TE ‘ PE Vulnerability Assessment Tool Using Model Checking

P.Patel, F. Yuan, T. Kalbarczyk, and R. K. lyer

Goals

e Ensure secure execution of software and protect critical data.

¢ |dentify data dependencies of critical data and protect them
against possible attacks.

e Develop a technique to formally reason about memory
corruption attacks that violate the integrity of an
application/system.

Fundamental Questions/Challenges
e Early identification of potential vulnerabilities in software.

¢ Use combination of symbolic execution and model checking
to systematically analyze corruptions of the application data
and identify cases that lead to a successful attack.

L]

Remove application-level vulnerabilities and guide design of
defense mechanisms to protect application from attacks.

Research Plan

Design a technique and a tool to discover vulnerabilities in
an application using symbolic execution and model checking.

e Generate signatures for critical data to be checked at
runtime.

¢ |dentify critical data, i.e., data that, if corrupted, lead to a
successful attack.

¢ |dentify critical code sections, i.e., an instruction
sequence during the execution of which corruption of
critical data allows the attacker to achieve objectives
(e.g., login with an invalid password).

e Demonstrate the tool on applications used in the context of
power grid applications.

Formal Analysis Framework

SymPLAID Formal Framework
Application Error model (Register s
K Tool arrors, Memory :
components. errors, Control-flow (e mae Rasitive)
¥ ) Instructions)
// \ N
. ~
/ "~ Usersupplied
Assembly
Sym PLFIED User/System Language Detectors
Supplied Program

l Proof that program is resilient to attacks or Enumeration of all possible
con attacks that are not detected

Set of
ossible

P \ Identification
errors of critical

instructions

Set of Idgﬁtn‘ncatmn of
critical memory
real locations

errors

Research Results

Symbolic Error Injection Using SymPLFIED

Identifies conditions (e.g., what data and when at runtime to
corrupt) under which the attacker (e.g., an insider) can
penetrate the system.

¢ |Introduce memory errors and propagate the error’s
consequences using symbolic execution and model
checking.

Output produced:

o When to inject the fault: at which instruction.
o Where to inject: what memory address.

e What to inject: what value (range of values).

Results used to determine memory locations that need to be
protected to prevent application failure or system
compromise.

Trusted Signature Generation

Instruction Signature
o Stored unique identifiers (e.g., PC) for critical instructions.

® Only critical instructions can write to critical data
(prevents code injection).

Data Signature
* Stored addresses of critical data in the program.

¢ Content of critical memory locations is tracked on all
writes through maintenance of a copy of the data.

¢ On all reads, the copy of the data fetched by the program
is checked against the one stored as part of the data
signature (ensure data integrity).

SymPLAID tool is available as a research prototype
¢ Can analyze applications compiled for SPARC or MIPS ISA.
e Demonstrated on real-world applications, including

embedded code and network applications, e.g., SSH.

Broader Impact

Trusted signature derived using SymPLFIED can be used as a
basis for implementing (using software or specialized
hardware) runtime error-checking modules.

Interaction with Other Projects
Collaborate with the activity on providing application-

specific reliability and security support.

Future Efforts
Apply to broader set of applications.
Address issues of scalability.

Build frontend to support x86 architecture.

Trustworthy Cyber Infrastructure for the Power Grid = www.tcipg.org
University of lllinois = Dartmouth College = Cornell University = UC Davis = Washington State University




