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Consensus on State and Time: Decentralized

Regression with Asynchronous Sampling
Hoi-To Wai and Anna Scaglione

Abstract—An implicit assumption made in several studies on
sensor systems is that the time and frequency at which sensor
measurements are taken is consistent across all the distributed
sensing sites. In reality, the times of measurement often lack
consistency and integrity, and this is an intrinsic vulnerability of
wide area sensor system. Data logs coming from different Analog
to Digital Converters (ADCs) are not in phase and may differ also
in the sampling rate, in some cases because heterogeneity in the
sensors and in others because the data are simply not refreshed
in the data historians with the same frequency. Lack of good
synchronization in sensing may be the result of a malfunction or
also due to intentional delay attacks.

This premise motivates our work, where we advance the
area of decentralized signal processing and consider explicitly
timing errors and non-homogenous sampling rates in least
square estimation problems with distributed sensing. For linear
observations models, we provide a necessary and sufficient
condition for identifiability of the time offsets. We propose
an algorithm for the joint regression on the state vector and
time offsets. The algorithm also exploits the asynchrony and
redundancy in the spatial sampling to attain sub-Nyquist
sampling resolution of the slow sensor feeds. Importantly, this
also leads to the development of a novel decentralized algorithm.
The efficacies of the proposed decentralized algorithm are shown
by both convergence analysis and numerical simulations.

Index terms− decentralized state estimation, sampling
offsets, sub-Nyquist sampling, smart grid.

I. INTRODUCTION

TODAY there is significant interest in developing decen-

tralized signal processing techniques for solving regres-

sion problems that arises in array processing and control

applications (e.g., see [3]–[12] and the references therein).

These decentralized algorithms overcome the lack of ob-

servability in individual sensors by merging communication

with computations in a resilient fashion, relying on (possibly

randomized) near-neighbors communications.

One of the implicit assumptions made in the vast majority

of related literatures is that the measurements are sampled

in a synchronous manner. Such an assumption is valid only

when: i) the system state evolution is sufficiently slow that the

lack of synchrony in sampling is negligible; or ii) the timing

information is sufficiently accurate (with the aid of for instance
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presented at IEEE SAM 2014 [1] and Asilomar 2014 [2].
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of a GPS receiver) to calibrate the ADCs; and iii) the sensors

employed follow the same sampling rate. These assumption

are quite limiting. For example, in power grid, local clocks in

the measurement devices are prone to malicious attacks [13];

in sensor array processing, the desire of processing signals

over high frequency carriers and wide bandwidths has made

the design of hardwares for synchronization more challenging.

This paper attacks the problem of non-ideal sampling by

addressing these issues in a unified manner, while considering

the case of power grid as an immediate application example.

Our formulation imposes very mild restrictions. Specifically,

assuming that the relationship between the measurements and

state is memoryless, we model the system state variables as

band-limited continuous-time signals and the measurements as

samples taken at different sampling frequencies and with an

unknown time offset. The analysis and algorithms we propose

rely only on the sampling expansion (i.e. smoothness in the

state signal). On the practical side, by representing the down-

sampled and time-shifted signals in the frequency domain, we

tackle the new regression problem on state and time offsets

using a novel decentralized algorithm. The decentralized algo-

rithm is proven to converge both analytically and empirically.

The remainder of this paper is organized as follows. In

Section II, we introduce the system model with linear mea-

surement and non-ideal sampling. Specifically, we derive an

equivalent frequency-domain representation where our analy-

sis and algorithms are based upon. In Section III, we derive

conditions under which the accurate state and times offsets are

recoverable via solving the proposed regression problem. A

decentralized algorithm for tackling the proposed regression

problem will be discussed and analyzed in Section IV. In

Section V, we discuss the extension to non-linear measurement

models and its applications on the power grids. Finally, the

paper is concluded by the simulation results that show the

efficiencies of the proposed method in Section VI.

Notations: We follow the standard notations used in signal

processing literature. The operator ⊗ denotes the Kronecker

product, (·)∗ denotes complex conjugate, DTFT{·} denotes

the standard DTFT transformation
∑∞
n=−∞ x[n]e−jωn.

A. Related works

Techniques for mitigating timing errors have long been

considered in the control theory literatures, e.g., [14]–[17].

A common feature among these works is that they adopt a

Kalman filtering approach and are often combined with a

Taylor approximation to the system dynamics. As a result,

applying these techniques requires an a-priori knowledge of

Page 1 of 44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

2

the dynamic equations that represent the evolution of system

state, and that the timing offset is sufficiently small such

that the Taylor approximation is accurate. A good example

of prior works that is relevant to ours is [18]. In this paper,

Yang et. al. considered a static system where the effects of non-

ideal sampling is resulted from down-converting signals with

high-frequency carriers (e.g., in power system state estimation

(PSSE) with linear measurements) and tackled the joint time

offsets and state regression using a Taylor approximation.

What differentiates our work is the direct manner in which

we model the effects of non-ideal sampling. In fact, we do not

require any a-priori knowledge on the state evolution dynamics

nor assumptions on the magnitude of time offsets. Our work is

in the same spirit with sampling using time-interleaved ADCs

[19], [20]. Furthermore, it overlaps with the recent works on

sub-Nyquist recovery in [21]–[23], reviewed in [24]. In these

works, it is usually required that the signal being sampled

satisfies certain properties known a-priori to the system, while

ours focuses on the blind calibration problem and fusion of

measurements.

Decentralized algorithms over sensor network have been

considered in [11], [12], [25]–[27]. For example, [11], [12]

combines gradient (or quasi-Newton) descent and consensus

protocols to develop the diffusion-based LMS (or RLS) algo-

rithm; [28] proposes a Gossip-based Gauss-Newton algorithm.

While most of these algorithms applies to general optimization

problems, they are guaranteed to converge only when the

optimization is convex. However, our regression problem with

non-ideal sampling is non-convex and the aforementioned

algorithms cannot be directly applied. We have proposed a

new decentralized algorithm that exploits structures in the said

regression problem. More importantly, the algorithm is proven

to converge under certain conditions.

II. SYSTEM MODEL

Consider a sensor network equipped with P sensors. The

sensor network monitors the system state that can be modelled

as a continuous-time signal xc(t) ∈ C
N . Specifically, we study

the case when the measurement is linear in the system state

such that the pth sensor observes the following at time t:

ζp(t) = Hpxc(t) + vp(t), (1)

where Hp ∈ C
Mp×N is the measurement matrix with Mp ≤

N and vp(t) ∼ CN (0, σ2
wI) is an additive white noise. For

the applications of (1) on sensor array processing, we refer

our readers to [6]–[8]; in addition, some recent applications

on power system state estimation can be found in [3]–[5].

Our model can also be extended to the general case with non-

linear measurement, i.e., when ζp(t) is non-linear in xc(t);
see Section V.

The objective is to estimate xc(t) using ζp(t). In the control

theory literatures [15]–[18], [29], the system state xc(t) is

often modelled by a linear/non-linear dynamical system. We

consider the scenario when such a knowledge on the under-

lying dynamical system is not available. Instead, we study

the state estimation problem under the model implied by the

following assumptions:

Assumption 1. The system state xc(t) is band-limited by W/2
Hz, i.e., xc(t) is a smooth signal.

Assumption 2. The measurements are collected from the

continuous-time signal ζp(t) under a non-ideal sampling

model — the pth sensor samples ζp(t) at time:

tnp = (nAp − bp)Ts, n = 0, 1, 2, ..., (2)

where Ts = 1/W second is the Nyquist sampling period, bp ∈
R is the normalized time offset at sensor p and the sampling

factor Ap ≥ 1 is an integer. In addition, we set b1 = 0 to

avoid ambiguity.

Assumption 3. The down-sampling factor Ap ∈ Z+ is known

while the time offset bp ∈ Bp is unknown. The interval Bp ⊆ R

is convex and known.

The consequences of Assumption 1 to 3 are discussed as

follows. Assumption 1 is the key enabling assumption for

estimating xc(t) from samples of measurements in (1). Under

the assumption, it suffices to obtain x[n] = xc(nTs) in order

to estimate xc(t). In fact, by observing that

ζp(nTs) = Hpx[n] + vp(nTs), (3)

the system state x[n] can be readily estimated by solving a

least square optimization with the data {ζp(nTs)}p. In fact,

Assumption 1 with the synchronous sampling model is one of

the implicit assumptions made in most literatures on sensor

array processing [3]–[9].

In reality, obtaining the set of data {ζp(nTs)}p is impos-

sible since it requires the physical system to sample at time

tnp = nTs for all sensors. This requires synchronization, and

it is hard to enforce for sensors placed over a physical system

that occupies a wide area. In this case, often measurement

samples are collected at heterogenous sampling rate and with

sampling offsets. This is the reason why Assumption 2 was

imposed. Under Assumption 2, the sampled version of (1) can

be expressed as:

ζp[n] , ζp(t
n
p ) = Hpxc((nAp − bp)Ts) + vp[n]. (4)

Lastly, Assumption 3 is justified by the fact that the sam-

pling rate of a sensor is usually known a-priori, while the time

offsets are unpredictable.

The aim of this paper is to study the estimation problem of

x[n] and bp. We first observe that estimating x[n] and bp on a

sample-by-sample basis from {ζp[n]}
K
p=1 alone is impossible

as the former terms do not appear in the right hand side of (4).

As a remedy, we consider a frequency domain representation

for (4) and leverage on the following observation:

Observation 1. Let xc(t) be a bandlimited signal with band-

width W/2 Hz. We denote x[n] = xc(nTs) with Ts = 1/W
as its discrete time equivalent and X(ejω) = DTFT{x[n]} is

the discrete time Fourier transform (DTFT) spectrum. Then:

DTFT{xc((nA− bp)Ts)} =
1

A

A−1
∑

a=0

e−jbpΩ
a
A(ω)

X

(

ejΩ
a
A(ω)

)

,

(5)

where

ΩaA(ω) ,
(ω

A
−
a

A
2π

)

mod (−π, π]. (6)
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The proof of Observation 1 is relegated to Appendix A. In

fact, the DTFT spectrum of x((nA − bp)Ts) is a weighted

combination of the stretched and shifted versions of X(ejω).
For ease of exploration, it will be useful to consider that

the K sensors are sampling at the same (sub-Nyquist) rate.

This can be done by creating further decimated samples from

ζp[n]. In particular, we define the constants:

A , LCM{A1, ..., AP } and Qp , A/Ap (7)

and decompose ζp[n] into Qp streams of samples:

ζqp [n] , ζp[Qpn− q], q = 0, 1, ..., Qp − 1. (8)

Each of ζqp [n] is a sequence of samples of ζp(t) downsampled

by A and offsetted by qAp + bp unit of time. Applying

Observation 1 to (4) and (8) gives:

Z
q
p(e

jω) =
1

A
×

A−1
∑

a=0

e−j(bp+qAp)Ω
a
A(ω)

HpX

(

ejΩ
a
A(ω)

)

+Vp(e
jω)

(9)

for ω ∈ (−π, π]. Here, X(ejω) =
∑

n x[n]e
−jωn and

V
q
p(e

jω) =
∑

n v
q
p[n]e

−jωn are the DTFT spectrum of x[n]
and vqp[n], respectively.

To simplify (9), we define the following extended state

spectrum:

XA(ω) ,
[

X
(

ejΩ
0

A(ω)
)T

X
(

ejΩ
1

A(ω)
)T

. . . X
(

ejΩ
A−1

A
(ω)

)T
]T (10)

and the extended measurement matrix, i.e.,

Hp(bp, ω) , Θp(bp, ω)⊗Hp (11)

where

Θp(bp, ω) ,
1

A
×











e−j(bp)Ω
0

A(ω) · · · e−j(bp)Ω
A−1

A
(ω)

e−j(bp+Ap)Ω
0

A(ω) · · · e−j(bp+Ap)Ω
A−1

A
(ω)

· · · · · · · · ·

e−j(bp+(Qp−1)Ap)Ω
0

A(ω) · · · e−j(bp+(Qp−1)Ap)Ω
A−1

A
(ω)











.

Then, (9) can be conveniently expressed as:

Zp(e
jω) = Hp(bp, ω)XA(ω) + Vp(e

jω), (12)

for ω ∈ (−π, π], where Zp(e
jω) and Vp(e

jω) can be

formed by vertically concatenating the vectors {Zqp(e
jω)}q and

{Vq
p(e

jω)}q , respectively.

Observe that there is a one-to-one correspondence between

XA(ω) and X(ejω) since each entry in the extended spectrum

XA(ω) is non-repeating as the intervals ΩaA((−π, π]) and

ΩbA((−π, π]) are disjoint whenever a 6= b. Consequently,

estimating XA(ω) is equivalent to estimating the time do-

main sequence {x[n]}n. The latter can be obtained by first

converting XA(ω) to X(ejω), and then performing an inverse

DTFT.

To conclude, we observe that the measured spectrum

Zp(e
jω) can be expressed as a linear transformation of

XA(ω). In the sequel, we will study the model (12) from two

different aspects — i) to derive a set of identifiability condi-

tions such that we can uniquely identify bp and XA(ω) from

Zp(e
jω); ii) to propose a tractable, decentralized algorithm

for retrieving bp and XA(ω).

III. IDENTIFIABILITY CONDITION

This section derives an identifiability condition for (12).

Recall that our intention is to estimate jointly the time off-

sets and the state spectrum, i.e., the tuple (XA(ω),b) with

b = (b1, b2, ..., bK), from the linear system (12). Under such

context, we define:

Definition 1. The sensing system {Hp}
P
p=1 is said to be

identifiable1 under non-ideal sampling if and only if for

any {Zp(e
jω)}p that is generated by (XA(ω),b), the tuple

(XA(ω),b) is the only one satisfying (12).

In other words, if the system is identifiable, then one can re-

cover the tuple (XA(ω),b) unambiguously from {Zp(e
jω)}p.

As a comment, blind identification conditions are explored in

the absence of noise, see e.g., [30], [31]. Our main result is

summarized by the following proposition:

Proposition 1. Consider the following matrix:

Ĥ(b̂,b, ω) ,
[

H(b̂, ω) −H(b, ω)
]

, (13)

where b = [b1 b2 . . . bP ] and

H(b, ω) ,





H1(b1, ω)
· · ·

HP (bP , ω)



 . (14)

Assuming that the measurement is noiseless, i.e., Vp(e
jω) = 0,

XA(ω) 6= 0 and rank(H(b, ω)) = AN for all ω. Then, the

sensing system {Hp}p is identifiable if and only if

rank(Ĥ(b̂,b, ω)) = 2AN. (15)

for all ω whenever b̂ 6= b (with b1 = b̂1 = 0).

Proof. Notice that any tuple (X̂A(ω), b̂) satisfying (12) with

Vp(e
jω) = 0 must fulfill the homogeneous equation:

Ĥ(b̂,b, ω)

[

X̂A(ω)
XA(ω)

]

= 0, (16)

since Zp(e
jω) = Hp(bp, ω)XA(e

jω) for all p and ω.

We first prove the sufficient condition. If Ĥ(b̂,b, ω) is

full column rank whenever b̂ 6= b, then (16) implies that

whenever b 6= b̂, we have XA(ω) = X̂A(ω) = 0, leading

to a contradiction. As such, b = b̂ and the assumption

rank(H(b, ω)) = AN guarantees that X̂A(ω) = XA(ω).
For the necessary condition, let us assume that Ĥ(b̂,b, ω) is

not full rank for some b̂ 6= b. In this case, for some instances

of XA(ω) there exists a tuple (X̂A(ω), b̂) 6= (XA(ω),b)
such that (16) is satisfied. This contradicts the uniqueness of

(XA(ω),b). Q.E.D.

Proposition 1 provides the identifiability condition for

which the joint recovery of both sampling offsets and state

1Identifiability is interchangeable here with the notion of observability that
is prevalent in the control theory terminology, e.g., [3].
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spectrum are possible. However, verifying the condition that

rank(Ĥ(b̂,b, ω)) = 2AN for all ω is a non-trivial problem.

In the following, we derive several insightful conditions for

identifiability which are easy to verify.

We begin by examining an assumption made in Propo-

sition 1 that rank(H(b, ω)) = AN . This assumption is

equivalent to enforcing identifiability on the system with

known time offsets, which is necessitated by:
∑P
p=1 min{Qprank(Hp), ANc(Hp)} ≥ AN, (17)

where Nc(Hp) ≤ N is the number of non-zero columns

in Hp. The above condition is obtained by upper bound-

ing H(b, ω) by the sum of rank of its sub-matrices,
∑

p rank(Hp(bp, ω)). Furthermore, we have:

rank(Hp(bp, ω)) = rank(Θp(bp, ω)⊗Hp)

= min{Qprank(Hp), ANc(Hp)},
(18)

where the second equality is due to the Vandermonde structure

in Θp(bp, ω) [32].

Another interesting observation is that if bp’s are not

distinct, then the upper bound (17) is loose. To see why,

we suppose that bp = bq , then the rank of the submatrix

[Hp(bp, ω)
T Hq(bq, ω)

T ]T = Θp(bp, ω)⊗[H
T
p H

T
q ]
T is upper

bounded by

rank(Θp(bp, ω)⊗ [HT
p H

T
q ]
T ) ≤ QpN.

This is because the rank of [HT
p H

T
q ]
T is upper bounded

by N . Such observation suggests that the existence of time

offsets may be beneficial, especially when the sensors are

down-sampling.

Using the similar reasoning as in (17), we conclude that the

identifiability condition in Proposition 1 is necessitated by:

Corollary 1. The condition rank(Ĥ(b̂,b, ω)) = 2AN is

fulfilled only if
∑P
p=1 min{Qprank(Hp), ANc(Hp)} ≥ 2AN (19)

provided that the sampling offsets bp are distinct.

Eq. (19) provides a guideline for the deployment of sensors

in a robust sensing system. In particular, it suggests that
∑P
p=1 min{QpMp, ANc(Hp)} ≥ 2AN. (20)

We remark that (19) is only a necessary condition. However,

our numerical experiments suggest that when Hp is a Gaussian

random matrix and (20) is satisfied, then the identifiability

condition in Proposition 1 holds with high probability.

IV. CONSENSUS ON STATE AND TIME

This section studies a method to recover the state spectrum

and time offset in a decentralized fashion. We treat each sensor,

indexed by p as in the previous discussions, as a computing

node that processes the knowledge of Hp and {ζp[n]}
QpL−1
n=0 ,

where L is a designated frame size. The sensors are connected

through a communication network described by G = (V, E).
The goal is to estimate the unknowns (the state spectrum and

time offset) while the sensors perform local computations. The

sensors communicate with their neighbors only occasionally.

Our first step is to formulate the regression problem for

estimating {bp}p and XA(ω) in (12). As the sensors possesses

only finite-length data {ζp[n]}
QpL−1
n=0 , we resort to taking

approximation and discretizing the both sides of Eq. (12) by

a K-point discrete Fourier transform (DFT), i.e.,

Zp[k] ≈Hp(bp, ωk)XA(ωk) + Vp[k], (21)

where ωk , 2π(k − K + 1)/(K) is the frequency that the

kth DFT point is related to. The approximation above is exact

when zp[n] is a periodic sequence with length L. For general

signals, the approximation error decays as O(L−1) [33]2. The

K-point DFT spectrum of Zp[k] is obtained from L samples

of zp[n] as:

Zp[k] =
∑L−1
n=0 zp[n]e

−jωkn, (22)

where zp[n] , [ζ0
p [n]

T . . . ζ
Qp−1
p [n]T ]T (cf. (8)) is a con-

catenation of the Qp streams of data and K satisfies L ≤ K.

Notice that {XA(ωk)}
K−1
k=0 is a re-ordering of {X(ejω̃k)}k

where ω̃k , 2π(k − AK + 1)/(AK). The latter corresponds

to the state sequence {x[n]}AL−1
n=0 over the finite length’s frame

of interest.

The discretized noise spectrum Vp[k] is Gaussian and white.

Furthermore, if K = L, then Vp[k] are independent. As such,

the maximum likelihood estimation problem of XA(ωk) and

bp can be given as:

min
X̂A(ωk),∀k,

b̂p,∀p

P
∑

p=1

K−1
∑

k=0

∥

∥

∥
Zp[k]−Hp(b̂p, ωk)X̂A(ωk)

∥

∥

∥

2

2

s.t. b̂p ∈ Bp, ∀ p.

(23)

The next step is to develop a decentralized algorithm for (23).

A. Decentralized optimization with nuisance parameter

Note that (23) is a non-convex optimization problem. In

particular, it can be regarded as a regression problem with lo-

cal, nuisance parameter {b̂p}p. To this end, a natural approach

for tackling the problem is to apply an alternating optimization

(AO) strategy, which works by alternating between the updates

of {X̂A(ωk)}k and b̂. To fix ideas, we let t ∈ N be the

iteration index and define the objective function in (23) as

f({X̂A(ωk)}k, b̂). A practical AO strategy can be described

by the following recursion:

{X
(t+1)
A (ωk)}k ← arg min

X̂A(·)
f({X̂A(ωk)}k,b

(t)),

b
(t+1) ← PB

(

b
(t) − β∇bf({X

(t)
A (ωk)}k,b

(t))
)

,
(24)

where PB(·) is the projection onto the convex set B1×· · ·×BP
and β > 0 is a step size. Notice that the optimization of b is

taken care by a projected gradient descent update instead of

an exact minimization.

There are several motivations for us to apply AO to (23).

First, we observe that update of the time offsets b
(t+1)

can be computed locally, which is due to the fact that

2In [33, Lemma 3.4.1], it was shown that ‖Zp[k] −
Hp(bp, ωk)XA(ejωk ) − Vp[k]‖ is finitely bounded, while the squared
magnitude of Zp[k] grows as O(L). The error is thus O(L−1).
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f({XA(ωk)}k,b) can be written as a summation of P func-

tions, each of them depending only on bp and is known to

the pth sensor. Second, the optimization of state spectrum

{XA(ωk)}k is equivalent to solving a standard linear least

square problem. The latter admits a closed form solution.

Lastly, the recursion (24) can be analyzed as a special case

of the Block Successive Minimization Method in [34]. In

particular, the recursion is shown to converge to a stationary

point of (23).

In the interest of tackling (23) distributively, we see that the

first update in (24) involves data from all sensors. In particular,

X
(t+1)
A (ωk) = X

⋆
A,k(b

(t))

=
(

HH(b(t), ωk)
)−1

HZ(b(t), ωk),
(25)

with

HH(b(t), ωk) , (1/P )
∑P
p=1 Hp(b

(t)
p , ωk)

HHp(b
(t)
p , ωk),

(26)

HZ(b(t), ωk) , (1/P )
∑P
p=1 Hp(b

(t)
p , ωk)

HZp[k], (27)

where (·)H denotes Hermitian transpose. As seen, (25) re-

quires the knowledge of HH(·), HZ(·), which is not avail-

able to the individual sensors.

There are a number of decentralized algorithm that can be

applied to solve the linear least square problem in (24). To list

a few options, the diffusion-based LMS and RLS algorithm

are proposed in [11], [12], respectively; the ADMM method

is applied in [4], etc.

It is preferred to apply a decentralized algorithm with fast

convergence. In this regard, we propose to directly compute

(25) in a decentralized fashion. The idea is to leverage on the

fact that HH(·) and HZ(·) can be replaced by the averages

of the collection {Hp(·)
HHp(·)}p and {Hp(·)

HZp[k]}p,

respectively. As a result, the computation of (25) can be

treated as a decentralized averaging problem. To compute the

averages, we apply the Gossip-based average consensus (G-

AC) protocol in [35], which is described in the following.

Let us take

y0
p,k ,

[

HZ
0
p[k]

HH
0
p[k]

]

,

[

Hp(b
(t)
p , ωk)

HZp[k]

vec(Hp(b
(t)
p , ωk)

H
Hp(b

(t)
p , ωk))

]

,

which is a ((AN)2 + AN)-dimensional complex vector. It

suffices to compute (25) by obtaining the average of {y0
p,k}p,

i.e.,

yk = (1/P )
∑P
p=1 y

0
p,k. (28)

The G-AC protocol achieves ȳk by performing the following

recursions:

yℓp,k =
∑

q∈Np
W ℓ
pqy

ℓ−1
q,k , (29)

where Np ⊆ V denotes the set of neighbors of sensor p. To

guarantee convergence, the mixing matrix W
ℓ = [W ℓ

pq]p,q
satisfies a certain set of mild conditions, e.g., it is required to

be doubly stochastic, i.e., Wℓ
1 = 1 and 1

T
W

ℓ = 1
T . For a

more detailed discussion, see [35].

As seen in (29), at each G-AC step ℓ ∈ N, the sensor p
only obtains information from its immediate neighbors, i.e.,

q ∈ Np. Moreover, as W
ℓ can be time-varying, only a subset

Algorithm 1 The G-AO algorithm for (23).

1: Initialize: {{X
(0)
p,A(ωk)}k}

P
p=1, {b

(0)
p }Pp=1;

2: for t = 0, 1, ... do

3: The network computes X
ℓt
p,A,k(b

(t)) for each (p, k)
using ℓt G-AC steps (cf. (30)).

4: for p = 1, 2, ..., P do

5: Agent p updates its copies of Xp,A(·) and bp as:

X
(t+1)
p,A (ωk)← X

ℓt
p,A,k(b

(t)), k = 0, ...,K − 1,

b
(t+1)
p ← PBp

(

b
(t)
p − β∇bpf({X

(t+1)
p,A (ωk)}k,b

(t))
)

As mentioned, the update of bp can be performed

distributively since f is separable.

6: end for

7: end for

8: Return: {{X
(t+1)
p,A (ωk)}k}

P
p=1, {b

(t+1)
p }Pp=1.

of links Eℓ ⊆ E are required to be active at each G-AC

step. The G-AC method requires only local computation and

it allows random communication between the agents. Finally,

the variable X
ℓt
p,A,k(b

(t)) is computed using the approximate

averages stored at the pth agent after ℓt G-AC steps, i.e.,

X
ℓt
p,A,k(b

(t)) =
(

vec−1(HH
ℓt
p [k])

)−1(
HZ

ℓt
p [k]

)

. (30)

Notice that we apply the G-AC protocol to compute approxi-

mates to all the K points in DFT spectrum X
⋆
A,k(b

(t)).
Combining AO and G-AC results in a decentralized al-

gorithm for (23). We call this algorithm the Gossip-based

alternating optimization (G-AO) algorithm, as summarized in

Algorithm 1.

B. Convergence analysis

To study the convergence of the G-AO algorithm, we first

need to study the convergence rate of G-AC. As shown in

[35], the recursion (29) converges to the true average vector

ȳk under several assumptions on {Wℓ}ℓ. In fact, the rate

of convergence is exponential, i.e., ‖yℓp,k − yk‖2 = O(λℓ
W̄
)

where 0 < λW̄ < 1 is the second largest eigenvalue of the

matrix W̄ = Eℓ{W
ℓ}. Consequently, the accuracy on the

approximation X
ℓt
p,A,k(b

(t)) improves exponentially with ℓt:

Proposition 2. Suppose that

C0 · C1 · λ
ℓt
W < 1, (31)

where C0 = maxb,k ‖
∑

pHp(bp, ωk)
H
Hp(bp, ωk)‖ and

C1 = maxb,k ‖(
∑

pHp(bp, ωk)
H
Hp(bp, ωk))

−1‖ are finite

constants, then the spectrum X
ℓt
p,A,k(b

(t)) computed in (30)

using ℓt G-AC steps satisfies:
∥

∥X
⋆
A,k(b

(t))−X
ℓt
p,A,k(b

(t))
∥

∥

2
= O(λℓt

W̄
), ∀ p, k, (32)

where ℓt is the number of G-AC steps at the tth iteration.

The proof is relegated to Appendix B. An important impli-

cation is that the approximation improves exponentially with

ℓt, i.e., the number of G-AC steps per iteration.

We are ready to state the following theorem regarding the

convergence of the G-AO algorithm.
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Theorem 1. Let ({X⋆
A,k}k,b

⋆) be a local minimum to (23).

Suppose that f is (mo,Mo)-strongly convex in the neigh-

borhood NR⋆({X⋆
A,k}k,b

⋆) and it is Lipschitz continuous

with constant Lo. Suppose that (31) holds, β ≤ 1/Mo,

B = maxt ‖({X̂
(t)
A,k}k,b

(t)) − ({X⋆
A,k}k,b

⋆)‖2 < ∞ and

B ≤ R⋆, then we have:

lim
t→∞

∥

∥({X̂
(t)
A,k}k,b

(t))− ({X⋆
A,k}k,b

⋆)
∥

∥

2

2
=

√

O(λℓmin

W̄
),

(33)

where ℓmin = mint ℓt is the minimum number of G-AC steps

taken and X̂
(t)
A,k , (1/P )

∑P
p=1 X

(t)
p,A(e

jωk).

The proof is provided in Appendix C, which is based on

studying the error dynamics of the G-AO algorithm as a

second order dynamical system. In fact, Theorem 1 implies

that if the G-AO algorithm stays close enough to a local

minimum, then the algorithm converges to an approximate

of that local minimum, where the approximation accuracy

improves exponentially with ℓmin.

The strong convexity assumption on f around a local min-

imum may appear restrictive at first. However, our numerical

results indicate that Theorem 1 can accurately predict the

performance of G-AO algorithm applied on (23).

V. EXTENSIONS & APPLICATIONS

In this section, we extend the previous formula-

tions/algorithms to the case with general measurement (e.g.,

non-linear). This model pertains to the case when the measured

signal at the sensor is non-linearly related to the underlying

system state. As an application example, we demonstrate that

the formulation can be employed to robustify power system

state estimation (PSSE) systems.

Considering Assumption 1 to 3 in Section II and the

sampling architecture in Fig. 1, we can express the measured

sample at sensor p as:

ζp[n] = (hp ◦ xc)(Ts(nAp − bp)) + vp[n],

(hp ◦ xc)(t) = LPF{(hp(xc(t))},
(34)

where hp : CN → C
Mp is a general measurement function

and (hp ◦ xc)(t) is the low-pass filtered version of hp(xc(t))
with a cutoff frequency at W/2 Hz. The reason for introducing

the low-pass-filtered is explained in Remark 1.

Under the same spirit as in our previous developments, the

next step is to consider the frequency domain equivalent to

(34) via Observation 1. To simplify notations, we consider

Ap = A for all p in the following. The K-point DFT of ζp[n]
is given by (cf. (22)):

Zp[k] ≈
1

A
×

A−1
∑

a=0

e−jbpΩ
a
A(ωk)

AL−1
∑

n=0

hp(x[n])e
−jΩa

A(ωk)n +Vp[k],
(35)

where we recall that ωk = 2π(k −K + 1)/K. Analogous to

the previous derivations, it follows that we can formulate the

nonlinear regression problem as:

min
{x̂[n]}AL−1

n=0
,b̂p,∀p

P
∑

p=1

K−1
∑

k=0

∥

∥

∥
gp,k

(

{x̂[n]}AL−1
n=0 , b̂p

)

∥

∥

∥

2

2
, (36)

xc(t)

........

ζ1[n]

ζ2[n]

...
...

h1(·)

h2(·)

v1(t)

v2(t) Ts(nA2 − b2)

nTsA1

LPF

LPF

LPFhP (·)

vP (t) Ts(nAP − bP )

ζP [n]

Fig. 1. The architecture of the sample & estimation system (cf. (4)). The
low pass filters (LPF) have a cutoff frequency at W/2 Hz.

where

gp,k
(

{x̂[n]}AL−1
n=0 , b̂p

)

, Zp[k]−

1

A

A−1
∑

a=0

e−jb̂pΩ
a
A(ωk)

AL−1
∑

n=0

hp(x̂[n])e
−jnΩa

A(ωk).
(37)

Notice that the above formulation allows us to consider hybrid

measurement, i.e., hp can be linear for some p.

Remark 1. We observe that in general hp(xc(t)) has a

bandwidth higher than W/2 Hz due to the nonlinearity of hp.

In particular, the measurement function cannot be analyzed

separately in hp(xc(t)) as in the linear case. The low pass

filter is introduced to remedy this such that Observation 1 can

be applied. Moreover, it can be verified that

(hp ◦ xc)(nTs) = hp(x[n]), ∀ n, (38)

where the equality can be established by studying the spectrum

of the both sides.

A. Extending the G-AO algorithm

Similar to (23), Problem (36) is also a non-convex problem.

To develop a decentralized algorithm for (36), we apply

a modified version of the G-AO algorithm. The modified

algorithm is based on the Gossip-based Gauss Newton (GGN)

method in [28] and the AO strategy.

We observe that the G-AO algorithm cannot be applied

directly to (36). In fact, even when b is fixed in (36),

the optimization problem remains non-convex and does not

admit a closed form solution. We develop our algorithm by

borrowing insights from the GGN method.

Let t ∈ N be the iteration index and assume that b
(t) is

fixed. The damped GN direction at {x(t)[m]}m for x[n] is

given as:

dn({x
(t)
p [m]}m,b

(t)) =
(

λGNI+ GG({x
(t)
p [m]}m,b

(t))
)−1

GZ({x
(t)
p [m]}m,b

(t)),
(39)

where λGN ≥ 0 is the damped GN parameter, GG and GZ

are both defined in terms of the Jacobian matrix of gp,k(·):

GG({xp[m]}m,b) =
P
∑

p=1

K−1
∑

k=0

Gn
p,k(·, ·)

HGn
p,k({x[m]}m, bp)
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Algorithm 2 The GGN-AO algorithm for (36).

1: Initialize: {{x
(0)
p [n]}n}

P
p=1, {b

(0)
p }Pp=1;

2: for t = 0, 1, ... do

3: Update: x
(t+1)
p [n]← x

(t)
p [n] for all n = 0, ..., AL− 1.

4: for n = 0, 1, ..., AL− 1 do

5: The network computes the (approximate) GN direc-

tion d
ℓt
p,n({x

(t+1)
p [m]}m,b

(t)) for each p using ℓt G-

AC steps (cf. (39)).

6: for p = 1, 2, ..., P do

7: Agent p updates its copies of xp[·] and bp as:

x
(t+1)
p [n]← x

(t)
p [n]− d

ℓt
p,n({x

(t)
p [m]}m,b

(t)).

8: end for

9: end for

10: for p = 1, 2, ..., P do

11: Agent p updates bp by:

b
(t+1)
p ← PBp

(

b
(t)
p − β∇bpfNL({x

(t+1)
p [n]}n,b

(t))
)

12: end for

13: end for

14: Return: {{x
(t+1)
p [n]}n}

P
p=1, {b

(t+1)
p }Pp=1.

GZ({xp[m]}m,b) =
P
∑

p=1

K−1
∑

k=0

Gn
p,k(·, ·)

Hgp,k({x[m]}m, bp)

such that Gn
p,k({x[m]}m, bp) is the N × N Jacobian matrix

of gp,k(·, ·) taken at ({x[m]}m, bp) with respect to the vector

x[n]. Notice that the state vector x[m] is updated in a Gauss-

Seidal like manner [36].

Importantly, we observe that the GN direction can be calcu-

lated distributively using the G-AC protocol. This suggests us

to combine the AO algorithm and the Gossip-GN algorithm

to develop a decentralized algorithm for (36). In particular,

the pseudo code for the GGN-AO algorithm for (36) is now

summarized in Algorithm 2, where we have denoted the

objective function in (36) as fNL({xp[n]}n,b).
In contrast to the G-AO algorithm studied in Section IV, the

GGN-AO algorithm applied to (36) entails a higher complexity

in general. For instance, the update of state variable x[n] in the

GGN-AO algorithm is based on the GN method, which is an

iterative method by nature. In contrast, the G-AO’s counterpart

of the update relies on a closed form solution. Intuitively, the

G-AO algorithm will exhibit a faster convergence rate.

B. Application: Robustifying the PSSE systems

This subsection applies the models developed in this paper

to robustify the power system state estimation (PSSE) systems.

In particular, we consider the problem of PSSE in wide area

measurement systems, where data from Phasor Measurement

Units (PMUs) and the legacy Supervisory Control And Data

Acquisition (SCADA) systems are combined to provide the

state estimates.

The system’s state of interest is the complex envelope x
e
c(t)

of the voltage on each bus, which is related to the actual

voltage on bus i by [xc(t)]i = ℜ
{

[xec(t)]ie
jω0t

}

, where ω0

is the operating frequency (typically 60/50 Hz) of the power

grid. Typically x
e
c(t) has a smaller bandwidth than 60 Hz.

There are two types of sensors/systems that are used in the

power grid:

PMU — The PMU installed on bus i takes samples of the

voltage phasor [xec(t)]i and the current flow phasors Ieij(t) on

branches that are connected to bus i. Typically, the PMU relies

on a local oscillator, synchronized using GPS clocks, to take

samples of [xec(t)]i and Ieij(t) [37]. The GPS clocks may be

tampered in the case of an attack. As such, we model the

voltage measurements obtained at the PMU on bus i as:

Vi[n] = [xec[n]]i = [xec(nTs − bp)]ie
−jω0bp + vi[n], (40)

where vi[n] is the measurement noise, bp represents the

sampling offset, and the current measurements:

Ieij [n] = e−jω0bpYij×
(

[xec(nTs − bp)]i − [xec(nTs − bp)]j
)

+ vij [n],
(41)

where Yij is the admittance of branch (i, j). Notice that we

have assumed Nyquist sampling, i.e., Ap = 1, as the PMU

has a sampling rate of 10-30 Hz [37].

Let Ip ⊆ {1, ..., N} be the buses included in the pth sensing

site. By stacking {Vi[n]}i∈Ip
and {Iij [n]}j∈Ni,i∈Ip

vertically

as ζp[n], where Ni denotes the buses connected to bus i, the

samples obtained at the pth PMUs’ site is modelled as:

ζp[n] = Hpx
e
c(nTs − bp)e

−jω0bp + vp[n]. (42)

SCADAs — The SCADA installed on bus i samples on the

injected complex power Si(t) as well as the complex power

Sij(t) that flows to/from bus i. For example, the power flow

phasor through branch (i, j) is given by

Sij(t) = [xec(t)]i
(

[xec(t)]i − [xec(t)]j
)∗
Y ∗
ij . (43)

Similarly, the injected power is

Si(t) = |[x
e
c(t)]i|

2Y Si +
∑

j∈Ni
Sij(t) (44)

where Y Si is the shunt admittance from bus i to the ground.

In fact, these quantities are obtained by measuring the active

power and reactive power. Besides the measurement models,

another factor that differentiates SCADA systems from PMUs

is the sample rate used. In fact, the sampling rate is only 0.2–

0.5 Hz [38] for SCADA. In light of this, we stack the relevant

{Si(t)}i∈Ip
and {Sij(t)}j∈Ni,i∈Ip

to form the hp(xc(t)) in

(34). Under the assumption of an LPF and using an appropriate

choice of Ap, we see that the model described in (35) applies

to the sampled SCADA data.

We observe that both of the models for PMUs and SCADA

fit into the descriptions in (34). Subsequently, the robust PSSE

problem can be formulated in a similar manner as (36).

Remark 2. Assume the case with only asynchronous PMUs.

If bp ≪ Ts, we can assume that the power system state

is stable relative to the time offsets in PMUs, i.e., we have

x
e
c(nTs− bp) ≈ x

e
c(nTs), the regression problem for xec(nTs)

and bp can be formulated as a special case of (23):

min
x̂e
c(nTs),{b̂p}

K
∑

p=1

∥

∥ζp[n]−Hpx̂
e
c(nTs)e

−jω0b̂p
∥

∥

2

2
. (45)

The G-AO algorithm can then be applied to tackle (45).
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VI. NUMERICAL RESULTS

To highlight different aspects affecting the performance of

the techniques for joint state and sampling offset estimation,

this section will be divided into two parts — i) the first part

includes simulations pertaining the linear model in Section II

with sensing matrices that are complex Gaussian zero mean

i.i.d. coefficients (e.g. Rayleigh fading); ii) the second part is

focused on the application to PSSE problem with a non-linear

measurement model.

We first explain how the non-ideally sampled measurements

are generated. Notice that in (4), the discrete-time measure-

ment ζp[n] is equivalent to the infinite sum
∑∞
m=−∞ ζp((n−

m)Ts) sin(π(Apm− bp))/(π(Apm− bp)). It is impossible to

evaluate the infinite sum, we thus truncate the latter by a finite

sum from m = 0 to m = AL − 1. In this way, note that

{ζp[n]}
QpL−1
n=0 retains the information from {x[n]}AL−1

n=0 .

Moreover, our numerical experience shows that it is nec-

essary to apply a pre-processing window to obtain the mea-

sured spectrum in (22), so as to reduce the modelling er-

ror introduced by discrete approximation. We instead take

Zp[k] =
∑L−1
n=0 w[n]zp[n]e

−jωkn, where w[n] is the Black-

man window [39]. Due to the windowing operation, the

estimated state at the boundaries can be unreliable. As such,

unless otherwise specified, we evaluate only the mean squared

error (MSE) for the state x[n] in the middle of the frame.

Specifically, the MSE is computed as the per sample error

E[(1/(2G+ 1))
∑AL/2+G
n=AL/2−G ‖x[n]− x̂[n]‖22/N ], where x̂[n]

is the estimated state and G = ⌊0.15AL⌋. The squared error

for time offsets is calculated as E[
∑P
p=1(bp − b̂p)

2].
For the other simulation parameters, we fix K = 192

as the DFT size and σ2
w = 10−2 as the noise variance.

We perform 100 Monte-Carlo simulation trials to get the

averages. The G-AO/GGN-AO algorithm is terminated when

the relative decrease in objective value is less than 0.1%. The

G-AO algorithm is initialized with bp = 0 for all p. The

communication network is generated as an Erdos-Renyi graph

with parameter p = 0.5. We assume that the mixing matrix

W is static with Metropolis-Hastings weight [40]. The error

is evaluated as the maximum MSEs evaluated for each sensor.

A. Example: Rayleigh fading

In the following examples, we focus on the performance

of proposeds method under the linear model specified in

Section II. In particular, the states x[n] and measurement

matrices Hp are generated as random vectors/matrices with

unit variance i.i.d. complex Gaussian random entries.

Our first example considers a system with sub-Nyquist

sampling, i.e., we set Ap = 2 for all p. The system dimensions

are set as M = 4, N = 8, P = 12. The time offsets are

uniformly drawn from B = [−0.5, 0.5]. Notice that under sub-

Nyquist sampling, without exploiting the time offsets between

the sensors, it is impossible to estimate the state vector x[n]
for all n. Therefore, as a benchmark, we provide the MSE

evaluated by comparing {x[n]}n with an interpolated state

sequence estimated from the sub-Nyquist measurements.

The simulation result from this example is depicted in

Fig. 2, where we compare the MSE in state and in {bp}p

Fig. 2. Comparing the MSE performance against the frame size L. (Left)
On estimating {x[n]}n. (Right) On estimating {bp}p.

Fig. 3. Comparing the MSE performance against the state dimension N .
(Left) On estimating {x[n]}n. (Right) On estimating {bp}p.

against the frame size L. From the figure, we see that the error

metrics of the proposed algorithm decrease as L increases. It is

due to the improved approximation to the true DTFT spectrum.

In fact, the MSE in state decays as O(L−1), coinciding with

the discussions that follows (21). On the other hand, the G-AO

algorithm achieves a similar performance with its centralized

counterpart. Especially, as ℓmin increases, the performance of

the former approaches that of the latter. This observation is in

line with the analysis results on G-AO from Theorem 1.

In the second example, we examine the identifiability con-

dition in Section III. Specifically, the system parameters are

M = 3, P = 12, L = 120 and the MSEs are compared with

different state dimension N . Fig. 3 shows the result from

this example. Recall that from Corollary 1, the identifiability

condition is likely to be satisfied if N ≤ 9. This is evident from

the figure that the MSE increases significantly when N ≥ 10.

The discrepancy is due to the fact that Corollary 1 is derived

based on a noiseless model and the G-AO algorithm may have

Page 8 of 44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

9

10 20 30 40 50 60 70 80 90 100

10
−3

10
−2

10
−1

Iteration number

E
rr

o
r 

p
e

r 
s
a

m
p

le

 

 

Centralized AO

G−AO (L
min

=5)

G−AO (L
min

=10)

G−AO (L
min

=15)

80 90 100

10
−3.31

10
−3.29

10
−3.27

 

 
Centralized AO

G−AO (L
min

=5)

G−AO (L
min

=10)

G−AO (L
min

=15)

Fig. 4. Comparing the state estimation error against iteration number of the
proposed algorithms. M = 4, P = 12, N = 8, L = 120.
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Fig. 5. Incorporating the proposed regression method into standard least
squares state estimators. (Consider the special case when A = Ap = 2.)

been initialized close enough to the true optimum.

The next example, shown in Fig. 4, examines the con-

vergence speed of the G-AO algorithm, for which we track

the state estimation error as G-AO algorithm proceeds. In

this example, we set M = 4, P = 12, N = 8, L = 120
and consider solving a randomly generated instance of (23).

We observe that the error is gradually decreasing as the

algorithm progresses and converges in about 30-40 iterations.

Importantly, we see that the G-AO algorithm follows closely

with its centralized counterpart, suggesting that they both

achieve a similar performance.

Estimating the state via adaptive filtering — As an

extension, we study a practical scheme for incorporating the

proposed regression method into standard state estimators.

Assuming that the time offsets {b̂p}p are estimated with

the G-AO algorithm in an earlier stage, our idea is to consider

a sub-optimal adaptive filter, which reverts only the effects

of non-ideal sampling by adding delays to the ADCs. For

example, if A = Ap = 2, the sensors can be divided into

two groups, one with a delay tap of τp = 1 − b̂p and the

other with τp = 2− b̂p, etc. Notice that we have created two

groups of sensors, one sampling for x[2n], and the other one

sampling for x[2n+ 1]. The main advantage for applying the
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Fig. 6. Comparing the MSE in state estimate against L upon applying the
adaptive filter. System settings are M = 4, P = 12, N = 8.

adaptive filter is to reduce complexity. In fact, the regression

problem on the post-filtered data becomes a standard least-

square optimization that admits a closed form solution; see

Fig. 5.

Fig. 6 shows the MSE in state estimate against L using

the inverse filter designed from the time offset estimate b̂p.

The simulation settings are the same as in Fig. 2. The

sensors grouping is done by grouping the first P/2 sensors

into one group; and the rest of the sensors into another.

As a benchmark, the ‘offset-free (interleave)’ refers to the

system with perfectly aligned, time-interleaved sensors; and

the ‘CRLB’ is the Cramer-Rao’s lower bound in the error

performance by assuming that the signal is periodic, i.e.,

the DFT approximation is exact. The ‘offset-free (interleave)’

benchmark requires perfect knowledge of {bp}p. From the

simulation results, the MSE performance using the proposed

algorithm is comparable to the benchmark when L is large.

B. Example: Power System State Estimation

In the following examples, we evaluate the performance of

the proposed algorithms applied to PSSE. We consider the

IEEE-30 bus test case in Fig. 7. To simulate the power system

dynamics, the state vector is generated as x
e[n] = x

e
c(nTs) =

xt + d[n], where xt is the voltage vector in the IEEE-30 test

case in MATPOWER [41] and d[n] ∼ CN (0, σ2
dI) models the

fluctuation of voltages. Bus 1 is assumed to be the slack bus

with zero phase angle.

We first consider the case where only PMUs are em-

ployed. We assume that bp ≪ Ts such that x
e
c(nTs −

bp) ≈ x
e
c(nTs). As noted by Remark 2, the corresponding

joint regression problem (45) can be tackled using the G-

AO algorithm. To ensure identifiability for both state and

time offsets, the PMUs collect measurements from the buses

{1, 2, 4, 5, 6, 9, 13, 15, 17, 19, 20, 21, 23, 25, 27, 29}.
The simulation result, as shown in Fig. 8, is performed with

1000 Monte-Carlo trials. In particular, we compare the MSE

in state estimation against different range of sampling offset

σb, where the sampling offsets bp is generated as uniformly
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Fig. 7. The IEEE-30 bus system. We divide the PMUs into P = 7
sensing sites, as indicated by the colored dotted lines. The IEEE-30 bus
system is partitioned as A1 = {1, 2, 3, 4},A2 = {5, 6, 7, 8},A3 =
{9, 10, 11}, A4 = {12, 13, 14, 15},A5 = {16, 17, 18, 19, 20, 21},A6 =
{22, 23, 24, 25, 26},A7 = {27, 28, 29, 30}.
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Fig. 8. Comparing the MSE per sample of an IEEE-30 bus system with only
PMUs against the variance in sampling offset in bp and we fix σw = 10−2.
We also have σd = 10−2 and

∑
p Mp = 62, N = 30.

distributed over [−σb, σb]. As observed, the proposed method

achieves a performance on par with the method (Yang et. al.)

from [18] when σb is small. The latter is outperformed by ours

when σb ≥ 10−3. Moreover, our proposed algorithm achieves

a MSE that is close to the Cramer Rao’s lower bound (CRLB).

This demonstrates the benefit of modelling non-ideal sampling

directly.

The next simulation example considers the case where

we combine both PMU and SCADA data. In particular, we

consider the setting when only 8 PMUs are installed on bus

{1, 4, 5, 9, 11, 15, 20, 24, 27} in an IEEE-30 system. The num-

ber of installed PMUs is insufficient to provide identifiability if

we only rely on PMU data. To remedy, we deploy 30 SCADA

systems (each installed on a bus) on the power grid to monitor

every bus and branch in the grid. We consider L = 40 and

apply the centralized version of the GGN-AO algorithm, which

is initialized by x
(0)
p [n] = xt for all n and bp = 0 for all p.

Fig. 9. The state estimation error performance against the iteration number
over an IEEE-30 bus system. We have set λGN = 102 for the GGN-AO
algorithm. (Left) On estimating the power system state at different bus. (Right)
On estimating {bp}p for PMUs and SCADAs. The latter error is normalized
according to the range of time offsets bp.

Our aim is to demonstrate that the full power grid’s state in

transient can be revealed using the sub-Nyquist SCADA data

and insufficient amount of PMU data. We assume that the

complex envelope x
e
c(t) has a bandwidth of 0.5 Hz such that

the Nyquist sampling period is Ts = 1 second. For simplicity,

the SCADA systems has a sampling period of ApTs = 2
second, while the PMUs are able to capture samples with

period shorter than ApTs = 1 second. A snapshot of the

estimation result is shown in Fig. 9, in which we compare

the state/time offset estimation error against iteration number.

We have only shown the errors in estimating the voltage

on buses {8, 13, 16, 17, 21, 26}. Notice that these buses are

unobservable using the PMU data alone. That said, from the

figure, we observe that the state estimation error from these

buses is fairly low. More importantly, the error in estimating

{bp}p is at the order of 10−4 to 10−3. This allows us to design

the adaptive filter and treat the SCADA systems as the time-

interleaved sensors in a similar fashion as the last subsection.

C. Discussions

There are only ∼1,000 installed PMUs in total in the North

America Power Grid as of 2014, while the number of buses

exceeds 10,000 [42]. Although more PMUs are being installed,

the number of PMUs employed is still insufficient to provide

full identifiability of the entire power grid in the near future.

As demonstrated in the last simulation example, we see

that deploying PMUs with SCADAs on the power grid is

beneficial in the sense that the power system state in transient

can be captured. In fact, using the result from Corollary 1, the

fundamental limit on the maximum bandwidth for the power

system state can be estimated. We assume that the PMUs are

sampling at 10 Hz while the SCADAs are sampling at 0.5
Hz, each sensor takes Mp = 3 measurements which depends

on the state of Nc(Hp) = 5 buses. Now, set Qp = 1 for the
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SCADAs, Qp = 20 for the PMUs and using Eq. (20) yield:

# PMUs ·min{60, 5A}+ # SCADAs · 3 ≥ 20000A (46)

In particular, when the number of PMUs and SCADAs is 1,000

and 10,000, respectively, the maximum possible A is 2. That is,

the maximum possible bandwidth for system transient signal

is 0.5 Hz, which is a two-fold improvement over the case

with SCADAs alone. Naturally, the individual sensors renders

transients variations at 10 Hz visible, but due to their relative

scarcity the gain in resolving transients of nearby locations is

degraded. To what extent aliasing corrupts the reconstruction

of faster transients is a topic of future research.

VII. CONCLUSIONS

In this paper, we have addressed the issue of non-ideal

sampling in decentralized regression. Our contributions are

multi-fold: i) we propose a new joint regression problem that

estimates the system state and unknown time offsets under

sub-Nyquist sampling; ii) we derive a set of identifiability con-

ditions that guarantee perfect state and time offset estimation;

iii) we develop a decentralized algorithm that solves the joint

regression problem and prove its convergence. The efficacy

of the proposed algorithm is demonstrated through numerical

examples on both synthetic data and realistic power systems.

APPENDIX A

PROOF OF OBSERVATION 1

The observation is the consequence of a several properties

from the Fourier transform. We first derive the DTFT spectrum

of xc((n − bp)Ts). Under the Assumption 1 and by the

Shannon’s interpolation formula, we observe that:

xc((n− bp)Ts) =
∞
∑

m=−∞

x[n−m]
sin(π(m− bp))

π(m− bp)
, (47)

which implies

DTFT{xc((n− bp)Ts)} = X(ejω)e−jbp
(

ωmod(−π,π]
)

. (48)

Now, by decomposing the DTFT spectrum of x((nA−bp)Ts)
into its polyphase components and using results from Chap-

ter 4 in [43], we can obtain (5).

APPENDIX B

PROOF OF PROPOSITION 2

In the following proof, we shall abbreviate HH
ℓt
p as H

ℓt
p ,

HZ
ℓt
p as Z

ℓt
p , HH as H and HZ as Z . We also drop the

dependence on b and k of the vectors/matrices as they are

irrelevant in the proof. Our goal is to show the following:

‖(Hℓt
p )

−1
Z
ℓt
p − (H)−1

Z‖ = O(λℓt
W̄
). (49)

We now observe that:

H
ℓt
p = H+ δHℓt

p , Z
ℓt
p = Z + δZℓt

p (50)

where the error terms satisfy

‖δHℓt
p ‖ ≤ C0λ

ℓt
W̄
, ‖δZℓt

p ‖ ≤ Czλ
ℓt
W̄
, (51)

for some Cz < ∞. The error bounds in (51) are due to

exponential convergence of the G-AC protocol [35]. Under

assumption (31), the matrix inverse admits a series expansion

[32]:

(H+ δHℓt
p )

−1 =

∞
∑

q=0

(−1)q(H
−1
δHℓt

p )
q(H)−1. (52)

Consequently, the left hand side in (49) can be upper bounded

by:

‖(Hℓt
p )

−1Z
ℓt
p − (H)−1Z‖

=
∥

∥

∥
H

−1
δZℓt

p +

∞
∑

q=1

(−1)q(H
−1
δHℓt

p )
q
H

−1
(Z + δZℓt

p )
∥

∥

∥

≤ ‖H
−1
‖
(

Czλ
ℓt
W̄

+

∞
∑

q=1

‖(δHℓt
p H

−1
)q‖‖Z + δZℓt

p ‖
)

.

(53)

Assuming that ‖Z + δZℓt
p ‖ ≤ CZ , we have

‖(Hℓt
p )

−1Z
ℓt
p − (H)−1Z‖

≤ C1

(

Czλ
ℓt
W̄

+ CZ

∞
∑

q=1

‖(δHℓt
p H

−1
)q‖

)

≤ C1

(

Czλ
ℓt
W̄

+ CZ

∞
∑

q=1

(C0C1λ
ℓt
W̄
)q
)

(54)

Since C0C1λ
ℓt
W̄
< 1, we have

‖(Hℓt
p )

−1Z
ℓt
p − (H)−1Z‖

≤ C1

(

Czλ
ℓt
W̄

+
CZC0C1

1− C0C1λ
ℓt
W̄

λℓt
W̄

)

= O(λℓt
W̄
).

(55)

The proof is completed.

APPENDIX C

PROOF OF THEOREM 1

To facilitate our discussions, we introduce the shorthand no-

tations: x
(t)
p , {X

(t)
p,A(ωk)}k, xℓtp (b

(t)) , {Xp,A,k(b
(t))}k,

x⋆t , XA,k(b
(t−1)), x(t) , (x

(t)
1 , ...,x

(t)
P ) and x̂(t) ,

(1/P )
∑P
p=1 x

(t)
p . With a slight abuse of the notations, we

let f(x(t),b) ,
∑P
p=1 fp(x

(t)
p , bp). We also set β = 1/Mo.

We can assign upper bounds to the following norms of the

differences:

∑P
p=1 ‖x

(t)
p − x⋆t ‖2 ≤ θ(λ

ℓt
W̄
) , Cθλ

ℓt
W̄
, (56)

∑P
p=1 ‖x̂

(t) − x⋆t ‖2 ≤ φ(λ
ℓt
W̄
) , Cφλ

ℓt
W̄
, (57)

∑P
p=1 ‖x

(t)
p − x̂(t)‖2 ≤ ψ(λ

ℓt
W̄
) , Cψλ

ℓt
W̄
. (58)

The first inequality is due to Proposition 2. The latter two

inequalities can be derived using triangular inequalities on

(56).

Under the assumption in Theorem 1, for all t, (x̂(t),b(t))
stays in the neighborhood NR⋆(x⋆,b⋆) such that f is strongly

convex. Our idea is to study the dynamics of the following:

∆(t) = f(x̂(t),b(t))− f(x⋆,b⋆) (59)
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Observe that:

∆(t) −∆(t−1)

= f(x̂(t),b(t))− f(x̂(t−1),b(t−1))

= f(x(t),b(t))− f(x(t),b(t)) + f(x̂(t),b(t))

− f(x̂(t−1),b(t−1))

≤ Loψ(λ
ℓt
W̄
) + f(x(t),b(t))− f(x̂(t−1),b(t−1))

≤ Loψ(λ
ℓt
W̄
) + f(x(t),b(t−1))−

f(x̂(t−1),b(t−1))−
Mo

2
‖b(t) − b

(t−1)‖22

(60)

where the first inequality is due to Lipschitz continuity of f
and (58); the second inequality is due to the descent lemma

[36]. Moreover, we have:

f(x(t),b(t−1)) ≤ f(x⋆t ,b
(t−1)) + Loθ(λ

ℓt
W̄
)

≤ f(x̂(t−1),b(t−1)) + Loθ(λ
ℓt
W̄
),

(61)

where the first inequality is due to (56) and the second

inequality is due to the optimality of x⋆t with b
(t−1) fixed.

Therefore,

∆(t)−∆(t−1) ≤ Lo(θ(λ
ℓt
W̄
) + ψ(λℓt

W̄
))−

Mo

2
‖b(t)−b(t−1)‖22.

(62)

Our next task is to lower bound ‖b(t)−b
(t−1)‖22. To this end,

we proceed by:

∆(t) = f(x̂(t),b(t))− f(x⋆,b⋆)

= f(x⋆t ,b
(t))− f(x⋆t ,b

(t)) + f(x̂(t),b(t))− f(x⋆,b⋆)

≤ Loφ(λ
ℓt
W̄
) + 〈∇bf(x

⋆
t ,b

(t)),b(t) − b
⋆〉+

BMo‖b
(t) − b

(t−1)‖2
(63)

where in the last inequality, we have used i) f is Lipschitz

continuous and (57), ii) f is locally convex and iii)

〈∇xf(x
⋆
t ,b

(t)),x⋆t − x⋆〉

= 〈∇xf(x
⋆
t ,b

(t))−∇xf(x
⋆
t ,b

(t−1)),x⋆t − x⋆〉

≤ BMo‖b
(t) − b

(t−1)‖2.

(64)

The equality is due to ∇xf(x
⋆
t ,b

(t−1)) = 0.

Our next endeavor is to upper bound 〈∇bf(x
⋆
t ,b

(t)),b(t)−
b
⋆〉. To this end, we observe

∇bf(x
⋆
t ,b

(t)) = ∇bf(x
⋆
t ,b

(t))−∇bf(x
(t),b(t−1))+

1
β

(

(b(t−1) − b
(t)) + b

(t) − (b(t−1) − β∇bf(x
(t),b(t−1))

)

,
(65)

since the latter terms cancel each other. Together with the

following inequalities:

〈∇bf(x
⋆
t ,b

(t))−∇bf(x
(t),b(t−1)),b(t) − b

⋆〉 ≤

BMo

(

θ(λℓt
W̄
) + ‖b(t) − b

(t−1)‖2
)

,
(66)

which is a consequence of Cauchy-Schwarz and (56). More-

over, we have

〈b(t) − (b(t−1) − β∇bf(x
(t),b(t−1))),b(t) − b

⋆〉 ≤ 0, (67)

since b
(t) is the projection of b

(t−1) − β∇bf(x
(t),b(t−1))

onto B and b
⋆ ∈ B.

Consequently,

〈∇bf(x
⋆
t ,b

(t)),b(t) − b
⋆〉 ≤ BMo

(

θ(λℓt
W̄
)+

‖b(t) − b
(t−1)‖2

)

+ (B/β)‖b(t) − b
(t−1)‖2

(68)

and ∆(t) is upper bounded by:

∆(t) ≤ Loφ(λ
ℓt
W̄
) +BMoθ(λ

ℓt
W̄
) + 3BMo‖b

(t) − b
(t−1)‖2

(69)

Plugging the above results back to (62) yields the following:

∆(t) −∆(t−1) ≤ Lo(θ(λ
ℓt
W̄
) + ψ(λℓt

W̄
))−

γomax{∆(t) − (Loφ(λ
ℓt
W̄
) +BMoθ(λ

ℓt
W̄
)), 0}2

(70)

where γo = 1/(18B2Mo).
Since ∆(t) is non-negative, we can simplify (70) by con-

sidering the upper bound ξ(t) such that ∆(t) ≤ ξ(t) and

O(λℓt
W̄
) ≤ O(λℓmin

W̄
) for all t:

ξ(t) − ξ(t−1) = Lo(θ(λ
ℓmin

W̄
) + ψ(λℓmin

W̄
))−

γomax{ξ(t) − (Loφ(λ
ℓmin

W̄
) +BMoθ(λ

ℓmin

W̄
)), 0}2

(71)

A fixed point ξ̄ to the above system must satisfy:

Lo(θ(λ
ℓmin

W̄
) + ψ(λℓmin

W̄
)) =

γomax{ξ̄ − (Loφ(λ
ℓmin

W̄
) +BMoθ(λ

ℓmin

W̄
)), 0}2

(72)

which implies

ξ̄ = (Loφ(λ
ℓmin

W̄
) +BMoθ(λ

ℓmin

W̄
))+

√

Lo(θ(λ
ℓmin

W̄
) + ψ(λℓmin

W̄
))/γo =

√

O(λℓmin

W̄
).

(73)

It can be verified that the above fixed point is stable. In fact,

it is the only fixed point for the upper bound system (71).

Finally, from (73) and the local strong convexity of f , we

have the following chain

lim
t→∞

‖(x̂(t),b(t))− (x⋆,b⋆)‖2 ≤
2

mo
lim
t→∞

∆(t)

≤
√

O(λℓmin

W̄
),

(74)

which completes the proof.
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Consensus on State and Time: Decentralized

Regression with Asynchronous Sampling
Hoi-To Wai and Anna Scaglione

Abstract

An implicit assumption made in several studies on sensor systems is that the time and frequency at

which sensor measurements are taken is consistent across all the distributed sensing sites. In reality, the

times of measurement often lack consistency and integrity, and this is an intrinsic vulnerability of wide

area sensor system. Data logs coming from different Analog to Digital Converters (ADCs) are not in

phase and may differ also in the sampling rate, in some cases because heterogeneity in the sensors and

in others because the data are simply not refreshed in the data historians with the same frequency. Lack

of good synchronization in sensing may be the result of a malfunction or also due to intentional delay

attacks.

This premise motivates our work, where we advance the area of decentralized signal processing and

consider explicitly timing errors and non-homogenous sampling rates in least square estimation problems

with distributed sensing. For linear observations models, we provide a necessary and sufficient condition

for identifiability of the time offsets. We propose an algorithm for the joint regression on the state vector

and time offsets. The algorithm also exploits the asynchrony and redundancy in the spatial sampling

to attain sub-Nyquist sampling resolution of the slow sensor feeds. Importantly, this also leads to the

development of a novel decentralized algorithm. The efficacies of the proposed decentralized algorithm

are shown by both convergence analysis and numerical simulations.

Index terms− decentralized state estimation, sampling offsets, sub-Nyquist sampling, smart grid.

EDICS: SPE-DETC (Detection and estimation in power grid), SPE-DP (Distributed processing and

protocols in energy systems), SAM-APPL (Applications of sensor and array multichannel processing)
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I. INTRODUCTION

Today there is significant interest in developing decentralized signal processing techniques for solving

regression problems that arises in array processing and control applications (e.g., see [3]–[12] and the ref-

erences therein). These decentralized algorithms overcome the lack of observability in individual sensors

by merging communication with computations in a resilient fashion, relying on (possibly randomized)

near-neighbors communications.

One of the implicit assumptions made in the vast majority of related literatures is that the measurements

are sampled in a synchronous manner. Such an assumption is valid only when: i) the system state evolution

is sufficiently slow that the lack of synchrony in sampling is negligible; or ii) the timing information is

sufficiently accurate (with the aid of for instance of a GPS receiver) to calibrate the ADCs; and iii) the

sensors employed follow the same sampling rate. These assumption are quite limiting. For example, in

power grid, local clocks in the measurement devices are prone to malicious attacks [13]; in sensor array

processing, the desire of processing signals over high frequency carriers and wide bandwidths has made

the design of hardwares for synchronization more challenging.

This paper attacks the problem of non-ideal sampling by addressing these issues in a unified manner,

while considering the case of power grid as an immediate application example. Our formulation imposes

very mild restrictions. Specifically, assuming that the relationship between the measurements and state

is memoryless, we model the system state variables as band-limited continuous-time signals and the

measurements as samples taken at different sampling frequencies and with an unknown time offset. The

analysis and algorithms we propose rely only on the sampling expansion (i.e. smoothness in the state

signal). On the practical side, by representing the down-sampled and time-shifted signals in the frequency

domain, we tackle the new regression problem on state and time offsets using a novel decentralized

algorithm. The decentralized algorithm is proven to converge both analytically and empirically.

The remainder of this paper is organized as follows. In Section II, we introduce the system model

with linear measurement and non-ideal sampling. Specifically, we derive an equivalent frequency-domain

representation where our analysis and algorithms are based upon. In Section III, we derive conditions

under which the accurate state and times offsets are recoverable via solving the proposed regression

problem. A decentralized algorithm for tackling the proposed regression problem will be discussed and

analyzed in Section IV. In Section V, we discuss the extension to non-linear measurement models and

its applications on the power grids. Finally, the paper is concluded by the simulation results that show

the efficiencies of the proposed method in Section VI.
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Notations: We follow the standard notations used in signal processing literature. The operator ⊗

denotes the Kronecker product, (·)∗ denotes complex conjugate, DTFT{·} denotes the standard DTFT

transformation
∑∞

n=−∞ x[n]e−jωn.

A. Related works

Techniques for mitigating timing errors have long been considered in the control theory literatures,

e.g., [14]–[17]. A common feature among these works is that they adopt a Kalman filtering approach

and are often combined with a Taylor approximation to the system dynamics. As a result, applying

these techniques requires an a-priori knowledge of the dynamic equations that represent the evolution of

system state, and that the timing offset is sufficiently small such that the Taylor approximation is accurate.

A good example of prior works that is relevant to ours is [18]. In this paper, Yang et. al. considered

a static system where the effects of non-ideal sampling is resulted from down-converting signals with

high-frequency carriers (e.g., in power system state estimation (PSSE) with linear measurements) and

tackled the joint time offsets and state regression using a Taylor approximation.

What differentiates our work is the direct manner in which we model the effects of non-ideal sampling.

In fact, we do not require any a-priori knowledge on the state evolution dynamics nor assumptions on the

magnitude of time offsets. Our work is in the same spirit with sampling using time-interleaved ADCs [19],

[20]. Furthermore, it overlaps with the recent works on sub-Nyquist recovery in [21]–[23], reviewed in

[24]. In these works, it is usually required that the signal being sampled satisfies certain properties known

a-priori to the system, while ours focuses on the blind calibration problem and fusion of measurements.

Decentralized algorithms over sensor network have been considered in [11], [12], [25]–[27]. For

example, [11], [12] combines gradient (or quasi-Newton) descent and consensus protocols to develop the

diffusion-based LMS (or RLS) algorithm; [28] proposes a Gossip-based Gauss-Newton algorithm. While

most of these algorithms applies to general optimization problems, they are guaranteed to converge only

when the optimization is convex. However, our regression problem with non-ideal sampling is non-convex

and the aforementioned algorithms cannot be directly applied. We have proposed a new decentralized

algorithm that exploits structures in the said regression problem. More importantly, the algorithm is

proven to converge under certain conditions.

II. SYSTEM MODEL

Consider a sensor network equipped with P sensors. The sensor network monitors the system state

that can be modelled as a continuous-time signal xc(t) ∈ CN . Specifically, we study the case when the

December 8, 2014 DRAFT

Page 16 of 44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

4

measurement is linear in the system state such that the pth sensor observes the following at time t:

ζp(t) = Hpxc(t) + vp(t), (1)

where Hp ∈ CMp×N is the measurement matrix with Mp ≤ N and vp(t) ∼ CN (0, σ2wI) is an additive

white noise. For the applications of (1) on sensor array processing, we refer our readers to [6]–[8]; in

addition, some recent applications on power system state estimation can be found in [3]–[5]. Our model

can also be extended to the general case with non-linear measurement, i.e., when ζp(t) is non-linear in

xc(t); see Section V.

The objective is to estimate xc(t) using ζp(t). In the control theory literatures [15]–[18], [29], the

system state xc(t) is often modelled by a linear/non-linear dynamical system. We consider the scenario

when such a knowledge on the underlying dynamical system is not available. Instead, we study the state

estimation problem under the model implied by the following assumptions:

Assumption 1. The system state xc(t) is band-limited by W/2 Hz, i.e., xc(t) is a smooth signal.

Assumption 2. The measurements are collected from the continuous-time signal ζp(t) under a non-ideal

sampling model — the pth sensor samples ζp(t) at time:

tnp = (nAp − bp)Ts, n = 0, 1, 2, ..., (2)

where Ts = 1/W second is the Nyquist sampling period, bp ∈ R is the normalized time offset at sensor

p and the sampling factor Ap ≥ 1 is an integer. In addition, we set b1 = 0 to avoid ambiguity.

Assumption 3. The down-sampling factor Ap ∈ Z+ is known while the time offset bp ∈ Bp is unknown.

The interval Bp ⊆ R is convex and known.

The consequences of Assumption 1 to 3 are discussed as follows. Assumption 1 is the key enabling

assumption for estimating xc(t) from samples of measurements in (1). Under the assumption, it suffices

to obtain x[n] = xc(nTs) in order to estimate xc(t). In fact, by observing that

ζp(nTs) = Hpx[n] + vp(nTs), (3)

the system state x[n] can be readily estimated by solving a least square optimization with the data

{ζp(nTs)}p. In fact, Assumption 1 with the synchronous sampling model is one of the implicit assump-

tions made in most literatures on sensor array processing [3]–[9].

In reality, obtaining the set of data {ζp(nTs)}p is impossible since it requires the physical system

to sample at time tnp = nTs for all sensors. This requires synchronization, and it is hard to enforce
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for sensors placed over a physical system that occupies a wide area. In this case, often measurement

samples are collected at heterogenous sampling rate and with sampling offsets. This is the reason why

Assumption 2 was imposed. Under Assumption 2, the sampled version of (1) can be expressed as:

ζp[n] , ζp(t
n
p ) = Hpxc((nAp − bp)Ts) + vp[n]. (4)

Lastly, Assumption 3 is justified by the fact that the sampling rate of a sensor is usually known a-priori,

while the time offsets are unpredictable.

The aim of this paper is to study the estimation problem of x[n] and bp. We first observe that estimating

x[n] and bp on a sample-by-sample basis from {ζp[n]}
K
p=1 alone is impossible as the former terms do

not appear in the right hand side of (4). As a remedy, we consider a frequency domain representation

for (4) and leverage on the following observation:

Observation 1. Let xc(t) be a bandlimited signal with bandwidth W/2 Hz. We denote x[n] = xc(nTs)

with Ts = 1/W as its discrete time equivalent and X(ejω) = DTFT{x[n]} is the discrete time Fourier

transform (DTFT) spectrum. Then:

DTFT{xc((nA− bp)Ts)} =
1

A

A−1
∑

a=0

e−jbpΩ
a
A(ω)

X

(

ejΩ
a
A(ω)

)

, (5)

where

ΩaA(ω) ,
(ω

A
−
a

A
2π

)

mod (−π, π]. (6)

The proof of Observation 1 is relegated to Appendix A. In fact, the DTFT spectrum of x((nA−bp)Ts)

is a weighted combination of the stretched and shifted versions of X(ejω).

For ease of exploration, it will be useful to consider that the K sensors are sampling at the same

(sub-Nyquist) rate. This can be done by creating further decimated samples from ζp[n]. In particular, we

define the constants:

A , LCM{A1, ..., AP } and Qp , A/Ap (7)

and decompose ζp[n] into Qp streams of samples:

ζqp [n] , ζp[Qpn− q], q = 0, 1, ..., Qp − 1. (8)

Each of ζ
q
p [n] is a sequence of samples of ζp(t) downsampled by A and offsetted by qAp + bp unit of

time. Applying Observation 1 to (4) and (8) gives:

Z
q
p(e

jω) =
1

A
×

A−1
∑

a=0

e−j(bp+qAp)Ωa
A(ω)

HpX

(

ejΩ
a
A(ω)

)

+Vp(e
jω)

(9)
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for ω ∈ (−π, π]. Here, X(ejω) =
∑

n x[n]e
−jωn and V

q
p(ejω) =

∑

n v
q
p[n]e−jωn are the DTFT spectrum

of x[n] and v
q
p[n], respectively.

To simplify (9), we define the following extended state spectrum:

XA(ω) ,
[

X
(

ejΩ
0

A(ω)
)T

X
(

ejΩ
1

A(ω)
)T

. . . X
(

ejΩ
A−1

A (ω)
)T

]T (10)

and the extended measurement matrix, i.e.,

Hp(bp, ω) , Θp(bp, ω)⊗Hp (11)

where

Θp(bp, ω) ,
1

A
×

















e−j(bp)Ω
0

A(ω) · · · e−j(bp)Ω
A−1

A (ω)

e−j(bp+Ap)Ω0

A(ω) · · · e−j(bp+Ap)Ω
A−1

A (ω)

· · · · · · · · ·

e−j(bp+(Qp−1)Ap)Ω0

A(ω) · · · e−j(bp+(Qp−1)Ap)Ω
A−1

A (ω)

















.

Then, (9) can be conveniently expressed as:

Zp(e
jω) = Hp(bp, ω)XA(ω) + Vp(e

jω), (12)

for ω ∈ (−π, π], where Zp(e
jω) and Vp(e

jω) can be formed by vertically concatenating the vectors

{Zqp(ejω)}q and {Vq
p(ejω)}q, respectively.

Observe that there is a one-to-one correspondence between XA(ω) and X(ejω) since each entry in the

extended spectrum XA(ω) is non-repeating as the intervals ΩaA((−π, π]) and ΩbA((−π, π]) are disjoint

whenever a 6= b. Consequently, estimating XA(ω) is equivalent to estimating the time domain sequence

{x[n]}n. The latter can be obtained by first converting XA(ω) to X(ejω), and then performing an inverse

DTFT.

To conclude, we observe that the measured spectrum Zp(e
jω) can be expressed as a linear transfor-

mation of XA(ω). In the sequel, we will study the model (12) from two different aspects — i) to derive

a set of identifiability conditions such that we can uniquely identify bp and XA(ω) from Zp(e
jω); ii) to

propose a tractable, decentralized algorithm for retrieving bp and XA(ω).

III. IDENTIFIABILITY CONDITION

This section derives an identifiability condition for (12). Recall that our intention is to estimate jointly

the time offsets and the state spectrum, i.e., the tuple (XA(ω),b) with b = (b1, b2, ..., bK), from the

linear system (12). Under such context, we define:
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Definition 1. The sensing system {Hp}
P
p=1 is said to be identifiable1 under non-ideal sampling if and only

if for any {Zp(e
jω)}p that is generated by (XA(ω),b), the tuple (XA(ω),b) is the only one satisfying

(12).

In other words, if the system is identifiable, then one can recover the tuple (XA(ω),b) unambiguously

from {Zp(e
jω)}p. As a comment, blind identification conditions are explored in the absence of noise,

see e.g., [30], [31]. Our main result is summarized by the following proposition:

Proposition 1. Consider the following matrix:

Ĥ(b̂,b, ω) ,
[

H(b̂, ω) −H(b, ω)
]

, (13)

where b = [b1 b2 . . . bP ] and

H(b, ω) ,











H1(b1, ω)

· · ·

HP (bP , ω)











. (14)

Assuming that the measurement is noiseless, i.e., Vp(e
jω) = 0, XA(ω) 6= 0 and rank(H(b, ω)) = AN

for all ω. Then, the sensing system {Hp}p is identifiable if and only if

rank(Ĥ(b̂,b, ω)) = 2AN. (15)

for all ω whenever b̂ 6= b (with b1 = b̂1 = 0).

Proof. Notice that any tuple (X̂A(ω), b̂) satisfying (12) with Vp(e
jω) = 0 must fulfill the homogeneous

equation:

Ĥ(b̂,b, ω)





X̂A(ω)

XA(ω)



 = 0, (16)

since Zp(e
jω) = Hp(bp, ω)XA(e

jω) for all p and ω.

We first prove the sufficient condition. If Ĥ(b̂,b, ω) is full column rank whenever b̂ 6= b, then (16)

implies that whenever b 6= b̂, we have XA(ω) = X̂A(ω) = 0, leading to a contradiction. As such, b = b̂

and the assumption rank(H(b, ω)) = AN guarantees that X̂A(ω) = XA(ω).

For the necessary condition, let us assume that Ĥ(b̂,b, ω) is not full rank for some b̂ 6= b. In this case,

for some instances of XA(ω) there exists a tuple (X̂A(ω), b̂) 6= (XA(ω),b) such that (16) is satisfied.

This contradicts the uniqueness of (XA(ω),b). Q.E.D.

1Identifiability is interchangeable here with the notion of observability that is prevalent in the control theory terminology, e.g.,

[3].
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Proposition 1 provides the identifiability condition for which the joint recovery of both sampling offsets

and state spectrum are possible. However, verifying the condition that rank(Ĥ(b̂,b, ω)) = 2AN for all

ω is a non-trivial problem. In the following, we derive several insightful conditions for identifiability

which are easy to verify.

We begin by examining an assumption made in Proposition 1 that rank(H(b, ω)) = AN . This

assumption is equivalent to enforcing identifiability on the system with known time offsets, which is

necessitated by:
∑P

p=1min{Qprank(Hp), ANc(Hp)} ≥ AN, (17)

where Nc(Hp) ≤ N is the number of non-zero columns in Hp. The above condition is obtained by upper

bounding H(b, ω) by the sum of rank of its sub-matrices,
∑

p rank(Hp(bp, ω)). Furthermore, we have:

rank(Hp(bp, ω)) = rank(Θp(bp, ω)⊗Hp)

= min{Qprank(Hp), ANc(Hp)},
(18)

where the second equality is due to the Vandermonde structure in Θp(bp, ω) [32].

Another interesting observation is that if bp’s are not distinct, then the upper bound (17) is loose.

To see why, we suppose that bp = bq, then the rank of the submatrix [Hp(bp, ω)
T Hq(bq, ω)

T ]T =

Θp(bp, ω)⊗ [HT
p H

T
q ]
T is upper bounded by

rank(Θp(bp, ω)⊗ [HT
p H

T
q ]
T ) ≤ QpN.

This is because the rank of [HT
p H

T
q ]
T is upper bounded by N . Such observation suggests that the

existence of time offsets may be beneficial, especially when the sensors are down-sampling.

Using the similar reasoning as in (17), we conclude that the identifiability condition in Proposition 1

is necessitated by:

Corollary 1. The condition rank(Ĥ(b̂,b, ω)) = 2AN is fulfilled only if

∑P
p=1min{Qprank(Hp), ANc(Hp)} ≥ 2AN (19)

provided that the sampling offsets bp are distinct.

Eq. (19) provides a guideline for the deployment of sensors in a robust sensing system. In particular,

it suggests that
∑P

p=1min{QpMp, ANc(Hp)} ≥ 2AN. (20)
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We remark that (19) is only a necessary condition. However, our numerical experiments suggest that when

Hp is a Gaussian random matrix and (20) is satisfied, then the identifiability condition in Proposition 1

holds with high probability.

IV. CONSENSUS ON STATE AND TIME

This section studies a method to recover the state spectrum and time offset in a decentralized fashion.

We treat each sensor, indexed by p as in the previous discussions, as a computing node that processes

the knowledge of Hp and {ζp[n]}
QpL−1
n=0 , where L is a designated frame size. The sensors are connected

through a communication network described by G = (V, E). The goal is to estimate the unknowns (the

state spectrum and time offset) while the sensors perform local computations. The sensors communicate

with their neighbors only occasionally.

Our first step is to formulate the regression problem for estimating {bp}p and XA(ω) in (12). As the

sensors possesses only finite-length data {ζp[n]}
QpL−1
n=0 , we resort to taking approximation and discretizing

the both sides of Eq. (12) by a K-point discrete Fourier transform (DFT), i.e.,

Zp[k] ≈Hp(bp, ωk)XA(ωk) + Vp[k], (21)

where ωk , 2π(k−K+1)/(K) is the frequency that the kth DFT point is related to. The approximation

above is exact when zp[n] is a periodic sequence with length L. For general signals, the approximation

error decays as O(L−1) [33]2. The K-point DFT spectrum of Zp[k] is obtained from L samples of zp[n]

as:

Zp[k] =
∑L−1

n=0 zp[n]e
−jωkn, (22)

where zp[n] , [ζ0p [n]
T . . . ζ

Qp−1
p [n]T ]T (cf. (8)) is a concatenation of the Qp streams of data and K

satisfies L ≤ K. Notice that {XA(ωk)}
K−1
k=0 is a re-ordering of {X(ejω̃k)}k where ω̃k , 2π(k − AK +

1)/(AK). The latter corresponds to the state sequence {x[n]}AL−1
n=0 over the finite length’s frame of

interest.

The discretized noise spectrum Vp[k] is Gaussian and white. Furthermore, if K = L, then Vp[k] are

independent. As such, the maximum likelihood estimation problem of XA(ωk) and bp can be given as:

min
X̂A(ωk),∀k,

b̂p,∀p

P
∑

p=1

K−1
∑

k=0

∥

∥

∥
Zp[k]−Hp(b̂p, ωk)X̂A(ωk)

∥

∥

∥

2

2

s.t. b̂p ∈ Bp, ∀ p.

(23)

2In [33, Lemma 3.4.1], it was shown that ‖Zp[k] −Hp(bp, ωk)XA(e
jωk ) − Vp[k]‖ is finitely bounded, while the squared

magnitude of Zp[k] grows as O(L). The error is thus O(L−1).
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The next step is to develop a decentralized algorithm for (23).

A. Decentralized optimization with nuisance parameter

Note that (23) is a non-convex optimization problem. In particular, it can be regarded as a regression

problem with local, nuisance parameter {b̂p}p. To this end, a natural approach for tackling the problem

is to apply an alternating optimization (AO) strategy, which works by alternating between the updates of

{X̂A(ωk)}k and b̂. To fix ideas, we let t ∈ N be the iteration index and define the objective function in

(23) as f({X̂A(ωk)}k, b̂). A practical AO strategy can be described by the following recursion:

{X
(t+1)
A (ωk)}k ← arg min

X̂A(·)
f({X̂A(ωk)}k,b

(t)),

b
(t+1) ← PB

(

b
(t) − β∇bf({X

(t)
A (ωk)}k,b

(t))
)

,

(24)

where PB(·) is the projection onto the convex set B1×· · ·×BP and β > 0 is a step size. Notice that the

optimization of b is taken care by a projected gradient descent update instead of an exact minimization.

There are several motivations for us to apply AO to (23). First, we observe that update of the time

offsets b
(t+1) can be computed locally, which is due to the fact that f({XA(ωk)}k,b) can be written

as a summation of P functions, each of them depending only on bp and is known to the pth sensor.

Second, the optimization of state spectrum {XA(ωk)}k is equivalent to solving a standard linear least

square problem. The latter admits a closed form solution. Lastly, the recursion (24) can be analyzed as a

special case of the Block Successive Minimization Method in [34]. In particular, the recursion is shown

to converge to a stationary point of (23).

In the interest of tackling (23) distributively, we see that the first update in (24) involves data from all

sensors. In particular,

X
(t+1)
A (ωk) = X

⋆
A,k(b

(t))

=
(

HH(b(t), ωk)
)−1

HZ(b(t), ωk),
(25)

with

HH(b(t), ωk) , (1/P )
∑P

p=1Hp(b
(t)
p , ωk)

HHp(b
(t)
p , ωk), (26)

HZ(b(t), ωk) , (1/P )
∑P

p=1Hp(b
(t)
p , ωk)

HZp[k], (27)

where (·)H denotes Hermitian transpose. As seen, (25) requires the knowledge of HH(·), HZ(·), which

is not available to the individual sensors.

There are a number of decentralized algorithm that can be applied to solve the linear least square

problem in (24). To list a few options, the diffusion-based LMS and RLS algorithm are proposed in [11],

[12], respectively; the ADMM method is applied in [4], etc.
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It is preferred to apply a decentralized algorithm with fast convergence. In this regard, we propose

to directly compute (25) in a decentralized fashion. The idea is to leverage on the fact that HH(·)

and HZ(·) can be replaced by the averages of the collection {Hp(·)
HHp(·)}p and {Hp(·)

HZp[k]}p,

respectively. As a result, the computation of (25) can be treated as a decentralized averaging problem.

To compute the averages, we apply the Gossip-based average consensus (G-AC) protocol in [35], which

is described in the following.

Let us take

y0
p,k ,





HZ0
p[k]

HH0
p[k]



 ,





Hp(b
(t)
p , ωk)

HZp[k]

vec(Hp(b
(t)
p , ωk)

H
Hp(b

(t)
p , ωk))



 ,

which is a ((AN)2 + AN)-dimensional complex vector. It suffices to compute (25) by obtaining the

average of {y0
p,k}p, i.e.,

yk = (1/P )
∑P

p=1 y
0
p,k. (28)

The G-AC protocol achieves ȳk by performing the following recursions:

yℓp,k =
∑

q∈Np
W ℓ
pqy

ℓ−1
q,k , (29)

where Np ⊆ V denotes the set of neighbors of sensor p. To guarantee convergence, the mixing matrix

W
ℓ = [W ℓ

pq]p,q satisfies a certain set of mild conditions, e.g., it is required to be doubly stochastic, i.e.,

W
ℓ
1 = 1 and 1

T
W

ℓ = 1
T . For a more detailed discussion, see [35].

As seen in (29), at each G-AC step ℓ ∈ N, the sensor p only obtains information from its immediate

neighbors, i.e., q ∈ Np. Moreover, as Wℓ can be time-varying, only a subset of links Eℓ ⊆ E are required

to be active at each G-AC step. The G-AC method requires only local computation and it allows random

communication between the agents. Finally, the variable X
ℓt
p,A,k(b

(t)) is computed using the approximate

averages stored at the pth agent after ℓt G-AC steps, i.e.,

X
ℓt
p,A,k(b

(t)) =
(

vec−1(HH
ℓt
p [k])

)−1(
HZ

ℓt
p [k]

)

. (30)

Notice that we apply the G-AC protocol to compute approximates to all the K points in DFT spectrum

X
⋆
A,k(b

(t)).

Combining AO and G-AC results in a decentralized algorithm for (23). We call this algorithm the

Gossip-based alternating optimization (G-AO) algorithm, as summarized in Algorithm 1.

B. Convergence analysis

To study the convergence of the G-AO algorithm, we first need to study the convergence rate of

G-AC. As shown in [35], the recursion (29) converges to the true average vector ȳk under several
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Algorithm 1 The G-AO algorithm for (23).

1: Initialize: {{X
(0)
p,A(ωk)}k}

P
p=1, {b

(0)
p }Pp=1;

2: for t = 0, 1, ... do

3: The network computes X
ℓt
p,A,k(b

(t)) for each (p, k) using ℓt G-AC steps (cf. (30)).

4: for p = 1, 2, ..., P do

5: Agent p updates its copies of Xp,A(·) and bp as:

X
(t+1)
p,A (ωk)← X

ℓt
p,A,k(b

(t)), k = 0, ...,K − 1,

b
(t+1)
p ← PBp

(

b
(t)
p − β∇bpf({X

(t+1)
p,A (ωk)}k,b

(t))
)

As mentioned, the update of bp can be performed distributively since f is separable.

6: end for

7: end for

8: Return: {{X
(t+1)
p,A (ωk)}k}

P
p=1, {b

(t+1)
p }Pp=1.

assumptions on {Wℓ}ℓ. In fact, the rate of convergence is exponential, i.e., ‖yℓp,k − yk‖2 = O(λℓ
W̄
)

where 0 < λW̄ < 1 is the second largest eigenvalue of the matrix W̄ = Eℓ{W
ℓ}. Consequently, the

accuracy on the approximation X
ℓt
p,A,k(b

(t)) improves exponentially with ℓt:

Proposition 2. Suppose that

C0 · C1 · λ
ℓt
W < 1, (31)

where C0 = maxb,k ‖
∑

pHp(bp, ωk)
H
Hp(bp, ωk)‖ and C1 = maxb,k ‖(

∑

pHp(bp, ωk)
H
Hp(bp, ωk))

−1‖

are finite constants, then the spectrum X
ℓt
p,A,k(b

(t)) computed in (30) using ℓt G-AC steps satisfies:

∥

∥X
⋆
A,k(b

(t))−X
ℓt
p,A,k(b

(t))
∥

∥

2
= O(λℓt

W̄
), ∀ p, k, (32)

where ℓt is the number of G-AC steps at the tth iteration.

The proof is relegated to Appendix B. An important implication is that the approximation improves

exponentially with ℓt, i.e., the number of G-AC steps per iteration.

We are ready to state the following theorem regarding the convergence of the G-AO algorithm.

Theorem 1. Let ({X⋆
A,k}k,b

⋆) be a local minimum to (23). Suppose that f is (mo,Mo)-strongly convex

in the neighborhood NR⋆({X⋆
A,k}k,b

⋆) and it is Lipschitz continuous with constant Lo. Suppose that
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(31) holds, β ≤ 1/Mo, B = maxt ‖({X̂
(t)
A,k}k,b

(t))− ({X⋆
A,k}k,b

⋆)‖2 <∞ and B ≤ R⋆, then we have:

lim
t→∞

∥

∥({X̂
(t)
A,k}k,b

(t))− ({X⋆
A,k}k,b

⋆)
∥

∥

2

2
=

√

O(λℓmin

W̄
), (33)

where ℓmin = mint ℓt is the minimum number of G-AC steps taken and X̂
(t)
A,k , (1/P )

∑P
p=1X

(t)
p,A(e

jωk).

The proof is provided in Appendix C, which is based on studying the error dynamics of the G-AO

algorithm as a second order dynamical system. In fact, Theorem 1 implies that if the G-AO algorithm

stays close enough to a local minimum, then the algorithm converges to an approximate of that local

minimum, where the approximation accuracy improves exponentially with ℓmin.

The strong convexity assumption on f around a local minimum may appear restrictive at first. However,

our numerical results indicate that Theorem 1 can accurately predict the performance of G-AO algorithm

applied on (23).

V. EXTENSIONS & APPLICATIONS

In this section, we extend the previous formulations/algorithms to the case with general measurement

(e.g., non-linear). This model pertains to the case when the measured signal at the sensor is non-linearly

related to the underlying system state. As an application example, we demonstrate that the formulation

can be employed to robustify power system state estimation (PSSE) systems.

Considering Assumption 1 to 3 in Section II and the sampling architecture in Fig. 1, we can express

the measured sample at sensor p as:

ζp[n] = (hp ◦ xc)(Ts(nAp − bp)) + vp[n],

(hp ◦ xc)(t) = LPF{(hp(xc(t))},

(34)

where hp : CN → CMp is a general measurement function and (hp ◦ xc)(t) is the low-pass filtered

version of hp(xc(t)) with a cutoff frequency at W/2 Hz. The reason for introducing the low-pass-filtered

is explained in Remark 1.

Under the same spirit as in our previous developments, the next step is to consider the frequency

domain equivalent to (34) via Observation 1. To simplify notations, we consider Ap = A for all p in the

following. The K-point DFT of ζp[n] is given by (cf. (22)):

Zp[k] ≈
1

A
×

A−1
∑

a=0

e−jbpΩ
a
A(ωk)

AL−1
∑

n=0

hp(x[n])e
−jΩa

A(ωk)n +Vp[k],
(35)
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xc(t)

........

ζ1[n]

ζ2[n]

...
...

h1(·)

h2(·)

v1(t)

v2(t) Ts(nA2 − b2)

nTsA1

LPF

LPF

LPFhP (·)

vP (t) Ts(nAP − bP )

ζP [n]

Fig. 1. The architecture of the sample & estimation system (cf. (4)). The low pass filters (LPF) have a cutoff frequency at

W/2 Hz.

where we recall that ωk = 2π(k −K + 1)/K. Analogous to the previous derivations, it follows that we

can formulate the nonlinear regression problem as:

min
{x̂[n]}AL−1

n=0
,b̂p,∀p

P
∑

p=1

K−1
∑

k=0

∥

∥

∥
gp,k

(

{x̂[n]}AL−1
n=0 , b̂p

)

∥

∥

∥

2

2
, (36)

where

gp,k
(

{x̂[n]}AL−1
n=0 , b̂p

)

, Zp[k]−

1

A

A−1
∑

a=0

e−jb̂pΩ
a
A(ωk)

AL−1
∑

n=0

hp(x̂[n])e
−jnΩa

A(ωk).
(37)

Notice that the above formulation allows us to consider hybrid measurement, i.e., hp can be linear for

some p.

Remark 1. We observe that in general hp(xc(t)) has a bandwidth higher than W/2 Hz due to the

nonlinearity of hp. In particular, the measurement function cannot be analyzed separately in hp(xc(t))

as in the linear case. The low pass filter is introduced to remedy this such that Observation 1 can be

applied. Moreover, it can be verified that

(hp ◦ xc)(nTs) = hp(x[n]), ∀ n, (38)

where the equality can be established by studying the spectrum of the both sides.

A. Extending the G-AO algorithm

Similar to (23), Problem (36) is also a non-convex problem. To develop a decentralized algorithm

for (36), we apply a modified version of the G-AO algorithm. The modified algorithm is based on the

Gossip-based Gauss Newton (GGN) method in [28] and the AO strategy.
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We observe that the G-AO algorithm cannot be applied directly to (36). In fact, even when b is fixed

in (36), the optimization problem remains non-convex and does not admit a closed form solution. We

develop our algorithm by borrowing insights from the GGN method.

Let t ∈ N be the iteration index and assume that b(t) is fixed. The damped GN direction at {x(t)[m]}m

for x[n] is given as:

dn({x
(t)
p [m]}m,b

(t)) =

(

λGNI+ GG({x
(t)
p [m]}m,b

(t))
)−1

GZ({x
(t)
p [m]}m,b

(t)),
(39)

where λGN ≥ 0 is the damped GN parameter, GG and GZ are both defined in terms of the Jacobian

matrix of gp,k(·):

GG({xp[m]}m,b) =
P
∑

p=1

K−1
∑

k=0

Gn
p,k(·, ·)

HGn
p,k({x[m]}m, bp)

GZ({xp[m]}m,b) =
P
∑

p=1

K−1
∑

k=0

Gn
p,k(·, ·)

Hgp,k({x[m]}m, bp)

such that Gn
p,k({x[m]}m, bp) is the N × N Jacobian matrix of gp,k(·, ·) taken at ({x[m]}m, bp) with

respect to the vector x[n]. Notice that the state vector x[m] is updated in a Gauss-Seidal like manner

[36].

Importantly, we observe that the GN direction can be calculated distributively using the G-AC protocol.

This suggests us to combine the AO algorithm and the Gossip-GN algorithm to develop a decentralized

algorithm for (36). In particular, the pseudo code for the GGN-AO algorithm for (36) is now summarized

in Algorithm 2, where we have denoted the objective function in (36) as fNL({xp[n]}n,b).

In contrast to the G-AO algorithm studied in Section IV, the GGN-AO algorithm applied to (36)

entails a higher complexity in general. For instance, the update of state variable x[n] in the GGN-AO

algorithm is based on the GN method, which is an iterative method by nature. In contrast, the G-AO’s

counterpart of the update relies on a closed form solution. Intuitively, the G-AO algorithm will exhibit a

faster convergence rate.

B. Application: Robustifying the PSSE systems

This subsection applies the models developed in this paper to robustify the power system state es-

timation (PSSE) systems. In particular, we consider the problem of PSSE in wide area measurement

systems, where data from Phasor Measurement Units (PMUs) and the legacy Supervisory Control And

Data Acquisition (SCADA) systems are combined to provide the state estimates.
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Algorithm 2 The GGN-AO algorithm for (36).

1: Initialize: {{x
(0)
p [n]}n}

P
p=1, {b

(0)
p }Pp=1;

2: for t = 0, 1, ... do

3: Update: x
(t+1)
p [n]← x

(t)
p [n] for all n = 0, ..., AL− 1.

4: for n = 0, 1, ..., AL− 1 do

5: The network computes the (approximate) GN direction d
ℓt
p,n({x

(t+1)
p [m]}m,b

(t)) for each p

using ℓt G-AC steps (cf. (39)).

6: for p = 1, 2, ..., P do

7: Agent p updates its copies of xp[·] and bp as:

x
(t+1)
p [n]← x

(t)
p [n]− d

ℓt
p,n({x

(t)
p [m]}m,b

(t)).

8: end for

9: end for

10: for p = 1, 2, ..., P do

11: Agent p updates bp by:

b
(t+1)
p ← PBp

(

b
(t)
p − β∇bpfNL({x

(t+1)
p [n]}n,b

(t))
)

12: end for

13: end for

14: Return: {{x
(t+1)
p [n]}n}

P
p=1, {b

(t+1)
p }Pp=1.

The system’s state of interest is the complex envelope x
e
c(t) of the voltage on each bus, which is

related to the actual voltage on bus i by [xc(t)]i = ℜ
{

[xec(t)]ie
jω0t

}

, where ω0 is the operating frequency

(typically 60/50 Hz) of the power grid. Typically x
e
c(t) has a smaller bandwidth than 60 Hz.

There are two types of sensors/systems that are used in the power grid:

PMU — The PMU installed on bus i takes samples of the voltage phasor [xec(t)]i and the current flow

phasors Ieij(t) on branches that are connected to bus i. Typically, the PMU relies on a local oscillator,

synchronized using GPS clocks, to take samples of [xec(t)]i and Ieij(t) [37]. The GPS clocks may be

tampered in the case of an attack. As such, we model the voltage measurements obtained at the PMU

on bus i as:

Vi[n] = [xec[n]]i = [xec(nTs − bp)]ie
−jω0bp + vi[n], (40)
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where vi[n] is the measurement noise, bp represents the sampling offset, and the current measurements:

Ieij [n] = e−jω0bpYij×
(

[xec(nTs − bp)]i − [xec(nTs − bp)]j
)

+ vij [n],
(41)

where Yij is the admittance of branch (i, j). Notice that we have assumed Nyquist sampling, i.e., Ap = 1,

as the PMU has a sampling rate of 10-30 Hz [37].

Let Ip ⊆ {1, ..., N} be the buses included in the pth sensing site. By stacking {Vi[n]}i∈Ip
and

{Iij [n]}j∈Ni,i∈Ip
vertically as ζp[n], where Ni denotes the buses connected to bus i, the samples obtained

at the pth PMUs’ site is modelled as:

ζp[n] = Hpx
e
c(nTs − bp)e

−jω0bp + vp[n]. (42)

SCADAs — The SCADA installed on bus i samples on the injected complex power Si(t) as well as

the complex power Sij(t) that flows to/from bus i. For example, the power flow phasor through branch

(i, j) is given by

Sij(t) = [xec(t)]i
(

[xec(t)]i − [xec(t)]j
)∗
Y ∗
ij . (43)

Similarly, the injected power is

Si(t) = |[x
e
c(t)]i|

2Y S
i +

∑

j∈Ni
Sij(t) (44)

where Y S
i is the shunt admittance from bus i to the ground. In fact, these quantities are obtained by

measuring the active power and reactive power. Besides the measurement models, another factor that

differentiates SCADA systems from PMUs is the sample rate used. In fact, the sampling rate is only

0.2–0.5 Hz [38] for SCADA. In light of this, we stack the relevant {Si(t)}i∈Ip
and {Sij(t)}j∈Ni,i∈Ip

to

form the hp(xc(t)) in (34). Under the assumption of an LPF and using an appropriate choice of Ap, we

see that the model described in (35) applies to the sampled SCADA data.

We observe that both of the models for PMUs and SCADA fit into the descriptions in (34). Subse-

quently, the robust PSSE problem can be formulated in a similar manner as (36).

Remark 2. Assume the case with only asynchronous PMUs. If bp ≪ Ts, we can assume that the power

system state is stable relative to the time offsets in PMUs, i.e., we have x
e
c(nTs − bp) ≈ x

e
c(nTs), the

regression problem for xec(nTs) and bp can be formulated as a special case of (23):

min
x̂e

c(nTs),{b̂p}

K
∑

p=1

∥

∥ζp[n]−Hpx̂
e
c(nTs)e

−jω0b̂p
∥

∥

2

2
. (45)

The G-AO algorithm can then be applied to tackle (45).
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VI. NUMERICAL RESULTS

To highlight different aspects affecting the performance of the techniques for joint state and sampling

offset estimation, this section will be divided into two parts — i) the first part includes simulations

pertaining the linear model in Section II with sensing matrices that are complex Gaussian zero mean

i.i.d. coefficients (e.g. Rayleigh fading); ii) the second part is focused on the application to PSSE problem

with a non-linear measurement model.

We first explain how the non-ideally sampled measurements are generated. Notice that in (4), the

discrete-time measurement ζp[n] is equivalent to the infinite sum
∑∞

m=−∞ ζp((n−m)Ts) sin(π(Apm−

bp))/(π(Apm− bp)). It is impossible to evaluate the infinite sum, we thus truncate the latter by a finite

sum from m = 0 to m = AL − 1. In this way, note that {ζp[n]}
QpL−1
n=0 retains the information from

{x[n]}AL−1
n=0 .

Moreover, our numerical experience shows that it is necessary to apply a pre-processing window

to obtain the measured spectrum in (22), so as to reduce the modelling error introduced by discrete

approximation. We instead take Zp[k] =
∑L−1

n=0 w[n]zp[n]e
−jωkn, where w[n] is the Blackman window

[39]. Due to the windowing operation, the estimated state at the boundaries can be unreliable. As

such, unless otherwise specified, we evaluate only the mean squared error (MSE) for the state x[n]

in the middle of the frame. Specifically, the MSE is computed as the per sample error E[(1/(2G +

1))
∑AL/2+G

n=AL/2−G ‖x[n]− x̂[n]‖22/N ], where x̂[n] is the estimated state and G = ⌊0.15AL⌋. The squared

error for time offsets is calculated as E[
∑P

p=1(bp − b̂p)
2].

For the other simulation parameters, we fix K = 192 as the DFT size and σ2w = 10−2 as the

noise variance. We perform 100 Monte-Carlo simulation trials to get the averages. The G-AO/GGN-

AO algorithm is terminated when the relative decrease in objective value is less than 0.1%. The G-AO

algorithm is initialized with bp = 0 for all p. The communication network is generated as an Erdos-Renyi

graph with parameter p = 0.5. We assume that the mixing matrix W is static with Metropolis-Hastings

weight [40]. The error is evaluated as the maximum MSEs evaluated for each sensor.

A. Example: Rayleigh fading

In the following examples, we focus on the performance of proposeds method under the linear model

specified in Section II. In particular, the states x[n] and measurement matrices Hp are generated as

random vectors/matrices with unit variance i.i.d. complex Gaussian random entries.

Our first example considers a system with sub-Nyquist sampling, i.e., we set Ap = 2 for all p. The

system dimensions are set as M = 4, N = 8, P = 12. The time offsets are uniformly drawn from
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Fig. 2. Comparing the MSE performance against the frame size L. (Left) On estimating {x[n]}n. (Right) On estimating {bp}p.

Fig. 3. Comparing the MSE performance against the state dimension N . (Left) On estimating {x[n]}n. (Right) On estimating

{bp}p.

B = [−0.5, 0.5]. Notice that under sub-Nyquist sampling, without exploiting the time offsets between

the sensors, it is impossible to estimate the state vector x[n] for all n. Therefore, as a benchmark, we

provide the MSE evaluated by comparing {x[n]}n with an interpolated state sequence estimated from

the sub-Nyquist measurements.

The simulation result from this example is depicted in Fig. 2, where we compare the MSE in state

and in {bp}p against the frame size L. From the figure, we see that the error metrics of the proposed

algorithm decrease as L increases. It is due to the improved approximation to the true DTFT spectrum. In
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Fig. 4. Comparing the state estimation error against iteration number of the proposed algorithms. M = 4, P = 12, N =

8, L = 120.

fact, the MSE in state decays as O(L−1), coinciding with the discussions that follows (21). On the other

hand, the G-AO algorithm achieves a similar performance with its centralized counterpart. Especially, as

ℓmin increases, the performance of the former approaches that of the latter. This observation is in line

with the analysis results on G-AO from Theorem 1.

In the second example, we examine the identifiability condition in Section III. Specifically, the system

parameters are M = 3, P = 12, L = 120 and the MSEs are compared with different state dimension N .

Fig. 3 shows the result from this example. Recall that from Corollary 1, the identifiability condition is

likely to be satisfied if N ≤ 9. This is evident from the figure that the MSE increases significantly when

N ≥ 10. The discrepancy is due to the fact that Corollary 1 is derived based on a noiseless model and

the G-AO algorithm may have been initialized close enough to the true optimum.

The next example, shown in Fig. 4, examines the convergence speed of the G-AO algorithm, for

which we track the state estimation error as G-AO algorithm proceeds. In this example, we set M =

4, P = 12, N = 8, L = 120 and consider solving a randomly generated instance of (23). We observe

that the error is gradually decreasing as the algorithm progresses and converges in about 30-40 iterations.

Importantly, we see that the G-AO algorithm follows closely with its centralized counterpart, suggesting

that they both achieve a similar performance.

Estimating the state via adaptive filtering — As an extension, we study a practical scheme for

incorporating the proposed regression method into standard state estimators.

Assuming that the time offsets {b̂p}p are estimated with the G-AO algorithm in an earlier stage, our

idea is to consider a sub-optimal adaptive filter, which reverts only the effects of non-ideal sampling by
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Fig. 5. Incorporating the proposed regression method into standard least squares state estimators. (Consider the special case

when A = Ap = 2.)

adding delays to the ADCs. For example, if A = Ap = 2, the sensors can be divided into two groups,

one with a delay tap of τp = 1 − b̂p and the other with τp = 2 − b̂p, etc. Notice that we have created

two groups of sensors, one sampling for x[2n], and the other one sampling for x[2n + 1]. The main

advantage for applying the adaptive filter is to reduce complexity. In fact, the regression problem on the

post-filtered data becomes a standard least-square optimization that admits a closed form solution; see

Fig. 5.

Fig. 6 shows the MSE in state estimate against L using the inverse filter designed from the time offset

estimate b̂p. The simulation settings are the same as in Fig. 2. The sensors grouping is done by grouping

the first P/2 sensors into one group; and the rest of the sensors into another. As a benchmark, the ‘offset-

free (interleave)’ refers to the system with perfectly aligned, time-interleaved sensors; and the ‘CRLB’

is the Cramer-Rao’s lower bound in the error performance by assuming that the signal is periodic, i.e.,

the DFT approximation is exact. The ‘offset-free (interleave)’ benchmark requires perfect knowledge of

{bp}p. From the simulation results, the MSE performance using the proposed algorithm is comparable

to the benchmark when L is large.

B. Example: Power System State Estimation

In the following examples, we evaluate the performance of the proposed algorithms applied to PSSE.

We consider the IEEE-30 bus test case in Fig. 7. To simulate the power system dynamics, the state vector

is generated as x
e[n] = x

e
c(nTs) = xt +d[n], where xt is the voltage vector in the IEEE-30 test case in

MATPOWER [41] and d[n] ∼ CN (0, σ2dI) models the fluctuation of voltages. Bus 1 is assumed to be

the slack bus with zero phase angle.
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Fig. 6. Comparing the MSE in state estimate against L upon applying the adaptive filter. System settings are M = 4, P =

12, N = 8.

Fig. 7. The IEEE-30 bus system. We divide the PMUs into P = 7 sensing sites, as indicated by the colored dotted lines.

The IEEE-30 bus system is partitioned as A1 = {1, 2, 3, 4},A2 = {5, 6, 7, 8},A3 = {9, 10, 11}, A4 = {12, 13, 14, 15},A5 =

{16, 17, 18, 19, 20, 21},A6 = {22, 23, 24, 25, 26},A7 = {27, 28, 29, 30}.

We first consider the case where only PMUs are employed. We assume that bp ≪ Ts such that

x
e
c(nTs − bp) ≈ x

e
c(nTs). As noted by Remark 2, the corresponding joint regression problem (45) can

be tackled using the G-AO algorithm. To ensure identifiability for both state and time offsets, the PMUs

collect measurements from the buses {1, 2, 4, 5, 6, 9, 13, 15, 17, 19, 20, 21, 23, 25, 27, 29}.

The simulation result, as shown in Fig. 8, is performed with 1000 Monte-Carlo trials. In particular, we

compare the MSE in state estimation against different range of sampling offset σb, where the sampling

offsets bp is generated as uniformly distributed over [−σb, σb]. As observed, the proposed method achieves
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Fig. 8. Comparing the MSE per sample of an IEEE-30 bus system with only PMUs against the variance in sampling offset in

bp and we fix σw = 10−2. We also have σd = 10−2 and
∑

p Mp = 62, N = 30.

a performance on par with the method (Yang et. al.) from [18] when σb is small. The latter is outperformed

by ours when σb ≥ 10−3. Moreover, our proposed algorithm achieves a MSE that is close to the Cramer

Rao’s lower bound (CRLB). This demonstrates the benefit of modelling non-ideal sampling directly.

The next simulation example considers the case where we combine both PMU and SCADA data. In

particular, we consider the setting when only 8 PMUs are installed on bus {1, 4, 5, 9, 11, 15, 20, 24, 27}

in an IEEE-30 system. The number of installed PMUs is insufficient to provide identifiability if we only

rely on PMU data. To remedy, we deploy 30 SCADA systems (each installed on a bus) on the power

grid to monitor every bus and branch in the grid. We consider L = 40 and apply the centralized version

of the GGN-AO algorithm, which is initialized by x
(0)
p [n] = xt for all n and bp = 0 for all p.

Our aim is to demonstrate that the full power grid’s state in transient can be revealed using the sub-

Nyquist SCADA data and insufficient amount of PMU data. We assume that the complex envelope x
e
c(t)

has a bandwidth of 0.5 Hz such that the Nyquist sampling period is Ts = 1 second. For simplicity, the

SCADA systems has a sampling period of ApTs = 2 second, while the PMUs are able to capture samples

with period shorter than ApTs = 1 second. A snapshot of the estimation result is shown in Fig. 9, in

which we compare the state/time offset estimation error against iteration number. We have only shown the

errors in estimating the voltage on buses {8, 13, 16, 17, 21, 26}. Notice that these buses are unobservable

using the PMU data alone. That said, from the figure, we observe that the state estimation error from

these buses is fairly low. More importantly, the error in estimating {bp}p is at the order of 10−4 to 10−3.

This allows us to design the adaptive filter and treat the SCADA systems as the time-interleaved sensors
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Fig. 9. The state estimation error performance against the iteration number over an IEEE-30 bus system. We have set λGN = 102

for the GGN-AO algorithm. (Left) On estimating the power system state at different bus. (Right) On estimating {bp}p for PMUs

and SCADAs. The latter error is normalized according to the range of time offsets bp.

in a similar fashion as the last subsection.

C. Discussions

There are only ∼1,000 installed PMUs in total in the North America Power Grid as of 2014, while the

number of buses exceeds 10,000 [42]. Although more PMUs are being installed, the number of PMUs

employed is still insufficient to provide full identifiability of the entire power grid in the near future.

As demonstrated in the last simulation example, we see that deploying PMUs with SCADAs on the

power grid is beneficial in the sense that the power system state in transient can be captured. In fact,

using the result from Corollary 1, the fundamental limit on the maximum bandwidth for the power system

state can be estimated. We assume that the PMUs are sampling at 10 Hz while the SCADAs are sampling

at 0.5 Hz, each sensor takes Mp = 3 measurements which depends on the state of Nc(Hp) = 5 buses.

Now, set Qp = 1 for the SCADAs, Qp = 20 for the PMUs and using Eq. (20) yield:

# PMUs ·min{60, 5A}+ # SCADAs · 3 ≥ 20000A (46)

In particular, when the number of PMUs and SCADAs is 1,000 and 10,000, respectively, the maximum

possible A is 2. That is, the maximum possible bandwidth for system transient signal is 0.5 Hz, which

is a two-fold improvement over the case with SCADAs alone. Naturally, the individual sensors renders

transients variations at 10 Hz visible, but due to their relative scarcity the gain in resolving transients of
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nearby locations is degraded. To what extent aliasing corrupts the reconstruction of faster transients is a

topic of future research.

VII. CONCLUSIONS

In this paper, we have addressed the issue of non-ideal sampling in decentralized regression. Our

contributions are multi-fold: i) we propose a new joint regression problem that estimates the system state

and unknown time offsets under sub-Nyquist sampling; ii) we derive a set of identifiability conditions

that guarantee perfect state and time offset estimation; iii) we develop a decentralized algorithm that

solves the joint regression problem and prove its convergence. The efficacy of the proposed algorithm is

demonstrated through numerical examples on both synthetic data and realistic power systems.

APPENDIX A

PROOF OF OBSERVATION 1

The observation is the consequence of a several properties from the Fourier transform. We first derive

the DTFT spectrum of xc((n − bp)Ts). Under the Assumption 1 and by the Shannon’s interpolation

formula, we observe that:

xc((n− bp)Ts) =
∞
∑

m=−∞

x[n−m]
sin(π(m− bp))

π(m− bp)
, (47)

which implies

DTFT{xc((n− bp)Ts)} = X(ejω)e−jbp
(

ωmod(−π,π]
)

. (48)

Now, by decomposing the DTFT spectrum of x((nA− bp)Ts) into its polyphase components and using

results from Chapter 4 in [43], we can obtain (5).

APPENDIX B

PROOF OF PROPOSITION 2

In the following proof, we shall abbreviate HHℓt
p as Hℓt

p , HZℓt
p as Zℓt

p , HH as H and HZ as Z .

We also drop the dependence on b and k of the vectors/matrices as they are irrelevant in the proof. Our

goal is to show the following:

‖(Hℓt
p )

−1
Z
ℓt
p − (H)−1

Z‖ = O(λℓt
W̄
). (49)

We now observe that:

H
ℓt
p = H+ δHℓt

p , Z
ℓt
p = Z + δZℓt

p (50)
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where the error terms satisfy

‖δHℓt
p ‖ ≤ C0λ

ℓt
W̄
, ‖δZℓt

p ‖ ≤ Czλ
ℓt
W̄
, (51)

for some Cz < ∞. The error bounds in (51) are due to exponential convergence of the G-AC protocol

[35]. Under assumption (31), the matrix inverse admits a series expansion [32]:

(H+ δHℓt
p )

−1 =

∞
∑

q=0

(−1)q(H
−1
δHℓt

p )
q(H)−1. (52)

Consequently, the left hand side in (49) can be upper bounded by:

‖(Hℓt
p )

−1Zℓt
p − (H)−1Z‖

=
∥

∥

∥
H

−1
δZℓt

p +

∞
∑

q=1

(−1)q(H
−1
δHℓt

p )
q
H

−1
(Z + δZℓt

p )
∥

∥

∥

≤ ‖H
−1
‖
(

Czλ
ℓt
W̄

+

∞
∑

q=1

‖(δHℓt
p H

−1
)q‖‖Z + δZℓt

p ‖
)

.

(53)

Assuming that ‖Z + δZℓt
p ‖ ≤ CZ , we have

‖(Hℓt
p )

−1Zℓt
p − (H)−1Z‖

≤ C1

(

Czλ
ℓt
W̄

+ CZ

∞
∑

q=1

‖(δHℓt
p H

−1
)q‖

)

≤ C1

(

Czλ
ℓt
W̄

+ CZ

∞
∑

q=1

(C0C1λ
ℓt
W̄
)q
)

(54)

Since C0C1λ
ℓt
W̄
< 1, we have

‖(Hℓt
p )

−1Zℓt
p − (H)−1Z‖

≤ C1

(

Czλ
ℓt
W̄

+
CZC0C1

1− C0C1λ
ℓt
W̄

λℓt
W̄

)

= O(λℓt
W̄
).

(55)

The proof is completed.

APPENDIX C

PROOF OF THEOREM 1

To facilitate our discussions, we introduce the shorthand notations: x
(t)
p , {X

(t)
p,A(ωk)}k, xℓtp (b

(t)) ,

{Xp,A,k(b
(t))}k, x⋆t , XA,k(b

(t−1)), x(t) , (x
(t)
1 , ...,x

(t)
P ) and x̂(t) , (1/P )

∑P
p=1 x

(t)
p . With a slight

abuse of the notations, we let f(x(t),b) ,
∑P

p=1 fp(x
(t)
p , bp). We also set β = 1/Mo.

We can assign upper bounds to the following norms of the differences:

∑P
p=1 ‖x

(t)
p − x⋆t ‖2 ≤ θ(λ

ℓt
W̄
) , Cθλ

ℓt
W̄
, (56)
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∑P
p=1 ‖x̂

(t) − x⋆t ‖2 ≤ φ(λ
ℓt
W̄
) , Cφλ

ℓt
W̄
, (57)

∑P
p=1 ‖x

(t)
p − x̂(t)‖2 ≤ ψ(λ

ℓt
W̄
) , Cψλ

ℓt
W̄
. (58)

The first inequality is due to Proposition 2. The latter two inequalities can be derived using triangular

inequalities on (56).

Under the assumption in Theorem 1, for all t, (x̂(t),b(t)) stays in the neighborhood NR⋆(x⋆,b⋆) such

that f is strongly convex. Our idea is to study the dynamics of the following:

∆(t) = f(x̂(t),b(t))− f(x⋆,b⋆) (59)

Observe that:

∆(t) −∆(t−1)

= f(x̂(t),b(t))− f(x̂(t−1),b(t−1))

= f(x(t),b(t))− f(x(t),b(t)) + f(x̂(t),b(t))

− f(x̂(t−1),b(t−1))

≤ Loψ(λ
ℓt
W̄
) + f(x(t),b(t))− f(x̂(t−1),b(t−1))

≤ Loψ(λ
ℓt
W̄
) + f(x(t),b(t−1))−

f(x̂(t−1),b(t−1))−
Mo

2
‖b(t) − b

(t−1)‖22

(60)

where the first inequality is due to Lipschitz continuity of f and (58); the second inequality is due to

the descent lemma [36]. Moreover, we have:

f(x(t),b(t−1)) ≤ f(x⋆t ,b
(t−1)) + Loθ(λ

ℓt
W̄
)

≤ f(x̂(t−1),b(t−1)) + Loθ(λ
ℓt
W̄
),

(61)

where the first inequality is due to (56) and the second inequality is due to the optimality of x⋆t with

b
(t−1) fixed. Therefore,

∆(t)−∆(t−1) ≤ Lo(θ(λ
ℓt
W̄
) + ψ(λℓt

W̄
))−

Mo

2
‖b(t)−b(t−1)‖22. (62)

Our next task is to lower bound ‖b(t) − b
(t−1)‖22. To this end, we proceed by:

∆(t) = f(x̂(t),b(t))− f(x⋆,b⋆)

= f(x⋆t ,b
(t))− f(x⋆t ,b

(t)) + f(x̂(t),b(t))− f(x⋆,b⋆)

≤ Loφ(λ
ℓt
W̄
) + 〈∇bf(x

⋆
t ,b

(t)),b(t) − b
⋆〉+

BMo‖b
(t) − b

(t−1)‖2

(63)
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where in the last inequality, we have used i) f is Lipschitz continuous and (57), ii) f is locally convex

and iii)

〈∇xf(x
⋆
t ,b

(t)),x⋆t − x⋆〉

= 〈∇xf(x
⋆
t ,b

(t))−∇xf(x
⋆
t ,b

(t−1)),x⋆t − x⋆〉

≤ BMo‖b
(t) − b

(t−1)‖2.

(64)

The equality is due to ∇xf(x
⋆
t ,b

(t−1)) = 0.

Our next endeavor is to upper bound 〈∇bf(x
⋆
t ,b

(t)),b(t) − b
⋆〉. To this end, we observe

∇bf(x
⋆
t ,b

(t)) = ∇bf(x
⋆
t ,b

(t))−∇bf(x
(t),b(t−1))+

1
β

(

(b(t−1) − b
(t)) + b

(t) − (b(t−1) − β∇bf(x
(t),b(t−1))

)

,
(65)

since the latter terms cancel each other. Together with the following inequalities:

〈∇bf(x
⋆
t ,b

(t))−∇bf(x
(t),b(t−1)),b(t) − b

⋆〉 ≤

BMo

(

θ(λℓt
W̄
) + ‖b(t) − b

(t−1)‖2
)

,
(66)

which is a consequence of Cauchy-Schwarz and (56). Moreover, we have

〈b(t) − (b(t−1) − β∇bf(x
(t),b(t−1))),b(t) − b

⋆〉 ≤ 0, (67)

since b
(t) is the projection of b(t−1) − β∇bf(x

(t),b(t−1)) onto B and b
⋆ ∈ B.

Consequently,

〈∇bf(x
⋆
t ,b

(t)),b(t) − b
⋆〉 ≤ BMo

(

θ(λℓt
W̄
)+

‖b(t) − b
(t−1)‖2

)

+ (B/β)‖b(t) − b
(t−1)‖2

(68)

and ∆(t) is upper bounded by:

∆(t) ≤ Loφ(λ
ℓt
W̄
) +BMoθ(λ

ℓt
W̄
) + 3BMo‖b

(t) − b
(t−1)‖2 (69)

Plugging the above results back to (62) yields the following:

∆(t) −∆(t−1) ≤ Lo(θ(λ
ℓt
W̄
) + ψ(λℓt

W̄
))−

γomax{∆(t) − (Loφ(λ
ℓt
W̄
) +BMoθ(λ

ℓt
W̄
)), 0}2

(70)

where γo = 1/(18B2Mo).

Since ∆(t) is non-negative, we can simplify (70) by considering the upper bound ξ(t) such that ∆(t) ≤

ξ(t) and O(λℓt
W̄
) ≤ O(λℓmin

W̄
) for all t:

ξ(t) − ξ(t−1) = Lo(θ(λ
ℓmin

W̄
) + ψ(λℓmin

W̄
))−

γomax{ξ(t) − (Loφ(λ
ℓmin

W̄
) +BMoθ(λ

ℓmin

W̄
)), 0}2

(71)

December 8, 2014 DRAFT

Page 41 of 44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

29

A fixed point ξ̄ to the above system must satisfy:

Lo(θ(λ
ℓmin

W̄
) + ψ(λℓmin

W̄
)) =

γomax{ξ̄ − (Loφ(λ
ℓmin

W̄
) +BMoθ(λ

ℓmin

W̄
)), 0}2

(72)

which implies

ξ̄ = (Loφ(λ
ℓmin

W̄
) +BMoθ(λ

ℓmin

W̄
))+

√

Lo(θ(λ
ℓmin

W̄
) + ψ(λℓmin

W̄
))/γo =

√

O(λℓmin

W̄
).

(73)

It can be verified that the above fixed point is stable. In fact, it is the only fixed point for the upper

bound system (71).

Finally, from (73) and the local strong convexity of f , we have the following chain

lim
t→∞
‖(x̂(t),b(t))− (x⋆,b⋆)‖2 ≤

2

mo
lim
t→∞

∆(t)

≤
√

O(λℓmin

W̄
),

(74)

which completes the proof.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their valuable comments to improve the

manuscript.

REFERENCES

[1] H.-T. Wai and A. Scaglione, “State Estimation with Sampling Offsets in Wide Area Measurement Systems,” in Proc’ IEEE

SAM 2014, Jun. 2014, pp. 49–52.

[2] ——, “Decentralized Regression with Asynchronous Sub-Nyquist Sampling,” to appear in Proc’ Asilomar 2014.

[3] L. Xie, D.-h. Choi, S. Kar, and H. V. Poor, “Fully Distributed State Estimation for Wide-Area Monitoring Systems,” IEEE

Trans. Smart Grid, vol. 3, no. 3, pp. 1154–1169, Sep. 2012.

[4] V. Kekatos and G. B. Giannakis, “Distributed Robust Power System State Estimation,” IEEE Trans. Power Syst., vol. 28,

no. 2, pp. 1617–1626, May 2013.

[5] X. Li and A. Scaglione, “Robust Decentralized State Estimation and Tracking for Power Systems via Network Gossiping,”

IEEE J. Sel. Areas Commun., vol. 31, no. 7, pp. 1184–1194, Jul. 2013.

[6] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip Algorithms for Distributed Signal

Processing,” Proc. IEEE, vol. 98, no. 11, pp. 1847–1864, Nov. 2010.

[7] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed Parameter Estimation in Sensor Networks: Nonlinear Observation

Models and Imperfect Communication,” IEEE Trans. Inform. Theory, vol. 58, no. 6, pp. 3575–3605, Jun. 2012.

[8] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in Ad Hoc WSNs With Noisy Links Part I: Distributed

Estimation of Deterministic Signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364, Jan. 2008.

[9] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Proc’ IPSN’04, 2004.

December 8, 2014 DRAFT

Page 42 of 44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

30

[10] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in Networked Multi-Agent Systems,” Proc.

IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

[11] A. H. Sayed, S.-y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion strategies for adaptation and learning over networks:

an examination of distributed strategies and network behavior,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 155–171,

May 2013.

[12] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-squares for distributed estimation over adaptive

networks,” IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1865–1877, May 2008.

[13] D. P. Shepard, T. E. Humphreys, and A. Fansler, “Evaluation of the vulnerability of phasor measurement units to GPS

spoofing attacks,” International Journal of Critical Infrastructure Protection, vol. 5, no. 3-4, pp. 146–153, Dec. 2012.

[14] A. Ferreira and J. Fernandes, “A survey on time delay system estimation,” Proc’ ECC 1997.

[15] S. Julier and J. Uhlmann, “Fusion of time delayed measurements with uncertain time delays,” in Proc’ ACC 2005, pp.

4028–4033.

[16] J.-O. Nilsson, I. Skog, and P. Handel, “Joint state and measurement time-delay estimation of nonlinear state space systems,”

in Proc’ ISSPA 2010, May 2010, pp. 324–328.
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