Fuzz-Testing of Proprietary

SGADA/Cantrol Netwaork Protocols

Rebecca Shapiro, Sergey Bratus, and Sean W. Smith

Motivation

Software bugs are more than just a nuisance. They often result from
poorly implemented input validation or memory management. These
vulnerabilities can be exploited by attackers and have historically been a
major source of security problems.
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Power Grid Applications

Be proactive in finding bugs in power applications and equipment.

If industry is aware of bugs in their applications and equipment, they
can protect themselves better.

Can a compromised machine on a control network crash the EMS?

Are the SCADA protocols brittle and susceptible to injection of
malicious data?

Research Plan

+ The purpose of a fuzzer is to craft input that will trigger bugs.
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Challenges of Fuzzing

+  Create inputs that are well-formed enough to pass sanity checks but
malformed enough to trigger bugs.

+  Craft a variety of inputs that maximize code coverage on target.

Fuzzing Proprietary Protocols

+ Modern fuzzing tools require a domain expert’s knowledge of a
protocol.

+ Domain experts need a fuzzing expert’s help to fuzz their equipment.

+ Domain experts are reluctant to share protocol details with fuzzing
experts.

«  To understand undocumented protocols, we need to use a debugger
[1] [2].

+  Domain experts may not have the option of installing (or time to
install) a debugger on their equipment to reverse-engineer protocols.

Goals

Build a fuzzing appliance that a domain expert can use.

Flexibly work with no, partial, or full protocol knowledge.

Transparently capture packets in transit to and from target.
+  Require no configuration changes to source or target.

+  Empower the domain expert to fuzz proprietary equipment.
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Previous Results

+ LZFuzz 1.0, the first generation of LZFuzz, was built as a prototype [3].
+ LZFuzz 1.0 successfully fuzzed SCADA equipment.

» LZFuzz 1.0 lacked the usability and flexibility needed in order to be
useful for a domain expert.

LZFuzz 2.0 Design
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Future Efforts

+ Run experiments to test effectiveness of fuzzer in comparison to other
state-of-the-art fuzzers.

» Work with industry partners to test fuzzer in real-world settings.
. Refine interface to make it more usable by a non-fuzzing-expert.

.+ Enhance logging capabilities so that successful fuzzing sessions can be
studied and replayed.

.+ Design and build traffic analyzer to help users identify different types
of traffic used by protocol.

Build module that searches for and fixes traffic checksums.
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