSanitizer 

Bh 0.2% 13655.2% Compiler error Runtime error 41.9% 

bisort 38.4% 3114% 341.1% 154.3% 74.7% 

em3d 10.5% 705.0% 473.0% 192.1% 89.5% 

health 17% 13343.9% 737.8% 943.2% 361.5% 

Mst 4.3% 1169.2% 395.1% 644.1% 92.2% 

perimeter 22.2% 32317.8% 443.1% 212.7% 142.8% 

power 0.0% 263.9% 1.2% 1.0% 2.7% 

treeadd 8.6% 106008% 448.1% 518.8% 398.7% 

tsp 0.0% 1404.9% 206.9% 57.5% 76.8% 

voronoi 4.6% 2224.2% False alarm Runtime error 156.5% 

Average 10.6% 17420% 381% 340% 144% 

For hardware approaches, Arora [22] reports 10% and 100% 

overhead on em3d and health, respectively. That is higher 

than the AHEMS overhead corresponding to those two 

programs. SafeProc [23] achieves 9% overhead on average, 

which is slightly lower than AHEMS’s overhead. However, 

it requires nontrivial source code modification, which may 

impede its deployment. Hardbound [24] has an average of 

9% overhead; however it only enforces spatial memory 

safety. Watchdog [25] reports an average runtime overhead 

of 24% on 20 SPEC benchmarks. SafeMem [18] has 6.3% 

overhead on average on nonstandard benchmarks, and 

MemTracker [19] has 2.7% on SPEC benchmarks. 

However, their memory safety protection is less 

comprehensive than that of AHEMS. For example, 

SafeMem does not detect attacks that allow arbitrary 

memory writes, while MemTracker fails to detect the buffer 

overflow that overwrites decision-making variables on the 

stack to launch non-control data attacks.  

Critical Path. We synthesized the Leon3 system with and 

without AHEMS to compare the post-place-and-route static 

timings using the Xilinx ISE tool. The delays on the critical 

path with and without AHEMS were 12.47 ns (equivalent to 

80.192 MHz) and 12.463 ns (equivalent 80.238 MHz), 

respectively. AHEMS has a negligible (0.06%) impact on 

the critical path of the Leon3 system. 

Hardware Resource Overhead and Power Consumption. 

We estimated the hardware resource and power 

consumption overhead of the AHEMS prototype by 

comparing the results from the Leon3 system synthesized 

with and without AHEMS. AHEMS adds about 13.8% 

overhead in terms of occupied FPGA slices. In terms of 

power consumption, AHEMS has 94.3% and 22.3% 

overhead on signals and logic, respectively. Those estimates 

were obtained using the Xilinx XPower Analyzer. However, 

the total power consumption overhead is only 0.5%, because 

signals and logic contribute to a very small portion of the 

total power consumption. 

Detection Latency. The downside of an asynchronous 

approach is that detection of memory violations may be 

delayed. Increasing the size of the FIFO buffer used to keep 

the data on memory events improves the performance of 

AHEMS. We estimated the minimum (empty FIFO) and 

maximum (full FIFO) detection latency of AHEMS. Since 

load and store instructions occupy most of the FIFO entries 

(alloc and dealloc are much less frequent), we used 

the average time needed to process load and store 

instructions to approximate the detection latency. 

Specifically, we calculated the detection latency of AHEMS 

on the Intel Core 2 Duo E6400 processor with a 2.13 GHz 

clock. The specifications of the system, including IPC 

(instructions per cycle) and cache miss rate, are listed in 

Table V. Using the values in Table V and Table II, we get: 
               (      ) 
                      (            ) 

                        (            ) 

To launch an attack, an attacker has an average time 

window corresponding to the execution of 16 instructions 

and 16,817 instructions when the FIFO is empty and when 

the FIFO is full, respectively. It takes 7.66 μs to execute 

16,817 instructions, which is too short to launch an attack in 

practice, even if it is fully automated. For example, a call to 

a libc function system(“ ”)with an empty string as a 

command takes more than 1 ms on a machine with the Intel 

Core i5-3470 3.2 GHz CPU. That means that a shell cannot 

be launched within 7.66 μs. More importantly, the FIFO 

size is configurable, and system designers can adjust the 

size of the FIFO based on the tradeoff between performance 

and detection latency. 

TABLE V: SPECIFICATIONS OF AN INTEL CORE 2 PROCESSOR-BASED 

SYSTEM RUNNING SPEC2006 BENCHMARK 

Attribute Value 

Memory 2GB (1GB*2) DDR2 533MHz 

L1/L2 Cache Hit Time 3 cycles/12 cycles 

L2 Cache Miss Penalty 165 cycles 

IPC4 0.97 

L1/L2 Miss Rate  2.25%/0.41% 

AHEMS FIFO Size 1024 entries * 16 bytes/entry 

VI. CONCLUSIONS 

This paper presents AHEMS, an architectural support for 

asynchronous checking to ensure both spatial and temporal 

memory safety. Evaluation of the prototype AHEMS 

implementation shows an average 10.6% overhead on Olden 

benchmarks, and negligible impact on the processor’s 

critical path (0.06% overhead) and power consumption 

(0.5% overhead). 

                                                           
4 We use SPEC2006 benchmarks as the representative programs to 
approximate the IPC and cache miss rates of real-world programs. 
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