
Toward an On-Demand Restricted Delegation
Mechanism for Grids

Mehran Ahsant #1, Jim Basney ∗2, Olle Mulmo #3, Adam J. Lee %4, Lennart Johnsson #5

#Center for Parallel Computers, Royal Institute of Technology
Valhallavgen 79, 10044 Stockholm, Sweden

1mehrana@pdc.kth.se
3mulmo@pdc.kth.se

5johnsson@pdc.kth.se
∗National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

1205 W. Clark St., Urbana, IL 61801 USA
2jbasney@ncsa.uiuc.edu

%Department of Computer Science, University of Illinois at Urbana-Champaign
201 N. Goodwin Ave., Urbana, IL 61801 USA

4adamlee@cs.uiuc.edu

Abstract— Grids are intended to enable cross-organizational
interactions which makes Grid security a challenging and non-
trivial issue. In Grids, delegation is a key facility that can
be used to authenticate and authorize requests on behalf of
disconnected users. In current Grid systems there is a trade-
off between flexibility and security in the context of delegation.
Applications must choose between limited or full delegation: on
one hand, delegating a restricted set of rights reduces exposure to
attack but also limits the flexibility/dynamism of the application;
on the other hand, delegating all rights provides maximum
flexibility but increases exposure. In this paper, we propose an
on-demand restricted delegation mechanism, aimed at addressing
the shortcomings of current delegation mechanisms by providing
restricted delegation in a flexible fashion as needed for Grid ap-
plications. This mechanism provides an ontology-based solution
for tackling one the most challenging issues in security systems,
which is the principle of least privileges. It utilizes a callback
mechanism, which allows on-demand provisioning of delegated
credentials in addition to observing, screening, and auditing
delegated rights at runtime. This mechanism provides support
for generating delegation credentials with a very limited and
well-defined range of capabilities or policies, where a delegator
is able to grant a delegatee a set of restricted and limited rights,
implicitly or explicitly.

I. INTRODUCTION

Grid computing, since its emergence, has been widely
regarded as a revolution in information technology. Grids
provide mechanisms for the creation and management of large
numbers of dynamic virtual organizations (VOs), spanning
multiple heterogeneous organizations with different underlying
security mechanisms [1][2].

In a Grid, users or applications may need access to resources
that belong to different organizations. The jobs submitted by
users of these systems may take long periods of time to
execute, and resource providers usually require some form of
authentication of users and authorization of requests, i.e., that
a user is allowed to use the requested resources as described in
the request. Requests may be generated dynamically during the

execution of an application and need user approval before be-
ing submitted to a resource broker or resource provider. How-
ever, the user may not be directly accessible either because of
malfunction simply having disengaged after submission of a
request for execution of an application. A common solution to
the problem of disconnection is to delegate the authorization
to an agent (program) that acts on the user’s or application’s
behalf and that is less likely to be disengaged at any time [1].

Delegation is a key facility in Grids that makes possible an
effective use of a wide range of dynamic Grid applications.
However, the least privilege principle, stating that we should
grant only those rights required to perform a required action to
minimize vulnerability, is becoming one of the most important
security aspects in regards to delegation. There are potential
security risks associated with performing delegation in a way
that delegated rights are not limited only to the task intended
to be performed within a limited lifetime and under restricted
conditions. Therefore, a fine grained policy for restricted
delegation is highly desirable, yet care must be taken to not
introduce unmanageable complexity.

However, performing restricted delegation in a static manner
cannot meet all the requirements of dynamic execution of Grid
applications, because the required access rights for completing
a task cannot easily be anticipated in advance. Delegating
fewer rights than required for completing the task may cause
task execution to fail while delegating more rights than needed
may threaten abuse by malicious parties. Therefore, utilizing
a mechanism that allows determining and acquiring only
required rights and credentials for completing a task, when
they are needed, would be a more reasonable and robust
approach for restricted delegation.

We will discuss later in this paper how current delegation
approaches in Grids trade off between security and flexibility.
We therefore conclude that a desirable delegation mechanism
for Grid applications needs to balance the security and the



flexibility of delegation while minimizing dependencies on
underlying security mechanisms used by diverse Grid systems.

In this paper, we propose a novel solution for the least priv-
ilege delegation in dynamic, distributed environments, which
no existing solution adequately addresses. We describe an on-
demand delegation mechanism that tackles the most challeng-
ing issues of dynamic restricted delegation. This mechanism
exploits ontologies and the potential power of ontological
queries for determining required access rights at run-time and
utilizes a callback mechanism for acquiring corresponding
credentials required for completing the task at on-demand.
It should also be noted that this paper deals only with the
architectural issues of this mechanism and does not describe
in details the implementation.

Our paper proceeds as follows. In section II, we give an
overview of our on-demand delegation framework. In section
III, we describe related work aimed at addressing restricted
delegation. In section IV we describe how ontologies can
be exploited in our proposed framework. In section V, we
provide a Grid job simulation scenario as a motivating example
of the potential power of this approach and finally sections
VI and VII describe the security considerations and current
implementation status. Our conclusion and proposed future
work are both described in section VIII.

II. ON-DEMAND DELEGATION

On-demand delegation is a novel approach in which a
delegatee obtains additional rights (in terms of additional
delegated credentials) as required and requested for acting on
behalf of a delegator. On-demand delegation allows delegators
to delegate privileges when the other party has proved the
necessary need for those privileges. This implies delegating
rights to delegatees iteratively as needed until the task has
completed.

Fig. 1. An example of on-demand delegation

Fig.1 illustrates an example of performing on-demand dele-
gation. Through this approach, a delegator initiates delegation
by providing a least set of rights to a delegatee (job). This
least set of rights only allows the delegatee to prove that it
needs to act on behalf of its delegator. The Delegatee has
no rights to access resources and therefore needs to query

the delegation system model to determine what additional
credentials are required to complete the task. By this query,
the required privileges for executing the task are determined
and disclosed to the delegatee during the job’s execution.
The Delegatee contacts one or more Delegation Services to
determine what credentials are needed and to then obtain them.
In this simplest case, there is a Delegation Service associated
with the Delegator and one associated with the Resource. The
Delegation Service checks requests against policies established
for each specific delegatee that specify the circumstances for
issuance of additional credentials.

On-demand delegation allows a delegatee to leverage very
simple ontological queries for determining the required access
rights dynamically at run-time and to utilize a call-back
mechanism to request required credentials from Delegation
Services. Delegation policies are established to govern if ad-
ditional credentials can be granted to a delegatee upon request
and enable the delegator to keep full control over delegated
rights. Ontologies are the powerful means for establishing
these policies dynamically at the time of performing each
delegation.

In fact, what an on-demand delegation mechanism provides
is an efficient approach for performing restricted delegation
in a dynamic fashion, because in practice we expect a small
number of credentials to be required which can be determined
by querying appropriate delegation ontologies. Ontological
queries provide a very simple and efficient way of acquiring
required access rights according to system descriptions.

We address the important concern of scalability by dis-
tributing Delegation Services across the Grid associated with
different resources. Delegation Services need only know about
local policies, and delegatees should need to query only
a few Delegation Services in practice. This also provides
manageability by providing local policy control points (the
Delegation Service), and the semantic web community has
shown [3] that ontologies can be used effectively for specifying
policies in practice. By using call-backs, our on-demand
framework never leaves a job stranded without credentials, but
policy dictates the least privilege credentials that are delegated.
When a job needs credentials that policy won’t allow, we
can put the job “on hold”, notify the user, and wait for user
intervention. If the user approves, the job can then proceed,
thereby providing a very effective approach compare to other
delegation mechanisms.

The approach presented in this paper is in some ways similar
to the more general notion of trust negotiation [4] [5].In trust
negotiation, two strangers carry out a bilateral and iterative
exchange of attribute credentials to gradually establish trust
in one another. We set out to solve the somewhat different
problem of determining when to grant more privileges to a
subjob running on behalf of a user. This approach comple-
ments trust negotiation in that our work could be used in
a system employing trust negotiation to determine when a
user’s sensitive attribute certificates should be accessible to his
subjobs. The Delegation Service in our framework also bears
some resemblance to the Traust service [6], which acts as



a stand-alone authorization service that uses trust negotiation
to broker access tokens for resources in its security domain.
Our Delegation Services, however, grant privileges only to a
certain user’s subjobs or provide policy-level information for
resources in a particular security domain.

It should also be noted that for a system with a high
level of granularity of access rights, making multiple calls
to a Delegation Service could hurt performance. Performance
evaluation and optimization is an important area for our future
work, discussed in brief in section VIII.

III. RELATED WORK

There is significant prior work on restricted delegation for
Grids and other distributed computing environments. In this
section, we describe the prior work that we find most relevant
to our own.

UNICORE1, which is one of the widely used Grid infras-
tructures, addresses delegation and multi-site job execution by
creating Sub-AJOs from a parent Abstract Job Object (AJO)
[7]. In this approach, all components of an AJO are signed with
the end-users’ certificate at creation time, granting a limited
set of rights to the specific job. This implies a secure but static
delegation mechanism. “Explicit Trust Delegation” proposed
in [7] is aimed to address this shortcoming by introducing
trusted agents that are allowed to create and sign AJOs on
behalf of end-users. By this approach end-users need to trust
other agents for endorsing Sub-AJOs on their behalf and if
job runs on a site which its server is not trusted, execution
fails. More ever end-users loose their control on Sub-AJOs
during the execution of task. Scalability also is an issue in this
approach. In order to ensure that an endorser is authorized to
endorse a Sub-AJO on behalf of end-user many information
should be coded explicitly in authorization database at each
site.

The Globus Security Infrastructure (GSI) implements dele-
gation by means of “proxy certificates”, which can provide
full impersonation of end-users by granting all rights to a
subordinate [8]. This provides a dynamic delegation mecha-
nism, as there is no need to know the details of the execution
in advance. However, this exposes all of the user’s rights to
possible compromise. Issuing short-lived proxy certificates is
one solution for limiting the danger caused by unauthorized
acquisition or usage of a proxy identity. Another approach is
to use the PCI extension to carry a policy statement that limits
the delegated rights [8].

The Community Authorization Service (CAS) [9] is a third-
party, trusted by resource owners and used by end-users to
obtain rights to access resources. It issues credentials, which
limit the rights of the holder to only those agreed on between
the VO and the resource providers. CAS has been primarily
developed to set PCI extensions to limit the delegated rights to
the intersection of rights between VOs and resource owners.
The Virtual Organization Membership Service (VOMS) [10]

1http://www.unicore.org

has also been developed to solve this problem. It grants au-
thorization data to users at the VO level by providing support
for group membership, roles and capabilities. Although CAS
and VOMS allow users to obtain and delegate specific rights
via tags and roles during a session, they do not address the
need for dynamic, on-demand delegation, considering that it
is often difficult to determine the rights needed by a Grid job
in advance.

The “Workflow-based Authorization Service” (WAS) [11]
proposes an authorization architecture for supporting restricted
delegation and rights management. The WAS architecture uses
a task workflow, created from the task source code, to obtain
the sequence of required rights for executing the task. This
can provide a useful way of determining the required rights
in advance for deterministic jobs. However, in practice we
still need on-demand delegation, because even if we can
predict the job’s behavior, the environment is dynamic, and
we need the flexibility to use different services on the Grid
opportunistically.

“Multiple Authorizations” is a concept suggested in [12] for
restricted delegation in a management system based on mobile
agents. It proposes to share the responsibility for protected
operations and to supervise actions of subordinates instead of
transferring rights before delegating the task. In this approach,
a protected operation cannot be executed unless the additional
authorizations by other partners are provided. When a “work
agent” needs to execute a delegated task, it has to collect
approvals from all the corresponding “authorization agents”
for the task. This approach utilizes a call back mechanism
to ask for required grants on-demand, but the collection of
required grants that authorizes task execution needs to be
determined in advance.

Rein [13] is an open and extensible approach for represent-
ing policies and provides a unified way of decision making by
reasoning over policies and delegation networks. It uses on-
tologies for specifying and reasoning about access policies in
heterogeneous policy domains with different policy languages.
Ontologies are used for describing and modeling different
information in this framework such as policies, requests and
delegation of authority and trust. However, in regard to delega-
tion, this framework can mainly be used for cryptographically
asserting delegations for policy decision making. From this
perspective, Rein is analogous to other policy frameworks
developed to support delegation of authority and trust to
address delegation and can not be used as a complete solution
for addressing the issue of delegation of least privileges in
Grids.

None of above approaches address all the requirements of
restricted delegation described earlier. In general, there is a
compromising situation for addressing flexibility and security
in the context of delegation. The most challenging issue of
restricted delegation, namely dynamically anticipating access
rights required for completing a task, is still unresolved.
Some of these approaches have tried to address this challenge
partially, though not through a dynamic and generic solution.
All these approaches are strongly dependent on a specific



and particular underlying authorization mechanism or Grid
infrastructure. There is little support for observing and auditing
of the delegation process that could be adapted to the dynamic
requirements of Grid applications.

IV. DELEGATION ONTOLOGY

In computer science, an ontology is a conceptual schema
that describes and classifying entities, the relationships be-
tween entities, and rules within a certain domain by means
of a hierarchical data structure. It implies a more specialized
schema for making the data useful for making real-world
decisions. In this sense, Tom Gruber and R. Studer describe
ontology as “an explicit and formal specification of a con-
ceptualization”. The Semantic Web2 is a direct extension of
the current Web to the explicit representation of knowledge by
giving meaning and semantics, in a manner understandable by
machines, to the content of documents on the Web. In Grids
there are also many possible applications of knowledge-based
problem-solving functionality which potentially can exploit
ontologies. Therefore, the Semantic Grid3 is also emerging to
add Semantic Web capabilities to the Grid computing applica-
tions. We propose that on-demand delegation is a paradigm
in which ontologies can support the automatic process of
determining, requesting and delegating credentials.

In on-demand delegation, ontologies can be populated for
sharing a common understanding of a delegation concept
among different Grid systems with different underlying se-
curity mechanisms. The delegation ontology can provide a
formal description of the delegation concept to be instantiated
specifically for each administrative domain. This provides
strong support for reusing and analyzing the domain knowl-
edge required to meet the requirements of dynamic restricted
delegation. In a general sense, on-demand delegation exploits
ontologies for:
• Describing systems and resources which eventually result

in determining and providing required credentials for
access to resources and;

• Establishing delegation policies to automate the process
of decision making.

This implies that the delegation ontology can be populated
to describe the service provider’s requirements for resource
access as well as the Delegator’s policies for performing
delegation. Later in this paper we show how ontologies can be
used in a real Grid usage scenario to describe the delegation
mechanism in a particular system for enabling fine-grained
access to protect resources in a highly descriptive fashion.

Ontologies also have a strong potential for making more ef-
ficient, adaptive, and intelligent queries on any system descrip-
tion. With ontologies in place, one can start adding reasoning
capabilities for automatic disclosure of privileges according to
delegation polices. Furthermore, ontologies make defining and
managing delegation polices easier [14][15]. Ontology can be
used for detecting conflicts and inconsistencies in the system

2http://www.w3.org/2001/sw/
3http://www.semanticgrid.org/

description, which increase the risk of unauthorized access to
resources. Even more, fulfillment of delegation policies could
be assessed by analyzing resource usage and task definition
information described using ontologies. Ontologies can also
be used to determine the least privileges required to fulfill a
request for delegation.

The delegation ontology depicted in Fig. 2, describes that
each “Delegation” enables a “Delegator” to endow a “Capa-
bility” to a “Subject” under restricted conditions. “Credential”
is also the means by which “Delegation” is authorized. It
also depicts that each “Capability” contains one or more
“Verbs” which can be accomplished on one or more “Objects”.
Each “Capability” may have some dependencies on other
capabilities, which implies a hierarchical delegation taxonomy
in system description and consequently the need for further
required delegation credentials.

Fig. 2. Delegation Ontology

Fig. 2 is a simple illustration of a delegation ontology pop-
ulated for on-demand delegation. This picture only illustrates
the most important and relevant classes defined for delegation
ontology without depicting the arrangement of these classes
in a taxonomic hierarchy. It also shows defined properties and
allowed values for these properties. Hidden from this picture
are the values for these properties which have been filled in
for instances and a knowledge base which is also created by
defining instances of these classes. On the service provider
side, instances of the delegation ontology can also be used to
describe the system in terms of “Objects”, “Verbs” and the
“Capability” which makes an appropriate relation between the
objects and verbs. It can also be used to specify individual
instances of “Delegator” who can delegate access rights to
the instances of class “Subject”. Individual instances of class
“Credential” can also be used to describe how the authority
of the owner for accessing resources can be approved. On
the Delegator side, individual instances of delegation can be
used for establishing delegation policies and further specifying
how credentials should be issued and appropriate constraints
be applied on them.



V. A GRID USAGE SCENARIO

In this section, we demonstrate the potential benefits of
on-demand delegation by thoroughly discussing the example
depicted in Fig.3. This picture describes a Grid scenario for
job submission that utilizes on-demand delegation to perform
a simulation job on the Grid. We describe in detail how on-
demand delegation can be used to provide the job acting on
behalf of Alice with the required delegation credentials for
completing the task during its execution lifecycle.

Alice needs to submit an earthquake simulation job to the
PDCGrid cluster. A Delegation Service is running on Alice’s
side to mediate between Alice and Alice’s job for providing
additional delegation credentials. The delegation service is
aware of the domain delegation ontology that represents rela-
tionships between resources, users and delegates (jobs). This
simulation job may need to get its input from a database on
the NCSAGrid cluster, then perform a complex computation
task on the SunetGrid cluster, and finally store the results in
a database located in the PDCGrid cluster.

Fig. 3. An on-demand delegation scenario

Alice needs to generate an Independent Proxy Certificate
(IPC), which is required for creating an independent identity
for the submitted job with which to associate Delegation
Service policies. These policies specify how further privileges
could be linked later to this credential for enabling its owner to
act on her behalf for completing a specific task. For example,
such policies may specify where (on which site/cluster) this
submitted job could be executed or for what operations on
which services this job can act on behalf of Alice.

Alice creates an IPC and submits the job. A mutual authen-
tication happens between Alice and the cluster’s job manager.
Once authentication is complete, the job manager will verify
that Alice is authorized to submit the job. Alice also registers
the IPC with the Delegation Service as a valid job’s identity
with permission to make use of her privileges to access
resources.

Now the job has started on PDCGrid job scheduler. During
its execution the job needs to locate some input data for the

TABLE I
REQUIRED CREDENTIALS TO ACCESS RLS

Delegator Alice
Capability Access RLS
Dependency NoCapability
Credential X509PC
Object RLS SERVICE
EPR http://grid.pdc.se/wsrf/RLSService

simulation process. First it needs to access a replica location
service (RLS). The job sends a query to the Delegation Service
running on NCSAGrid cluster to determine what permissions
are required to invoke the RLS on behalf of Alice. This query
is depicted in Fig. 4 and the result is depicted in Table I. This
states that access to the RLS on behalf of Alice is authorized
through a proxy certificate.

SELECT ?delegator ?capability
?dependency ?credential
?object ?EPR

WHERE {
?delegator:isIdentifiedBy ?iden.
?delegator:hasA ?capability.
?capability:hasDependency ?dependency.
?capability:isAuthorizedBy ?credential.
?capability:hasObject ?object.
?object:isIdentifiedBy ?objiden.
?objiden:EPR ?EPR.
FILTER regex(str(?iden), "Alice_DN") .
FILTER regex(str(?capability),
"http://grid.pdc.se/wsrf/RLSService")}

Fig. 4. Query on access to RLS service

The Delegation Service returns the signed result of the
query back to the job. These requested privileges might be
exposed as a portion of policy or even in terms of a specific
role or attribute. It depends on the ontology that describes the
delegation mechanism in each particular domain.

The job constructs a request message based on the infor-
mation received from the Delegation Service and sends the
request to the designated Delegation Service that performs
delegation in Alice’s domain. It authenticates the request by
signing it with the IPC.

The Delegation Service receives the request. It verifies
the request signature, parses the request and compares it
against Alice’s issuance policies, which she specified when
she submitted the job. Ultimately, if the policy allows issuance
of the requested credentials, the Delegation Service generates
the credential and sends it to the job.

Now Alice’s job can authenticate to the RLS and use the
service to locate its input data. The RLS determines that input
data can be obtained from the ShakeTable on the NCSAGrid
cluster. However, to obtain the input data it may need to
determine the required credentials and request them from the
Delegation Service again.

The job sends a query to the Delegation Service on the
NCSAGrid cluster to determine what credentials are needed



TABLE II
REQUIRED CREDENTIALS FOR READING THE INPUT

Delegator Alice Alice Alice
Capability Read DB Read DB Read DB
Dependency Access RFT Access Read DB

GrdiFTP
Credential X509PC X509PC UserNameToken
Object RFT GridFTP Shake Table

Service Service
EPR http://ncsa. http://ncsa. gsiftp://

teragrid.org/ teragrid.org/ ncsa.teragrid.
RFTService GridFTP org/shake/1352

Service

TABLE III
REQUIRED CREDENTIALS FOR COMPUTATION JOB

Delegator Alice
Capability Execute JOB
Dependency NoCapability
Credential SAMLAssertion
Object JOBProcess
EPR null

to authorize the capability “Read DB” on behalf of delegator
Alice. This query is depicted in Fig.5. The Delegation Service
queries the ontology and sends the result back as it is depicted
in Table II.

SELECT ?delegator ?capability ?dependency
?credential ?object ?EPR

WHERE {
?delegator:isIdentifiedBy ?iden.
?delegator:hasA ?capability.
?capability:hasDependency ?dependency.
?dependency:isAuthorizedBy ?credential.
?dependency:hasObject ?object.
?object:isIdentifiedBy ?objiden.
?objiden:EPR ?EPR.
FILTER regex(str(?EPR),
"gsiftp://ncsa.teragrid.org/shake/1352")
FILTER regex(str(?iden), "Alice_DN") .
FILTER regex(str(?capability),"Read_DB")}.

Fig. 5. Query on READ DB

The results show the required access rights and associated
credentials to read data from the ShakeTable on behalf of Al-
ice. It also illustrates how the attribute “Dependency” enables
an automatic reasoning for determining all required access
rights only by one query. The job requests the credentials again
from Alice’s Delegation Service as described earlier. Once
Alice’s job has obtained the required delegation credentials
from Alice’s Delegation Service, it can get its input data and
continue on to completing its task.

This process continues to obtain all the required credentials
iteratively until the job execution has completed. Table IV
shows the results of appropriate queries made to Delegation
Services to determine what credentials are required to autho-
rize Alice’s job to perform the computation task and store

TABLE IV
REQUIRED CREDENTIALS FOR WRITING THE OUTPUT

Delegator Alice Alice Alice
Capability Write DB Write DB Write DB
Dependency Access RFT Access Write DB

GrdiFTP
Credential X509PC X509PC UserNameToken
Object RFT GridFTP EarthQuake Table

Service Service
EPR http://grid. http://grid. gsiftp://grid.

pdc.se/ pdc.se/ pdc-se.
RFTService GridFTP /quake/1445

Service

TABLE V
CONSTRAINTS OF DELEGATION CREDENTIAL

Subject Job 1
Capability Submission JOB
ValidNotBefore 2006-04-10T12:00:00
ValidNotAfter 2006-04-11T12:00:00
isApplicableTo NoCapability
isDelegatableTo NoSubject
Dependency NoCapability

output data in a proper location.
Ontologies are also utilized by Alice’s Delegation Service

to decide when a credential should be issued. Fig. 6 shows a
sample query to answer the question, “What are the parameters
and constraints of delegation which authorize Alice’s job,
identified by JOB 1 DN, for job submission?”.

SELECT ?Subject ?Identifier ?capability
?validNotBefore ?validNotAfter
?isApplicableTo ?isDelegatableTo

WHERE {
?cap:authorizes ?capability.
?delegaion:isDelegatedTo ?Subject.
?idn:isIdentifiedBy ?Identifier.
?nb:isValidNotBefore ?validNotBefore.
?na:isValidNotAfter ?validNotAfter.
?ap:isApplicableTo ?isApplicableTo.
?de:isDelegatableTo ?isDelegatableTo.
FILTER regex(str(?capability),
"Submission_JOB"
FILTER regex(str(?Identifier),
"Job_1_DN").}

Fig. 6. Query on delegation description

The results of the query in Table V specify the constraints
that should be considered when a delegation credential is
issued for Alice’s job identified by “JOB 1 DN”.

VI. SECURITY CONSIDERATIONS

We must recognize that any form of delegation entails some
risks that we cannot eliminate completely. If the job runs at a
compromised site, it may be hijacked and its credentials may
be misused. However, we believe that on-demand restricted
delegation provides mechanisms to help us manage these risks.



In particular, the callback mechanism enables us the possi-
bility of detecting misbehaviors and raising appropriate alarms
to indicate that a job might be hijacked and compromised. The
Delegation Service can log what credentials the job obtained,
so after the compromise is detected, we can determine how the
compromise spread and what credentials need to be revoked.
Even more, we can consider:
• An exception mechanism for handling unexpected situa-

tions by blocking the job, notifying the user, and waiting
for the user’s decision on how to proceed, or by granting
the rights so the job can proceed, but notifying the user,
and letting the user terminate the job if it has overstepped
its bounds.

• A learning mechanism that can be used to modify the
policies according to the credentials that the job required
when it last ran and even build up the policies by
leveraging an interactive mechanism which involves the
owner’s approval for provided credentials over and over
until all needed credentials are acquired.

These mechanisms assist the user in building up restricted
policies to limit the vulnerability of delegated credentials and
allow the user to monitor jobs to detect when changes in policy
are required or when jobs are misbehaving.

VII. IMPLEMENTATION AND VALIDATION

Currently, we demonstrate the feasibility of our approach
through a prototype implementation, which we have success-
fully tested with a simple Grid application. In our test scenario
we have implemented a client program for performing a third
party data transfer in Grids, which is run with no pre-generated
proxy certificates. It further obtains credentials to use with
GridFTP [16] services on demand and solely for the particular
files specified by its command line arguments. For this we have
implemented a Delegation Service and a communication pro-
tocol for requesting and exchanging credentials as described
in [17]. In our implementation we have used the Ontology
Web Language (OWL) [18] for creating delegation ontology
which includes descriptions of classes, properties and the in-
stances of delegation ontology described earlier. The SPARQL
query language [19] is also used to make efficient, adaptive,
and intelligent queries on system description and delegation
ontology. We have also used the Protege OWL API [20] to
develop a set of software components for generating, parsing
and evaluating queries and also populating and instantiating
ontologies.

VIII. CONCLUSION AND FUTURE WORK

In this paper we claimed that the lack of a flexible least priv-
ilege delegation mechanism necessitates the design of an on-
demand delegation framework. We believe that provisioning
restricted delegation in a flexible way is the most significant
and challenging issue for delegation in Grids.

We proposed an on-demand delegation framework that
utilizes a callback mechanism for provisioning of restricted
credentials containing only the rights that are actually needed.
We described how ontologies can be utilized for determining

the access rights required by a delegatee to complete a task
and further how a Delegation Service can use ontologies
for performing delegation. Approaching on-demand delegation
has benefits of real-time control and auditing at the Delegation
Service. However, it may hurt performance if it requires
multiple callbacks to the Delegation Service for obtaining
rights. In this regard, one strategy to optimize on-demand
delegation would be delegating more rights to the job either
at the time of launching or during each callback, so that a
delegatee does not have to callback to a Delegation Service
so often. Determining this set of rights in an optimal way is
a challenging issue that can be considered part of the future
work of this research.

Rein [13], the policy framework described earlier, supports
an ontology-based mechanism for describing delegation and
therefore it has certainly strong potential to be used in our
proposed on-demand delegation. Then one future work would
be investigating on how to use Rein policy framework in this
framework. The level of granularity of resource and system
description and access rights can also affect the complexity
of restricted delegation and even the security of the whole
system. Therefore, one additional target point of future work
would be the optimization of the delegation description to find
an optimized level of granularity that yields a less complex
and more usable system without significantly compromising
the security.

ACKNOWLEDGMENT

Adam J. Lee was supported by a Motorola Center for
Communications graduate fellowship and by the NSF under
grants IIS-0331707, CNS-0325951, and CNS-0524695.

REFERENCES

[1] D. A. Reed, C. L. Mendes, C. da Lu, I. Foster, and C. Kesselman, The
Grid 2: Blueprint for a New Computing Infrastructure - Application
Tuning and Adaptation, 2nd ed. San Francisco, CA: Morgan Kaufman,
2003, ch. 16.

[2] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke, “Security for grid
services,” in HPDC ’03: Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing (HPDC’03).
Washington, DC, USA: IEEE Computer Society, 2003, p. 48.

[3] T. Leithead, W. Nejdl, D. Olmedilla, K. E. Seamons, M. Winslett, T. Yu,
and C. C. Zhang, “How to exploit ontologies for trust negotiation,” in
ISWC Workshop on Trust, Security, and Reputation on the Semantic
Web, ser. CEUR Workshop Proceedings, vol. 127. Hiroshima, Japan:
Technical University of Aachen (RWTH), Nov. 2004.

[4] J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M. Winslett, “Ne-
gotiating trust on the grid,” in Semantic Grid: The Convergence of
Technologies, ser. Dagstuhl Seminar Proceedings, 2005.

[5] T. Yu, M. Winslett, and K.E.Seamons, “Automated trust negotiation
over the internet,” in The 6th World Multiconference on Systemics,
Cybernetics and Informatics, Orlando, FL, July 2002.

[6] A. J. Lee, M. Winslett, J. Basney, and V. Welch, “Traust: a trust
negotiation-based authorization service for open systems,” in SACMAT
’06: Proceedings of the eleventh ACM symposium on Access control
models and technologies. New York, NY, USA: ACM Press, 2006.

[7] D. F.Snelling, S. van den Berghe, and V. Qian, “Explicit trust delegation:
Security for dynamic grids,” FUJITSU Sci.Tech.Journal, vol. 40, pp.
282–294, 2004.

[8] V. Welch, I. Foster, K. C. M. O., P. L., T. S., G. J., and M. S. S. F.,
“X.509 proxy certificate for dynamic delegation,” in Proceedings of the
3rd Annual PKI Workshop, Gaithersburg MD, USA, April 2004, pp.
20–25.



[9] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke, “A
community authorization service for group collaboration,” in POLICY
’02: Proceedings of the 3rd International Workshop on Policies for
Distributed Systems and Networks (POLICY’02). Washington, DC,
USA: IEEE Computer Society, 2002, p. 50.

[10] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner,
A. Gianoli, K. Lorentey, and F. Spataro, “Voms, an authorization system
for virtual organizations.” in European Across Grids Conference, 2003,
pp. 33–40.

[11] S.-H. Kim, J. Kim, S.-J. Hong, and S. Kim, “Workflow-based au-
thorization service in grid,” in GRID ’03: Proceedings of the Fourth
International Workshop on Grid Computing. Washington, DC, USA:
IEEE Computer Society, 2003, p. 94.

[12] G. Vogt, “Delegation of Tasks and Rights,” in Proceedings of the
12th Annual IFIP/IEEE International Workshop on Distributed Systems:
Operations & Management (DSOM 2001), INRIA, Ed., IFIP/IEEE.
Nancy, France: INRIA Press, Oct. 2001, pp. 327–337.

[13] L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner, “Self-describing
delegation networks for the web,” in POLICY ’06: Proceedings of
the Seventh IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY’06). Washington, DC, USA: IEEE
Computer Society, 2006, pp. 205–214.

[14] L. Kagal, T. Finin, and A. Joshi, “A Policy Based Approach to Security
for the Semantic Web,” in 2nd International Semantic Web Conference
(ISWC2003), September 2003.

[15] A. Toninelli, J. Bradshaw, L. Kagal, and R. Montanari, “Rule-based and
Ontology-based Policies: Toward a Hybrid Approach to Control Agents
in Pervasive Environments ,” in Proceedings of the Semantic Web and
Policy Workshop, November 2005.

[16] R. K. Madduri, C. S. Hood, and W. E. Allcock, “Reliable file transfer in
grid environments,” in LCN ’02: Proceedings of the 27th Annual IEEE
Conference on Local Computer Networks. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 737–738.

[17] M. Ahsant, J. Basney, and O. Mulmo, “Grid delegation protocol,” in
Proceedings of the Workshop on Grid Security Practice and Experience
(UK e-Science Security Task Force), Oxford, UK, July 2004, pp. 81–91.

[18] (2004) Owl web ontology language reference, w3c recommendation.
[Online]. Available: http://www.w3.org/TR/owl-features/

[19] (2004) Rdf data access working group. sparql query language for rdf.
[Online]. Available: http: //www.w3.org/TR/2004/WD-rdf-sparql-query-
20041012/

[20] B. R. Volz and P. Lord, “Cooking the semantic web with the owl api,” in
Proceedings of International Semantic Web Conference, Sanibel Island,
2003, pp. 659–675.


