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ABSTRACT

As modern power systems have been operated closer to their security limits,

the importance of their static and dynamic security assessments is increasing.

However, due to the large-scale nature of an interconnected power system and

the nonlinear characteristics of power system equations, computational limits

impose severe constraints for such security assessments. It is thus critically

important to develop rapid and precise power system analysis tools, which

are fundamental for the security evaluations.

In this dissertation, comprehensive approaches to both reduce the compu-

tational requirements and to achieve a high level of simulation accuracy are

examined for application to power system steady-state solutions and tran-

sient stability analyses. Three approaches are proposed and validated, which

are a mixed power-flow analysis, a mixed transient stability analysis, and an

exciter model complexity reduction.

The first approach, a mixed power-flow analysis, focuses on reducing the

computational complexity of the steady-state solution. The approach com-

bines ac and dc power flow models to decrease the number of required com-

putations while still capturing variations in the external system. A high level

of accuracy in the targeted central part of the system is achieved using the

detailed ac model. The less detailed dc model is used for the external system

to reduce computational requirements without neglecting it altogether.
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In the second approach, the mixed power-flow analysis is extended to tran-

sient stability analysis. This method reduces computational requirements for

power system transient stability simulation while retaining important dy-

namic information. In order to prevent the loss of simulation accuracy, the

real power losses ignored by the standard dc model are compensated for in

the external system.

Finally, the exciter model complexity reduction approach is presented for

further improved transient stability analysis. This topic investigates con-

ditions in which fast modes of the exciter model can be neglected or must

be preserved. When the fast modes can be ignored, a simpler model with

those modes removed replaces an original model and simulation steps can be

increased without numerical stability issues. During a transient simulation,

the proposed method switches dynamically between the original model and

the reduced model, depending on the switching criterion presented.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Load demand growth, the open access of the transmission system, and eco-

nomic operations have pushed the power system closer to stability limits [1].

It is very important for power system control centers to be able to analyze

the behavior of the electric power system accurately and quickly to ensure a

secure energy delivery system. Such analysis allows the system operators to

prepare for unpredictable contingency events such as generator losses, line-

switching operations, faults and sudden load changes.

Interconnections within modern power grids have increased the system

complexity. The power system is comprised of millions of loads and gener-

ators, and tied together by hundreds of thousands of miles of transmission

and distribution wires with a myriad of control devices. As a result, to per-

form a power system simulation for static and dynamic security assessments,

we are required to solve a huge number of nonlinear differential and alge-

braic equations, for every one of the many contingency cases [2]. Recent

integration of renewable energy and storage involves additional modeling of

non-synchronous, inertia-less and inverter-interfaced sources. Heavy compu-

tational demands in terms of storage and simulation time are required. These

computational limits impose severe constraints for power system analysis,

especially for real-time situational awareness and on-line decision making.
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Developing powerful computational tools for fast and accurate power system

analysis has been an open challenge for many decades.

1.2 Review of the State of the Art

Many efforts have been made to speed up power system analysis by adapting

the increased computing power of hardware and by exploiting more efficient

reduction algorithms. Dramatic advancements in microprocessor technology

have made substantial improvements of computational efficiency. Moreover,

parallel processing technology utilizing multiple hardware components has

long been discussed as an approach to greatly enhance solution speed [3, 4].

An earlier implementation can be found in [5] and it was advanced in [6, 7].

Parallel processing allows consideration of a larger number of contingencies,

such that multiple scenarios can be studied simultaneously. This achieves

fast simulation without simplifying the power system model.

Emphasis on speeding up simulation in power system areas has been pri-

marily directed to developing efficient network reduction algorithms. These

approaches partition the electric power system into internal and external sys-

tems. The internal system denotes the area of interest for study. The power

system model size is decreased by replacing the external system with small

equivalents, while the internal system is unchanged. The network reduction

techniques are divided into static and dynamic equivalents depending on the

system model equations and the purpose. The static equivalent methods aim

to reduce a system model for power-flow studies, which is fundamental for op-

erating and planning power systems. The power-flow analysis validates that

bus voltage magnitudes are close to rated values, generators operate within

specified limits, and transmission lines, transformers, and other equipment
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are not overloaded. For the dynamic equivalent, the goal is to reduce the

computational demands for transient stability analysis. The objective of

such analysis is to determine whether or not power systems will reach a new

operating point and to examine how system properties undergo transient

deviations from an equilibrium following a disturbance.

1.2.1 Static equivalent approach

Ward equivalents

The classical Ward-type equivalent has been the most widely used and was

originally proposed by Ward in [8]. The basic idea is that the external sys-

tem is eliminated by performing Gaussian elimination on the complex nodal

admittance matrix representing the network configuration. The Ward equiv-

alent has two different versions: theWard injection and theWard admittance

methods [9]. The difference is only in the ways that the external bus pow-

ers are modeled. In the Ward injection method, the injected power at each

bus is converted to the injected current as shown in (1.1). After reduction

shown in (1.2), the equivalent currents at the boundary buses comprising

the boundary between the internal and the external systems are converted

back to constant power injections for power-flow studies. Figure 1.1 shows

the original system and the reduced system where the whole external system

is equivalenced. The Ward admittance method converts all injected powers

to shunt admittances such that the external system injections are zero. The

equivalent becomes a passive network. In some situations, the Ward admit-

tance method tends to amplify the effect of external shunt admittances at the

boundary buses, and unusual shunts in the reduced network result in serious

convergence problems. Thus, emphasis is given to the Ward injection method
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because of its reliability and attractive properties for on-line application [10].
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Figure 1.1: Ward injection method

The Ward equivalent gives reasonably accurate results for MW response,

but it has a limitation on representing the VAR response from the external

system. It has been modified such that the Gaussian elimination is performed

only on external PQ buses. This is referred to as theWard-PV equivalent [11].
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Monticelli et al. proposed the extended Ward equivalent, which is a Ward

equivalent with additional fictitious reactive power support at the boundary

buses [12]. The fictitious generator provide no real power. But, it supplies

adjustable reactive power to the reduced system. Its reactive power response

is close to that of the Ward-PV method.

REI equivalents

Dimo proposed the REI (Radial Equivalent Independent) equivalent, which

aggregates the power injections of a group of eliminated buses into a fictitious

node, called the REI node [13, 14]. This node in the reduced system replaces

the corresponding group in the original network. Three basic steps are shown

in Fig. 1.2 [10]. The number of REI nodes can be varied depending on desired

accuracy for contingency evaluation. For large power systems, between 10

and 100 REI nodes may be required [9]. However, the modeling accuracy of

the REI equivalent is strongly dependent on the operating point. For on-line

application, it is much less satisfactory in PQ and PV buses than the Ward

equivalent.

PTDF-based equivalent

Efficient power system market operations require that market participants

are able to analyze market behaviors. Such analysis also demands heavy

computation, particularly when performing long-term simulations. In recent

years, several new equivalent approaches were proposed for considering char-

acteristics of power market studies. The PTDF-based equivalent correctly

approximates the PTDFs (Power Transfer Distribution Factor) and ISFs (In-

jection Shift Factor) of the original system using the dc power-flow model
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[15]. [16] pointed out that the reduced networks of the conventional equiva-

lent method are dependent on the operating point, which produces significant

error for a different set point. This is a critical issue for economic and plan-

ning studies which need to consider various load and generation profiles. In

order to preserve inter-area flows for various operating points, this approach

aggregates buses based on the PTDF matrix and optimizes branch values

between areas.

1.2.2 Dynamic equivalent approach

The power system model is represented with the nonlinear differential and al-

gebraic equations (DAE) for a transient stability simulation [2]. The internal

system is of the following form:

˙xint = fint(xint, yint) (1.3)

0 = gint(xint, xbd, yint, ybd) (1.4)

and the external system is of the following form:

˙xext = fext(xext, yext) (1.5)

0 = gext(xext, xbd, yext, ybd) (1.6)

where x denotes the dynamic states, y is the algebraic states, f represents the

differential equations such as the swing equation and controller dynamics, g

contains stator and network algebraic equations, and subscripts int, bd and

ext denote internal, boundary and external systems, respectively.

The dynamic equivalent approach is used to obtain a simplified model

which represents the external system for transient stability analysis. Most
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of the dynamic equivalent methods were proposed in the 1970s and 1980s

when computing resources were limited. However, because there are many

problems of modeling a large power system, advanced equivalent techniques

are still being developed [17]. The dynamic equivalent models can be cate-

gorized broadly into modal, coherency and measurement-based methods [18].

The modal method is based on a linearized model and eliminates unexpected

or insignificant modes in the external system. The coherency-based method

uses the concept of coherency and aggregation to create reduced models in the

form of nonlinear power system models. In the measurement-based method,

the external system responses are used to determine the parameters of the

simplified equivalent models.

A. Modal method

The modal equivalent method simplifies the external system by the use of a

linear model. This would be reasonable because the external system is not

perturbed significantly by a disturbance in the internal system. The external

system is simply linearized around an operating point.

∆ẋext = A∆xext +B∆yext (1.7)

0 = C∆xext +D∆xbd + E∆yext + F∆ybd (1.8)

where

A =
∂fext
∂xext

∣

∣

∣

∣

xo,yo

B =
∂fext
∂yext

∣

∣

∣

∣

xo,yo

C =
∂gext
∂xext

∣

∣

∣

∣

xo,yo

D =
∂gext
∂xbd

∣

∣

∣

∣

xo,yo

E =
∂gext
∂yext

∣

∣

∣

∣

xo,yo

F =
∂gext
∂ybd

∣

∣

∣

∣

xo,yo

The linear model reduces the computational demands. Further compu-
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tational decreases were achieved by the following approaches. Undrill et al.

developed a modal truncation method in which only the dominant modes are

retained for representing the external system with a linear model [19, 20, 21].

This approach eliminates highly damped modes, while extracting the rela-

tively less damped modes. The latter are dominant and include the elec-

tromechanical modes. The modal truncation method does not preserve

steady-state values, and the retained modes of the reduced model are not

identical to the modes of the full external system model.

Another key variant of the linear methods is selective modal analysis which

employs the eigenvalues, eigenvectors and participations factors of the linear

system [22, 23]. The state variables, which show the high participation factors

in the modes of interest, are maintained, and the effects of the less relevant

variables are incorporated with approximate equivalent iteratively refined.

B. Coherency method

The most common method used to create the dynamic equivalent is based

on the concept of coherency and aggregation. Coherency means that some

generators closely coupled in an electrical sense exhibit similar rotor angle

responses following disturbances. In general, generators i and j are consid-

ered to be coherent if the following criterion is satisfied over a certain time

interval:

|∆δi(t)−∆δj(t)| < ε (1.9)

where ∆δi(t) and ∆δj(t) are the rotor-angle deviations of generators i and j,

respectively.

The characteristic behaviors of coherent generators can be exploited to reduce

the size of the power system model without significant loss of simulation
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accuracy. In the coherency method, the group of generators are aggregated

and then converted to a single equivalent machine. This involves three main

steps: (1) identification of coherent group of generators, (2) aggregation of

each coherent group of generators, and (3) reduction of the external network.

The coherent-based equivalents have been extensively studied and there exist

many variations in each step of the coherency method.

(1) Coherency identification In coherency identification, the most intu-

itive approach is to compare the responses of generators from a full nonlinear

simulation. When the deviation of machine rotor angle responses is smaller

than a specified tolerance (ǫ), certain groups of generators are considered to

be tightly coherent. Otherwise, they are weakly coherent. An example of

coherency identification is carried out on a 16-machine 68-bus system [24].

Figure 1.3 shows the rotor angle responses of all 16 generators and the group

of coherent generators which are identified from the simulation results.

Podmore and Germond proposed linear time simulation method in place

of the complicated nonlinear simulation [25, 26]. This approach has an ad-

vantage such that the linear simulation is much faster than a full nonlinear

simulation. However, the simulation-based methods are still time-consuming.

Many direct identifications have been proposed.

Slow coherency based on singular perturbation theory separates the slow

and fast dynamics in a system [27, 28]. The slow dynamics arise from the

slower inter-area modes, which result from groups of generators on one side

of the tie line oscillating against groups of generators on the other side. The

evaluation of the coherent groups is based on the set of slow modes and their

mode shapes, which are represented by eigenvectors. However, the computa-

tion of eigenvalues for the slow coherency method is time consuming for large

10



(a) Rotor angle responses

(b) Idenfitied groups of coherent generators

Figure 1.3: Example of coherency identification with the 68-bus system
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power systems. In [29], a weak-line method using the system state matrix

was proposed to identify the groups of generators. This method iteratively

computes a coupling factor from the synchronizing torque coefficients. If the

coupling coefficients among the generators are high, that group of generators

is considered to be coherent. The method was advanced in [30], which forms

both weakly coherent areas and strongly coherent areas.

Generator coherency is dependent on system operating conditions, because

the identification is made from a small-signal analysis. When operating con-

ditions are changed, the coherency group might be identified by reevaluating

the slow coherency behaviors. In recent years, a systematic approach was

developed to predict the change of generator slow coherency with different

operating conditions, and to form an appropriate boundary area by including

the critical generators, which become a strong coherency with the internal

system [31].

(2) Generator aggregation The next procedure is to aggregate the co-

herent generators in a group, which reduces the number of generators in the

external system. The procedure proposed by Germond and Podmore con-

sists of three basic steps, which are shown in Fig. 1.4 [26]. The first step

is to connect all the coherent generators to a common bus, an equivalent

bus through ideal transformers with complex ratio. The voltage of common

bus is defined either an average voltage of the group or the voltage of an

individual bus. The branches between coherent buses are replaced by equiv-

alent shunt admittance. The second step is that generators, loads, and shunt

admittances are transferred to the equivalent bus. All the generators at the

equivalent bus are then converted to a single generator. The constructed

equivalent generators preserve the power flows in the original system as well
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as the power system model. Aggregated frequency responses with a least

square fit are used to approximate machine, exciter and governor function of

the equivalent generator. The last step is to eliminate the original coherent

buses by combining original branch and the ideal transformer.

� � �

Remainder of Original Network

(a) Configuration of coherent generators
in original system

� � �

Remainder of Original Network

(b) Step 1: Coherent generators are con-
nected to an equivalent bus

Remainder of Original Network

G

(c) Step 2: All components are trans-
ferred to the equivalent bus

Remainder of Original Network

G

(d) Step 3: Original generator buses are
eliminated

Figure 1.4: Generator aggregation method by Podomre and Germond

More advanced aggregation methods were proposed to improve the perfor-

mance of the reduced model. Those are based on the singular based pertur-

bation theory, which generates asymptotic series expansion terms to enhance
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the slow subsystem [32]. The inertial aggregation method aggregates the

coherent groups at the generator internal node, rather than at the generator

bus. However, the reduced model from the inertial aggregation method in-

troduces a higher inter-area mode frequency in a large power system. Slow

coherency aggregation method corrects the problem by connecting finite ad-

mittance between the generator buses.

(3) Network reduction The final procedure to derive the coherency-

based equivalent is to reduce the external network. The buses with constant

impedance loads are eliminated using Gaussian elimination and an exact re-

duction is possible. Other nonlinear load models consisting of constant cur-

rent and constant power loads are replaced by appropriate equivalent models

and then Gaussian elimination is performed. More details can be found in

[28].

C. Measurement-based method

Measurement-based methods have used real-time measurements or simulated

responses of the power system to simplify the external network [33, 34, 35].

Conventional measurement-based methods first select an equivalent model

structure. The parameters of the selected equivalent model are then es-

timated by solving optimization problems, which minimize the differences

between the responses with the original system and those with the equiva-

lent system. The problem formulation is shown in (1.10). Overall procedure

of the parameters estimation is depicted in Fig. 1.5.

minimize
p

J(p) =
∑

i∈B

∑

j∈I

(P original
ij −P reduced

ij (p))2 (1.10)

where the control variable p is the parameters of the selected equivalent
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model, B is the set of boundary nodes, I is the set of buses in the internal

system and Pij is the real power-flow from bus i and j.

No

Yes

Get model predictions 
from the reduced model 
using parameter values

Calculate J
Update parameters
using optimization

End

Start

Initial guess
for parameters

J < Tolerance

Figure 1.5: Estimation algorithm of measurement-based method

With the advent of phasor measurement unit (PMU), time-synchronized

measurement data were used to obtain the modes and mode shapes of the

inter-area oscillation [36] and a simplified model to represent inter-area in-

teractions of large power networks was developed [37].
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1.3 Dissertation Scope and Outline

The objective of this dissertation is to examine new methodologies that would

alleviate the heavy computational demands for power-flow and transient sta-

bility analyses and achieve a high level of simulation accuracy. In order to

fulfill the goal, nonlinear algebraic or dynamic equations are replaced with

much simpler ones based on the power system criteria from engineering and

mathematical perspectives. The proposed methods are roughly classified into

two categories: complexity reduction in power-flow models corresponding to

the algebraic equation set and simplification of the dynamic model equa-

tions. The power-flow model is modified by combining ac and dc models.

The dynamic model reduction is done by removing highly negative eigenval-

ues. Overall methods for the dissertation are shown in Fig. 1.6.

( , , )

0 ( , )

x f x y u

g x y

=

=

ɺ

Algebraic equations Dynamic equations

Mixed power flow formulation 
using ac and dc models

Remove 
highly negative eigenvalues

1. Mixed power flow analysis
2. Mixed transient stability

3. Exciter model complexity
reduction

TARGET
EQUATION

IDEA

METHODS

Figure 1.6: Scope of dissertation for computation time reduction

This dissertation contains three additional chapters. Chapter 2 presents a

mixed approach using ac and dc models for power-flow analysis to decrease

computational complexity and capture variations in the external system. A
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high level of accuracy in the targeted central part of the system is achieved

using the detailed ac model. The less detailed dc model is used to reduce

computational requirements and still reflect changes in the external system.

Chapter 2 starts with a brief analytic basis for power-flow analysis including

ac and dc models. Then, the proposed approach is presented. The ana-

lytic calculations of computational benefits are provided. Case studies with

the IEEE 118-bus system are presented to compare performance among the

mixed approach, the ac and the dc models.

In Chapter 3, an advanced method for power system transient stability

analysis is presented, allowing the reduction of the computational require-

ments while retaining important system dynamics. The mixed power-flow

approach in Chapter 2 is extended to transient stability analysis. Chapter

3 first provides basics of power system transient stability simulation. Then,

the mixed transient stability approach is proposed. To prevent the loss of

simulation accuracy, how to compensate line losses neglected using the dc

model is presented. The performance comparisons among the full model, the

dynamic equivalent, and the proposed method are described with the IEEE

118-bus system.

Chapter 4 presents a condition-based exciter model reduction approach for

improved transient stability simulation. Basic numerical integration methods

are first explained. Conditions are investigated using practical power system

examples when fast modes become active or inactive. Then, the proposed

method is described, which switches dynamically between the original exciter

model and the reduced one, depending on the switching criterion. Case stud-

ies with the GSO 37-bus and the Western Electricity Coordinating Council

(WECC) system are provided to validate the performance of the proposed

method.
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Finally, concluding remarks are provided in Chapter 5. The promising

topics for moving forward are also described.
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CHAPTER 2

MIXED POWER FLOW ANALYSIS USING

AC AND DC MODELS

2.1 Introduction

The function of an electric power system during normal operating conditions

is to supply power to customers while maintaining voltage and frequency

within predetermined limits. It is essential to know the voltages at each

bus as well as the power flows through a transmission network in order to

obtain complete understanding of the power system. Power flow analysis can

provide this information, which can then be used to simulate the effectiveness

of a future power system expansion plan. The simulation checks component

overloading during peak load periods. Power flow analysis also allows system

operators and planners to prepare for unpredictable contingency events such

as loss of a generating unit or a transmission line outage. In addition, real-

time results from periodically executed on-line power flow study are used to

correct the power factor by compensating the reactive power and to allocate

optimal generation to minimize transmission line losses and generation cost.

Hence, power flow analysis is fundamental for operating and planning power

systems.

The most accurate approach for power flow analysis is to model the electric

power system with the classic power flow equations (ac model). The ac

model is formulated by a set of nonlinear algebraic equations. An iterative

algorithm is needed to solve it [38, 39]. Several problems are associated with
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the ac model. The nonlinear equations may not converge when a good initial

guess of the solution is not available [40]. High convergence reliability can

be achieved with the time-consuming synthetic dynamics power flow method

which adds artificial dynamic equations to the nonlinear equations [41]. The

ac model is computationally expensive, especially when contingency analysis

is considered.

A number of approximate models and different approaches to the power

flow problem have been studied to improve performance. Some approximate

models using physical properties of power systems, such as the decoupled and

the dc power flow models, are the most commonly used analysis techniques

in power systems [42, 43, 44]. These have faster solutions and simplicity.

Examples include contingency analysis, transmission planning and market

applications. Modifications for fast solution and less convergence difficulties

of the decoupled model have been proposed [45, 46]. The quadratic power

flow model provides faster convergence by using quadratic equations ideally

suited to the Newton’s method [47]. In addition, considering that uncertainty

is always present in power systems, its incorporation into the solution process

has been proposed [48, 49]. Either a probabilistic power flow or fuzzy power

flow model is used, depending on how the uncertainty is expressed in the

system.

Power systems have been required to operate more efficiently and eco-

nomically since the deregulation of the power industry. To accomplish these

objectives, it is important for power systems control centers to be able to

analyze system states accurately and quickly. However, such analysis is a

computationally demanding problem in large modern interconnected power

systems, particularly for long-term simulations. To secure energy delivery

systems, it is crucial to develop rapid and precise analysis methods in order
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to have real-time situational awareness.

Many efforts have been made to speed up the power system analysis. Par-

allel computers using multiple processing units can achieve fast simulation

without simplifying the transmission network [3]. Traditionally, network

equivalent techniques have been used to reduce computational requirements

[8]. Deckmann et al. give a comprehensive overview of classic methods to

derive equivalent networks and their performance results in terms of accu-

racy, convergence and conditioning [11]. An analytic study based on prac-

tical experience and its application for security assessment can be found in

[10, 50, 51]. Network equivalent techniques partition the electric network

into the internal system, external system, and a group of boundary buses

that divide the external system from the internal system. The size of the

power network is reduced by eliminating the external system, while the in-

ternal system is unchanged. The effect of the external system on the internal

one is included by adding real and reactive power flows to the boundary

buses. In practical power systems, the internal system usually denotes the

monitored part of the interconnected power system and is the area of interest

of a regional utility.

However, it should be understood that the network equivalent approach

is practical only for applications without variations in the external system

or when knowledge of voltage states of the entire or the internal system

is already available [9, 10]. This approach cannot capture changes in bus

injections and network status of the external system because the external

system was previously eliminated. As a result, the equivalent network needs

to be updated whenever an alteration to the external system occurs. And the

approach needs to have the solved power flow case for boundary matching:

the net power flows between the unreduced and the reduced networks must be
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an exact match in the boundary buses. Therefore, errors may be introduced

when the solved power flow case is unknown.

This chapter presents an approach focused on reducing computational re-

quirements for power flow studies, while being able to take into account bus

injections and network status in the external system. The proposed method

combines the ac and the dc power flow models. To achieve a high level of

accuracy in the area of interest, power flow problems are formulated with the

detailed ac model in the internal system. To reduce computational expense

and reflect external variations, problems are solved with the less detailed dc

model in the remaining system.

This chapter is organized as follows. Section 2.2 presents a brief analytic

basis for power flow analysis. The proposed approach is presented in Section

2.3. Section 2.4 illustrates simulation results with the IEEE 118-bus system.

A summary is presented in Section 2.5.

2.2 Power Flow Analysis

The basic formulation and solution of the power flow equations are presented

briefly in this section.

2.2.1 AC power flow model

The formulation of the ac power flow equations begins with nodal analysis.

The power balance equations are

Pk = Vk

N
∑

m=1

Vm[Gkmcos(θk − θm) +Bkmsin(θk − θm)] (2.1)

Qk = Vk

N
∑

m=1

Vm[Gkmsin(θk − θm)−Bkmcos(θk − θm)] (2.2)
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The real and reactive power balance equations in (2.1) and (2.2), respec-

tively, are expressed with four variables: voltage magnitude, voltage phase

angle, and net real and net reactive power injections. Two of the four vari-

ables at each bus are known, depending on the bus type. The remaining

variables can be obtained by solving a set of nonlinear power balance equa-

tions. In order to solve for the unknowns in a power system, there must be

the same number of equations as unknowns. The power balance equations

at each bus are used. These equations can be formulated depending on the

bus type.

• Load bus (PQ bus)

P sp
k = Vk

N
∑

m=1

Vm[Gkmcos(θk − θm) +Bkmsin(θk − θm)] (2.3)

Qsp
k = Vk

N
∑

m=1

Vm[Gkmsin(θk − θm)− Bkmcos(θk − θm)] (2.4)

• Generator bus (PV bus)

P sp
k = Vk

N
∑

m=1

Vm[Gkmcos(θk − θm) +Bkmsin(θk − θm)] (2.5)

A resulting set of nonlinear equations can be solved with the Newton-

Raphson (NR) method.

2.2.2 DC power flow model

The dc power flow model greatly simplifies the ac model with the following

assumptions:

• Voltage magnitudes on all buses are 1 p.u.
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• Voltage angle differences are small:

sin(θk − θm) ≈ (θk − θm), cos(θk − θm) ≈ 1

• Line resistance is negligible: Gkm ≈ 0

• Reactive power injections on all buses are ignored

Hence, the real power balance equation in (2.1) can be approximated as:

Pk =

N
∑

m=1

Bkm(θk − θm) (2.6)

The dc model has computational advantages over the ac model. First, its

equation set is just about half of the ac model, because it considers only the

real power injections. Second, the dc model requires no iteration. Third,

because the B matrix is independent of the states, only one factorization

is necessary. Therefore, to find voltage states, the dc model is about ten

times faster than the ac model [52]. Although the dc model is inherently

approximate and may introduce error in power flow analysis, several previous

attempts show that results using the dc model are reasonable and dc line

power flows are, on average, offset by a few percentage points, as compared

to the ac model [44, 53].

2.3 Proposed Method

The proposed approach formulates the power flow problem by combining the

ac with the dc models in order to reduce the computational expenses and take

the bus injections and network status in the external system into account.

Power flow equations in the internal system, which require accurate solution,

are formulated with the ac model and those in the external system are done
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with the dc model for a faster but less detailed solution. Then, the reduced

set of nonlinear equations is solved with the NR method. Figure 2.1 shows

the procedure.

Divide the power system 
into 3 mutually exclusive subsystems

(internal / boundary / external)

Solve the equations
with the Newton-Raphson method

Build power flow equations
with AC or DC models

depending on the divided subsystem

Figure 2.1: Procedure for the approach

2.3.1 Internal/external system and boundary buses

The power system can be divided into three mutually exclusive subsystems

dependent on the area of interest which is called the internal system. The

internal system is connected to neighboring systems, called the external sys-

tem. A group of buses in the external system which have a connection with

a bus in the internal system are called boundary buses. Figure 2.2 defines

these three subsystems.

25



����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Internal system

External system

Boundary buses

Figure 2.2: Schematic of internal system, boundary buses, and external
system

2.3.2 Assumption of system information

It is assumed that all necessary information (net real and net reactive power

injections for a PQ bus and net real power injection and voltage magnitude

for a PV bus) is given in the internal system, whereas only net real power

injection is given in the external system and at the boundary buses. Addi-

tionally, the complete network data is assumed to be known.

2.3.3 Boundary assumption

The effect of the external system on the internal system through the boundary

buses should be considered in order to attain a high level of accuracy in the

internal system. But the information given at the boundary bus is assumed to

have only the net real power injection. Therefore, a proper guess for reactive

power injection or voltage magnitude at the boundary buses is required. The

voltage magnitude difference between two buses on a transmission line is

usually around 1∼2%. Each boundary bus has at least one connection to the

internal system bus whose voltage magnitude would be accurate because of

a set of nonlinear equations with all given information. Thus, the best guess
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for the boundary bus voltage magnitude would be to use that of the internal

system. In addition, for a precise voltage phase-angle solution, nonlinear real

power balance equations are built at the boundary buses. In other words,

the approach assumes that the boundary buses are considered to be a PV

bus with the voltage magnitude of a connected internal system bus without

regard to bus type.

2.3.4 Power flow problem formulation

Depending on the subsystem, the power flow equations are formulated with

ac or dc models as follows:

• Internal system

– PQ bus: P, Q nonlinear equations using (2.3) and (2.4)

– PV bus: P nonlinear equation using (2.5)

• Boundary buses

– PQ/PV bus: P nonlinear equation using (2.3) with voltage mag-

nitude of a connected internal system bus

• External system

– PQ/PV bus: P linear equation using (2.6)

2.3.5 Power flow problem solution

The developed power flow problem is still a set of nonlinear equations, even

though a set of linear equations is formulated in the external system. It can

be solved with the NR method as follows.
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• Build the Jacobian matrix
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• The iterations are continued until the stopping criterion is satisfied
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2.3.6 Example

When the simple power system in Fig. 2.3 is given and bus 1 is assumed to

be a slack bus, the mixed approach can be applied as follows:

• System division

If it is assumed that the internal system consists of buses 1, 2 and 3,

the boundary buses, which have a connection to a bus in the internal

one, are buses 4 and 5 and the remaining bus, 6, is the external system.
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Figure 2.3: Six-bus system

• Formulate power flow equations

– Internal system: P, Q nonlinear equations at buses 2 and 3

f p
2 = V2

N
∑

m=1

Vm[G2m cos(θ2 − θm) +B2m sin(θ2 − θm)] + P2 = 0

f q
2 = V2

N
∑

m=1

Vm[G2m sin(θ2 − θm)− B2m cos(θ2 − θm)] +Q2 = 0

f p
3 = V3

N
∑

m=1

Vm[G3m cos(θ3 − θm) +B3m sin(θ3 − θm)] = 0

f q
3 = V3

N
∑

m=1

Vm[G3m sin(θ3 − θm)− B3m cos(θ3 − θm)] = 0
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– Boundary buses: P nonlinear equation at buses 4 and 5 with volt-

age magnitude of buses 2 and 3, respectively

f p
4 = V2

N
∑

m=1

Vm[G4m cos(θ4 − θm) +B4m sin(θ4 − θm)]− P4 = 0

f p
5 = V3

N
∑

m=1

Vm[G5m cos(θ5 − θm) +B5m sin(θ5 − θm)] + P5 = 0

– External system: P linear equation at bus 6

f p
6 =

N
∑

m=1

B6m(θ6 − θm)− P6 = 0

The total number of system unknowns with the mixed approach is seven,

corresponding to the number of formulated equations. Therefore, the set of

nonlinear and linear equations can be solved with the NR method. In contrast

to the six-bus example, the dimensions of the external system in practical

large-scale power systems are much larger than for the internal system, and

thus compared to the set of nonlinear equations using the ac model alone,

the reduced set of equations can be solved quickly.

2.3.7 Computational benefits

The proposed approach can reduce the computational requirements with the

fast dc model in the external system. Estimation of the computational benefit

from the mixed approach is explored by calculating the number of operations

for LU factorization and forward/backward substitution requiring the solu-

tion of A×x = b, where A is the N × N nonsingular sparse matrix. According

to [54], when each bus is assumed to have, on average, three branches, the

computational complexity for LU factorization and forward/backward sub-
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stitution for solving A×x = b is assumed to grow as N1.58 and N1.29, respec-

tively. The linearized matrix equation from the NR method at each iteration

can be considered as A× x = b and the dimension of the Jacobian matrix is

linearly proportional to the number of equations which are formulated with

power flow models.

To simplify the calculations, the number of operations is evaluated as-

suming that all buses except the slack bus are PQ bus and the number of

boundary buses is small enough to be neglected. Most modern power flow

code with the ac model treats the Jacobian as a matrix of 2 by 2 blocks.

But, when the dc model is applied, the block is replaced with a 1 by 1 block.

Therefore, the dc model is 8 times faster for the LU factorization and 4 times

faster for the forward/backward substitution than the ac model. This allows

the mixed approach to be faster. Table 2.1 shows the operations required for

both the ac model and the mixed approach for any system having N buses

with ratios of internal to external buses, e.g., 1:5 means that for every bus in

the internal system, there are five in the external system. The computational

benefits depend on the ratio. For the first iteration, the mixed approach is

about 5 to 8 times faster for LU factorization and 3 to 4 times faster for

forward/backward substitution than the ac model depending on the ratios

of internal to external buses. The mixed approach can be even faster with

the iteration of the NR method. It does not require updating the Jacobian

elements related to the dc model because the B matrix of the dc model is

constant. Therefore, computational benefits can be achieved by storing the

elements obtained from the first iteration. The components of Jacobian ma-

trix required to be updated are only for the ac model. When it is assumed

that the NR method converges at the fourth iteration, the total number of

operations with the mixed approach is 10 to 30 times smaller for LU fac-
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torization and 6 to 15 times smaller for forward/backward substitution than

with the ac model depending on the ratios of internal to external buses.

In addition, the use of the mixed approach allows us to neglect reactive

power controls in the external system, such as LTC tap changing and gener-

ator PV-PQ switching. These controls usually require additional iterations

for power flow solutions. The elimination of those issues can further increase

the computational performance.
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Table 2.1: Computational benefits from the mixed approach with N buses system

The ration of internal to external buses

1:5 1:100

AC Mixed AC Mixed

LU
Factorization

Number of
operations
for the first
iteration

[1/6*2*(N-1)]ˆ1.58+
[5/6*2*(N-1)]ˆ1.58
=2.42(N-1)ˆ1.58

[1/6*2*(N-1)]ˆ1.58+
1/8*[5/6*2*(N-1)]ˆ1.58

=0.46(N-1)ˆ1.58

[1/101*2*(N-1)]ˆ1.58+
[100/101*2*(N-1)]ˆ1.58

=2.95(N-1)ˆ1.58

[1/101*2*(N-1)]ˆ1.58+
1/8*[100/101*2*(N-1)]ˆ1.58

=0.37(N-1)ˆ1.58

% of
operation
required

100% 19% 100% 12.5%

Number of
operations
for the rest
iteration

3*2.42(N-1)ˆ1.58
=7.26(N-1)ˆ1.58

3[1/6*2*(N-1)]ˆ1.58
=0.53(N-1)ˆ1.58

3*2.95(N-1)ˆ1.58
=8.85(N-1)ˆ1.58

3*[1/101*2(N-1)]ˆ1.58
=0.006(N-1)ˆ1.58

Total 9.68(N-1)ˆ1.58 0.99(N-1)ˆ1.58 11.8(N-1)ˆ1.58 0.38(N-1)ˆ1.58

% of
operation
required

100% 10.2% 100% 3.2%

Forward and
Backward

Substitution

Number of
operations
for the first
iteration

[1/6*2*(N-1)]ˆ1.29+
[5/6*2*(N-1)]ˆ1.29
=2.18(N-1)ˆ1.29

[1/6*2*(N-1)]ˆ1.29+
1/4*[5/6*2*(N-1)]ˆ1.29

=0.73(N-1)ˆ1.29

[1/101*2*(N-1)]ˆ1.29+
[100/101*2*(N-1)]ˆ1.29

=2.42(N-1)ˆ1.29

[1/101*2*(N-1)]ˆ1.29+
1/4*[100/101*2*(N-1)]ˆ1.29

=0.61(N-1)ˆ1.29

% of
operation
required

100% 33.5% 100% 25.2%

Number of
operations
for the rest
iteration

3*2.18(N-1)ˆ1.29
=6.54(N-1)ˆ1.29

3*[1/6*2*(N-1)]ˆ1.29
=0.73(N-1)ˆ1.29

3*2.42*(N-1)ˆ1.29
=7.26(N-1)ˆ1.29

3*[1/101*2*(N-1)]ˆ1.29
=0.02(N-1)ˆ1.29

Total 8.72(N-1)ˆ1.29 1.46(N-1)ˆ1.29 9.68(N-1)ˆ1.29 0.63(N-1)ˆ1.29

% of
operation
required

100% 16.7% 100% 6.5%
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2.4 Case Study

Case studies were performed with the IEEE 118-bus system [55]. For the

purpose of investigation, three simulations were conducted by changing the

internal system as shown in Fig. 2.4. If the internal system for Test 1

is chosen for simulation, then everything else would be either the external

system or the boundary buses. Details of this division of the IEEE 118-bus

system for three simulations are also provided in Table 2.2.

Internal system
for Test 1

Internal system for Test 3

Internal system for Test 2

Figure 2.4: Three internal systems selected for simulation with the IEEE
118-bus system

Table 2.2: Details of the division for three simulations

Internal system buses Boundary buses

Test 1 1∼43, 113∼115, 117 (47 buses) 44, 49, 65, 70, 72
Test 2 44∼68, 116 (26 buses) 38, 42, 43, 81
Test 3 70∼112, 118 (44 buses) 24, 68
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Errors are evaluated by comparing the states using the ac model in the

whole system with those using the mixed approach. In addition, errors from

the dc model are also computed to compare it with the proposed approach.

The Euclidean norm of the errors (2.7) and a sum of the Euclidean norm of

the errors (2.8) in the internal system are commonly used for state estimation

[56]. They combine both voltage-magnitude and voltage phase-angle errors.

ENi =
∥

∥Vi(AC) − Vi(estimate)

∥

∥ (2.7)

Sum of EN =
∑

i∈internal

∥

∥Vi(AC) − Vi(estimate)

∥

∥ (2.8)

Simulation results are provided in Fig. 2.5 and Table 2.3. The figures

show the Euclidean norm of the error at each bus. The error in the selected

internal system is small and it means that the states obtained from the mixed

approach in the internal system are reasonably close to those using the ac

model.

Table 2.3: Sum of Euclidean norm from three simulations

Mixed approach
(A)

DC model
(B)

Error rate of mixed approach
compared to DC model

(=A/B×100%)

Test 1 0.0236 2.8853 0.82%
Test 2 0.0269 0.9215 2.92%
Test 3 0.0713 1.4502 4.92%

In Table 2.3, the sum of the Euclidean norm of the all bus errors in the

internal system is calculated. The results from the mixed approach are com-

pared to those from the dc model. The sum of the errors in the internal

system from the mixed approach is small compared to the dc model. The

error value is dependent on the test cases. The boundary assumptions for

the mixed approach may introduce different amounts of errors depending on
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(a) Test 1 (Internal system: from bus 1 to 43 and 113, 114, 115, 117)
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(b) Test 2 (Internal system: from bus 44 to 68 and 116)
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(c) Test 3 (Internal system: from bus 70 to 112 and 118)

Figure 2.5: Simulation results with the IEEE 118-bus case
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the simulation cases.

Table 2.4 shows the computation time of three test cases and the results

from the mixed approach are compared to that from the ac model. All cases

are converged at the fourth iteration. The simulation time is dependent on

the case study having a different ratio of internal to external buses. More

speed benefits can be achieved with a higher ratio in practical larger power

systems.

Table 2.4: Computation time of three case studies

AC model
Mixed approach

Test 1 Test 2 Test 3

Ratio of internal to external buses - 1:1.4 1:3.3 1:1.6
Computation time [sec] 1.37 0.74 0.56 0.65

% of time 100% 54% 41% 47%

2.5 Summary

This chapter explores the development of power flow algorithms for combin-

ing the detailed ac model with the less detailed dc model. The approach gives

an advanced power flow model which has a fast solution, about ten–thirty

times for LU factorization and six–fifteen times for forward and backward

substitution faster than using the ac model alone, without sacrificing accu-

racy in areas of interest. It can be used for any size of power system. More

benefits in terms of speed can be achieved with a larger power system case

and higher dimension of the external system compared to the internal system.

The approach also includes the external system, in contrast to the network

equivalent technique. This approach can be utilized in a variety of power

system applications.
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CHAPTER 3

MIXED TRANSIENT STABILITY

ANALYSIS USING AC AND DC MODELS

3.1 Introduction

With power systems being operated closer to their security limits, it is criti-

cally important that utilities have access to powerful computation tools that

can perform rigorous analysis of transient behavior [57]. However, due to in-

terconnections, modern power grids have become increasingly complex. They

are comprised of millions of loads and generators, and tied together by hun-

dreds of thousands of miles of transmission and distribution wires with a

myriad of control devices. As a result, a power system transient stability

simulation for dynamic security assessment is required to solve a huge num-

ber of nonlinear differential algebraic equations (DAE) and needs to be run

for many contingency cases [2]. Computational demands in terms of stor-

age and simulation time are significant. For many decades, it has been an

open challenge to achieve fast and accurate power system transient stability

analysis.

Traditionally, dynamic equivalents have been used to reduce the compu-

tational burden. This approach retains an area of interest for study, called

the internal system and replaces the external system — neighboring areas

connected to the internal system — with an electrical equivalent. The power

system model is thus reduced in size. There are three general approaches

used to develop these equivalents: modal, coherency and measurement-based
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[18, 28]. While certainly useful in some situations, the equivalent approach

has weaknesses in that the equivalent must be updated whenever the operat-

ing point or system topology is substantially changed [31] and the simulation

accuracy of the traditional equivalent methods is dependent on the type of

disturbance (fault) [58].

One example of a disturbance that can usually be addressed quite well

by the use of a substantially reduced equivalent is a bus fault and subse-

quent line opening actions. The effects will be associated mostly with the

nearby voltage magnitudes. The frequency impact is small because such dis-

turbances do not usually create a substantial imbalance between the electric

load and generation. The reduced system with the buffer zone around the

fault and with an appropriate dynamic equivalent at the boundary buses can

give accurate responses [18, 28, 31, 58].

On the other hand, when generator or load outages happen, the situ-

ation is different in that the frequency perturbation will affect the entire

power system. The use of the traditional equivalent could be inappropriate

to represent system responses correctly. One issue would be if the dynamic

equivalent does not have enough reserve generator governor response to make

up for the generator loss or the load increase. The reduced system cannot

maintain additional real power injections from the already removed external

system. Therefore, an enhanced transient stability simulation method is re-

quired both to reduce the computational requirements and to achieve better

simulation accuracy than the pure equivalent approach.

Chapter 2 presented a hybrid power flow approach that combines full ac

models with a less detailed dc power flow models. Here the approach is

extended to transient stability analysis. The idea originates from the fact

that although reactive power does not travel well in power systems because
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the transmission network is mostly inductive, the real power does. Both real

and reactive power dynamics are dominant in the internal system where any

type of fault occurs. For the external system which is impacted by a fault in

the internal system, real power dynamics play a more important role. The

significant dynamics of both areas can be preserved by formulating different

power flow equations at each region. The detailed ac model, including full

real and reactive power equations, is used for the area of interest, while

the simpler dc model, including only linear real power equations, is used

for more remote areas. In order to prevent the loss of simulation accuracy,

this approach presents a way to compensate for the line losses neglected

using the dc model. Therefore, the approach can reduce the computational

requirements, and still achieve a high level of simulation accuracy in the area

of interest.

This chapter is organized as follows. Section 3.2 presents a brief analytic

basis for the power system transient simulation and power flow models. The

proposed approach is presented in Section 3.3. Section 3.4 illustrates sim-

ulation results with the IEEE 118-bus system. A summary is presented in

Section 3.5.

3.2 Power System Transient Simulation

3.2.1 Transient stability simulation

A transient stability simulation involves solving a set of differential equations

and an accompanying set of algebraic equations shown in (3.1) and (3.2)

[59, 60]. These are called differential algebraic equations and are of the
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following forms:

ẋ = f(x, y) (3.1)

0 = g(x, y) (3.2)

Equation (3.1) represents the power system dynamics, with the x variables

showing the dynamic state variables such as generator rotor angles and speed.

The dimension of vector x is dependent on the modeling detail and the size

of the power systems. Equation (3.2) represents the stator and network

algebraic equations, with the y variables showing algebraic variables such as

the network bus voltage and angles. The dimension of vector y equals twice

the number of buses.

Figure 3.1 shows a flowchart of a typical transient program which solves

the above set of mathematical equations. The first step is to find the initial

conditions. Those values are determined from power flow solutions and by

setting all the differential operators to zero. Then the time-domain solutions

of the equation sets are obtained through either explicit or implicit numerical

integration formulas applied to each differential operator. This gives a set of

algebraic equations which is then solved by an iterative method, such as the

Newton method. When a disturbance occurs at a certain time, dynamic or

algebraic equations are changed accordingly. This process repeats until the

simulation time reaches its end time.

3.2.2 AC power flow model

In the ac model approach, the power balance equations are represented by the

equations (3.3) and (3.4). These are associated with the algebraic equation

(3.2) for transient stability analysis.
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END

Find initial conditions
- Power flow solutions using the full ac model

- Initial values of dynamic states

Numerical integration
- Explicit or implicit methods to dynamic operators

Solve a set of algebraic equations
- By the use of iterative methods : Newton method

t T>

htt nn +=+1

0t =

Figure 3.1: A flowchart of a conventional transient simulation
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Pk = Vk

N
∑

m=1

Vm[Gkmcos(θk − θm) +Bkmsin(θk − θm)] (3.3)

Qk = Vk

N
∑

m=1

Vm[Gkmsin(θk − θm)−Bkmcos(θk − θm)] (3.4)

The ac model is formulated with nonlinear equations. An iterative algo-

rithm is required to solve those equations. Thus the ac model is computa-

tionally expensive, especially for transient stability analysis which must find

a solution for every time step.

3.2.3 DC power flow model

The dc model simplifies the ac model by making several assumptions. These

are (1) the reactive power balance equations are completely ignored, (2) all

voltage magnitudes are one per-unit, (3) voltage angle differences are small

enough, and (4) line losses are ignored. Hence the dc model reduces the size

of the power flow problem and changes nonlinear problems to a set of linear

equations. It is represented with the following equation:

Pk =
N
∑

m=1

Bkm(θk − θm) (3.5)

Even though the assumptions reduce simulation accuracy, the dc model

has been widely used because of its computational advantages over the ac

model. It can run many times faster because of the following reasons. The

dc model reduces the size of the equation set to about half of the ac model,

because the reactive power equations are ignored. The model is linear. Thus
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no iterations are required and only one factorization of the B matrix is needed

no matter what operation conditions are considered.

3.3 Proposed Method

The proposed method formulates the algebraic equations for transient stabil-

ity simulation by combining the ac with the dc power flow models, depending

on the area of interest. The detailed ac model is used for the internal system

where both real and reactive power dynamics are dominant. The simpler dc

model is used for the external system where real power dynamics dominate.

The proposed method can then represent both the localized effects related

to real and reactive power flows using the ac model for the internal system,

and the entire effects mostly related to real power flows using the dc model

for the external system. Thus, the proposed method aims to achieve a high

level of simulation accuracy with the full ac model in the internal system and

to speed up transient stability simulation with the linearized dc model.

3.3.1 Boundary bus modeling

In the proposed approach, the more approximate dc model is used in the

external system. The external system makes an impact on the internal system

through the boundary buses that comprise the boundary between the two

systems. Careful considerations should be made at the boundary buses to

minimize the error propagation from the external system. A high level of

accuracy can then be achieved in the internal system where accurate solutions

are required. Thus, the more accurate ac model is used to formulate the

algebraic equations at the boundary buses.
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3.3.2 Loss compensation in the external system

The dc model applied to the external system does not take into account the

losses, which have the potential to introduce a usually relatively small error in

the branch MW flows. However, for larger power systems the cumulative sum

of these individually small errors might not be negligible and total real power

balances might not be preserved [44]. Therefore, the dc model cannot capture

the widespread real power impact accurately from the internal system. The

proposed approach expects that the dimension of the external system would

be much larger than the internal system. It is thus necessary to compensate

for these losses to maintain the real power balances in the external system.

The proposed approach converts the losses into shunt resistances at each

external bus. The loss can be obtained from (3.3) and has the following

form:

Ploss(k) = Vk

N
∑

m=1

Vm[Gkmcos(θk − θm)] (3.6)

The loss modeling is based on the initial ac power flow solution and it is

performed before the transient simulation loop. The power balance equations

for the external system have the following form:

Pk(external) =

N
∑

m=1

Bkm(θk − θm) + Ploss(k) (3.7)
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3.3.3 Proposed approach

In the proposed method, the set of algebraic equations corresponding to the

system network can be summarized as follows:

• Internal system and boundary buses

– Nonlinear P and Q equations using (3.3) and (3.4)

• External system

– Linear P equation with loss addition using (3.7)

Figure 3.2 shows a flowchart of the proposed transient stability approach.

Compared to the conventional method, most of the procedures are the same,

but the presented approach adds the loss modeling for the external system

and formulates new power flow equations, depending on the area of interest.

3.3.4 Computational benefits

As shown in Figs. 3.1 and 3.2, transient simulations need to solve a set

of algebraic equations for every time step. The use of the dc model in the

external system reduces the dimension of the equations and thus the compu-

tational requirements can be reduced greatly. The benefits are dependent on

the ratio of the number of internal buses to external buses. More computa-

tional reductions can be achieved when the dc area is much larger than the ac

area. Analytic details about computational benefits depending on the ratio

are shown in Chapter 2. In addition, the dc model does not consider voltage

magnitude variation and reactive power-flows, such that dynamic equations

associated with them can be removed in the external system. Those dynamics

usually show very fast dynamics. Therefore, additional speedup can be made
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END

Find initial conditions
- Power flow solutions using the full ac model for entire system
- Initial values of dynamic states
- Loss modeling for external system using the solved power flow

Numerical integration
- Explicit or implicit methods to dynamic operators

Solve a set of algebraic equations
- By the use of iterative methods : Newton method

t T>

htt nn +=+1
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Modify network equations
- Internal and boundary buses with   (3.3) and (3.4)

- External buses with  (3.7)

0t =

Figure 3.2: A flowchart of the proposed transient stability analysis
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by neglecting the dynamic equations associated with the voltage magnitude

and the reactive power flow, and by using a larger numerical integration time

step in the external system without numerical instability issues.

3.4 Case Study

Internal system

Figure 3.3: One-line diagram of the IEEE 118-bus system

The proposed approach is implemented with Matlab. The performance

of the proposed method is validated with the IEEE 118-bus system shown

in Fig. 3.3 [55]. The case contains 186 branches, 19 generators and 99

loads. System dynamics are represented with the classical machine model

in equation (3.8) [61] and the simple TGOV1 (turbine-governor) model of

which block diagram is depicted in Fig. 3.4 [62]. Constant impedance loads

are modeled. Detailed model parameters for simulations are presented in

Appendix A.1.
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dδi
dt

= ωi − ωs (3.8a)

2Hi

ωs

dωi

dt
= TMi − TEi −Di(ωi − ωs) (3.8b)

where

δi : Rotor angle position of machine i

ωi : Rotor angle velocity of machine i

Hi : Inertia constant of machine i

TMi : Mechanical torque of machine i

TEi : Electrical torque of machine i

Di : Damping coefficient of machine i

Σ
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MAXV

MINV

mP

Figure 3.4: Block diagram of TGOV1

Table 3.1: Details of the system division

Buses

Internal system 1∼23, 25∼42, 113∼115, 117 (45 buses)
Boundary buses 24, 43, 49, 65
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The mixed transient method is tested with the system division provided in

Table 3.1. Overall there are 45 buses in the internal system, four boundary

buses, and 69 buses in the external system. In this example, two different

types of disturbance are applied: (1) a load addition to cause a systemwide

frequency variation, and (2) a balanced three-phase bus fault to ground to

examine a more localized disturbance. The steady-state operating points are

then disturbed and dynamic responses are compared.

Simulation comparisons are made between the full system model, a stan-

dard equivalent model, and the proposed mixed ac-dc approach. A dynamic

equivalent circuit including dynamic parameters is obtained from Power-

World simulator [63]. The difference is measured using RMSE (Root Mean

Square Error) over the simulation period [64].

RMSE =

√

√

√

√

1

N

N
∑

i=1

(xfull−model − xestimate)
2 (3.9)

where N is the number of simulation time steps and x is time-series data

compared.

3.4.1 Load addition (100 MW) at bus 3

For the first disturbance, the load (100 MW) at bus 3 is off-line initially and

is changed to on-line at 0.1 sec. The load connection introduces real power

imbalance in the system and the individual generators via governor control

supply additional real power to restore the system frequency.
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Figure 3.5: Relative rotor angle of Generator 31 w.r.t. Generator 12
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Figure 3.6: Simulation comparisons of bus voltage magnitude

Figure 3.5 shows the relative rotor angle of Generator 31 with respect to

Generator 12, and the bus voltage magnitudes for the internal system are

presented in Fig. 3.6. The responses from the proposed method show overall

good agreement with those from the full transient stability approach. The

RMSE in (3.9) over the period from 0 to 5 seconds is shown in Figs. 3.7

and 3.8. The reduced system from the equivalent method does not produce

simulation results in the external area and thus the RMSE for the external

buses are expressed with zero.
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Figure 3.7: RMSE of bus voltage angle
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Figure 3.8: RMSE of bus voltage magnitude

As shown in the Fig. 3.7, the mixed method shows a smaller RMSE com-

pared to the dynamic equivalent and it means that the proposed method

provides better matching with the full model method than the dynamic

equivalent. And the angle differences in the external system from the mixed

method are similar with those in the internal system. It can be understood

that the dc model shows a quite good performance to represent the real power

dynamics.
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3.4.2 Bus to ground fault at bus 3
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Figure 3.9: Relative rotor angle of Generator 10 w.r.t. Generator 12
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Figure 3.10: Simulation comparisons of bus voltage magnitude

The second comparison is with the simulation of a bus to ground fault. A

three-phase bus to ground fault is applied at bus 3 at 0.1 second and cleared

at 0.15 second. Unlike the previous load connection, the fault does not

introduce any significant real power imbalance between the net generation

and load, causing real and reactive power variations mostly in the buses close

to the fault location. Figures 3.9 and 3.10 show the simulation comparisons

with Generator 10’s rotor angle and bus voltage magnitudes, respectively.
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Figure 3.11: RMSE of bus voltage angle
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Figure 3.12: RMSE of bus voltage magnitude

With the bus to ground fault, the proposed method shows virtually iden-

tical responses to the full model method. The fault makes an impact locally,

mostly on the internal system. This is because the impact of the bus to

ground fault is dependent on the electrical distance between the bus fault

location and the neighboring buses. When the fault occurs far from a bus,

its impact on the bus is lessened. Therefore, the deviation of the system

states in the external system is very small and the use of the more approx-

imate dc model does not introduce a big difference in the internal system.
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Furthermore, as shown in Fig. 3.12, the voltage magnitude errors in the ex-

ternal system are quite small even though the proposed method deals with

the fixed voltage magnitude. As shown in Figs. 3.11 and 3.12, the simula-

tion results of both angle and voltage magnitude validate that the proposed

method accomplishes better accuracy than the dynamic equivalent method.

3.4.3 Computational benefits and accuracy

The computation time with different simulation approaches and the 118-bus

system is provided in Table 3.2. The equivalent method gives a faster solu-

tion than the proposed method. However, additional computational time is

needed to obtain the equivalent and this is not included in the time computa-

tion. In addition, a new equivalent must be reevaluated whenever operating

point or system topology is altered. The mixed approach needs no extra time.

For the given system configuration, the ratio of the internal to external buses

is about 1 to 1.4. More computational benefits can be attained with the case

where the external system is much bigger than the internal system.

Table 3.2: Computation time of 118-bus case

Method Used Ratio of Computation Time

Full Model 1
Mixed 0.73

Equivalent 0.39
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Figure 3.13: Average of bus angle RMSE with varying load amount at bus 3

Figure 3.13 shows accuracy comparison between the mixed and the equiv-

alent methods when the amount of the load addition at the bus 3 is varied

from 50 MW to 500 MW. The average of RMSE angle values for the buses in

the internal system is computed. The equivalent approach shows bigger dis-

crepancy in responses as the load amount increases. Conversely, the mixed

approach provides quite good accuracy whatever load amounts are added.

Because the equivalent system does not maintain the generators in the ex-

ternal area, additional injections from those generators cannot be obtained

with the equivalent approach.

3.5 Summary

An alternative method that speeds up transient stability simulations while

still maintaining a high level of simulation accuracy has been proposed. It is

based on the fact that the reactive powers tend to be more localized compared

to real powers. In the area of interest, where the disturbances are applied

and accurate simulation outcomes are required, both real and reactive power
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equations should be considered to represent power system dynamics correctly,

while real power equations would be enough in the more remote areas where

real power dynamics are dominant. The proposed approach thus formulates

power flow equations for transient stability simulation by combining the full

ac and dc models. A detailed ac model, including nonlinear real and reactive

power equations, is used in the internal system, while a simpler dc model is

used in the external system. The real power losses ignored by the standard

dc model are compensated for in the external system by using the initial

power flow solutions. The test simulations performed with the IEEE 118-

bus system have confirmed that the proposed method achieves faster and

accurate solutions. It is expected that the proposed method would be a

promising solution for the advanced study of transient stability.
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CHAPTER 4

EXCITER MODEL COMPLEXITY

REDUCTION FOR IMPROVED

TRANSIENT STABILITY SIMULATION

4.1 Introduction

Faster transient stability simulations can be achieved by considering the

power system dynamic characteristics and the numerical integration method.

Power system dynamics often involve a wide variety of different time frames

even just within the transient stability problem [61]. Some widely used com-

mercial transient stability packages employ explicit numerical integration

methods, and others use implicit methods. When solving ordinary differen-

tial equations (ODEs) with varying time scales, explicit numerical integration

methods require relatively small time steps to avoid numerical instability. In

practical power systems, only a small fraction of system states are associated

with the faster dynamics. Thus, it would be inefficient to simulate the entire

system with the required small time step.

A common technique used in explicit transient stability packages to avoid

this computational issue is through the use of multirate methods, in which

different variables are integrated with different time steps [65]. Such an

approach uses small time steps for fast varying variables and larger time steps

for the slowly varying ones. The equations for the fast-changing variables

must be solved at points where the slower ones are not solved. In these

equations, linear interpolated values are used for the slow variables. For a

large power system with very few fast variables, the multirate method can
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provide immense computational benefits. This approach was first applied to

the power system transient stability problem in [66] and advanced in [67, 68].

An example of a practical stiff power system is the Western Electricity Co-

ordinating Council (WECC) system. The single machine infinite bus (SMIB)

eigenvalue analysis of this system indicates that 28 generators have eigenval-

ues with real components less than -500. The smallest is around -2600. The

eigenvalues are mostly associated with the EXST1 exciter model, a common

exciter model used in the WECC case. It covers more than 30% of the to-

tal. The large negative eigenvalues represent extremely fast modes. For that

reason, explicit methods require very small integration time steps to avoid

numerical instability.

This chapter presents an algorithm for improving explicit transient sta-

bility solutions, increasing the solution speed without loss in accuracy. It

investigates the conditions in which the fast modes of the EXST1 exciter

model can be neglected or must be preserved. Based on experiment results,

this chapter presents a practical way to determine when fast modes can be

removed and a method to eliminate the modes from system equations. When

fast modes can be ignored, a simpler model with those modes removed re-

places the original model and larger time steps decrease the computational

burden. Otherwise, the original model is used to maintain a high level of

simulation accuracy.

Chapter 4 is organized as follows. Section 4.2 presents a brief descrip-

tion of the numerical integration methods employed in this dissertation. The

problem definition is presented in Section 4.3. Section 4.4 proposes the new

methodology to reduce the computational requirement. In Section 4.5, sim-

ulation results using the GSO 37-bus and the WECC system cases are pre-

sented. Finally, a summary is provided in Section 4.6.
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4.2 Numerical Integration Method

4.2.1 Explicit numerical integration method

An example of an explicit numerical integration method is the second-order

Runge-Kutta method (RK2). The RK2 is the main numerical integration

scheme used in some commercial transient simulation packages [63]. This

method is based on Heun’s method which has a similar motivation to Taylor

series expansion [69]. Given an ODE ẋ = f(x, t), it approximates a real

solution with the following form.

xn+1 = xn + h ∗ (
1

2
k1 +

1

2
k2) (4.1)

where

k1 = f(xn, tn)

k2 = f(xn + hk1, tn + h)

h : integration time step

With the simplest test equation ẋ = λx, the region of stability is given by

(4.2) and Fig. 4.1 shows the region.

|1 + hλ+
1

2
(hλ)2| < 1 (4.2)

For a real valued λ, the region of stability is −2 < hλ < 0. For example,

when the minimum eigenvalue of a system is -2400, the time step required

for numerical stability must be smaller than 0.00083 seconds (0.05 cycles).
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Figure 4.1: Region of stability of the RK2 method

4.2.2 Multirate method

SLOW
Variable

�

� � � �

FAST
Variable

Figure 4.2: Multirate method implementation

The multirate method uses multiple different time steps in the numerical

integration scheme. Figure 4.2 shows the process. For the fast-changing vari-

ables, a small time step (h) is used, while for the relatively slower changing

variables, a multiple of the small time step (H) is used. For the example

shown in Fig. 4.2, the ratio of the fast time step to the slow time step is 4.
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The equations for the fast-changing variables must be solved at points where

the slower ones are not solved. In these equations, linear interpolated values

are used for the slow variables [68].

4.3 Problem Definition

4.3.1 WECC system and EXST1 exciter model

The exciter model is a primary source of fast dynamics and mainly used to

control a machine terminal voltage and the reactive power dynamics [2]. A

number of different exciter models are used, but a small number of them

account for the extremely fast modes. In the WECC study case considered

here, 28 generators show eigenvalues with real components less than -500 and

all of the smallest eigenvalues are associated with the EXST1 model. The

WECC case has a total of 2446 exciters, with the EXST1 model, the most

common, used with about one-third of the models. The participation factors

identify that those modes are mostly contributed by exciter state, VA and

the state VA does not participate in other modes. Therefore, eliminating the

eigenvalues related to the dynamic state from the system equations does not

change other eigenvalues.
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4.3.2 EXST1 model reduction

Figure 4.3: EXST1 exciter model block diagram

Figure 4.3 shows the block diagram of the EXST1 exciter model [70]. Due

to the differential feedback block, the closed-loop transfer function shows a

very small eigenvalue. The overall closed-loop transfer function is described

by (4.3).

T (s) =
VA

(VS + Vref − Vcomp)
(4.3)

=
KA(1 + sTC)(1 + sTF )













TATBTF s
3

+(TATB + TATF + TBTF +KATFTC)s
2

+(TA + TB + TF +KAKF )s+ 1













=
KA(1 + sTC)(1 + sTF )

TATBTF (s− p1)(s− p2)(s− p3)

where p is the root of the denominator and p1 < p2 < p3 < 0.

When the pole (p1) associated with the very fast dynamics is eliminated

from the closed-loop transfer function, the reduced transfer function is given

in the following form.

63



Treduction(s) =
VA

(VS + Vref − Vcomp)
(4.4)

=
KA(1 + sTC)(1 + sTF )

TATBTF (−p1)(s− p2)(s− p3)

=
KA(1 + sTC)(1 + sTF )

(1− s/p2)(1− s/p3)

Figure 4.4: Block diagram of the reduced EXST1 exciter

The reduced EXST1 exciter model is shown in Fig. 4.4. In order to

maintain the same limit function, the VIMAX and VIMIN values need to be

modified. As shown in (4.5), the state VF can be calculated at every simula-

tion time step using the feedback transfer function with state VA. New limits

of the reduced model are simply updated by adding the VF to those of the

original model and it is shown in (4.6) and (4.7). The update is done once

per time step, not at the subinterval time step.

VF =
sKF

1 + sTF

VA (4.5)

VIMAX(reduced) = VIMAX + VF (4.6)

VIMIN(reduced) = VIMIN + VF (4.7)
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4.3.3 Comparison between the original and the reduced

Simulation results are compared using the original EXST1 model and the

reduced one. The EXST1 model parameters for the simulations are presented

in Appendix A.2.
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Figure 4.5: Bode plot of EXST1 exciter and its reduction

Figure 4.5 shows the Bode plots of the transfer functions of both the origi-

nal and the reduced EXST1 models. The reduced model function is identical

to the original model in the low-frequency range. Therefore, the reduced

EXST1 model can take the place of the original model if the exciter input

does not experience abrupt change.

On the other hand, in the high-frequency range, the difference is signifi-

cant. Certain factors of the exciter inputs, such as the magnitude of voltage

deviation and duration, bring about differences in the response of the original

and the reduced models. The dependency on these factors is studied by ap-
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plying a rectangular pulse which has a wide frequency spectrum to the Vcomp

of the original and the reduced models. The amplitude (A) and duration (D)

in seconds of the pulse are varied for comparison. The difference is measured

by the mean squared errors (MSE) shown in (4.8).

MSE =
1

N

N
∑

i=1

(xoriginal − xreduced)
2 (4.8)

where N is the number of simulation time steps and x is time-series data

compared.
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Figure 4.6: Simulation comparison with voltage magnitude deviation and
duration

Figure 4.6 shows the MSE over a range of voltage magnitude deviation

for a number of D values. It can be seen that the MSE is negligible when

the amount of voltage deviation is less than 20% regardless of the duration.

Therefore, the original EXST1 model can be switched to the reduced model

if the input voltage deviation is small.
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4.4 Proposed Method

In the proposed approach, a dynamic simulation begins with the reduced

exciter model and dynamically switches back to the original model during

simulation if the exciter input does not satisfy the model reduction condi-

tions. Figure 4.7 depicts the procedure in the form of a flowchart.

END

SET Exc=Reduced

SOLVE DAE

t T>

START

1n n

i i
t tV V ε

+
− > Exc=Reduced

SET Exc=Original

htt nn +=+1

htt nn +=+1

YES

YES

NO

NO

NO

YES

Figure 4.7: Proposed model complexity reduction method
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The conditions are monitored at every integration time step by calculat-

ing the voltage deviation at generator terminals where the EXST1 exciter

is placed. When it is over a certain threshold (ǫ) at a time instant (tn+1),

the proposed method switches from the reduced model to the original model

in order to maintain the necessary simulation accuracy. From trial simula-

tions based on Fig. 4.6, when the threshold is set to 10%, a satisfactory

agreement between the original model and the reduced model is achieved.

When the switching happens, the calculated values with the reduced model

at the time instant (tn+1) are neglected and the proposed approach performs

the numerical integration again with the original model at the time instant.

The integration at tn+1 requires all dynamic states of the original model at

the previous time step (tn). However, some of these states have not been

computed because the reduced model has been used. The state VA with the

reduced model is set equal to that of the original model before the viola-

tion. As mentioned in Section 4.3, the proposed method updates the state

VF to keep the same limits. The other states at tn can be obtained using

the original exciter dynamic equations with the states VF and VA updated

continuously.

4.5 Case Study

The proposed approach is implemented in the transient stability package,

PowerWorld simulator [63]. Case studies are performed with the GSO 37-

bus case and the WECC system in order to validate performance of the

proposed method. Before the case studies, FFT analysis shows that fault

type and location are related to the range of frequency spectrum and the

degree of voltage deviation.
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4.5.1 FFT analysis with faults

During generator or load outage, the key dynamics are driven by the device

inertia and the response of generator governors. A detailed exciter model

may not be necessary and it may be replaced by a much simpler model.

Faults related to bus voltage magnitude or reactive power dynamics may be

closely related to the exciter function. An initial investigation is performed

to find the types of faults that result in high-frequency components in gen-

erator terminal voltage. The investigation is done using the simple power

system case shown in Fig. 4.8.

Figure 4.8: Simple test case for FFT analysis

A generator, a load outage, a three-phase bus to ground fault at bus 1

and a line 1-2 to ground fault are compared. The FFT analysis is conducted

on bus 1 voltage magnitude data. As shown in Fig. 4.9, the bus or line

to ground fault results in a bus voltage with the greatest magnitude over a

wide frequency range. This is because the bus voltage experiences abrupt

rectangular change when the faults occur. Conversely, for a generator or

load outage, the magnitude for frequency over 10 Hz is negligible. Therefore,

for the following case studies, a generator outage is used to demonstrate a

situation where high-frequency components are not injected.
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Figure 4.9: FFT analysis with different types of fault
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Figure 4.10: FFT analysis with a bus to ground fault

When a bus to ground fault occurs, the magnitude of voltage deviation is

dependent upon the electrical distance between the bus fault location and

the neighboring buses. When a bus fault occurs far from a bus, its impact

on changing the bus voltage magnitude is lessened. A bus to ground fault

is simulated at bus 5 of the system in Fig. 4.8. The FFT results of the bus

voltage magnitude at the five different buses are shown in Fig. 4.10. It is

seen that the farther a fault location is from a bus, the less the effect on the
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bus voltage. For the following case studies, the amount of voltage deviation

is considered by changing the bus to ground fault location.

4.5.2 GSO 37-bus case

The GSO 37-bus case is shown in Fig. 4.11. The case contains 57 branches,

9 generators and 25 loads [71]. For test purposes, the parameters of the two

EXST1 exciters at bus 28 are changed as shown in Appendix A.2. SMIB

eigenvalue analysis indicates that two large negative eigenvalues, both at

−2102, originate from the exciter models.

Figure 4.11: GSO 37-bus case
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The performance is evaluated by comparing simulation results using the

proposed method with using the conventional method. Three different faults

are tested to consider the situations related to the proposed criteria. In the

first test, a generator outage at bus 28 is applied so as to consider the condi-

tion in which the generator terminal voltage contains mostly low-frequency

components. Two remaining tests simulate bus to ground faults at buses 28

and 55 to consider different magnitudes of voltage deviation.
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Figure 4.12: Simulation for Generator ID1 outage at bus 28
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Table 4.1: Mean squared error for generator ID1 outage at bus 28

MSE

Bus 28 Voltage Magnitude (pu) 6.36e-13
Gen ID2 Real Power (MW) 4.73e-8

Gen ID2 Reactive Power (Mvar) 4.01e-6

The results of the generator outage test are presented in Fig. 4.12. The

results show bus voltage magnitude, both the real and reactive power output

of generator ID2 at the bus 28 when generator ID1 is tripped at 1 second.

The MSE of the responses over the period from 0 to 10 seconds is shown

in Table 4.1. The simulation results with the reduced EXST1 are virtually

identical to those with the original model. This validates the claim that the

large negative eigenvalues from the EXST1 exciter model can be neglected

when a high-frequency input is not applied.

The next comparison is made with the simulation of a solid bus to ground

fault. A three-phase bus to ground fault is applied at bus 55 at 1 second

and it is cleared at 1.1 seconds. Figure 4.13 shows the simulation compar-

isons and Table 4.2 shows the MSE calculation over the period from 0 to

10 seconds. The differences are small enough to be neglected. It can be

understood that the fault location, bus 55 is far enough from the location

of the EXST1 exciter, bus 28. The magnitude of voltage deviation at bus

28 is not large enough to produce a significant difference between the results

using the original EXST1 exciter model and the reduced model. Thus, even

if the high-frequency components are injected to the exciter model, if the

magnitude of those components is small, the very fast mode of the EXST1

model can be eliminated, while maintaining accurate system responses.
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Figure 4.13: Simulation for bus to ground fault at bus 55

Table 4.2: Mean squared error for bus to ground fault at bus 55

MSE

Bus 28 Voltage Magnitude (pu) 1.42e-11
Gen ID1 Real Power (MW) 3.82e-6

Gen ID1 Reactive Power (Mvar) 1.50e-5

Finally, the dynamic responses of a three-phase bus to ground fault at bus

28 simulated at 1 second and cleared at 1.05 seconds are presented in Fig.
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4.14. The bus voltage experiences abrupt variation, well over the threshold

(10%). The proposed method restores the original exciter model and shows

the same responses as the conventional method. For comparison, the simu-

lation results with the reduced exciter model are shown in Fig. 4.14 and the

differences are evident. The MSE between using the original exciter model

and using the reduced model is presented in Table 4.3. And the results in

Fig. 4.14 show a faster response using the reduced model over the original
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Figure 4.14: Simulation for bus to ground fault at bus 28
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model. This is because the magnitude of the transfer function of the reduced

model in the high-frequency range is larger than that of the original model.

Table 4.3: Mean squared error for bus to ground fault at bus 28

MSE

Bus 28 Voltage Magnitude (pu) 6.57e-5
Gen ID1 Real Power (MW) 1.0245

Gen ID1 Reactive Power (Mvar) 158.81

Table 4.4 shows the computation time and integration time step of three

different simulation approaches. Each integration time step is the maximum

allowable step size to avoid numerical instability. A simulation of the bus to

ground fault at bus 55 is performed. The computation time is an average ex-

ecution time of multiple 10-second simulations. The proposed method with

the reduced exciter model decreases the simulation time by approximately

98% compared to that of the single-rate method with the original exciter

model. Compared to the multirate method, the presented approach shows a

7% computation time saving. This saving is due to the fact that integration

associated with the fast dynamics are not performed. As demonstrated in

Table 4.2 and Fig. 4.13, the proposed approach preserves a high accuracy

level.

Table 4.4: Computation time for the GSO 37-bus case

Method
Used

Exciter
Model

Numerical
Integration

Int. Time
Step (cycle)

Time to
Solve (sec)

Conventional Original
Single-rate 0.05 47.99
Multi-rate 2.4 1.08

Proposed Reduced Single-rate 2.4 1.01
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4.5.3 WECC case

The WECC system consists of 17,710 buses, 3470 generators and 8493 in-

dividual loads. To validate the proposed method, all negative eigenvalues

with real component magnitude greater than 500 and associated with the

EXST1 model are eliminated. In this case, a total of 28 original EXST1 ex-

citer models are replaced with the reduced model. Simulation results using

the conventional method and using the proposed approach are compared.

Similar faults to those in the GSO 37-bus case are applied.

First, a generator outage is simulated at generator ID4 at bus A, which

contributes to one of the smallest eigenvalues in the system. Figure 4.15

shows bus voltage magnitude, the real and reactive power output of gener-

ator ID1 at the bus A. As expected, the responses from the reduced model

match those from the original model. The MSE are evaluated for the 5-

seconds simulation and are presented in Table 4.5.

Table 4.5: Mean squared error for generator ID4 outage at bus A

MSE

Bus A Voltage Magnitude (pu) 2.09e-12
Gen ID1 Real Power (MW) 3.7e-7

Gen ID1 Reactive Power (Mvar) 5.1e-9
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Figure 4.15: Simulation for Generator ID4 outage at bus A

Generator ID1 at bus B also participates significantly in one of the smallest

negative eigenvalues. To consider the amount of voltage deviation, a solid

bus to ground fault is simulated at bus C which neighbors the bus B at 1

second. At 1.1 seconds, the fault is cleared. The bus voltage magnitude, and

both the real and reactive power output of generator ID1 at bus B using the

two approaches are compared in Fig. 4.16. As shown in Table 4.6, the MSE

difference is very slight and can be neglected.
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Figure 4.16: Simulation for bus to ground fault at bus C

Table 4.6: Mean squared error for bus to ground fault at bus C

MSE

Bus A Voltage Magnitude (pu) 6.96e-12
Gen ID1 Real Power (MW) 1.67e-5

Gen ID1 Reactive Power (Mvar) 1.83e-5
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The simulation results of a bus to ground fault applied to bus B at 1

second and cleared at 1.1 seconds are shown in Fig. 4.17. When this fault

is simulated, the proposed method changes the reduced exciter model to

the original model because the requirement is violated. For comparison, the

simulation result with the reduced model is also shown in Fig. 4.17. The

MSE between using the original model and using the reduced one is shown

in Table 4.7 and it shows obvious distinction.
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Figure 4.17: Simulation for bus to ground fault at bus B
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Table 4.7: Mean squared error for bus to ground fault at bus B

MSE

Bus A Voltage Magnitude (pu) 4.40e-4
Gen ID1 Real Power (MW) 124.92

Gen ID1 Reactive Power (Mvar) 8582.6

The computation times with three different simulation approaches depend-

ing on the exciter model and the integration method are compared in Table

4.8. Simulations is performed with the maximum step size of each approach

to prevent the numerical instability. It is measured for when the bus to

ground fault is at the bus C and the simulation ends at 5 seconds. The

computation time is obtained by running the simulations multiple times.

Compared to the single-rate method with the original exciter model, the

simulation time of the proposed method with the reduced model decreases

by approximately 83% and this results from a larger integration time step.

About 7% of computation time is reduced by using the proposed method

compared to the multirate approach with the original exciter model. These

exciters are being simulated with quite small subintervals because of the fast

dynamics from the EXST1 model. Some commercial packages reduce the

time step for the models by a factor of 64 or 128. The reduced model does

not require the small time steps because the fast modes are eliminated.

Table 4.8: Computation time for the WECC case

Method
Used

Exciter
Model

Numerical
Integration

Int. Time
Step (cycle)

Time to
Solve (sec)

Conventional Original
Single-rate 0.04 487.3
Multi-rate 0.24 89.9

Proposed Reduced Single-rate 0.24 83.1

81



4.6 Summary

Power system transient stability analysis is computationally demanding. How-

ever, much of the computation that occurs during a transient simulation is

wasted effort and does not have any impact on the solution outcome. There-

fore, the main challenge for faster transient stability simulation is to deter-

mine how the system models can be reduced, while maintaining the correct

system responses. It is explored that an excitation of fast modes related to

the EXST1 exciter model is dependent on a large and sudden transition of

the generator terminal voltage. The proposed approach dynamically switches

between the EXST1 exciter model and the reduced model, for which large

negative eigenvalues are eliminated. Larger integration time steps and the

removal of subinterval integrations decrease the execution time of power sys-

tem transient simulations without numerical instability. This method is an

advanced dynamic simulation algorithm which provides a fast explicit tran-

sient solution without sacrificing simulation accuracy.
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CHAPTER 5

CONCLUSIONS

5.1 Summary

This dissertation explores three approaches to enhance the computational

efficiency for power flow and transient stability analyses. The proposed

methods have been demonstrated on power system test cases to validate the

performance in terms of computation time and simulation accuracy. These

methods can be utilized in a variety of power system applications. It is

expected that the proposed approaches would be a promising solution for

advanced power system study.

In Chapter 2, the importance of power flow analysis and its fast solution

has been addressed. A new power flow algorithm has been proposed by com-

bining the detailed ac model with the less detailed dc model. The advanced

power flow model achieves a fast solution, about ten to thirty times faster

for LU factorization and six to fifteen times faster for forward and backward

substitution compared to using the ac model alone, without sacrificing accu-

racy in areas of interest. It can be used for any size of power system. More

benefits in terms of speed can be achieved with larger power system cases and

higher dimensionality of the external system compared to the internal one.

In contrast to the network equivalent technique, the approach still includes

the external system, thus is able to capture variations there.

In Chapter 3, an alternative method that speeds up transient stability sim-

83



ulations while still maintaining a high level of simulation accuracy has been

proposed. It is based on the fact that the reactive power tends to be more

localized compared to real powers. In the area of interest, where the dis-

turbances are applied and accurate simulation outcomes are required, both

real and reactive power equations should be considered to represent power

system dynamics correctly, while real power equations would be enough in

the more remote areas where real power dynamics are dominant. The pro-

posed approach thus formulates power flow equations for transient stability

simulation by combining the full ac and dc models. A detailed ac model,

including nonlinear real and reactive power equations, is used in the internal

system, while a simpler dc model is used in the external system. The real

power losses ignored by the standard dc model are made up for in the ex-

ternal system by using the initial power flow solutions. The test simulations

performed with the IEEE 118-bus system have confirmed that the proposed

method achieves faster and accurate solution.

Finally, Chapter 4 presents a model reduction approach focusing on the

EXST1 exciter model. It is explored that an excitation of fast modes related

to the EXST1 exciter model is dependent on a large and sudden transition of

the generator terminal voltage. The proposed approach dynamically switches

between the EXST1 exciter model and the reduced model, for which large

negative eigenvalues are eliminated. Larger integration time steps and the

removal of subinterval integrations decrease the execution time of power sys-

tem transient simulations without numerical instability. This method is an

advanced dynamic simulation algorithm which provides a fast explicit tran-

sient solution without sacrificing simulation accuracy.
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5.2 Future Research

For future research to further advance the proposed methods, the following

work is suggested.

5.2.1 Mixed power flow analysis

The standard dc power flow model applied to the external system is inher-

ently approximate and its solution accuracy is very problem dependent. The

neglect of real power losses would bring about total real power imbalance.

These shortcomings with the dc model can be overcome by developing a lin-

earized power flow model, which can be obtained from a initial power flow

solution. The accuracy in the internal system can thus be improved without

additional computational expenses.

5.2.2 Mixed transient stability analysis

First, the dc model used in the external system neglects voltage magnitude

deviation and reactive power balance equations. Fast dynamics in power

system equations are mostly originated from controllers associated with those

reactive power and voltage magnitude terms. Even larger computational

benefits could thus be achieved with the mixed transient stability method if

we are able to allow for larger time step solutions in the external system.

Second, further research can be carried on by incorporating higher-order

machine models instead of the classical machine model used in this disser-

tation and by exploring how to reduce the complicated machine model to a

simple one in the external system.
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5.2.3 Exciter model complexity reduction

The proposed method deals with the EXST1 exciter model which is the most

common in the WECC system. Other types of exciter models, which are

associated with another large negative eigenvalues, can be reduced with the

same approach used in this dissertation. Such models would have a similar

block diagram to the EXST1 exciter because the differential feedback loop

produces the large negative eigenvalues.
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APPENDIX A

TEST SYSTEM DATA

A.1 Dynamic Parameters of Chapter 3

Table A.1: Machine parameters for the IEEE 118-bus system
(Machine base: 100 MVA)

Generator
Number

H Xdp D
Generator
Number

H Xdp D

10 5.66 0.059 1 65 7.41 0.067 1
12 9.97 0.22 1 66 7.41 0.067 1
25 8.24 0.139 1 69 5.26 0.053 1
26 6.01 0.096 1 80 5.26 0.053 1
31 12.37 0.247 1 87 12.37 0.247 1
46 12.37 0.247 1 89 4.64 0.047 1
49 8.24 0.139 1 100 8.26 0.095 1
54 9.97 0.22 1 103 9.97 0.22 1
59 7.93 0.153 1 111 9.97 0.22 1
61 7.93 0.153 1

Table A.2: TGOV1 model parameters
(all generators have the same parameters)

R T1 T2 T3 Vmax/Vmin

0.05 0.5 3 10 7/0
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A.2 Dynamic Parameters of Chapter 4

Table A.3: EXST1 exciter model parameters

Vimax = 10 Vimin = −10 TC = 1 TB = 1
KA = 200 TA = 0.01 KF = 0.04 TF = 0.4
Vrmax = 3.6 Vrmin = 0 KC = 0
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