

Development of the Information Layer for the V2G Framework Implementation

D. D. Riddle and G. Gross

Goals

- To show that the cyber security protection of the V2G communication layer can be cast into a form so that the Least Privilege Architecture (LPA) provides an appropriate structure to protect the cyber security of the grid.
- To adapt *LPA* to the specific needs of the *V2G* problem.
- To demonstrate the ability of the adapted *LPA* to operate effectively in the *V2G* framework.

V2G COMMUNICATION/CONTROL LAYER

Fundamental Questions/Challenges

- · Consumer acceptance.
- · Interface for consumer preferences.
- · Training for changing consumer behavior.
- · Credible cyber security threats.
- Latency in the communication system.
- · Measurement frequency for data integrity.
- Scalability and performance of the LPA in a largescale V2G aggregation.

Research Plan

- Investigate the requirements for V2G.
- Adoption of LPA for V2G.
- · Specification of privileges for each entity:
 - · the Aggregator.
 - the individual BVs.
 - · third parties.
- · Preparation of a final report.

Research Results

- LPA provides mechanisms to effectively limit the privileges of each service so that it can only access the functions it needs to fully complete its tasks.
- LPA provides restricted access to the database to each service at a level commensurate with the requirements to complete the service tasks.
- LPA facilitates the decomposition of the Aggregator's functions into logically disjoint services, leading to enhanced security.
- LPA minimizes the impact of a successful attack on a single service.
- LPA allows room to expand services to third-party vendors.
- LPA facilitates the easy expansion of the number of BVs and parking lots in the aggregation.

Broader Impact

- The V2G communication layer requires extensive bidirectional communication and therefore is vulnerable to cyber attacks.
- The lack of adequate security measures is a major impediment to the effective integration of battery vehicles (BVs) into the grid.

Interaction with Other Projects

- "Security Architectures for Smart Grid Headend Systems," Carl A. Gunter and George Gross, University of Illinois
- Eileen Denz, LM EIG ECS, Project Manager

