Fuzz-Testing of Proprietary

SGADA/Cantrol Netwaork Protocols

Rebecca Shapiro, Sergey Bratus, and Sean W. Smith

Motivation

Software bugs are more than just a nuisance. They often result from
poorly implemented input validation or memory management. These
vulnerabilities can be exploited by attackers and have historically been a
major source of security problems.

Memory corruption Code Injection

DID YOU REALLY WELL WEVE LOST THIS
INAVE YOLR SON YEAR'S STUDENT RECCRDS.

Robert'); DROP T HOPE YOURE HAPPY.

TABLE Stuerts;-~ 7 ¢

AND T HOPE

~ OH. YES UTILE - YOVE LEARIED

BOBBY TABLES, TOSWMZE YOR
‘\“ WE CALL HIM DATABASE INPUTS,

Image source: XKCD

Power Grid Applications

Be proactive in finding bugs in power applications and equipment.

If industry is aware of bugs in their applications and equipment, they
can protect themselves better.

Can a compromised machine on a control network crash the EMS?

Are the SCADA protocols brittle and susceptible to injection of
malicious data?

Research Plan

+ The purpose of a fuzzer is to craft input that will trigger bugs.

Resuae . &/
ur S

Fuzzed traffic: FJ Fuzzed

Source

Target

Challenges of Fuzzing

+ Create inputs that are well-formed enough to pass sanity checks but
malformed enough to trigger bugs.

+ Craft a variety of inputs that maximize code coverage on target.

Fuzzing Proprietary Protocols

+ Modern fuzzing tools require a domain expert’s knowledge of a
protocol.

+ Domain experts need a fuzzing expert’s help to fuzz their equipment.

+ Domain experts are reluctant to share protocol details with fuzzing
experts.

« To understand undocumented protocols, we need to use a debugger
[1] [2].

+ Domain experts may not have the option of installing (or time to
install) a debugger on their equipment to reverse-engineer protocols.

Goals

Build a fuzzing appliance that a domain expert can use.

Flexibly work with no, partial, or full protocol knowledge.

Transparently capture packets in transit to and from target.
+ Require no configuration changes to source or target.

+ Empower the domain expert to fuzz proprietary equipment.

=
E ; D TP 1 Checksum
Custom - sequence # c
fixer
—_— rules table
4

Previous Results

+ LZFuzz 1.0, the first generation of LZFuzz, was built as a prototype [3].
+ LZFuzz 1.0 successfully fuzzed SCADA equipment.

» LZFuzz 1.0 lacked the usability and flexibility needed in order to be
useful for a domain expert.

LZFuzz 2.0 Design

—omc—m Tokenize & mutate

Intercent packet T.rafﬁc. tvype Tokenizer | -» Mutator [)aFkC(
—— identifier finisher

- —]

S Send packet

(|
Send reply

Success Packet Receive reply

check finisher

Source String tables for different packet ty7 Custom
\ rules

LZFuzz

D Module part of original LZFuzz

l:‘ Module new to LZFuzz 2.0

Future Efforts

+ Run experiments to test effectiveness of fuzzer in comparison to other
state-of-the-art fuzzers.

» Work with industry partners to test fuzzer in real-world settings.
. Refine interface to make it more usable by a non-fuzzing-expert.

.+ Enhance logging capabilities so that successful fuzzing sessions can be
studied and replayed.

.+ Design and build traffic analyzer to help users identify different types
of traffic used by protocol.

Build module that searches for and fixes traffic checksums.

References

1. C.Cadar, V. Ganesh, P. Pawlowski, D. Dill, D. Engler. “EXE: Automatically
generating inputs of death.” ACM Transactions on Information and
System Security (TISSEC).

2. P.Godefroid, A. Kiezun, M.Y. Levin. “Grammar-based whitebox
fuzzing.” ACM SIGPLAN Notices. 2008.

3. S.Bratus, A. Hansen, A. Shubina. “LZfuzz: A fast compression-based

fuzzer for poorly documented protocols.” Dartmouth Computer
Science Technical Report TR2008-634. 2008.

Trustworthy Cyber Infrastructure for the Power Grid = www.tcipg.org

University of lllinois = Dartmouth College = Cornell University = UUC Davis = Washington State University

