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Testbed-Driven Assessment: Experimental Validation

of aystem Security and Reliability

Goals

¢ Design a framework for error diagnosis and experimental
validation of system/application resiliency to transient errors
and malicious attacks for the next-generation power grid.

e Experimentally study the impact of errors/attacks on next-
generation micro-processor-based power grid equipment.

¢ Develop detection and recovery mechanisms to protect
power grid devices from transient errors and malicious
attacks.

Fundamental Questions/Challenges

* New-generation power equipment is more sensitive to
accidental errors and malicious attacks:

e Microprocessor-based
¢ Increased network connectivity
¢ Synchronization between multiple devices
e Sophisticated remote control
e It is crucial to understand failure modes and error

propagation patterns to enable improvements and
deployment of attack and error protection mechanisms.

Research Plan

Software-implemented Fault Injection (SWIFI) is used to
evaluate and characterize the behavior of power grid
equipment.
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Different devices in the TCIPG Testbed
Laboratory are coordinated to mimic
the working scenario of a power grid
(as shown in Figure 2).
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A fault injection framework based on
ptrace () is being developed to
automate the fault injections to the
critical applications (see Figure 1).
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e DNP3 Client, DNP3 Server, Monitor
App running on the Data Aggregator
have been chosen as targets for fault  Figure 1. Fault Injection Process
injections.
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Figure 2. Testbed Setup
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Research Results

Silent Data Corruption (SDC) is the most severe outcome,
which may cause the operator in the control center to lose
control over the equipment in the substation.

* E.g., there are 13% and 7% chances that the DNP3 Client
and DNP3 Server will exhibit silent data corruption (as
shown in Figure 3).

¢ Lost control over the substation may result in a blackout or
damage of equipment.
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Figure 3. Outcome & Crash Cause of Injected Faults

Broader Impact

e The developed testbed provides a platform to support a
broad range of other experimental studies.

o Experimental study provides important feedback to the
power grid equipment manufacturers, to address potential
reliability and security vulnerabilities.

Interaction with Other Projects

e Collaborate and share the testbed setup with the activity on
“Specification-based IDS for the DNP3 Protocol” to study
issues related to DNP3 security.

Future Efforts

e Experimentally validate and test the error detection and
recovery techniques to address the weaknesses discovered.

Trustworthy Cyber Infrastructure for the Power Grid = www.tcipg.org
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