
c© 2008 Ravishankar Sathyam

ANALYSIS OF A KEY MANAGEMENT SCHEME
FOR WIRELESS MESH NETWORKS

BY

RAVISHANKAR SATHYAM

B.S., University of Illinois at Urbana-Champaign, 2007

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Advisers:

Professor Klara Nahrstedt
Professor William Sanders

ABSTRACT

Wireless mesh networks (WMNs) have emerged as a viable option for many ap-

plications. These include home, corporate (including power grid) and automotive

monitoring/control, and low cost Internet provisioning. However, security is an

important aspect of WMNs, because of applications such as corporate monitor-

ing/control and Internet provisioning. In order to provide security properties

such as data confidentiality and integrity, a solid key management scheme (that

also satisfies other properties of WMNs such as support for ad hoc networks) is

required. This thesis describes the design and implementation of the SMOCK

key management scheme, as well as its integration with SMesh, a readily avail-

able wireless mesh network software. There are two modes of integration pro-

posed, and experiments were conducted to determine various metrics important

to SMOCK. The metrics are parameter generation times, key generation times,

round trip times, and encryption times. These experiments determined that the

network model (namely the average message size, average hop count of a message,

number of nodes in the network, the maximum allowed resilience in the network

and the transmit power of the mesh nodes) essentially determines the scenario of

integration used with the mesh network.

ii

To my parents, and others who supported my decision

to undertake graduate school

iii

I would like to acknowledge Prof. Klara Nahrstedt for providing the opportu-

nity to work with SMOCK, as well as helping me with the main concepts of this

thesis. Also, I want to acknowledge Prof. William Sanders for also supervising my

thesis and providing an environment where I can learn from others about security

in the power grid. Also, thanks to Nilo Rivera and Claudiu Danilov for helping me

with installation and understanding of the SMesh and Spines software. Thanks

to Wenbo He and Ying Huang for helping me with the theory behind SMOCK.

Thanks to Thadpong Pongthawornkamol and Hoang Nguyen for helping me with

the understanding behind ad hoc wireless networks. Finally, I would like to ac-

knowledge funding from the National Science Foundation (the grant number is

A5565 NSF CNS 05-24695) which made this thesis possible.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 General Scenario . 1
1.2 Thesis Contribution . 4
1.3 Thesis Organization . 4

CHAPTER 2 BACKGROUND ON WIRELESS MESH NETWORKS . . 5

CHAPTER 3 RELATED WORK . 11
3.1 Symmetric Key Management Schemes 11
3.2 Asymmetric Key Management Schemes 14

CHAPTER 4 SMOCK DESIGN AND IMPLEMENTATION 19
4.1 Objectives of SMOCK . 23
4.2 SMOCK Key Allocation Scheme 26

4.2.1 Determination of a and b 26
4.2.2 Key distribution to nodes 28

4.3 SMOCK Usage . 29
4.4 SMOCK Implementation . 33

CHAPTER 5 SMESH - UNDERLYING MESH NETWORK ARCHI-
TECTURE . 40
5.1 SMesh Architecture . 40

5.1.1 SMesh Communication Infrastructure 41
5.1.2 SMesh Mobile Clients Interface 43

5.2 SMOCK Modules in SMesh . 46
5.2.1 Application layer security - SMOCK integration with

SMesh mobile clients . 46
5.2.2 Link layer security - SMOCK integration with Spines . . . 48

v

CHAPTER 6 EXPERIMENTAL SETUP 52
6.1 Networking Setup . 52
6.2 SMesh Software Setup . 57
6.3 Wireless Testbed Setup . 58

CHAPTER 7 EXPERIMENTAL RESULTS 62
7.1 Metrics Used for Evaluation . 62
7.2 Experimental Results . 63

7.2.1 SMOCK key generation time 64
7.2.2 SMOCK memory usage . 71
7.2.3 SMOCK encryption/decryption time 74
7.2.4 SMesh round trip time . 80

CHAPTER 8 CONCLUSION . 108

REFERENCES . 111

vi

LIST OF TABLES

4.1 SMOCK variables . 23

6.1 Table of computational/memory info of the mesh nodes 59

7.1 a and b generation time (µs), ℘ vs. x (which is a percentage of
N), 10 nodes . 65

7.2 Value of (a, b), ℘ vs. x (which is a percentage of N), 10 nodes . . 66
7.3 a and b generation time (µs), ℘ vs. x (which is a percentage of

N), 100 nodes . 66
7.4 Value of (a, b), ℘ vs. x (which is a percentage of N), 100 nodes . 66
7.5 Value of (a, b), ℘ vs. x (which is a percentage of N), 1000 nodes . 67
7.6 a and b generation time (µs), ℘ vs. x (which is a percentage of

N), 1000 nodes . 67
7.7 SMOCK key generation time (s), ℘ vs. x (which is a percentage

of N), 10 nodes, 1024-bit keys . 68
7.8 SMOCK key generation time (s), ℘ vs. x (which is a percentage

of N), 100 nodes, 1024-bit keys 68
7.9 SMOCK key generation time (s), ℘ vs. x (which is a percentage

of N), 1000 nodes, 1024-bit keys 68
7.10 SMOCK key generation time (s), ℘ vs. x (which is a percentage

of N), 10 nodes, 2048-bit keys . 69
7.11 SMOCK key generation time (s), ℘ vs. x (which is a percentage

of N), 100 nodes, 2048-bit keys 69
7.12 SMOCK key generation time (s), ℘ vs. x (which is a percentage

of N), 1000 nodes, 2048-bit keys 70
7.13 SMOCK key generation time (min:s), ℘ vs. x (which is a per-

centage of N), 10 nodes, 4096-bit keys 70
7.14 SMOCK key generation time (min:s), ℘ vs. x (which is a per-

centage of N), 100 nodes, 4096-bit keys 71
7.15 SMOCK key generation time (min:s), ℘ vs. x (which is a per-

centage of N), 1000 nodes, 4096-bit keys 71

vii

LIST OF FIGURES

2.1 Infrastructure/backbone WMN 7
2.2 Client WMN . 8
2.3 Hybrid WMN . 8
2.4 Example of a WMN for an Advanced Metering Infrastructure . . 9

4.1 SMOCK key setup . 22
4.2 SMOCK offline key deployment phase 30
4.3 SMOCK communication between nodes 32
4.4 Step-by-step description of SMOCK bootstrapping phase 36
4.5 Step-by-step description of encryption/decryption of data using

SMOCK keys . 39

5.1 Spines daemon architecture . 42
5.2 SMesh Mobile Clients Interface 44
5.3 SMOCK integration with SMesh mobile clients 47
5.4 SMOCK integration with Spines 49

6.1 Placement of SMesh nodes . 59
6.2 SMesh node topology (along with SMesh mobile clients) 61

7.1 Memory usage vs. log(message size) - 1024-bit keys 72
7.2 Memory usage vs. log(message size) - 2048-bit keys 73
7.3 Memory usage vs. log(message size) - 4096-bit keys 73
7.4 Memory usage vs. log(message size) - b = 3 74
7.5 Encryption time vs. log(message size) - 1024-bit keys 75
7.6 Decryption time vs. log(message size) - 1024-bit keys 76
7.7 Encryption time vs. log(message size) - 2048-bit keys 77
7.8 Decryption time vs. log(message size) - 2048-bit keys 77
7.9 Encryption time vs. log(message size) - 4096-bit keys 78
7.10 Decryption time vs. log(message size) - 4096-bit keys 78
7.11 Encryption time vs. log(message size) - b = 3 79
7.12 Decryption time vs. log(message size) - b = 3 80
7.13 Topology of mesh nodes (with mean/variance of round trip

times) - 1-dBmW transmit power 83

viii

7.14 Average round trip time vs. log(message size) - Scenario 1 (end-
to-end encryption), 1024-bit keys, 1-dBmW transmit power 84

7.15 Average round trip time vs. log(message size) - Scenario 1 (end-
to-end encryption), 2048-bit keys, 1-dBmW transmit power 86

7.16 Topology of mesh nodes (with mean/variance of round trip
times) - 19-dBmW transmit power 87

7.17 Average round trip time vs. log(message size) - Scenario 1 (end-
to-end encryption), 1024-bit keys, 19-dBmW transmit power . . . 88

7.18 Average round trip time vs. log(message size) - Scenario 1 (end-
to-end encryption), 2048-bit keys, 19-dBmW transmit power . . . 90

7.19 Average round trip time vs. log(message size) - Scenario 2 (hop-
by-hop encryption), 1024-bit keys, 1-dBmW transmit power . . . 92

7.20 Average round trip time vs. log(message size) - Scenario 2 (hop-
by-hop encryption), 2048-bit keys, 1-dBmW transmit power . . . 94

7.21 Average round trip time vs. log(message size) - Scenario 2 (hop-
by-hop encryption), 1024-bit keys, 19-dBmW transmit power . . . 96

7.22 Average round trip time vs. log(message size) - Scenario 2 (hop-
by-hop encryption), 2048-bit keys, 19-dBmW transmit power . . . 97

7.23 Average round trip time vs. log(message size) - Scenario 1 vs.
Scenario 2, 1024-bit keys, 1-dBmW transmit power 99

7.24 Average round trip time vs. log(message size) - Scenario 1 vs.
Scenario 2, 2048-bit keys, 1-dBmW transmit power 101

7.25 Average round trip time vs. log(message size) - Scenario 1 vs.
Scenario 2, 1024-bit keys, 19-dBmW transmit power 102

7.26 Average round trip time vs. log(message size) - Scenario 1 vs.
Scenario 2, 2048-bit keys, 19-dBmW transmit power 104

ix

LIST OF ABBREVIATIONS

AKD area key distributor

AMI advanced metering infrastructure

AS authentication server

DKD domain key distributor

KDC key distribution center

MANET mobile ad hoc network

NIC network interface card

NLOS non-line-of-sight

P2P peer to peer

PKC public key cryptography

RADIUS remote authentication dial-in user service

SMOCK Scalable Method of Cryptographic Key Management

TGS ticket granting server

TTP trusted third party

VAP virtual access points

WMN wireless mesh network

x

CHAPTER 1

INTRODUCTION

1.1 General Scenario

In recent times, wireless networks have witnessed rapid growth. Telecommunica-

tion companies worldwide have been improving the state of wireless networks such

that not only can more traffic be carried over these networks than ever before,

but the quality of service has also improved. One of the key wireless technolo-

gies is wireless mesh network (WMN). Wireless mesh networks comprise of mesh

nodes and clients where mesh nodes act both as hosts to the client and also as

routers, forwarding packets on behalf of other nodes that are not within direct

wireless transmission range of their intended destination [1]. Ad hoc WMNs are

dynamically self-organized and self-configured: the mesh nodes in the network

automatically establish and maintain mesh connectivity among themselves. Due

to this, “mesh networks have the advantage of low up-front cost, easy network

maintenance, robustness and reliable service coverage” [1]. Clients of WMNs can

vary from desktops, laptops, PDAs, pocket-PCs, phones, and any other mobile

device equipped with a wireless NIC. These clients can connect directly to a mesh

router. However, clients that are not equipped with NICs can connect to the

mesh router via a nonwireless interface such as Ethernet (IEEE 802.3). Also,

WMNs can be integrated with various existing wireless networks such as cellular,

wireless-fidelity (Wi-Fi), worldwide interoperability for microwave access, wireless

sensor and WiMedia networks due to the gateway/bridge functionalities in mesh

1

routers.

In such applications that use a WMN (especially in networks which are bridged

or form a gateway to the Internet), security is an important issue. In, fact security

is an important issue for ad hoc networks in general. In applications like battlefield

and first-responder networks, adversaries can easily affect the network if a security

mechanism is not employed [2]. WMNs in particular can be easily compromised

due to the “vulnerability of channels and nodes in the shared wireless medium,

absence of infrastructure and dynamic change of network topology” [1], [3], [4].

There are many types of attacks specific to a WMN, which can be applicable to

various levels in the network stack. Types of attacks in the routing layer can range

from advertising routing updates for the wireless routing protocols to erroneous

packet forwarding. In the MAC layer, the properties of the IEEE 802.11 protocol

(such as back-off) may be misused in a way such that the network is always

congested due to some malicious nodes [1], [5]. Furthermore, attackers may also

misuse cryptographic primitives [6].

In order to prevent some of these attacks, we need to meet security require-

ments such as data integrity and confidentiality. Such requirements can be met by

a solid key management scheme. Such a key management scheme is needed that

can work with preferably low space/time requirements (space is at a premium

since many mesh networks feature devices such as cellular phones, sensors, etc.,

which do not have a large amount of space. Such a key management scheme will

help provide confidentiality and data integrity in the mesh network in the face of

such attacks, while minimizing memory and processor utilization.

We desire a key management scheme which is scalable to a large number of

nodes in the mesh network. Specifically, the storage and communication overhead

for the network must be less than O(n) [7]. The desired features of the key

management scheme for mesh networks are listed:

2

• Minimal Overhead - Communication and memory overhead should be mini-

mal. This ensures that the scheme is compatible with the variety of memory

resources that clients of mesh networks possess.

• Availability - Nodes and links in a mesh network are prone to failure. How-

ever, the scheme should be robust to a fraction of such failures.

• Resilience - Nodes in a mesh network (as well as clients) are vulnerable to

various attacks. The key management scheme should provide security even

when a fraction of the nodes are compromised.

One such scheme is known as SMOCK (Scalable Method of Cryptographic

Key Management). The basic idea of SMOCK is inspired by the use of needing

multiple keys to open the door to a vault [7]. SMOCK is a combinatorial public

key management scheme where nodes use multiple public/private keys to encrypt

and decrypt messages, respectively. Each key has a unique ID, and since nodes

possess a unique combination of private keys, the concatenation of the private

key IDs gives each node its unique SMOCK ID. If a node A needs to encrypt a

message to another node B, it sends a request for B’s SMOCK ID to infer the

set of private keys owned by B [7]. A can then encrypt the message using the

public key set that corresponds to the private keys owned by B. SMOCK has

been shown to be efficient in simulation results and the goal of this thesis would

be to analyze its performance (in terms of speed and memory utilization) on a

real mesh network. That is the main contribution of this thesis, as highlighted in

the next section.

3

1.2 Thesis Contribution

As stated before, security is an important issue in wireless mesh networks. WMN’s

need to meet security requirements such as data integrity and confidentiality,

which are met by a solid key management scheme. This thesis first provides

a background on key management schemes and an overview on mesh networks.

More importantly, the thesis provides a description of the implementation of this

scheme, SMOCK, as well as two scenarios of integration with an existing mesh

network implementation, SMesh. Furthermore, a performance analysis of the

scheme under various data and key sizes as well as various SMOCK parameters,

and also various delays between the mesh nodes, is provided.

1.3 Thesis Organization

In the next chapter, an overview on wireless mesh networks is provided. Chap-

ter 3 focuses on several key management schemes, and examines their differ-

ences, strengths, and weaknesses. Chapter 4 provides a detailed description of

the SMOCK design, as well as the implementation. Chapter 5 describes the ar-

chitecture of the mesh network used in the experiments, and where SMOCK lies

in the big picture. Chapter 6 describes the steps taken to configure each mesh

node/client. Chapter 7 describes the experiments that provide an analysis of

SMOCK. In addition it showcases the experimental results and provides insight

into these results. Finally, Chapter 8 provides the conclusion.

4

CHAPTER 2

BACKGROUND ON WIRELESS MESH
NETWORKS

According to [1], mesh networks have the following characteristics:

• Multihop coverage: WMNs help in extending the coverage area of today’s

wireless standards without reducing the channel capacity. Also, they help

in providing NLOS (non-line-of-sight) connectivity. These features are pro-

vided in the mesh network due to multihopping capability [8].

• Ad hoc networking support : WMNs are self-forming, and provide for self-

reconfiguration, self-healing, and self-formation of the mesh network for opti-

mized bandwidth-delay product. This feature also provides for easy deploy-

ment and configuration, good fault tolerance properties, high connectivity

as well as “multi-point-to-multi-point communications” [1].

• Limited mobility : While mesh nodes have little to no mobility, clients can

be mobile. However, it is the responsibility of the mesh nodes to perform

handoff of clients.

• Compatibility with existing wireless standards : WMNs that are built on

IEEE 802.11 standards must support all types of conventional Wi-Fi clients.

Furthermore, such networks should use the bridging capabilities to interact

with nodes that operate on different wireless standards, such as Wi-Max,

ZigBee, etc. [1].

5

• Multiple types of network access : Both backbone and P2P communications

are supported by WMNs. This helps in creating inexpensive ISP services,

as well as integration with other wireless networks [1], [9].

Wireless mesh networks can be organized in three separate ways [1]. They are

as follows:

• Infrastructure/backbone WMNs : This particular architecture is shown in

Figure 2.1 and includes mesh routers that form an infrastructure for clients

to connect to them. The mesh routers form a self-configuring, self-healing

network among themselves [1]. Mesh routers can use the gateway function-

ality to connect to the Internet. This network can then serve as a backbone

to various clients. This “infrastructure meshing” approach, which provides a

backbone for clients, also allows for the integration of WMNs with existing

wireless networks through the bridging functionality of the mesh routers.

The infrastructure/backbone setup is the most common of the three setups

[1] and is used in scenarios such as community and neighborhood networks.

While Figure 2.1 shows a mesh router acting as a bridge to a WiFi network,

the mesh routers in this setup can act as a bridge to any network (such as

wireless sensor network, WiMax, etc.) by establishing a connection with the

access point of that network.

• Client WMNs : Client WMNs provide a P2P network among the clients

[1]. Here, the client nodes themselves constitute the network where they

perform the routing and configuration among themselves, while providing

application-level services to clients. As compared to an infrastructure WMN,

nodes in a client WMN have more requirements since they need to perform

routing and self-configuration in the mesh network apart from providing

application-level services. An example of a client WMN is shown in Figure

6

Figure 2.1: Infrastructure/backbone WMN

2.2. It should also be noted that, as compared to the backbone WMN, the

client WMN typically does not provide bridging/gateway capabilities, so all

the nodes in the mesh network follow the same wireless standard.

• Hybrid WMNs : Hybrid WMNs comprise mesh routers which purely per-

form routing and self-configuration of mesh networks (and provide gate-

way/bridge functionalities to clients), as well as client nodes which pro-

vide application level services to end users while performing routing and

self-configuration services to the mesh network. An example of the hybrid

network is shown in Figure 2.3.

Given the characteristics and different types of WMNs possible, it is worth

noting that they have several applications, some of which include [1]:

• Community and neighborhood networks

• Enterprise networks

7

Figure 2.2: Client WMN

Figure 2.3: Hybrid WMN

8

• Home networks

• Wide area networks

• Building automation

An example of a mesh network application is its usage in the power grid. One

important application is the usage of mesh networks is in the power transmis-

sion phase, as part of the Advanced Metering Infrastructure (AMI) [10]. A mesh

network can be setup around individual homes in order to collect metering infor-

mation and send/receive metering data to and from the AMI system, as shown

in Figure 2.4. This figure shows an AMI network, where homes have “digitized

AMI System

Mesh
Router

Mesh Client Mesh Client

Figure 2.4: Example of a WMN for an Advanced Metering Infrastructure

meters,” i.e., advanced meters that contain a wireless component. The meters

at these homes are part of a mesh network. Meter data is transferred between

the AMI system and the meters via a mesh router, which monitors the meters

at the homes and provides a mesh network on which the meters are the clients.

9

The router provides bridging functionality by bridging the proprietary network

(of which the AMI system and the router are a part) and the wireless network (of

which the meters at the homes and the router are a part). Thus, mesh networks

are useful in a variety of applications, an example of which includes the power

grid.

10

CHAPTER 3

RELATED WORK

Key management schemes are needed to meet security requirements such as data

integrity and confidentiality. They can be broadly classified into two types:

• Symmetric key management schemes

• Asymmetric key management schemes

3.1 Symmetric Key Management Schemes

Symmetric key management schemes rely on distribution of symmetric keys (which

are generated using symmetric key algorithms such as DES, AES, Blowfish, etc.).

There are several such symmetric key management schemes, most of which use a

TTP (trusted third party) / centralized server to distribute keys (in these schemes,

the secret symmetric keys are predistributed among nodes before deployment).

For example, the Kerberos scheme uses a TTP, also known as a key distribution

center (KDC). Kerberos is based on the idea proposed by Needham and Schroeder

[11], where each client shares a single key with the KDC. When nodes need to

communicate with each other, they obtain a new session key, which is encrypted

with the preinitialized key from the KDC [2].

The KDC in Kerberos maintains a record of secret keys, and distributes a

unique secret key to each node in the network (whether a client or a server)

which is known only to the node itself and the KDC. This KDC also generates

11

session keys to facilitate communication between two entities [12]. However, the

downside is the fact that nodes have to store a separate session key for every

entity in the network, and so the total storage space required is O(n2) (where n is

the number of nodes in the network). Newer protocols have been proposed which

attempt to increase the availability of the KDC (for example, via replication) [2].

One such protocol is proposed by Striki and Baras in [13]. Here, data keys are

generated using a domain key distributor (DKD). These are used by the session

for encrypting data. Each domain is then divided into disjoint areas, and within

each area, an area key distributor (AKD) helps distribute the keys to members in

each area. However, the performance of such schemes is not satisfactory in terms

of efficiency and scalability for ad hoc networks [14]. Moreover, the number of

keys stored is again O(n2) with respect to the number of nodes in the network.

Another scheme is the symmetric key management scheme for sensor networks

by Eschenauer and Gligor [15]. In this scheme, a large pool of keys (approximately

217 - 220) is generated, and a subset of keys is randomly drawn and placed into

the sensor ring of each node by a TTP prior to deployment. Deployed nodes

then try to either find a common symmetric key, or establish a path through

other nodes with which they share symmetric keys. However, such a scheme

possesses significant memory issues, since, based on experiments, a key ring size

of 200 is needed per node, when the overall pool size is 100 000 keys. Under this

constraint, the total space used up by such a scheme is O(n2). Furthermore, in

order to increase the probability of finding a common key between shared nodes,

the key ring size of each node must increase, thus increasing memory utilization.

This is because if the nodes had smaller key ring sizes, they would then have

higher probability of not finding common keys, and then work on establishing a

path by finding shared keys with other nodes, thus adding additional space/time

cost. Also, we note that since only one shared key is needed for communication

12

between two nodes, it hampers the resiliency of nodes against node-capture. This

can be improved by increasing the number of shared keys required between two

nodes for communication. This is implemented in the next scheme.

This scheme, which uses a TTP, was proposed by Chan et al., in [16]. The

first scheme is called the q-composite scheme, which is quite similar to the scheme

proposed in [15]. However, instead of two nodes having just a single common

key to communicate with each other, nodes should have a set of common keys

in order to communicate with each other. While this drastically increases the

resiliency against node capture, it automatically implies that nodes need to have

a larger key ring size per node, thus maintaining the total space being O(n2).

The second scheme introduced by the authors is known as the multipath rein-

forcement scheme. In this scheme, an existing path between two nodes A and B

is reinforced by replacing the common key with a random value. This is done by

A sending different random values along all the disjoint paths to B, and the final

random value being the XOR of all the sent random values. Hence, an attacker

then has to probe all the disjoint paths to get the random value between A and

B. While this provides additional security between the two nodes, it works better

with the traditional scheme presented in [15] rather than the q-composite scheme,

thus perhaps defeating the purpose of the q-composite scheme. The third scheme

presented in this paper is the random pairwise scheme. While this scheme pro-

vides node-to-node authentication, it does not provide a solution to the memory

constraint issue.

The problem with random key predistribution schemes is that any two imme-

diate neighbors are connected by a secure link with a certain probability p, and

so there is always a probability that the network may not be fully connected (in

the aforementioned scheme, this probability increases as q increases) [7]. Further-

more, there is a communication overhead associated with such schemes during the

13

key setup phase. With this in mind, Camtepe et al. proposed a combinatorial

distribution of symmetric keys. Given m as a design parameter, the management

scheme supports m2 + m + 1 nodes, and the key pool size is m2 + m + 1 [17].

Nodes carry m+1 keys and each pair of nodes share exactly one key. If a node

is captured, then the probability of a link in the network being compromised is

1/m. However, this scheme does not apply to an arbitrary number of nodes.

Hence, we notice that while symmetric key distribution schemes have the ad-

vantage of computational and energy efficiency, they often lag behind in com-

munication complexity. Moreover, they can leave a large memory footprint. A

combinatorial approach to symmetric keys has been proposed, but the scheme

does not apply to an arbitrary number of nodes. Thus, we look into the alternate,

asymmetric key management schemes.

3.2 Asymmetric Key Management Schemes

As the definition implies, asymmetric key management schemes rely on the distri-

bution of asymmetric, or public keys (which are generated using asymmetric key

algorithms such as Diffie-Hellman, ElGamal, Elliptic Curve, RSA, etc.). Initially

targeted for the Internet ([7], [18]), there have been many schemes which have

utilized public key cryptography (PKC). One such scheme is proposed by Zhou

and Haas in [19]. In this scheme, there is one public group key K/k and n number

of servers (where K is the public component and k is the private component). To

tolerate t compromised servers, an (n, t + 1) threshold cryptography scheme is

used. The public component of the key K is known by all nodes in the network,

while the private key k is split into several shares s1, s2, s3...sn, one for each

server. In order to sign a certificate, servers generate partial signatures for the

certificate and submit them to a coordinator (which is a randomly chosen server),

14

which calculates the signature (corresponding to k) from the partial signatures.

In order to improve on the availability of this approach, Kong et al. proposed

a distributed scheme where nodes in the network carry a share of the private key

[20]. As before, there is one public group key (denoted as SK,PK , where SK

is the system private key and PK is the system public key). Using threshold

cryptography, SK is shared among all the network entities (each of which has

its own certified public key). When a valid certificate is needed, a local group of

K secret share holders is created on the fly [20]. Each share holder si provides a

partial certificate signed by a value derived directly from its secret share Psi
. Once

K such partial certificates are collected, they are combined to form the complete

certificate (that is signed by SK). While such a service increases the availability of

authentication, it also increases the communication overhead for authentication

[7].

Another public key-scheme is proposed by Malan and Smith [21] for sensor

networks. In this scheme, Elliptic Curve Cryptography (ECC) is used in sensor

networks, where it is shown that the computational requirements needed are low.

However, for large networks, such a scheme may leave a large memory footprint.

Montenegro and Castelluccia propose a scheme that binds node IDs to public keys

[22]. In this scheme, the public key is hashed, and the hashed value is then used

as a component of the IP address of the node. This removes the need to create

certificates that bind the node IDs to their public keys [7].

Capkun et. al. propose a self-organized public key management scheme [23]

which allows individual nodes to create, distribute, and maintain their own pub-

lic/private keys. Once nodes create their public/private keys, they then issue

public key certificates on behalf of other nodes. For example, a node u may issue

a certificate that binds another node v to the public key Kv using its signature.

Neighboring nodes periodically share certificates that they issue and hold, and

15

using this mechanism, certificate repositories are built, enabling nodes to build

an incomplete view of the certificate graph. This incomplete view enables nodes

to create a certificate chain, which is then used for encryption and authentication

purposes. When two nodes need to authenticate each other’s public keys, they

merge their local repositories and try to find an appropriate certificate chain that

makes the verification possible. However, an incomplete graph can sometimes

make verifications impossible (if a certificate chain does not exist between two

distant nodes, then it is impossible to authenticate their public keys). Also, for

a large-scale network, the certificate repositories of each node and the periodic

broadcast of certificates by each node add memory and communication overhead

respectively.

While the aforementioned schemes focus on providing individual public/private

keys to nodes in the network, a lot of research has focused on establishing a shared

secret key among nodes in a network. Since the nodes in the network agree on a

common group key, such schemes are known as key-agreement protocols. In fact,

the Diffie-Hellman protocol (which is used to establish a common key between two

nodes) forms the basis for many key-agreement schemes. The scheme proposed

by Ateniese et al. extends the Diffie-Hellman key-agreement protocol (which is

for two parties) to that of an n-party key agreement protocol. In their scheme,

they use the properties of safe primes in generating a public key from a randomly

generated secret, and they use this to create the shared key. This contributory

scheme (since all parties equally contribute to the key and guarantee its freshness

[24]) offers perfect forward secrecy.

A similar scheme is proposed by Becker and Willie in [25], where the authors

design a key-agreement protocol (again based on the Diffie-Hellman protocol)

that minimizes the number of message rounds needed to establish a key between

multiple parties. However, the issue of perfect forward secrecy is not discussed in

16

the scheme. Another non-TTP scheme is proposed by Sherman and McGrew in

[26]. This scheme constitutes the construction of a one-way function tree, whose

leaves make up the group members (between whom the group key is shared).

The internal nodes contain either leaves or other internal nodes as children (each

internal node has two children). All nodes contain a node key and a blinded node

key. Each internal nodal key is created by applying a one-way function (along

with a “mixing function”) on its child nodes [26]. The key of the root is the group

key of all the nodes in the network.

Another similar key-agreement scheme is proposed by Kim et al. in [27]. This

scheme constitutes construction of a key tree, whose leaves consist of member

nodes, and the internal nodes whose children consist of leaves and other inter-

nal nodes. Each internal node possesses a key which is computed recursively (as

well as a hidden blinded key), and the group key is simply the key associated

with the root node. The authors consider several tree structures which are effi-

cient with respect to the number of group operations such as member add/delete

and group merge/partition [2]. While such schemes are efficient with regard to

communication complexity, the derivation of the key at each internal node is a

computationally intensive process.

While such schemes are distributed and do not need a centralized server/TTP,

they have several disadvantages when it comes to implementation over an ad hoc

mesh network [2]. They are as follows:

• In most of the key agreement schemes, several nodes need to be within direct

contact of each other. However, in an ad hoc network, this is not feasible.

• Ad hoc networks consist of mobile nodes which may move rapidly, thus

changing the topology. Before the key-agreement protocol has been carried

out between any two clients, the clients may already have changed location

17

and no longer be in contact. So, the time taken to successfully establish

a group key in such schemes is a big hindrance when it comes to ad hoc

networks in general [2].

• Nodes in the network may be susceptible to attackers. If a node is captured,

then the group key is exposed, thus compromising all links. Hence such

schemes are not resilient.

In summary, key management schemes come in two basic flavors. Many sym-

metric key management schemes rely on random predistribution. This may result

not only in a large memory overhead, but also in a probability that the graph

is not fully connected, and hence pairs of nodes may not share any common

keys. Another limitation is the communication overhead during the key setup

phase [7]. Most of the proposed asymmetric key management schemes are decen-

tralized (the centralized key management scheme proposed in [19] only provides

message authentication as a service); the key distribution schemes suffer from ex-

tra memory/communication overhead, while the key-agreement schemes are not

resilient. Furthermore, they are not applicable to ad hoc wireless mesh networks

whose clients can be highly mobile. With this in mind, in the next chapter we

cover SMOCK, a centralized asymmetric key management scheme that focuses on

small memory footprint (at the cost of communication overhead) and increased

resilience against Sybil attack.

18

CHAPTER 4

SMOCK DESIGN AND IMPLEMENTATION

We need a key management scheme that can provide confidentiality and authen-

ticity for a mesh network. It should also be flexible for two scenarios, namely

integration with the underlying Spines software in each mesh node, or integration

with each mobile client in a mesh network. In both scenarios, the mesh network

under consideration is an ad hoc wireless network. Our network model assumes

that the mesh nodes are static, and the mesh topology does not change. However,

the clients are mobile, and they are seamlessly transferred from one mesh node to

other. Any client is connected to a single mesh node, and all packets generated by

a client are sent to its mesh node, which then forwards it appropriately. Packets

intended for a particular client are first sent to its mesh node, which then forwards

it to the client. We assume that one of the clients in the mesh network is static,

and plays the role of a centralized server which creates and distributes SMOCK

keys.

These mesh nodes are organized in a ring topology, and so the scheme must

be applicable to a multihop network. From a security point of view, we assume

that any attacker from the outside of the mesh network has finite memory and

computational power. Furthermore, we assume that attackers can get hold of the

private keys of any node (by physically attacking the device). We also assume

that the attacker can perform the following attacks:

• Eavesdropping: An attacker (or any unauthorized recipient) can intercept

any message.

19

• Spoofing: An attacker may fake the message or a node’s ID.

• Denial of service (DoS): A malicious mesh node, client, or an attacker from

outside of the network can inject a significant amount of data traffic into

the network to clog the network [7].

• Sybil attack: The attacker fakes keys which she can circulate within the

network.

For each scenario we make certain different assumptions about the computational

and security model, which we highlight below.

• Integration of SMOCK with clients of mesh network

In this scenario, we integrate SMOCK with the clients of the mesh network.

These clients may be mobile, and they send packets to each other via the

mesh network. In this scenario, we make no assumptions either about the

number of mesh nodes or about any computational/memory constraints for

these nodes. We also assume that the number of clients as well as the size

of the mesh network may change dynamically. However, we assume that

while the mobile clients may vary in amount of memory they possess, they

all have reasonable computational power in order to encrypt/decrypt data

multiple times using public/private keys. From the security point of view,

we assume that both clients and mesh nodes may be malicious.

• Integration of SMOCK with mesh nodes

In this scenario, we integrate SMOCK with the mesh nodes. In this scenario,

we make no assumptions either about the number of mobile clients or about

their computational/memory constraints. However, we assume that the

number of mesh nodes is relatively small, since each mesh node stores the

SMOCK ID (apart from IP address, signal strength, and other data) of all

20

other mesh nodes. We also assume that the number of clients as well as

the size of the mesh network may change dynamically. However, we assume

that while the mesh nodes may have an arbitrary amount of memory, they

all have reasonable computational power in order to encrypt/decrypt data

multiple times using public/private keys. From the security point of view,

we make no assumptions about the maliciousness of clients. However, we

assume that mesh nodes may not be malicious. This is because a packet

sent over multiple hops is decrypted and then encrypted at each hop in the

mesh network (as explained in the next chapter). Thus mesh nodes have

access to the plaintext packets sent by the client. Thus, while SMOCK in

this scenario protects against attackers from outside the mesh network (or

against malicious clients), it does not account for malicious mesh nodes.

Finally, we also assume that the link between a client and mesh node is

protected using a shared symmetric key.

The basic idea of SMOCK is to have multiple keys in order to unlock the door

to a vault [7]. In this scheme, multiple keys are used to encrypt a message, and the

designated recipient uses multiple keys for decryption. Public-key cryptography is

used for SMOCK since this provides minimal memory overhead. Nodes contain all

public keys and a unique combination of private keys. An example of the SMOCK

key management scheme is shown in Figure 4.1. In this figure, the total number

of nodes in the network N is 10 (Node 1, Node 2,..., Node 10), while the key pool

K contains < privA,pubA >, < privB,pubB >, < privC ,pubC >, < privD,pubD >

and < privE,pubE >, and key pool size |K| is 5. The number of private keys

assigned to each node |Ki| is 2. Hence, each node i has a unique combination

of two private keys. For example, Node 8 contains two private keys, namely

< privC , privD >. Each node possesses a SMOCK ID, which is unambiguously

associated with its set of private keys. For example, Node 1’s SMOCK ID would

21

Node 1: <privA, privB > Node 2: <privA, privC >
Node 10: < privD, privE >

Node 3: <privA, privD >
Node 9: < privC, privE >

SMOCK Keys:
<privA,pubA>,<privB, pubB>,<

priv pub > <privd 8 i i privC, pubC >,<privD,
pubD>,<privE, pubE>

Node 4: <privA, privE > Node 8: < privC, privD >

Node 5: < privB, privC > Node 6: < privB, privD > Node 7: < privB, privE >

Figure 4.1: SMOCK key setup

be “12” (the concatenation of “1” and “2,” which are the key ID’s corresponding

to privA and privB, respectively). The size of the subsets of private keys at each

node is the same. For example, we assume that a system of N nodes contains a key

pool K of public-private key pairs. This key pool is generated by the SMOCK

key allocation mechanism (which is explained in Section 3.2), which runs on a

centralized server. This mechanism also allocates SMOCK public/private key

pairs to nodes. Let < Kpriv
A , Kpub

A > and < Kpriv
B , Kpub

B > denote the private

and public key sets held by nodes A and B, respectively. Then, the following

properties hold:

|Kpriv
A | = |Kpriv

B | (4.1)

|Kpub
A | = |Kpub

B | (4.2)

22

Table 4.1: SMOCK variables

K Key pool of the system
a The total number of public keys in the system
b The number of private keys held by each node

Kpriv
i Set of private keys held by node i

Kpub
i Set of public keys held by node i

M Memory size for key storage
kc(x) Expected number of disclosed keys when x nodes are captured
kv(x) Maximum number of disclosed keys when x nodes are captured

Vx(a, b) Vulnerability metric when x nodes are captured
C(a, b) Combinatorial of a and b

N Total number of nodes in the network
V A set of nodes in the ad hoc wireless network

Kpriv
A 6= Kpriv

B ∀B ∈ N (4.3)

Furthermore, multiple copies of the same private key can be held by different

users. The key allocation mechanism of SMOCK needs to ensure that these

properties are always followed. Given properties 4.1, 4.2, and 4.3, SMOCK aims

to achieve objectives which are discussed in the next section. The symbols used

in the following chapters are explained in Table 4.1.

4.1 Objectives of SMOCK

• Memory Efficiency - The SMOCK key allocation scheme has to generate

a key pool K to achieve the following constraint [7]:

min(|K|+ max
∀i∈V

bi) such that Ki * Kj, Ki + Kj ∀i 6= j (4.4)

where bi = |Ki| = |Kpriv
i | is the number of private keys stored at Node i.

Here, (|K|+ max∀i∈V bi) is the maximum amount of memory stored among

all nodes, and this quantity needs to be minimized.

23

• Computational Complexity - Each node needs to minimize the number

of public keys needed to encrypt any outgoing message, as well as a small

number of private keys to decrypt the outgoing message [7]. This results in

the following constraint:

min(max
∀i∈V

(bi)) such that Ki * Kj, Ki + Kj ∀i 6= j (4.5)

Here, max∀i∈V (bi) is the maximum number of private keys stored at a node

(amongst all nodes), and this quantity should be minimized.

• Resilience Requirement - The SMOCK key allocation scheme needs to

determine the proper ratio between the number of private and public keys

in order to ensure that the percentage of links compromised (when nodes

are captured) is kept below a certain threshold. Reference [7] defines a vul-

nerability metric Vx(a, b) as the percentage of communications compromised

when x out of N nodes are captured. In other words,

Vx(a, b) =
C(kc(x), b)

C(a, b)
≤ ℘ (4.6)

where ℘ is the threshold on the number of compromised communications

when x nodes are randomly captured by an attacker from outside the net-

work. The value of kc(x) is determined as follows. First, an assumption is

made that the server randomly chooses private keys for each node (with no

bias) [7]. For the first node captured, b keys are revealed and so kc(1) = b.

If x nodes are captured, then the number of new keys disclosed knew is

knew = b ∗ a− kc(i− 1)

a
(4.7)

24

So, when the i’th node is captured, the total of kc(i) keys are disclosed,

where

kc(i) = kc(i− 1) + bknew (4.8)

= b ∗ a− kc(i− 1)

a

This implies that

kc(i) =
a− b

a
kc(i− 1) + b (4.9)

kc(1) = b

Let yi = kc(i)− a. Then

yi =
a− b

a
yi−1 (4.10)

y1 = b− a

So,

yi = (
a− b

a
)i−1y1 (4.11)

This implies that

kc(i) = a− (a− b) ∗ (
a− b

a
)i−1 (4.12)

So, we know that if x nodes are captured, then the expected number of keys

disclosed kc(x) is a − (a − b) ∗ (a−b
a

)i−1. The capture of x nodes results in

the compromise of C(kc(x), b) key sets on average, and C(kv(x), b) key sets

in the worst case [7]. Hence, the vulnerability metric Vx(a, b) is C(bkc(x)c,b)
C(a,b)

25

in the average case and C(kv(x),b)
C(a,b)

in the worst case.

The SMOCK key allocation scheme should thus achieve the aforementioned

objectives, while adhering to the properties mentioned before. The next section

describes this scheme.

4.2 SMOCK Key Allocation Scheme

The SMOCK key allocation scheme first determines the values of a and b in

order to meet the objectives highlighted in the previous section. Then mutually

exclusive key sets are distributed (on a secure channel) to each node.

4.2.1 Determination of a and b

The memory efficiency objective highlighted earlier requires a
N

to be small (for

memory efficiency). However, this conflicts with the resilience requirement, which

requires a
b

to be large. So, [7] provides the algorithm shown below which generates

the value of a and b while providing a tradeoff between the memory and resilience

requirements.

1: Initialize l = 2

2: while C(l, b l
2
c) < N do

3: l = l + 1

4: a = l, b = b l
2
c

5: end while

6: while C(a, b− 1) > N do

7: b = b− 1

8: end while

9: while C(a + 1, b− 1) > N do

26

10: a = a + 1, b = b− 1

11: end while

12: while Vx(a, b) ≤ ℘ do

13: if C(a + 1, b− 1) > N then

14: a = a + 1, b = b− 1

15: else

16: a = a + 1

17: end if

18: end while

19: |K| = a and |Ki| = b

This algorithm first calculates the minimum amount of memory needed to

store public keys in order to support secure communication among N nodes.

Then, the algorithm aims to satisfy Equation (4.4) in Step 2. Step 6 then opti-

mizes Equation (4.5) while keeping Equation (4.4) intact. Step 9 ensures that the

key allocation scheme satisfies Equation (4.6) [7]. When a and b do not satisfy

the resilience requirement, then either a is increased, or a is increased and b is

decreased simultaneously.

However, often the maximum amount of memory needed to store the public

keys is limited by M . Reference [7] also provides an algorithm which fully utilizes

the memory provided to optimize Equations (4.5) and (4.6). This algorithm is

stated as follows:

1: Let a = d2M
3
e, b = bM

3
c

2: while C(a + 1, b− 1) > N do

3: a = a + 1, b = b− 1

4: end while

5: |K| = a and |Ki| = b

27

In this way, a and b parameters are determined by a centralized server. The

server then generates a number of keys and assigns a unique ID to each key.

Finally, it distributes mutually exclusive key sets to nodes.

4.2.2 Key distribution to nodes

After key generation, the centralized server then waits for new nodes in the net-

work. Given a and b, the maximum number of nodes that can be supported

(assigned unique SMOCK key subsets) is C(a, b). However, if additional nodes

join the network, the centralized server then generates additional keys (á more

keys) and assigns a unique subset of b keys to each additional new node (each sub-

set must assign at least one out of á keys). Each new node broadcasts the value of

á as well as the á public keys to all the other nodes in the network. It should be

noted that with á new pairs, the network can accommodate
∑á

i=0 C(a + i, b − 1)

additional nodes [7].

As new nodes enter the network, they communicate with the server in order to

receive their SMOCK keys. The server designates a unique subset of keys (each

subset being of size b) and assigns this subset to the new node. It should be noted

that any given key can be assigned to at most b
a
C(a, b) nodes (this ensures that

C(a, b) nodes can be successfully assigned unique subsets of SMOCK keys). In

addition, the server also generates a unique SMOCK ID for each node (this ID

is unique as long as the key sets are mutually exclusive). The SMOCK ID is a

composite key index, since it is comprised of the indexes of the individual keys. In

other words, this ID is simply an ordered concatenation of the IDs of the private

keys that the node possesses. For example, let keyID1
j,keyID2

j,...,keyIDb
j be

the key IDs of b private keys held by node vj, such that

28

keyID1
j < keyID2

j < ... < keyIDb
j (4.13)

The SMOCK ID of vj would then be keyID1
jkeyID2

j...keyIDb
j. For example,

if b = 3 and a node vj had keys with IDs 2, 5, and 3, respectively, then vj’s

SMOCK ID would be “235.” According to [7], the ID of each key takes dlog ae

bits, and thus the SMOCK ID would take bdlog ae bits. Another example of the

key generation and allocation scheme is shown in Figure 4.2. In this case, b = 2,

and a node is assigned the private keys privA and privE which have ID’s “1” and

“5,” respectively, thus giving it the ID “15.” Nodes then can use the SMOCK

keys to provide either confidentiality or integrity. The next subsection provides

the usage of SMOCK keys in individual nodes.

4.3 SMOCK Usage

Individual nodes can use their SMOCK keys to either prevent eavesdropping and

protect privacy or provide integrity [7]. Assume that a node vi wants to send Mij

to node vj. Then, vi follows the following algorithm:

1: Request vj for its SMOCK ID.

2: After receiving vj’s SMOCK ID, encrypt with the corresponding keys.

3: Send encrypted message to vj.

The encryption algorithm is based on whether the nodes prefer data confi-

dentiality or authenticity. In order to provide data confidentiality, vj uses the

following equation for encryption:

Eij = Enc(...(Enc(Enc(Mij, K
pub
j1), Kpub

j2), ...Kpub
jb) (4.14)

29

Server Node 1
1. Server determines a =

5, b= 2 and creates
SMOCK public/private

keys <ID = 1, pubA, privA>,
<ID = 2, pubB, privB>, <ID
= 3, pubC, privC>,<ID = 4,

pubD, privD>, <ID = 5,
pubE, privE> and waits for

connections from new
nodes

2. Node 1
connects to

Server

3. Server allocates
private keys privA and
privE for Node 1, so

allocated SMOCK ID is
“15”

4. Server sends SMOCK
private keys

<privA,privE>, SMOCK
public keys

<pubA,pubB,pubC,pubD,p
ubE> and SMOCK ID

“15” for Node 1

5. Node 1 stores
SMOCK data

Figure 4.2: SMOCK offline key deployment phase

30

For decryption, vj uses the following equation:

Mij = Dec(...(Dec(Dec(Eij, K
priv
jb), Kpriv

j(b−1)), ...K
priv
j1) (4.15)

On the other hand, in order to provide integrity, vi encrypts using the following

equation:

Eij = Enc(...(Enc(Enc(Mij, K
priv
i1), Kpriv

i2), ...Kpriv
ib) (4.16)

Then, vj uses the following equation for decryption:

Mij = Dec(...(Dec(Dec(Eij, K
pub
ib), Kpub

i(b−1)), ...K
pub
i1) (4.17)

An example of this is shown in Figure 4.3, where two nodes (Node 1 and Node 2)

interact with the “Server” entity (from Figure 4.2) and receive their two SMOCK

private keys, 5 SMOCK public keys and SMOCK ID. Here, Node 1 receives privA

and privE and hence its SMOCK ID is “15.” On the other hand, Node 2 receives

privB and privC , respectively, and hence its SMOCK ID is “23.” So when Node

1 wishes to encrypt a message M12 to Node 2, it acquires Node 2’s SMOCK ID

and then encrypts with the appropriate public keys. In this case, the encryption

equation is

E12 = Enc(Enc(M12, pubB)pubC) (4.18)

So, the message is first encrypted with pubB and then with pubC . The message is

decrypted in reverse order at Node 2. The decryption equation in this case is

M12 = Dec(Dec(E12, privC)privB) (4.19)

So, the message is first decrypted using privC and then using privB.

31

Figure 4.3: SMOCK communication between nodes

32

In this manner, data is encrypted and decrypted using the SMOCK keys.

This scheme needed to be successfully implemented so as to be experimented

upon. However, this implementation needs to be robust, flexible, and simple.

The implementation details of this SMOCK scheme are highlighted in the next

section.

4.4 SMOCK Implementation

As stated before, SMOCK is to be implemented for experimental purposes. The

SMOCK implementation mainly relies on creating the SMOCKhelpers library

as well as the freely available OpenSSL library ([28]), out of which two main

modules are built. The OpenSSL library is used for key generation/storage and

RSA encryption/decryption purposes while the SMOCKhelpers library imple-

ments the SMOCK key generation and key allocation as well as SMOCK en-

cryption/decryption algorithms mentioned in previous sections. The two modules

that comprise the implementation are:

• SMOCK Server

The SMOCK Server module runs on the centralized server, and is respon-

sible for generating the SMOCK public/private key pairs based on input

parameters. The main program in this module is RSAKeygen, which is

run with certain inputs, namely the desired key size of each SMOCK key,

the maximum number of nodes in the network, the resilience threshold ℘,

and memory constraints, if any. For example, if we wish to have SMOCK

keys for a network containing a maximum of 1000 nodes, with a resilience

threshold of 0.7 and the key size of 1024 bits, then we use the following

command:

33

./RSAkeygen -m 1000 -s 1024 -p 0.7

After getting the resilience threshold and the maximum number of nodes in

the network and any posssible memory constraints, RSAKeygen mainly re-

lies on the generate smock keys() function from the SMOCKhelpers library,

which uses the aforementioned algorithms (from Section 3.2) in order to

compute the a and b parameters. After the parameters are determined, the

keys are generated using the RSA generate key() function. Each generated

key is also assigned a numerical ID. Furthermore, the server also generates

its own public/private keys with which it signs the assigned SMOCK IDs.

This is to bind each node to a SMOCK ID, so that if a node is assigned a

particular SMOCK ID, then another node cannot assume the same SMOCK

ID (since it cannot produce the SMOCK ID signed by the server). After the

keys are generated, they are stored in a link list of structs which stores the

key along with its key ID. Then, a communication channel is created (with

a call to server create control channel()) which handles control messages

from any client node. The SMOCK Client module (described below) on

new client nodes first establishes a secure SSL socket (using the OpenSSL

library). It then sends a New Client Connection message to the server,

upon which the server creates a new thread to handle this request. The

thread handler, new conn thread(), picks a random subset of SMOCK pri-

vate keys to be assigned to this node (after ensuring that each SMOCK key

is not overused and the subset of keys is unique) and sends them to the new

client, along with the SMOCK public keys. It also generates a SMOCK ID

by concatenating the binary equivalents of the key IDs of the assigned pri-

vate keys. The server signs this SMOCK ID with its private key and sends

this along with its public key and the assigned SMOCK keys to the new

34

client. This interaction between the SMOCK Server module on the server

and the SMOCK Client module on the new client is shown in Figure 4.4,

which highlights each step in the SMOCK bootstrapping phase.

• SMOCK Client

The SMOCK Client module runs on every client, and comprises of a set of

API which are to be utilized for communication with the server as well as

for encryption/decryption of data for any application running on the client.

The get smock keys() function is used in order to get the SMOCK keys

(and SMOCK ID) from the SMOCK Server. It establishes a secure socket

with SMOCK Server and then sends a Client New Connection message to

SMOCK Server’s control channel and waits for a response. As stated before,

the SMOCK Server allocates a set of SMOCK private keys (and a SMOCK

ID), and sends them to the SMOCK Client, along with all the SMOCK

public keys. The SMOCK Client also opens a control channel in order to

handle any SMOCK ID Request messages.

The SMOCK Client is also responsible for encryption/decryption of data.

For example, if an application on Client 1 wishes to to send encrypted data

to an application on another client, Client 2, then it uses the SMOCK API.

Any application wishing to encrypt the data may use the smock encrypt()

function. A sample call to the function is as follows:

smock_encrypt(msg, msg_size, dest, enc, enc_size)

Here, msg is the plaintext message to be encrypted, msg size is the size

of the message, dest is the IP address of the destination, enc is the buffer

which is to hold the encrypted data, and enc size is the size of this buffer.

The smock encrypt function loads the SMOCK public keys and first sends

35

Server Client 1
1. RSAKeygen creates

SMOCK keys using
generate_smock_keys,

and creates its own
public/private key

4. Client 1 sends Client New
Connection message to
Server’s control channel

3. Client 1 calls
get_smock_keys(), which

establishes secure socket with
server (using OpenSSL API)

6. New thread handler
new_conn_thread()

determines subset of
SMOCK private keys and

SMOCK ID for Client 1

8. newconn() sends SMOCK
private keys, SMOCK public
keys, signed SMOCK ID and

its public key to Client 1

2. RSAKeygen calls
server_create_control_
channel() and waits for
new client connections

5. Server receives Client
New Connection message on
control channel, creates new
thread to handle this request

9. get_smock_keys()
receives SMOCK data,

stores data for future use

7. newconn() signs SMOCK
ID with its private key

Figure 4.4: Step-by-step description of SMOCK bootstrapping phase

36

a SMOCK ID Request message on Client 2’s control channel. Client 2

then responds with its SMOCK ID signed by the server’s private key. The

smock encrypt function then verifies Client 2’s SMOCK ID (by decrypting

it using the server’s public key), parses the SMOCK ID, and determines the

public keys with which it encrypts the data. The actual encryption is done

using the RSA public encrypt() function. As stated before, encryption is

done starting with the keys in ascending order of their key IDs. It should be

noted that if the message size is larger than the key size, then the message is

split into several chunks (each chunk being equal to the key size) and each

chunk is encrypted separately using SMOCK keys. For example, if each

client has three SMOCK private keys (i.e., the b parameter is 3), the key

size is 128 bytes and the message is 512 bytes, then smock encrypt() breaks

the message into four chunks, and each chunk is then encrypted three times

using the appropriate SMOCK public keys (using the RSA public encrypt()

function). This is because the RSA scheme does not allow for encryption of a

buffer of data larger than the key size. Once encrypted, the message is then

sent to Client 2. Client 2, upon receiving an encrypted message, invokes the

smock decrypt function. A sample call to the function is as follows:

smock_decrypt(msg, msg_size, dec, dec_size)

Here, msg is the encrypted message to be decrypt, msg size is the size of

the encrypted message, dec is the buffer which to hold the decrypted data,

and dec size is the size of this buffer. The smock decrypt function loads the

SMOCK private keys and then determines if the message size is larger than

the key size. If this is the case, then the message is split into several chunks,

and each chunk is decrypted seperately. The actual decryption is done using

the RSA private decrypt() function, and decryption for each chunk is done

37

starting with the keys in descending order of their key IDs. The decrypted

message is then sent up to the application. This encryption/decryption

scheme using SMOCK keys is shown in Figure 4.5.

Such a scheme can be applied to encryption/integrity services of nodes in a mesh

network, or the clients in the network. In this thesis, we consider both scenarios

while we evaluate the performance of SMOCK. In the next chapter, we describe

the architecture of the underlying mesh network, as well as the integration of

SMOCK with this underlying mesh network setup.

38

Client 2

1. Client 1 gets SMOCK
data from

SMOCK_Server, calls
client_create_control

channel() and waits for
connections

3. Client 2 receives SMOCK
ID Request message on its
control channel, responds
with SMOCK ID, signed by

server’s private key

2. Client 1 wishes to
encrypt data for Client

2, calls
smock_encrypt() which

sends SMOCK ID
Request message on

Client 2's control
channel

Client 1

4. smock_encrypt() receives
signed SMOCK ID, verifies the
signature, encrypts data using

appropriate SMOCK public
keys, sends encrypted data to

Client 2

1. Client 2 gets SMOCK
data from

SMOCK_Server, calls
client_create_control

channel() and waits for
connections

5. Client 2 receives encrypted
data, calls smock_decrypt(),
which decrypts data using
SMOCK private keys and

returns decrypted data

Figure 4.5: Step-by-step description of encryption/decryption of data using
SMOCK keys

39

CHAPTER 5

SMESH - UNDERLYING MESH NETWORK
ARCHITECTURE

In the previous chapter, the SMOCK key management scheme was described. In

order to analyze its performance on the mesh network, a mesh network setup was

needed. For these experiments, the SMesh mesh network software [29] is used.

SMesh is a transparent wireless mesh network that provides fast, seamless handoff

and supports real-time application data such as VoIP traffic. The clients for

SMesh are unmodified devices which support 802.11 and run on Linux, Windows

XP, Mac OS X, Palm OS, and Windows Mobile Pocket PC. SMesh allows for

these clients to roam freely within the area covered by the wireless mesh nodes

without interruption in the services provided by the network. So, the goal of

SMesh is to appear as a singular access point for these clients. The mesh network

of SMesh comprises mesh nodes which service clients and forward packets to other

mesh nodes. These nodes also discover and periodically monitor their neighbors,

as well as automatically adjusting their routing tables in the case of topology

changes, which occur when the wireless connectivity between the mesh nodes

changes, or when nodes crash and recover, or when nodes are added/removed

from the network. The next section describes the architecture of SMesh.

5.1 SMesh Architecture

The two main components of the SMesh architecture are its communication in-

frastructure and its interface with mobile clients [29].

40

5.1.1 SMesh Communication Infrastructure

The mesh nodes in SMesh need to create and maintain a stable ad hoc wireless

network. Moreover, they need to handle client requests. In order to facilitate this,

they need to communicate with each other by forwarding packets over multiple

hops. The communication infrastructure that enables this in SMesh is the the

Spines messaging system [30]. Spines provides unicast, multicast, and any-cast

communications between wireless mesh nodes. Spines runs a software daemon

on each node, to which client applications can connect using API which is very

similar to the Unix socket interface [30]. For example, the spines socket() call

creates and returns a TCP/IP connection to the daemon. Any client application

can then use this socket to bind, listen, connect, send, and receive data using

Spines library calls.

The architecture of the Spines daemon (shown in [30]) is shown in Figure 5.1.

The daemon communicates with clients using a session layer. The daemon in-

stantiates a unique Spines Session for each client connection. The Overlay Link

component consists of three different components. The Unreliable Data Link

sends and receives data without regard for reliability. The Reliable Data Link

sends and receives data while providing reliability through congestion control and

packet ordering. The Control Link is used to send and receive control data be-

tween daemons. The Overlay Node component shown in Figure 5.1 is responsible

for forwarding data packets to its clients and other nodes, and also for maintaining

connections to its neighbors. The Hello Protocol module is responsible for creat-

ing, monitoring, and destroying overlay links between the neighbor nodes. Spines

daemons periodically send information about its links to its neighbors through the

reliable data link. The Link State Protocol module is responsible for providing

information about existing overlay links, out of which the Routing module chooses

41

Figure 5.1: Spines daemon architecture

42

the neighbor providing the shortest path to a destination [30].

Spines allows for multicast and any-cast functionality in a multihop wireless

environment [30]. In Spines, multicast groups are treated as class D IP address and

any-cast groups are defined as a class E IP address. When mesh nodes join/leave

a group, the local Spines daemon informs all other nodes via flooding. Group

membership is maintained in Spines in tuples of the form (mesh node address,

group address) [30]. Based on group membership, Spines builds multicast trees

throughout the network. These trees are built by optimizing on a metric such as

number of hops. The utilization of Spines groups by SMesh is explained in the

next subsection, which describes the SMesh interface with the mobile clients.

5.1.2 SMesh Mobile Clients Interface

SMesh serves as a singular access point for all mobile clients. This is done by first

providing connectivity via a DHCP Server module running on each SMesh node.

The role of the DHCP Server is to provide a unique IP address to each mobile

client. The IP address is computed by applying a hash function on the client’s

MAC address, mapped to a class A private IP address of the form 10.A.B.C [29].

The DHCP Server module forces every packet to be routed through SMesh by

setting the client’s default gateway to be a generic global gateway and providing

a network mask of 255.255.255.254. This forces every packet to be routed through

this gateway. Further details of the SMesh DHCP server interactions are provided

in [29]. The SMesh DHCP Server module, along with the rest of the components

in the SMesh Mobile Clients Interface, is shown in Figure 5.2 (taken from [29]).

As stated above, mesh nodes serve as the default gateway for the mesh clients.

All clients are associated with a unique multicast group of mesh nodes known as

the Client Data Group, which is the group that receives data originating from a

43

Figure 5.2: SMesh Mobile Clients Interface

44

particular client. One or more mesh nodes lying in the vicinity of a client will be

a part of that client’s Client Data Group [29]. The SMesh interface on each mesh

node contains a Packet Proxy module, which uses the Packet Interceptor module

to grab packets from clients. If the destination of a packet is the Internet, the

packet is then sent to the closest Internet gateway by forwarding it to the any-cast

group (via the NAT). However, if the destination of the packet is another mobile

client, then the packet is forwarded to mesh nodes which belong to the Destination

Data Group (in other words, the destination client’s Client Data Group). This

packet forwarding is done by Spines using a multicast tree, so that if the mobile

client moved and a different mesh node joined its Client Data Group, then the

packets are also forwarded to this mesh node. Each mesh node in the destination

client’s Client Data Group, upon receiving the packet, then forwards it to the

mobile client using the Raw Socket module.

Apart from the aforementioned Client Data Group, each client also has an-

other multicast group known as the Client Control Group. This group is used to

coordinate handoffs to other mesh nodes in the client’s vicinity based on the link

quality. The link quality of each client is periodically (every 2 s) evaluated using

the number of DHCP requests received according to the following decay function

[29]:

Mnew = Mold ∗Df + Current ∗ (1−Df), 0 < Df < 1 (5.1)

Here, M is the link quality measure, Df is a decay factor (which decides

our dependence on the older M measurement), and Current is a constant if the

mesh node received DHCP request in the previous 2-s interval and zero otherwise.

For any given client, each SMesh node in the vicinity notes the link quality to the

client and sends this to that client’s Client Control Group. The Handoff Algorithm

45

module on each SMesh node determines to join/leave Client Data Groups (or

hand them to another SMesh node) based on the quality of the link to the client.

The SMesh handoff mechanism uses gratuitous ARP requests in order to handle

client handoffs. If a node believes that it has the best connectivity to a client,

then it decides to serve that client, and sends a gratuitous ARP message by

unicast directly to the client, changing the MAC address of its default gateway.

Further details of the Client Data Group and Client Control Group membership

management as well as the client management by various mesh nodes are given

in [29].

While SMesh does provide fast, seamless handoff of clients between various

mesh nodes, it does not provide security. In the next section, we go through two

possibilities of integration of SMOCK with SMesh.

5.2 SMOCK Modules in SMesh

The SMOCK scheme, as described in Chapter 3, can be used to provide secu-

rity for mesh networks. In this section, we explore two possibilities of integration

with the SMesh framework. The first scenario involves integration of the SMOCK

Client module with the mobile client, while the second scenario involves integra-

tion of the module with the underlying Spines daemon.

5.2.1 Application layer security - SMOCK integration with
SMesh mobile clients

Before sending data packets over to the SMesh Mobile Interface, clients can first

send them through the SMOCK Client module, which first sends a SMOCK ID

Request message to the SMOCK Client module of the destination client, and then

based on the received SMOCK ID, encrypts data, thus providing for confidential-

46

ity at the client end. At the receiver end, the module waits for any incoming

data/SMOCK ID Request messages. The receiver sends its ID to the sender as a

response to the SMOCK ID Request message. The SMOCK Client module then

receives the encrypted message from the source and sends it to the application.

This scenario is described in Figure 5.3. The advantage of such a scenario is that

SMesh nodes need not worry about providing encryption, thus enhancing the

speed of packet routing. This is useful for applications which do not need/want

Figure 5.3: SMOCK integration with SMesh mobile clients

47

encryption services. Any application that wants encryption services can then pass

the data through the SMOCK Client module, which then encrypts/decrypts the

data. Furthermore, applications need not make any assumptions about the intent

of clients and mesh nodes. That is, this scheme works even when clients and mesh

nodes are malicious. However, this leaves applications to bear the brunt of se-

curity, which may not be desirable for certain situations. Application developers

have to integrate the SMOCK Client module with their product, which may incur

costs in terms of both time and money. Furthermore, the module needs to make

a SMOCK ID Request message for every time a message needs to be encrypted,

and needs to wait for the response from the destination client. This can add to

the end-to-end delay of sending encrypting data, especially if the round-trip time

between the messages is large. Another disadvantage of this scenario is that mul-

ticast between various mobile clients over the mesh network becomes challenging.

This is because every node in a multicast tree, which aims to distribute multiple

copies of the same packet to multiple destinations, must first contact each desti-

nation separately for its SMOCK ID, encrypt each copy of the packet separately,

and then distribute the different, encrypted packets. This adds additional time

overhead for every single multicast packet, thus making multicast infeasible. In

this thesis, this scenario will also be referred to as Scenario 1.

5.2.2 Link layer security - SMOCK integration with Spines

The second scenario considered is shown in Figure 5.4. In this scenario, the

SMOCK Client module is integrated with the underlying Spines daemon. When

a client sends a packet to the SMesh node, it is then sent over to the underlying

Spines Client Interface via a session. As soon as it reaches the Overlay Node

Component, the packet is then sent to the Data Forwarder, which determines the

48

Figure 5.4: SMOCK integration with Spines

49

next hop for this packet and then sends it to either the Unreliable Data Link or

the Reliable Data Link (depending on SMesh preferences). However, before it is

sent to the Overlay Link component, the packet is then sent through the SMOCK

Client module, which encrypts the packet based on the ID of the mesh node

which serves as the next hop for this packet. Furthermore, any incoming packet

from either the Unreliable Data Link or the Reliable Data Link components first

goes through SMOCK Client, which determines if the packet came from another

mesh node. If this is the case, the packet is decrypted based on the SMOCK

ID of the previous hop for this packet and then sent to the Data Forwarder.

Furthermore, all Hello packets carry the SMOCK ID of the originating node,

so that each mesh node knows the SMOCK ID of its neighbor. Moreover, any

outgoing message sent by the Link State Protocol is first sent through SMOCK

Client, which encrypts the message with the public keys based on the SMOCK ID

of the destination of the link information packet. At the receiver end, any packet

received via the Control Link, if intended for the Link State module, is first sent

through the SMOCK Client where it is decrypted and then sent to the Link State

module. This is to ensure that the correct destination received the intended Link

State packet, and ensures that any mesh node receives Link State packets only

from other appropriate mesh nodes. Thus, the mobile clients are assured of data

confidentiality on the mesh network (given an assumption on the nonmalicious

behavior of mesh nodes, which is highlighted below). As a matter of fact, the

only links that clients have to secure is the immediate link between themselves

and the mesh node (this can be achieved by the client and the mesh node agreeing

on a symmetric key).

The advantage of this approach is that multicast between clients is now feasi-

ble. This is because clients now do not have to worry about encryption on their

part. Hence, multicast trees can now be created with clients being easily able

50

to forward multiple copies of a data packet to various other clients in the tree.

The fact that the clients do not need to worry about encryption on their part en-

sures that application developers need not worry about incorporating the SMOCK

Client module (or any other encryption scheme) when they write applications for

the mobile clients for the mesh network. However, a major disadvantage is that

the assumption that all mesh nodes are nonmalicious has to be made. This is be-

cause at each mesh node, the data packet is decrypted (if received from another

mesh node). Moreover, the task of decrypting and encrypting the message at each

mesh node can be time-consuming, especially if the number of hops, key size, or

number of private keys per node, b, is large. In this thesis, this scenario is also

referred as Scenario 2.

These two scenarios have to be tested by having a performance analysis of

the SMOCK key management scheme on the mesh network. In order to do this,

we need to configure nodes either as mesh nodes (running SMesh and Spines) or

as mobile clients (that connect to a mesh node). The next chapter describes the

steps taken to configure laptop computers to function as mesh nodes/clients.

51

CHAPTER 6

EXPERIMENTAL SETUP

In this chapter, we cover the experimental setup required to do a performance

analysis of the SMOCK key management scheme on the mesh network. This

consists of three main sections, namely the networking setup, SMesh software

setup, and wireless testbed setup.

6.1 Networking Setup

For experimental purposes, five laptop computers were set up to run the SMesh

and Spines software and two additional laptop computers served as SMesh mobile

clients, each running Linux Fedora Core 8. In order to provide wireless capability,

each laptop was provided a Netgear WG511T wireless PC card. However, there

was a need for chipset-level software which helps the computer detect the wireless

card. For our experiments, we used the openly available MadWifi software, version

0.9.4 [31], since the wireless card had an Atheros-based chipset, and MadWifi

supports such chipsets. One of the major advantages of the MadWifi is that it

supports virtual access points (VAPs), with which it can support multiple access

points on a single physical access point. On any VAP, MadWifi supports several

modes, such as ad hoc mode, monitor mode, and auto mode.

After the MadWifi software is downloaded, first any and all MadWifi devices

are shut down and current MadWifi modules (if any) are removed. Assuming

that we are in the MadWifi directory, the following commands remove the current

52

modules from the computer [31]:

cd scripts

./madwifi-unload.bash

./find-madwifi-modules.sh \$(uname -r)

cd ..

Once the old modules are removed, we go back to the MadWifi directory and type

make && make install

to create and install the MadWifi module. While the module is now loaded, it

needs to be loaded into the running system. Before loading the newly created Mad-

Wif i module, we need to ensure that the ath5k module is blacklisted. This can be

done by opening the blacklist file, which is in the directory \etc\modprodprobe.d,

and adding ath5k to the end of that file. After this, if a MadWifi module is still

currently running (as an interface) then it needs to be unloaded. This can be

done by typing the following command:

modprobe -r ath_pci

Once this is done, we install the MadWifi module (with the ad hoc mode) using

the following command:

modprobe ath_pci autocreate=adhoc

With this, we create a VAP with the ad hoc mode since the SMesh software

requires each wireless device to be in ad hoc mode. By default, the name of this

VAP is wlan0. The modprobe command creates a new VAP in ad hoc mode,

which is by default called wlan0. For each of the nodes that will run SMesh,

we edit the properties of this VAP by going to \etc\sysconfig\network-scripts

and editing the ifcfg-wlan0 file. A sample edited ifcfg-wlan0 file is shown below.

53

#Atheros Communications, Inc. AR5212 802.11abg NIC

DEVICE=wlan0

ONBOOT=yes

BOOTPROTO=none

HWADDR=00:1e:2a:10:28:fc

TYPE=Wireless

NETMASK=255.255.255.0

IPADDR=10.0.0.5

USERCTL=no

IPV6INIT=no

PEERDNS=yes

ESSID=substation2

CHANNEL=1

MODE=Ad-Hoc

While most of the entries in the ifcfg-wlan0 file are automatically filled, we need

to fill out three important entries: the ESSID of the mesh network, which iden-

tifies the underlying network at the IP layer; the IPADDR, which is the unique

IP address of the node; and the NETMASK, which determines the number of

nodes in the network denoted by the ESSID. The new wlan0 virtual interface,

along with the actual physical interface (wifi0) can be seen in the output of the

ifconfig command. A sample ifconfig output for one of the mesh nodes showing

the VAP along with the physical interface wifi0 is shown below.

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

54

RX packets:337788 errors:0 dropped:0 overruns:0 frame:0

TX packets:337788 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:73069970 (69.6 MiB) TX bytes:73069970 (69.6 MiB)

wifi0 Link encap:UNSPEC HWaddr

00-1E-2A-10-28-FC-48-08-00-00-00-00-00-00-00-00

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:890683101 errors:0 dropped:71473688 overruns:0

frame:60011889

TX packets:11591409 errors:3012578 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:199

RX bytes:60677174 (57.8 MiB) TX bytes:1377486357 (1.2 GiB)

Interrupt:11

wlan0 Link encap:Ethernet HWaddr 00:1E:2A:10:28:FC

inet addr:10.0.0.5 Bcast:10.0.0.255 Mask:255.255.255.0

inet6 addr: fe80::21e:2aff:fe10:28fc/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:2511750 errors:0 dropped:0 overruns:0 frame:0

TX packets:173534 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:195849626 (186.7 MiB) TX bytes:50062094 (47.7 MiB)

A sample iwconfig (shows all functional wireless interfaces) output is also shown

below.

wlan0 IEEE 802.11g ESSID:"substation2"

55

Nickname:"localhost.localdomain"

Mode:Ad-Hoc Frequency:2.412 GHz Cell: 02:0E:9B:85:78:1F

Bit Rate:0 kb/s Tx-Power=18 dBm Sensitivity=1/1

Retry:off RTS thr:off Fragment thr:off

Encryption key:off

Power Management:off

Link Quality=33/70 Signal level=-63 dBm Noise level=-96 dBm

Rx invalid nwid:6429041 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:0 Missed beacon:0

In this manner, we install MadWifi on five computers and modify the networking

configuration files such that they are all part of the same network (with ESSID

“substation2”). In order for SMesh to actively monitor packets for RSSI measure-

ment (used to gauge link quality), another VAP (in monitor mode) needed to be

created. The additional VAP can be created using the following commands:

wlanconfig wlan create wlandev wifi0 wlanmode monitor ifconfig wlan1

up echo ’802’ > /proc/sys/net/wlan1/dev_type

The first command creates the new VAP wlan1 (in monitor mode). This VAP is

then turned on, and in the third command is set to attach prism2 type headers

to each packet. In this manner, we add the MadWifi module and configure the

wireless setup on each laptop designated as a mesh node.

Apart from the five laptops, two additional laptops will serve as the SMesh

mobile clients. They will receive their IP address from the nearest mesh node.

In a manner similar to the mesh nodes, MadWifi was downloaded and installed

on each client. However, since the clients do not have static IP addresses (and in

fact, get them from the mesh network), their ifcfg-wlan0 file was to be edited

differently. A sample ifcfg-wlan0 file for a mesh client is shown below.

56

#Atheros Communications, Inc. AR5212 802.11abg NIC DEVICE=wlan0

ONBOOT=yes BOOTPROTO=dhcp TYPE=Wireless NETMASK=255.255.255.0

USERCTL=no IPV6INIT=no PEERDNS=yes ESSID=substation2 CHANNEL=1

MODE=Ad-Hoc

Here, the two main changes are that there is no IPADDR field (since the client

does not use a static IP address), and that the boot protocol (BOOTPROTO)

field is changed to DHCP (so that the DHCP client can then negotiate with the

DHCP server in a mesh node in order to get assigned an IP address).

On each of the five laptops designated as mesh nodes, we needed to install

and configure SMesh and Spines software in this manner. The installation and

configuration of SMesh on each of these nodes is covered in the next section.

6.2 SMesh Software Setup

In this section, we go through the SMesh software setup. Provided that we have

the executables for both SMesh and Spines, we create a directory /jffs and place

them there. Also placed in the directory is the runSMesh script and the SMesh

configuration file. In the default configuration file, we had to add some information

and make some changes. These changes/additions are as follows:

MESHIF=wlan0

We set the mesh interface to be wlan0.

KERNEL=0

We operate in overlay mode (packets are routed through the Spines daemon), and

hence set this parameter to 0.

57

NEIGHBORS=

We can either choose autodiscovery of neighbor with the following command:

NEIGHBORS="-d 225.5.5.5"

However, we can also set static neighbors (which is what was done for experiments)

by explicitly specifying neighbors, using the following command:

NEIGHBORS="-a Neighbor1Addr -a Neighbor2Addr -a Neighbor3Addr ..."

where Neighbor1Addr, Neighbor2Addr, and Neighbor3Addr, etc., are IP addresses

of the neighbors to which we want to connect statistically.

MONIF=wlan1

Here we specify our monitoring interface to be wlan1, which we created specifi-

cally for promiscuous monitoring of packets.

DEBUG=1

An optional command with which we can view the debug output.

Finally, we run the SMesh software by typing

./runSmesh

The runSmesh shell script runs the SMesh software with parameters based on

the smesh.conf file. This also automatically starts the Spines daemon. The next

task at hand was to create a testbed of nodes running the SMesh software, which

will be covered in the next section.

6.3 Wireless Testbed Setup

After the SMesh software was installed on each machine, the next task was to

create a testbed of nodes which run SMesh. SMesh and Spines were installed

58

Table 6.1: Table of computational/memory info of the mesh nodes

Node IP Address Computational Power (MHz) Memory Info (MB)
10.0.0.3 1800 248.33
10.0.0.4 550 249.27
10.0.0.5 1700 502.52
10.0.0.6 1800 248.71
10.0.0.7 550 376.08

on five machines, each of which was assigned a unique IP address. The five

machines were given IP addresses 10.0.0.3, 10.0.0.4, 10.0.0.5, 10.0.0.6, and 10.0.0.7,

respectively. For the remainder of this thesis, these nodes will be known as Nodes

3, 4, 5, 6, and 7.

The processor and memory information for each machine is given in Table

6.1. The five nodes are set in the third floor of the Siebel Center for Computer

Science in a manner shown in Figure 6.1. These nodes are set in such a way

10 0 0 6

10.0.0.4

10.0.0.6

10.0.0.5

10.0.0.7

10.0.0.3

Figure 6.1: Placement of SMesh nodes

59

as to get the maximum amount of physical distance possible (for each hop) to

minimize interference between the nodes. However, the nodes are set in a chain

topology. In other words, three mesh nodes have exactly two neighbors, while

two mesh nodes have exactly one neighbor. In addition to the five mesh nodes,

two additional laptops were used as the mobile clients of the mesh network. Also,

one of the clients also took the role of the SMOCK Server, which generates and

allocates SMOCK keys. In this client, the SMOCK Server and SMesh run as

different processes. The topology of the five mesh nodes, along with the two client

nodes, are shown in Figure 6.2. Once all mesh nodes and clients were properly

configured and deployed, experiments which cover both SMOCK scenarios could

be performed. The next chapter covers the applications developed on each client,

the parameters that are varied in the experiments (in both scenarios), and the

metrics used to evaluate each scenario.

60

Node 3: 10.0.0.3

Node 4:
10.0.0.4

Node 7:
10.0.0.7

Node 5:
10.0.0.5

Node 6:
10.0.0.6

Client 2: 10.169.172.169

Client 1: 10.163.176.161

Figure 6.2: SMesh node topology (along with SMesh mobile clients)

61

CHAPTER 7

EXPERIMENTAL RESULTS

After the configuration and deployment of mesh nodes and clients, experiments

were then to be conducted in order to do a performance analysis of the SMOCK

scheme of the mesh network. In this chapter, we analyze the performance by

first defining the metrics with which we evaluate the SMOCK key management

scheme, the parameters which are varied for each metric, and then describe the

evaluation results.

7.1 Metrics Used for Evaluation

Using the given topology, a performance analysis of the two SMOCK integration

scenarios was to be done. For such a performance analysis, there are various met-

rics which can be considered important. The four main metrics that are considered

in this chapter are the SMOCK parameter (a and b) generation time, SMOCK key

generation time, SMOCK memory utilization, and round trip time (that includes

SMOCK encryption/decryption). To begin with, SMOCK Server generates the

SMOCK keys, and the time taken to generate the SMOCK parameters, as well

as SMOCK keys for various key sizes, network sizes, and resilience parameters is

an important issue. Furthermore, after the bootstrapping phase, the amount of

memory used by the SMOCK Client module in both the storage of SMOCK data

as well as temporary memory utilized by the encrypt/decrypt functions needs to

be measured. This is because mesh networks may contain mesh nodes/clients

62

which have high memory constraints. Furthermore, since nodes/clients of the

mesh network also have varied processor power, it is necessary to monitor the

encryption/decrytion time taken by the SMOCK scheme. Finally, applications

(running on mesh clients) that utilize the mesh network may have real-time re-

quirements. Due to this, it is important to monitor round trip time of sending

encrypted data between clients of the mesh network. Hence, given these four

metrics, we can now proceed with a performance analysis of SMOCK on the mesh

network. The results of the performance analysis are shown in the next section

7.2 Experimental Results

In this section, we present the experimental results of the SMOCK performance

analysis. As stated in the previous chapter, there are two nodes that act as the

clients of the mesh network. Apart from the SMOCK key generation performance

analysis (which was done on the SMOCK Server module), the rest of the experi-

ments were conducted between these two clients (the exact topology will be shown

before each different experiment). These clients will be known as Client 1 and

Client 2. Client 1 is assigned an IP address (from a SMesh node) of 10.163.176.161,

while Client 2 is assigned an IP address of 10.169.172.169.

In the case of Scenario 1 SMOCK integration, where the SMOCK Client mod-

ule is integrated directly with the SMesh clients (and thus applications on SMesh

clients can use the SMOCK encrypt/decrypt functionality), both clients, upon

getting their IP address from a mesh node, contact the SMOCK Server module

and get their SMOCK data. This data is stored in a predetermined location, and

is later utilized by the SMOCK Client module. For the purpose of these experi-

ments, Client 1 runs an application, App1, which takes a destination IP address

and message size D, creates a buffer (of size D) containing random data (from a

63

predetermined seed), encrypts it using SMOCK keys, and then sends the data to

the destination IP address, and waits for a reply. Client 2 runs application App2

which waits for incoming requests. When it receives the data from Client 1, it first

uses its SMOCK keys to decrypt the data and then verifies that the decrypted

buffer is what was expected (since Client 2 also generates the buffer containing

random data). It then generates a response (which is a buffer of the same size as

the incoming buffer, containing random data from a second predetermined seed),

encrypts it using SMOCK keys, and then sends it back to Client 1. Upon receipt,

Client 1 decrypts this data, ensures that the decrypted data is what was expected,

and then computes the time taken for the round trip operation (the round trip

time metric).

In the case of Scenario 2 of SMOCK integration, all SMesh nodes receive their

SMOCK data from the SMOCK Server, and then pass their signed SMOCK IDs to

each other via periodic Hello messages. This eliminates the need for the SMOCK

ID Request message, as well as the need for Client 1 and Client 2 to encrypt data.

Hence, while Client 1 and Client 2 in this case perform similar operations as in

Scenario 1, they do not encrypt/decrypt the data (as that is done by the mesh

nodes while forwarding data).

As stated in the previous section, the time taken to generate SMOCK keys

in the bootstrapping phase in the SMOCK Server module is important. This is

analyzed in the next subsection.

7.2.1 SMOCK key generation time

The SMOCK key generation time is the time taken to generate the SMOCK keys,

and is dependent on four main factors: the number of nodes in the network N , the

number of nodes captured x, the resilience bound on the number of communica-

64

Table 7.1: a and b generation time (µs), ℘ vs. x (which is a percentage of N), 10
nodes

℘\x 30% 50% 70%
0.1 41.62 46.31 40.78
0.3 41.69 48.34 40.99
0.5 45.23 49.51 41.27

tions compromised when x nodes are captured ℘, and the key size. The values of

x, ℘, and N determine the size of the key pool a as well as the number of private

keys per node b (as shown in Chapter 4). Hence, these four parameters are varied

and we note the key generation time, as well as the time taken to determine a

and b for each scenario of parameters. We note the results for three different key

sizes, namely 1024-bit, 2048-bit, and 4096-bit keys.

Parameter (a and b) generation time

It should be noted that the time taken to generate was independent of key size,

and purely dependent on ℘, x, and N . So for all key sizes, we measured the

parameter generation time by first varying N (between 10, 100, and 1000 nodes).

For each network size value, we varied the resilience bound ℘ between 0.1, 0.3,

and 0.5 and varied x between 30%, 50%, and 70% of N , respectively. For each

case, 10 trials were conducted and the average of each trial was noted. For 10

nodes and varied values of x and N , 10 trials of the key generation algorithm were

conducted and the average time taken to generate the values of a, b is shown in

Table 7.1.

Also, the actual values of a and b are shown in Table 7.2. In all the tables,

the columns represent x, while the rows represent ℘. Table 7.1 shows that the

parameter generation time for 10 nodes hovered around 40 µs. This is because for

all combinations of ℘ and x, (a,b) was determined to be (5,2). In the next set of

65

Table 7.2: Value of (a, b), ℘ vs. x (which is a percentage of N), 10 nodes

℘\x 30% 50% 70%
0.1 (5,2) (5,2) (5,2)
0.3 (5,2) (5,2) (5,2)
0.5 (5,2) (5,2) (5,2)

Table 7.3: a and b generation time (µs), ℘ vs. x (which is a percentage of N),
100 nodes

℘\x 30% 50% 70%
0.1 47.20 46.51 46.86
0.3 46.16 47.34 46.01
0.5 47.55 46.65 47.69

experiments, the number of nodes N was increased to 100. The results are shown

in Tables 7.3 and 7.4.

In the 100-node case, (a,b) was increased to (10,3), and this increase is at-

tributed to the larger number of nodes to support. In any case, the amount of

time taken to determine a and b does not change. For the final set of experiments

in this category, the number of nodes N was set to 1000. The results is shown in

Tables 7.5 and 7.6. The results show that for the 1000-node case, (a, b) is set to

(15,4) (for the given combinations of ℘ and x). Furthermore, the time taken to

generate these parameters is slightly higher than that for the 10-node and 100-

node cases.

Table 7.4: Value of (a, b), ℘ vs. x (which is a percentage of N), 100 nodes

℘\x 30% 50% 70%
0.1 (10,3) (10,3) (10,3)
0.3 (10,3) (10,3) (10,3)
0.5 (10,3) (10,3) (10,3)

66

Table 7.5: Value of (a, b), ℘ vs. x (which is a percentage of N), 1000 nodes

℘\x 30% 50% 70%
0.1 (15,4) (15,4) (15,4)
0.3 (15,4) (15,4) (15,4)
0.5 (15,4) (15,4) (15,4)

Table 7.6: a and b generation time (µs), ℘ vs. x (which is a percentage of N),
1000 nodes

℘\x 30% 50% 70%
0.1 54.53 53.14 52.72
0.3 57.61 53.98 53.56
0.5 53.21 53.21 53.42

After generating a and b, the SMOCK Server module can then proceed to

generate the SMOCK keys. The next set of experiments note the time taken

to generate these keys. The time taken to generate the SMOCK keys is highly

dependent on the key size, and so we look at the key generation time for three

main key sizes, namely 1024-bit keys, 2048-bit keys, and 4096-bit keys.

Key Generation Time - 1024-bit keys

For this and the other two sizes, the number of nodes N was first varied (between

10, 100, and 1000 nodes), and as in the previous experiments that measured the

time taken to determine a and b, the number of nodes compromised was varied

between 30%, 50%, and 70% of N . For each of these variations, the resilience

bound on the number of compromised communications was varied from 0.1, 0.3,

and 0.5. We first note the key generation time for 10 nodes, shown in Table 7.7.

After this, we looked at creating keys for a 100-node network. Tables 7.8 shows

the key generation times when N is 100. From the key-generation time for 100

nodes, we note that it takes approximately twice the amount of time (order of

67

Table 7.7: SMOCK key generation time (s), ℘ vs. x (which is a percentage of N),
10 nodes, 1024-bit keys

℘\x 30% 50% 70%
0.1 0.899 1.115 1.032
0.3 1.934 0.945 1.259
0.5 1.080 1.386 1.290

Table 7.8: SMOCK key generation time (s), ℘ vs. x (which is a percentage of N),
100 nodes, 1024-bit keys

℘\x 30% 50% 70%
0.1 2.008 2.036 2.188
0.3 2.191 2.086 1.850
0.5 2.286 1.955 1.823

2000 ms) to generate keys as in the case for 10 nodes (where the key generation

time is on the order of 1000 ms). In the next set of experiments, N was set to

1000 nodes, and the key generation time for this case is shown in Table 7.9

The results for the 1000-node case show that the key generation time is on

the order of 3000 ms. In the next part, we consider the key generation time for

2048-bit keys.

Table 7.9: SMOCK key generation time (s), ℘ vs. x (which is a percentage of N),
1000 nodes, 1024-bit keys

℘\x 30% 50% 70%
0.1 2.272 2.955 3.164
0.3 2.655 2.940 3.035
0.5 3.534 2.831 3.473

68

Table 7.10: SMOCK key generation time (s), ℘ vs. x (which is a percentage of
N), 10 nodes, 2048-bit keys

℘\x 30% 50% 70%
0.1 6.139 6.281 6.000
0.3 6.414 6.126 5.930
0.5 6.348 5.974 6.513

Table 7.11: SMOCK key generation time (s), ℘ vs. x (which is a percentage of
N), 100 nodes, 2048-bit keys

℘\x 30% 50% 70%
0.1 13.104 9.091 11.866
0.3 9.604 10.594 13.800
0.5 13.045 11.743 13.349

Key Generation Time - 2048-bit keys

As in the previous part, we consider the key generation time for three values of

N , namely 10, 100, and 1000 nodes. Also ℘ changes between 0.1, 0.3, and 0.5,

while x changes between 30, 50, and 70%. The result for the key generation time

when N has 10 nodes is shown in Table 7.10.

We see that the key generation time is much higher than that of 1024-bit keys.

As a matter of fact, the results in Table 7.10 show that the key generation times

for the 2048-bit key and N = 10 are around six times as high as the key generation

times for 1024-bit key for the same N . The next set of experiments had N = 100.

The results for this case are shown in Table 7.11.

For N = 100 we note a greater variance in the key generation time as compared

to previous cases. Furthermore, the average key generation times for the 2048-bit

case is around six times that of that 1024-bit case when N = 100. The next set

of experiments had N = 1000, and the results are shown in Table 7.12.

As in the previous two cases, the key generation times for the 2048-bit, 1000-

69

Table 7.12: SMOCK key generation time (s), ℘ vs. x (which is a percentage of
N), 1000 nodes, 2048-bit keys

℘\x 30% 50% 70%
0.1 19.072 23.032 21.608
0.3 21.592 23.259 19.824
0.5 19.548 19.111 21.761

Table 7.13: SMOCK key generation time (min:s), ℘ vs. x (which is a percentage
of N), 10 nodes, 4096-bit keys

℘\x 30% 50% 70%
0.1 1:19.228 1:21.00 1:14.188
0.3 1:1.113 1:16.275 1:18.818
0.5 1:1.623 1:17.316 1:6.232

node network takes approximately six times the key generation times for the 1024-

bit, 1000-node network. The next set of experiments measure the key-generation

time for 4096-bit keys.

Key Generation Time - 4096-bit keys

As in the previous two parts, we consider the key generation time for three values

of N , namely 10, 100, and 1000 nodes. Also ℘ changes between 0.1, 0.3 and 0.5,

while x changes between 30, 50 and 70 %. The key generation time when N has

10 nodes is shown in Table 7.13.

The key generation time is much higher than that of 2048-bit keys. The results

in Table 7.13 show that the key generation times for the 4096-bit keys and N =

10 is around 13 times as high as the key generation times for 1024-bit key for the

same N . The next set of experiments had N = 100. The results for this case are

shown in Table 7.14.

Similar to when N = 10, the key generation time is much higher than that of

70

Table 7.14: SMOCK key generation time (min:s), ℘ vs. x (which is a percentage
of N), 100 nodes, 4096-bit keys

℘\x 30% 50% 70%
0.1 2:44.908 2:40.591 2:35.186
0.3 2:19.604 2:10.594 2:24.380
0.5 2:15.452 2:54.743 2:35.534

Table 7.15: SMOCK key generation time (min:s), ℘ vs. x (which is a percentage
of N), 1000 nodes, 4096-bit keys

℘\x 30% 50% 70%
0.1 3:6.278 3:17.965 3:31.382
0.3 4:48.375 3:33.866 3:38.231
0.5 4:16.847 3:38.569 3:54.348

2048-bit keys. The results in Table 7.14 show that the key generation times for the

4096-bit key and N = 100 are around 12 times as high as the key generation times

for the 2048-bit key for the same N . The final set of experiments had N = 1000,

and the results are shown in Table 7.15.

As in the previous two cases, the key generation times for the 4096-bit, 1000-

node network are much higher than those of the 2048-bit, 1000-node network. As

a matter of fact, the key generation times are approximately 10 times those of the

2048-bit, 1000-node network.

So far, we had measured the time taken by the SMOCK Server module to

generate keys. In the next subsection, we explore the memory usage of SMOCK.

7.2.2 SMOCK memory usage

In this subsection, we observe the memory usage of the SMOCK scheme for various

key sizes and number of nodes N . Since the a and b parameters do not change

greatly over various values of ℘ and x, it was decided to fix the value of ℘ as 0.1

71

and x as 30% of N . With that in mind, we took into consideration three key sizes

(namely, 1024-bit keys, 2048-bit keys, and 4096-bit keys) as before and altered

N . In this experiment, we arranged a topology shown in Figure 6.2 on the mesh

network and used the Scenario 1 integration, where SMesh client applications use

the SMOCK Client to encrypt/decrypt data. SMOCK memory usage consists

of two main components, namely the SMOCK data storage (which is the major

factor), and additional temporary memory required by the encryption/decryption

algorithms.

For each key size, we vary N between 10, 100, and 1000, which corresponds

to a b value between 2, 3, and 4. In each experiment, we sent data ranging from

20 − 29 bytes. Each experimental result was the average of ten trials, and in each

trial the memory usage was computed by averaging the memory utilized by the

encryption/decryption algorithms in both clients, as well as averaging key storage

from both clients. So, Figure 7.1 shows the memory usage for 1024-bit SMOCK

keys, with respect to the log of the data encrypted. For example, 5 on the X-axis

implies that the data to be encrypted was 25 bytes.

Figure 7.1: Memory usage vs. log(message size) - 1024-bit keys

72

As can be seen from Figure 7.1, the memory usage ranges from 2500 to 6000

bytes. The next set of experiments focuses on the usage of 2048-bit keys (with b

varying as usual). The results from these experiments are shown in Figure 7.2.

The memory usage with 2048-bit keys ranges from approximately 4000 to 10 000

bytes. The final set of experiments uses 4096-bit keys, and the results of these

experiments are shown in Figure 7.3.

Figure 7.2: Memory usage vs. log(message size) - 2048-bit keys

Figure 7.3: Memory usage vs. log(message size) - 4096-bit keys

We see that with 4096-bit keys, the memory usage ranges from approximately

8000 to 19 000 nodes. So, the difference between memory usage for 4096-bit and

73

2048-bit keys is much higher than the difference between 2048-bit and 1024-bit

keys. This fact is highlighted in Figure 7.4, which keeps b as a constant and notes

the memory uses for the different key sizes.

Figure 7.4: Memory usage vs. log(message size) - b = 3

In this figure, we see the huge gap between the 4096-bit and 2048-bit keys

as compared to 2048-bit and 1024-bit keys. This shows that SMOCK may be

impractical with anything larger than 2048-bit keys. However, as the results for

1024-bit and 2048-bit keys show, SMOCK is very memory efficient with less than

10-kB storage in all cases. This is equivalent to storing only 10 certificates from

other nodes (since a certificate is typically 1 kB). However, as shown, SMOCK

can support 1000 nodes with approximately 10 kB of memory. Hence, SMOCK

is more memory efficient than a certificate-based key management scheme.

In the next subsection, we focus on the third metric for evaluation, the en-

cryption/decryption time.

7.2.3 SMOCK encryption/decryption time

In this part, we observe the time taken by the the SMOCK scheme to encrypt/decrypt

data (of various sizes) for various key sizes and number of nodes N . As in the

74

memory usage evaluation, it was decided to fix the value of ℘ as 0.1 and x as

30% of N . With that in mind, we took into consideration three key sizes (namely,

1024-bit keys, 2048-bit keys, and 4096-bit keys) as before and altered N . Similar

to the memory usage evaluation, we arranged a topology shown in Figure 6.2

on the mesh network and used the Scenario 1 integration, where SMesh client

applications use the SMOCK Client to encrypt/decrypt data.

For each key size, we vary N between 10, 100, and 1000, which corresponds to a

b value between 2, 3, and 4. In each experiment, we sent data ranging from 20−29

bytes. Each experimental result was the average of 10 trials, and in each trial the

encryption and decryption time was computed by averaging the encryption and

decryption times in both clients (since in that scenario, each client encrypts and

decrypts once). So, Figures 7.5 and 7.6 show the encryption/decryption times for

1024-bit SMOCK keys, with respect to the log of the data encrypted.

Figure 7.5: Encryption time vs. log(message size) - 1024-bit keys

As can be seen from Figures 7.5, the encryption time for this key size ranges

from 4 ms to 20 ms. It is interesting to note that the encryption times stay similar

while the message size remains less than the key size, but increases exponentially

with respect to the message size, when the message size begins to approach the

75

Figure 7.6: Decryption time vs. log(message size) - 1024-bit keys

key size. This is because RSA keys can only encrypt data if the message size is

smaller than the key size. So, when presented with data whose size is greater

than the key size, we break the data into smaller chunks (each chunk being the

key size minus a certain constant) and encrypt each chunk separately. So for

example if b = 3, the SMOCK key size is 1024 bits, and the message size is 64

bytes, then the SMOCK scheme, in order to encrypt and decrypt data, performs

three encryption operations and three decryption operations (namely three calls

to smock encrypt() and smock decrypt()), thus performing six operations in total.

However, if the message size is 256 bytes, then the message is broken down into

three chunks (of sizes 100, 100, and 56), and each chunk is encrypted/ decrypted

separately. In this case, the SMOCK scheme performs nine encryption and nine

decryption operations, thus performing 18 operations in total. So clearly we see

that increasing the data size beyond the key size results in exponential increase

in time with respect to the data size. This is thus reflected in Figure 7.5 as

well as 7.6, which shows the decryption times (for 1024-bit keys) ranging from

approximately 20 to 170 ms (with the latter figure also showing the exponential

increase in decryption time when the message size is greater than or equal to 128

76

bytes). The next set of experiments focuses on the usage of 2048-bit keys (with

b varying as usual). The results from these experiments are shown in Figures 7.7

and 7.8.

Figure 7.7: Encryption time vs. log(message size) - 2048-bit keys

Figure 7.8: Decryption time vs. log(message size) - 2048-bit keys

Figure 7.7 shows the encryption times (for 2048-bit keys) ranging from 5 to 20

ms, which is not too different than that for the 1024-bit keys. However, Figure 7.8

shows the decryption times ranging from approximately 80 to 380 ms, which is a

starker difference with its 1024-bit counterpart. As in the 1024-bit key case, we

77

note the exponential increase in encryption/decryption times when the message

size begins to approach the key size (which is 256 bytes in this case).

The next set of experiments focuses on the usage of 4096-bit keys (with b

varying as usual). The results from these experiments are shown in Figures 7.9

and 7.10.

Figure 7.9: Encryption time vs. log(message size) - 4096-bit keys

Figure 7.10: Decryption time vs. log(message size) - 4096-bit keys

Figure 7.9 shows the encryption times (for 4096-bit keys) ranging from 20 to

50 ms, which is much larger than that for the 2048-bit keys. Moreover, Figure 7.10

shows the decryption times ranging from approximately 400 to 14200 ms, which is

78

also much different from its 2048-bit counterpart. These differences are highlighted

in Figures 7.11 and 7.12. Here we kept b as a constant (b = 3) and observed the

change in encryption/decryption times with respect to the key sizes. As with the

memory usage case, there was a big difference in the encryption/decryption times

between the 4096-bit key case and the 2048-bit key case.

However, while there is a negligible difference between the encryption times of

the 4096-bit and 2048-bit SMOCK keys, there is a significant difference (of around

90 ms) between the 2048-bit and 1024-bit keys. As in the previous cases, there

was an exponential increase in encryption/decryption times when the message

size begins to approach the key size (which is 512 bytes in this case).

Figure 7.11: Encryption time vs. log(message size) - b = 3

Since the encryption/decryption times using 4096-bit SMOCK keys are much

higher than those using 1024-bit and 2048-bit keys, it is impractical to consider us-

ing 4096-bit keys in the SMOCK scheme. So, only 1024-bit and 2048-bit SMOCK

keys were considered in further experiments. So far, we had only considered the

processor and memory utilization by the SMOCK modules. However, in order to

provide a complete overview of SMOCK performance analysis, we need to con-

79

Figure 7.12: Decryption time vs. log(message size) - b = 3

sider the effects of SMOCK on the round trip time between nodes in the mesh

network. This is reviewed in the next part.

7.2.4 SMesh round trip time

In this part, we consider the effects of SMOCK on the round trip time between

nodes in the mesh network. The nodes in the mesh network are organized in a

topology shown in Figure 6.2, and can have various ping times between each other

based on the transmit power. The transmit power for each node is the amount

of power dedicated for data transmission, and is measured in units of dBmW

(decibels per milliWatt). If given a power value W (in watts), then it can be

converted to a dBmW value P, using the following equation:

P =
30 + 10 ∗ log(W)

1000
(7.1)

By default, we assume that clients maintain the default transmit power of 19

dBmW (also the maximum possible transmit value). For all the mesh nodes, the

transmit power can be modified by typing the following command:

80

iwconfig XXX txpower YYY

where the name of the VAP (whose transmit power we wish to modify) is sub-

stituted for XXX and the transmit power value is substituted for YYY. For the

purposes of this performance analysis, we consider two values for transmit power,

namely the minimum possible value of 1 dBmW and the default (and maximum

possible) value of 19 dBmW. For all cases, we consider the round trip time over

three cases when it comes to hop count. In other words, we consider the following

cases:

• Three hops In this case, we consider the mesh node topology we physically

place the Client 2 machine (which hosts both SMOCK Server and App2)

close to the Node 3, and the Client 1 machine to Node 4. In this case,

Node 3 becomes the only SMesh node in Client 2’s client data group (and

so provides Client 2 its IP address and routes all data packets to and from

Client 2), while Node 4 becomes the only node in Client 1’s client data

group.

• Four hops In this case, we place Client 2 next to Node 3 and Client 1 next

to Node 7.

• Six hops In this case, we place Client 2 next to Node 3 and Client 1 next

to Node 6.

As stated before, we consider two scenarios of encryption, namely Scenario 1,

which refers to end-to-end encryption of data and Scenario 2, which refers to

a hop-by-hop encryption of data. We first consider Scenario 1. Here, data is

encrypted by the SMOCK Client modules which reside on Client 1 and Client 2,

respectively.

81

Scenario 1 (end-to-end encryption) performance

In this case, we first set the transmit power of each mesh node to 1 dBmW and

measure the average ping time between each node and its neighbor over 10 trials.

The node topology along with the mean/variance of RTT values between the

nodes is shown in Figure 7.13.

We consider the performance of SMOCK (over various hops) for two key sizes,

and three b values for each key size. Figure 7.14 shows the round trip time for

each b value using 1024-bit SMOCK keys.

The results show an enormous difference between the RTT values for three,

four, and six hops. For the three-hop case, the RTT values vary from 650 ms to

1000 ms. It should be noted that for each b value, if the data size is greater than

or equal to the key size, the RTT time increases exponentially with respect to

the data size. This behavior is explained before (caused due to multiple encryp-

tions/decryptions, thus increasing the round trip time). For the four-hop case, the

RTT values vary from 920 ms to 1230 ms. For the six-hop case, the RTT values

vary from 1210 ms to 1580 ms. As expected, there is an increase in both RTT

values, as well as the variance between the RTT values for different hop counts.

The increase in RTT values is due to the fact that routing overhead is added at

each hop in the mesh network. At each hop, the packet is sent all the way up

to the SMesh application (through the Spines application), which determines the

next hop to send the packet to, and then sends the packet to the next hop. The

increase in variance of RTT values occurs due to the fact that the RTT values

between neighboring nodes have a certain amount of variance due to packet re-

transmissions (the low transmit power results in lost packets). So, the variances

sum up as the number of hops increases, thus leading to high variance in RTT

values for the six-hop case.

82

10.0.0.3
2.58/0.29 ms

29.82/23.35 ms

27.65/25.67 ms

12.45/13.09 ms

10.0.0.4

10.0.0.710.0.0.5

10.0.0.6

Client 2: 10.169.172.169

Client 1: 10.163.176.161

SMOCK Server

Figure 7.13: Topology of mesh nodes (with mean/variance of round trip times) -
1-dBmW transmit power

83

Figure 7.14: Average round trip time vs. log(message size) - Scenario 1 (end-to-
end encryption), 1024-bit keys, 1-dBmW transmit power

84

In our next set of experiments, we changed the key sizes to 2048 bits and

observed the round trip times. The results for the three-hop, four-hop and six-

hop cases (for all b values) are shown in Figure 7.15. As in the 1024-bit key case,

there is an enormous difference between the RTT times for three, four, and six

hops. As noted before, the RTT value increases exponentially with respect to the

data size when the data size is greater than or equal to the key size. In this case,

the cutoff mark is 8 (since 2048 bits corresponds to 28 bytes). For the three-hop

case, the RTT values range from 730 ms to 1390 ms. For the four-hop case, the

RTT values range from 1130 ms to 1630 ms. For the six-hop case, RTT values vary

from 1260 ms to 1880 ms. From Figure 7.15, we note that the variance of RTT

times using 2048-bit keys is much higher than that of RTT times using 1024-bit

keys. For example, the RTT values for the network which have 2048-bit SMOCK

keys and b = 4 have higher variance than the RTT values for the network which

uses 1024-bit keys and b = 4. This is because the processing/routing overhead

between neighboring nodes increases due to the increased data size (since in RSA,

the encrypted data has the same size as the key).

We next considered the performance under a different transmit value, namely

19 dBmW (which is the default and maximum power value). Similar to the

previous scenario, we consider the performance of SMOCK (over various hops)

for two key sizes, and three b values for each key size. The RTT values between the

mesh nodes are shown in Figure 7.16. Figure 7.17 shows the round trip time for

each b value using 1024-bit SMOCK keys. For three-hops, the RTT values range

from 350 ms to 800 ms. For the four hop case, the values range from 360 ms to 830

ms. For the six-hop case, the values range from approximately 370 ms to 900 ms.

The results show that there is little difference between the round trip times for

all b values and all hops. This is because, compared to the 1 dBmW case, there is

little overhead due to packet transmissions/reordering (since the transmit power is

85

Figure 7.15: Average round trip time vs. log(message size) - Scenario 1 (end-to-
end encryption), 2048-bit keys, 1-dBmW transmit power

86

10.0.0.3
0.755/0.279 ms

1.532/1.266 ms

0.696/0.612 ms

0.681/0.494 ms

10.0.0.4

10.0.0.710.0.0.5

10.0.0.6

Client 2: 10.169.172.169

Client 1: 10.163.176.161

SMOCK Server

Figure 7.16: Topology of mesh nodes (with mean/variance of round trip times) -
19-dBmW transmit power

87

Figure 7.17: Average round trip time vs. log(message size) - Scenario 1 (end-to-
end encryption), 1024-bit keys, 19-dBmW transmit power

88

maximum, thus leading to minimal packet transmission errors). Because of this,

the only factor contributing to the round trip time is the overhead due to two

factors, namely the delay between the nodes (which is now entirely dependent on

the physical barriers between the nodes) and the encryption/decryption using the

SMOCK keys. However, since the round trip times are similar for all b values, the

overhead due to the number of encryptions/decryptions is much less significant

as compared to the overhead due to the delay.

In our next set of experiments, we again change the SMOCK key sizes to 2048

bits and observe the round trip times. The results for the three-hop, four-hop

and six-hop cases (for all b values) are shown in Figure 7.18. From the results,

we see that for three hops, the RTT values range from 490 ms to 1020 ms. For

four hops, the RTT values range from 600 ms to 1140 ms. For six hops, the

RTT values range from 630 ms to 1270 ms. The results show that, similar to

the 1024-bit (and 19-dBmW transmit power) case, having a lower b value and

higher hop count results in a lower RTT value than having higher b value and

lower hop count. For example, the RTT values for when b = 3 and the hop count

is three, are higher than those for when b = 2 and the hop count is six. This

shows that the encryption overhead is more significant than the communication

overhead. Also, the encryption overhead when using 2048-bit SMOCK keys is

higher than when using 1024-bit SMOCK keys, due to the fact that the RSA

encrypt and decrypt operations take longer time on larger key sizes (as shown in

the subsection covering encryption/decryption times).

Scenario 2 (hop-by-hop encryption) performance

In this case, we first set the transmit power of each mesh node to 1 dBmW and

measure the average ping time between each node and its neighbor over 10 trials.

The node topology along with the mean/variance of RTT values between the

89

Figure 7.18: Average round trip time vs. log(message size) - Scenario 1 (end-to-
end encryption), 2048-bit keys, 19-dBmW transmit power

90

nodes is shown in Figure 7.13. In Scenario 2, we consider the performance of

SMOCK (over various hops) for two key sizes, and two b values for each key size.

Figure 7.19 shows the round trip time for each b value using 1024-bit SMOCK

keys. The results show a sizable difference between the RTT values for three hops

versus four and six hops. For the three-hop case, the RTT values vary from 280

ms to 1300 ms. For the four-hop case, the RTT values vary from 840 ms to 2800

ms. For the six-hop case, the RTT values vary from 1390 ms to 4570 ms. A

few observations can be made from this graph. First of all, there is an enormous

increase in RTT values as the message size is greater than or equal to the key size.

Secondly, the RTT values increase as the b value increases (keeping the number of

hops constant). This is because the message is encrypted and decrypted at each

hop, and thus an increase in b leads to additional overhead at each hop. So, for

example, if the message size is 64 bytes (and key size is 128 bytes), the number of

hops is three (which implies that the packet travels through two mesh nodes), and

b = 2, then there are four calls to the smock encrypt() function and four calls to

the smock decrypt() function (when we send the packet and receive a same-sized

reply from the destination), thus resulting in a total of eight calls.

However, if b = 3, then sending and receiving the same data size over the same

number of hops results in six calls to the smock encrypt() function and six calls

to the smock decrypt() function, resulting in a total of 12 calls, thus leading to

a larger RTT value. Also, if b is kept constant, then the RTT value increases as

the number of hops increases. This is because each additional hop leads to an

additional encrypt/decrypt call each way, thus adding to the round trip time. For

example, if the message size is 64 bytes (and key size size is 128 bytes), b = 3

and the number of hops is three, then there are a total of 12 encryption-related

calls, as shown above. However, if the number of hops is four, then sending

and receiving the same data size using the same b value results in 12 calls to

91

Figure 7.19: Average round trip time vs. log(message size) - Scenario 2 (hop-by-
hop encryption), 1024-bit keys, 1-dBmW transmit power

92

smock encrypt() and 12 calls to smock encrypt(), thus resulting in a total of 24

calls. Finally, as the number of hops increases, the difference in RTT values

for b = 2 and b = 3 increases. For example, the difference between the RTT

values (for when b = 2 and b = 3) when the number of hops is three, is less

than the difference between the values when the number of hops is six. This is

unlike Scenario 1, where this difference stays constant. This increasing difference

between the values (with respect to the number of hops) is due to the fact that

in Scenario 2, every additional hop carries not only a communication overhead,

but also an encryption overhead (unlike in Scenario 1, where every additional hop

results in only a communication overhead) which increases with respect to b.

As in Scenario 1, it should be noted that for each b value, if the data size is

greater than or equal to the key size, the RTT time increases exponentially with

respect to the data size. Furthermore, the rate of exponential increase is directly

proportional to the number of hops (if b is kept constant). This is because when the

message size is larger than the key size, the number of calls to smock encrypt and

smock decrypt increases exponentially with respect to the message size. However,

the number of encryption calls is also dependent on the number of hops, since each

additional hop leads to an additional exponential overhead due to encryption.

So, the number of hops (that the packet has to travel) determines the rate of

exponential increase.

In our next set of experiments, we change the SMOCK key size to 2048 bits and

consider the round trip time under Scenario 2. The results are shown in Figure

7.20. From the figure, we note that for the three-hop case, the RTT values range

from 760 ms to 1521 ms. For the four-hop case, the RTT values range from 2350

ms to 5020 ms. For the six-hop case, the RTT values range from 4140 ms to 11780

ms. In this figure, we make all the observations that we made in the previous case

(namely 1024-bit keys). The round trip time is directly proportional to b, as well

93

Figure 7.20: Average round trip time vs. log(message size) - Scenario 2 (hop-by-
hop encryption), 2048-bit keys, 1-dBmW transmit power

94

as the number of hops. Also, the difference between the RTT values (for b = 2

and b = 3) is directly proportional to the number of hops. Moreover, the RTT

values increase exponentially when the message size is greater than or equal to

the key size. The rate of this exponential increase is determined by the number

of hops in the network. Furthermore, the RTT values are directly proportional to

both the b value as well as the number of hops (similar to the 1024-bit case).

In the next set of experiments, we modified that transmit power to 19 dBmW

and measured the average round trip time for Scenario 2, using 1024-bit keys. The

results for this are shown in Figure 7.21. From the figure, we note that for the

three-hop case, the RTT values range from 180 ms to 630 ms. For the four-hop

case, the RTT values range from 600 ms to 1780 ms. For the six-hop case, the

RTT values range from 860 ms to 2370 ms. As before, we note that the RTT

values are directly proportional to both b and the hop count. Also, the difference

between the RTT values (for b = 2 and b = 3) is directly proportional to the

number of hops. In this result, we note that the RTT values for the case where

b = 2 and the hop count is six are less than those of the case where b = 3 and the

hop count is four. This is due to the fact that with maximum transmit power,

there is minimized transmission overhead at each hop, since fewer packets are

sent out of order, or are lost. Due to this, we note that with maximized transmit

power, the RTT values for smaller b and larger hop count may be smaller than

those with larger b and smaller hop count (and this happens as b increases).

We then changed the key size to 2048-bit keys and measured the RTT values.

For this case, the results are shown in Figure 7.22. For the three-hop case, the

RTT values range from 460 ms to 1420 ms. For the four-hop case, the RTT values

range from 1450 ms to 3620 ms. For the six-hop case, the RTT values range

from 2070 ms to 4180 ms. As before, we note that the RTT values are directly

proportional to both b and the hop count. Similar to previous experiments, the

95

Figure 7.21: Average round trip time vs. log(message size) - Scenario 2 (hop-by-
hop encryption), 1024-bit keys, 19-dBmW transmit power

96

Figure 7.22: Average round trip time vs. log(message size) - Scenario 2 (hop-by-
hop encryption), 2048-bit keys, 19-dBmW transmit power

97

difference between the RTT values (for b = 2 and b = 3) is directly proportional

to both b and the hop count, and the difference between the RTT values (for b = 2

and b = 3) is directly proportional to the number of hops. As in the 1024-bit key

case, the RTT values for when b = 2 and the hop count is six are less than those

for when b = 3 and the hop count is four.

Scenario 1 versus Scenario 2 Performance

Here, we compare the RTT values as a result of using Scenario 1 versus Scenario

2 of SMOCK integration. In the first case, we compare the RTT values when

using 1024-bit SMOCK keys and setting the transmit power to 1 dBmW. The

results are shown in Figure 7.23. In the figure, we note that for the three-hop

case, the RTT values for Scenario 2 are less than those for Scenario 1. This is

due to the fact that the encryption overhead is the same in both scenarios, but

the communication overhead is higher for Scenario 1. In this case, both scenarios

make 2 ∗ b calls to smock encrypt() and smock decrypt(), resulting in 4 ∗ b calls

in total (where b is the number of private keys stored in each node). However,

Scenario 1 has a larger communication overhead since in Scenario 1, a SMOCK

ID Request message needs to be sent to the destination node in order to receive

its SMOCK ID. This is unlike in Scenario 2, where nodes exchange SMOCK IDs

with their neighbors. However, if the message size becomes larger than the key

size, the encryption overhead becomes more significant than the communication

overhead, so the RTT values for Scenario 2 exceed those for Scenario 1 (since in

Scenario 2, the Spines daemon breaks down the original data into smaller chunks,

thus resulting in more calls to smock encrypt()).

However, when the hop count is four, we notice that for b = 2, the RTT values

are identical for both scenarios. This indicates that the increased encryption over-

head for Scenario 2 (the additional hop results in at least eight additional calls

98

Figure 7.23: Average round trip time vs. log(message size) - Scenario 1 vs. Sce-
nario 2, 1024-bit keys, 1-dBmW transmit power

99

to smock encrypt() and smock decrypt()) offsets the additional communication

overhead in Scenario 1. However, when b = 3, the RTT values for a message

traveling four hops is higher when in Scenario 2. This is because the encryp-

tion overhead is increasingly significant in comparison with the communication

overhead, since there are now a total of at least 24 calls to smock encrypt() and

smock decrypt() (provided the message size is less than the key size) versus 12

total calls for Scenario 1. The encryption overhead becomes even more significant

when the hop count increases to six (since there are 8∗ b calls to smock encrypt()

and 8 ∗ b calls to smock decrypt()). This results in the RTT values when using

Scenario 2 being much higher over six hops than those for Scenario 1.

When using 2048-bit SMOCK keys (and keeping the transmit power at 1

dBmW), the comparison between Scenario 1 and Scenario 2 is shown in Fig-

ure 7.24. When using 2048-bit SMOCK keys, the encryption overhead is higher

than when using 1024-bit SMOCK keys. This is due to the higher encryp-

tion/decryption times, as shown in the section describing the encryption/decryption

times using various SMOCK key sizes. Hence, the RTT values (for when b = 2)

for Scenario 1 are similar to that for Scenario 2. However, when b = 3, the RTT

values for Scenario 2 are much higher than that for Scenario 1. This is unlike

the case when using 1024-bit SMOCK keys (where the RTT values are similar),

since the encryption overhead is much higher. As expected, the RTT values for

Scenario 2 are much higher than Scenario 1 for all other hop counts and b values

(this is clearly seen in the figure). This makes Scenario 2 impractical for large key

sizes, since larger key sizes result in larger encryption/decryption times. This in

turn results in added delay at each hop, thus increasing the round trip time.

We then examine the differences between Scenario 1 and Scenario 2 when the

transmit power at each mesh node is set to 19 dBmW. Figure 7.25 shows the RTT

values when using 1024-bit SMOCK keys. This figure shows that when the hop

100

Figure 7.24: Average round trip time vs. log(message size) - Scenario 1 vs. Sce-
nario 2, 2048-bit keys, 1-dBmW transmit power

101

Figure 7.25: Average round trip time vs. log(message size) - Scenario 1 vs. Sce-
nario 2, 1024-bit keys, 19-dBmW transmit power

102

count is three, the RTT values for Scenario 2 are much less than that of Scenario

1. This is due to the fact that as stated before, Scenario 1 has an additional

communication overhead due to sending and receiving the SMOCK ID Request

message. The RTT values of Scenario 1 are larger than that of Scenario 2 for

all other hop counts and b values. This is due to the fact that maximizing the

transmit power minimized the communication overhead, thus making it far less

significant than the encryption overhead.

We then observed the comparisons between Scenario 1 and Scenario 2 using

2048-bit SMOCK keys, and this is shown in Figure 7.26. In this case, the encryp-

tion overhead is much higher than the communication overhead (since the key size

is large and the transmit power is maximized). Thus, the RTT values for Scenario

2 are lower than those for Scenario 1 only when b = 2 and the hop count is three.

However, in all other cases, the RTT values for Scenario 2 are much higher than

those for Scenario 1. In fact, the RTT values for Scenario 2 are quite distinct

in the figure. This shows that hop-by-hop encryption is not feasible for 2048-bit

keys unless the average hop count for messages is less than four.

Thus, the SMOCK performance analysis comprised measuring the parameter

generation time, key generation time, memory usage, and encryption/decryption

times due to SMOCK keys. The parameter generation time was on the scale of

microseconds, but the encryption/decryption times were on the scale of tens of

milliseconds. The encryption/decryption times when using 4096-bit SMOCK keys

were much higher than when using smaller sized keys. Therefore, it was considered

infeasible to use key sizes larger than 2048 bits, and thus only 1024-bit and 2048-

bit SMOCK keys were to be used when measuring the round trip times. When

measuring round trip times, both the end-to-end (Scenario 1) and hop-by-hop

(Scenario 2) encryption scenarios were used. For each scenario, we considered two

different transmit powers, namely the minimal and maximal powers of 1 dBmW

103

Figure 7.26: Average round trip time vs. log(message size) - Scenario 1 vs. Sce-
nario 2, 2048-bit keys, 19-dBmW transmit power

104

and 19 dBmW, respectively.

First, we analyzed end-to-end encryption. For the 1-dBmW scenario and both

1024-bit and 2048-bit keys, there is an increase between RTT values for when

b increases from two to four when using end-to-end encryption. However, there

is a more significant increase between the RTT values for when the hop count

is three, four, and six. This shows that the communication overhead (which

increases for each hop) is more significant than the encryption overhead when the

transmit power is 1 dBmW and we are using end-to-end encryption. Also, for both

transmit powers and for all b values, key sizes, and hop counts, the round trip time

increases exponentially (with respect to the message size) when the message size

is greater than or equal to the key size. The transmit power was then adjusted to

the maximum (19 dBmW). With this, when using 1024-bit keys, there is a very

small increase in round trip time when the hop count increases from three to six.

However, there is a much larger increase in RTT values when b increases from

two to four. Hence, in this case, the encryption overhead is much larger than the

communication overhead. The difference between the round trip times for various

b values is much higher when using 2048-bit keys, since the encryption overhead

increases when using larger sized keys.

When using hop-by-hop encryption and having 1-dBmW transmit power, we

note that as before, the round trip times increase as both b and the hop count in-

crease. However, as the hop count increases, the difference between the round trip

times for various b values increases, due to the fact that the encryption overhead

not only increases as b increases, but also increases as the hop count increases

(since encryption/decryption operations are performed at each hop). This is the

observation for both key sizes. When the transmit power for all nodes is set to 19

dBmW, we see the same result where the difference between the round trip times

for various b values increases as the hop count increases.

105

When comparing the round trip times of end-to-end encryption versus hop-

by-hop encrytion, we note that where there is a high delay between mesh nodes

(as a result of low transmit powers, high latencies, or other factors), hop-by-hop

encryption results in lower round trip times when the hop count is low (less than or

equal to four hops in our case). However for high hop counts, the total encryption

overhead increases significantly when using hop-by-hop encryption, thus resulting

in higher round trip times. Since the encryption overhead increases as the key size

increases, we note that there is little difference between end-to-end encryption and

hop-by-hop encryption for the minimum hop count of three. However, as the hop

count increases, the RTT values for hop-by-hop encryption are much higher than

the RTT values for end-to-end encryption. When the hop count is increased to 19

dBmW and the key size is 1024 bits, the RTT values for hop-by-hop encryption

are much higher than those for end-to-end encryption (except when b = 2 and

the hop count is three). When the key size is 2048 bits, the RTT values for hop-

by-hop encryption are always higher than those for end-to-end encryption (but

marginally smaller when b = 2 and the hop count is three).

Thus, the SMOCK implementation utilized in the mesh network depends on

the network model. The space/time constraints (if any) on the mesh nodes and

clients, size of the network (which affects the b parameter), the average number of

hops that each message travels, the average size of each message, and the average

delay between the mesh nodes (which is a factor of physical distance between mesh

nodes as well as the transmit powers of wireless devices) determine whether to uti-

lize either end-to-end or hop-by-hop encryption. As stated before, the end-to-end

encryption scenario stores the SMOCK keys on the mesh clients, and thus may re-

quire a certain amount of minimum memory/processor power in each client. This

scenario works best when the communication overhead is low, since it needs to

send SMOCK ID Request messages when encrypting every message. On the other

106

hand, the hop-by-hop scenario places no requirements on mesh clients (except for

minimal space/time requirements to perform symmetric-key encryption and store

a key shared with the host mesh node), as they have the mesh nodes store the

SMOCK keys. This scenario works best when the communication overhead is

high with respect to the encryption overhead. However, if the average number of

hops for each message in the network is high, then the hop-by-hop scenario is not

the best option since each additional hop adds an additional encryption overhead.

Hence, the network model determines the type of SMOCK encryption utilized on

mesh nodes.

107

CHAPTER 8

CONCLUSION

This thesis provides the implementation of a key management scheme for wire-

less mesh networks. WMNs have various characteristics, which include multihop

coverage, ad hoc networking support, limited mobility, compatibility with exist-

ing wireless standards, and multiple types of network access. Furthermore, they

can be organized in three separate ways, namely infrastructure/backbone WMNs

(where mesh clients provide application-level services and mesh nodes form a

self-configuring, self-healing network which provides routing/gateway functional-

ities), client WMNs (where mesh clients provide both routing/gateway as well as

application-level services), and hybrid WMNs (where there are nodes which pro-

vide only application-level or routing services, as well as nodes which provide both

types of services). We then explored various key management schemes, which are

roughly broken down into two types - symmetric and asymmetric key management

schemes.

However, the other key management schemes did not provide all the desired

qualities for a key management scheme on the mesh network, which were the

following: it needed to support a network of nodes that need not be in direct

contact with each other; it needed to support a network of nodes that may move

rapidly (thus changing the topology); it needed to support a network that may be

susceptible to attacks. In order to facilitate all this, a key management scheme

(which was introduced in [7]), namely SMOCK, was introduced. SMOCK is a

combinatorial key management scheme that generates a key pool and provides

108

mutually exclusive subsets of the key pool to each node. It provides memory

efficiency and tries to minimize computational complexity and maximize resiliency.

We then described the SMOCK implementation, which consisted of two modules,

namely SMOCK Server and SMOCK Client. SMOCK Server takes in parameters

such as network size and creates SMOCK keys (as well as its own public key) and

waits for new connections from SMOCK Client modules. After this, it sends

SMOCK public/private keys, generates a SMOCK ID (based on the subset of

SMOCK private keys), encrypts this ID with its SMOCK key, and then sends this

data to SMOCK Client. SMOCK Client consists of a set of API (including the

two main functions, smock encrypt() and smock decrypt()) which applications

can use to receive keys from SMOCK Server and use them to encrypt/decrypt

data.

We then described a software, namely SMesh, that can be used to implement

a mesh network. SMesh is a software that is installed on various nodes to create a

mesh network, and provides various services to clients including gateway/routing

functionality. SMesh utilizes Spines, a routing software that creates a router

daemon and a set of API that can be used to access the daemon to route data. This

API is utilized by SMesh which provides smooth handoff to clients, thus making it

a viable option for applications that provide real-time services such as VoIP. Two

integration scenarios of SMOCK with the SMesh software were proposed. The first

scenario (end-to-end encryption) has the clients (of the mesh network) utilizing

the SMOCK API to encrypt/decrypt data and send it to other clients. The

second scenario (hop-by-hop encryption) comprises integrating SMOCK Client

with the underlying Spines daemon. As data is sent by the SMesh clients to

the Spines daemon (in order to be routed to another mesh node) via the Smesh

Client Interface, it is first encrypted using SMOCK keys. The advantages and

disadvantages of both scenarios were discussed. Then, the wireless mesh network

109

testbed setup was described. We used 7 laptops (5 mesh nodes and 2 clients),

each equipped with a wireless card and installed Linux, MadWifi, and SMesh

software. We then described the topology setup and described the metrics that

are measured and the parameters that are altered.

We analyzed the performance of SMOCK Server and SMOCK Client under

both encryption scenarios (end-to-end and hop-by-hop encryption) as well as vari-

ous parameters such as transmit power, b value (the size of the mutually exclusive

subset of keys assigned to each node), key size, hop count, and message size

and measured various metrics such as parameter generation time, key generation

time, SMOCK memory usage, SMOCK encryption/decryption time, and round

trip time. The results showed that key sizes greater than 2048 bits were impracti-

cal for SMOCK, and that the decision to utilize either of the scenarios depended

on the network model. The average hop count, average message size, b parameter,

and transmit power determine the scenario of encryption.

Thus, for a mesh network, SMOCK is a viable option. There are two scenar-

ios of integration of SMOCK with the mesh network. Determining the approriate

mode of integration depends entirely on the network model. That being said,

SMOCK offers reasonable results when it comes to round trip times of messages,

while satisfying properties desired of a key management scheme for mesh net-

works. It is hopeful that with advances in memory/processor power/networking,

the highlighted deficiencies in SMOCK may be minimized, making it viable for

all applications regardless of the network model.

110

REFERENCES

[1] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: A survey,”
Computer Networks, vol. 47, no. 4, pp. 445–487, 2005.

[2] A. C.-F. Chan, “Distributed symmetric key management for mobile ad hoc
networks,” IEEE INFOCOM, vol. 4, pp. 2414–2424, 2004.

[3] H. Yang, J. Shu, X. Meng, and S. Lu, “Scan: Self-organized network-layer
security in mobile ad hoc networks,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 2, pp. 261–273, 2006.

[4] L. Buttyán and J.-P. Hubaux, “Report on a working session on security in
wireless ad hoc networks,” Mobile Computing and Communications Review,
vol. 7, no. 1, pp. 74–94, 2003.

[5] V. Gupta, S. Krishnamurthy, and M. Faloutsos, “Denial of service attacks
at the mac layer in wireless ad hoc networks,” in MILCOM, 2002. [Online].
Available: citeseer.ist.psu.edu/gupta02denial.html

[6] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile communica-
tions: the insecurity of 802.11,” in MOBICOM, 2001, pp. 180–189.

[7] W. He, Y. Huang, K. Nahrstedt, and W. C. Lee, “Smock: A scable method
of cryptographic key management for mission-critical networks,” University
of Illinois at Urbana-Champaign, Tech. Rep. UIUCDCS-R-2006-2734.

[8] L. Krishnamurthy, S. Conner, M. Yarvis, J. Chhabra, C. Ellison,
C. Brabenac, and E. Tsui, “Meeting the demands of the digital
home with high-speed multi-hop wireless networks,” Intel Technology
Journal, vol. 6, no. 4, pp. 57–68, 2002. [Online]. Available: cite-
seer.ist.psu.edu/krishnamurthy02meeting.html

[9] J. Jun and M. Sichitiu, “The nominal capacity of wireless mesh networks,”
IEEE Wireless Communications, vol. 10, no. 5, pp. 8–14, 2003. [Online].
Available: citeseer.ist.psu.edu/jun03nominal.html

[10] D. Highfill, “Field asset security in a smart grid world,” June 18, 2008.

111

[11] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in
large networks of computers,” Commun. ACM, vol. 21, no. 12, pp. 993–999,
1978.

[12] J. Kohl and B. Neuman, “The kerberos network authentication service(v5),”
September 1993. [Online]. Available: http://www.ietf.org/rfc/rfc1510.txt.

[13] M. Striki and J. S. Baras, “Key distribution protocols for multicast group
commununication in manets,” University of Maryland at College Park, Tech.
Rep. TR2003-17, 2003.

[14] J. Nam, S. Kim, H. Yang, and D. Won, “Secure group communications over
combined wired/wireless networks.”

[15] L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed
sensor networks,” in ACM Conference on Computer and Communications
Security, 2002, pp. 41–47.

[16] H. Chan, A. Perrig, and D. X. Song, “Random key predistribution schemes
for sensor networks,” in IEEE Symposium on Security and Privacy, 2003, pp.
197–213.

[17] S. A. Çamtepe and B. Yener, “Combinatorial design of key distribution mech-
anisms for wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 15, no. 2,
pp. 346–358, 2007.

[18] S. Kent and T. Polk, “Public-key infrastructure (x.509) (pkix) charter,”
May 2002. [Online]. Available: http://www.ietf.org/pkix-charter.html.

[19] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE Net-
work, vol. 13, no. 6, pp. 24–30, 1999. [Online]. Available: cite-
seer.ist.psu.edu/zhou99securing.html.

[20] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing robust and
ubiquitous security support for mobile ad hoc networks,” in ICNP, 2001, pp.
251–260.

[21] D. Malan, M. Welsh, and M. Smith, “A public-key infrastructure for key
distribution in tinyos based on elliptic curve cryptography,” in First IEEE
International Conference on Sensor and Ad Hoc Communications and Net-
work, 2004, pp. 71–80.

[22] G. Montenegro and C. Castelluccia, “Statistically unique and cryptographi-
cally verifiable (sucv) identifiers and addresses,” in NDSS, 2002, pp. 221–232.

[23] S. Capkun, L. Buttyán, and J.-P. Hubaux, “Self-organized public-key man-
agement for mobile ad hoc networks,” IEEE Trans. Mob. Comput., vol. 2,
no. 1, pp. 52–64, 2003.

112

[24] G. Ateniese, M. Steiner, and G. Tsudik, “New multiparty authentication
services and key agreement protocols,” IEEE Journal on Selected Areas
in Communications, vol. 18, no. 4, pp. 628–639, 2000. [Online]. Available:
http://citeseer.ist.psu.edu/ateniese99new.html.

[25] K. Becker and U. Wille, “Communication complexity of group key distribu-
tion,” in ACM Conference on Computer and Communications Security, 1998.
[Online]. Available: http://citeseer.ist.psu.edu/becker98communication.html
pp. 1–6.

[26] A. T. Sherman and D. A. McGrew, “Key establishment in large dynamic
groups using one-way function trees,” IEEE Trans. Software Eng., vol. 29,
no. 5, pp. 444–458, 2003.

[27] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient group key agree-
ment,” in SEC, 2001, pp. 229–244.

[28] M. J. Cox, R. S. EngelSchall, S. Henson, and B. Laurie, “The openssl
project.” [Online]. Available: http://www.openssl.org.

[29] Y. Amir, C. Danilov, M. Hilsdale, R. Musaloiu-Elefteri, and N. Rivera, “Fast
handoff for seamless wireless mesh networks,” in MobiSys, 2006, pp. 83–95.

[30] Y. Amir and C. Danilov, “Reliable communication in overlay networks,” in
DSN, 2003, pp. 511–520.

[31] S. Leffler and G. Chesson, “Madwifi,” 2005. [Online]. Available:
http://madwifi.org.

113

