
TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID | TCIPG.ORG
UNIVERSITY OF ILLINOIS  |  DARTMOUTH COLLEGE  |  UC DAVIS  |  WASHINGTON STATE UNIVERSITY

FUNDING SUPPORT PROVIDED BY DOE-OE AND DHS S&T

GOALS
• Explore the use of the cloud computing paradigm and technologies for 

power grid operations.

• Understand the drivers for adopting cloud computing and the associated 
security and reliability concerns.

• Understand the impact of cloud computing on current security 
compliance regimes.

• Develop techniques to use cloud technologies for power operations 
while addressing security, reliability, and compliance concerns.

• For what power applications is cloud computing suitable?

– Can real-time or operational applications leverage clouds?

• What are the benefits of moving to the cloud or using cloud 
technologies?

– Are they just cost/efficiency and resource elasticity?

– Are there security benefits from pooled and dedicated operational 
security teams?

• Can we use existing cloud technologies and meet the reliability, security, 
real-time performance, and compliance needs of power applications?

– Multi-user, shared, best-effort systems rather than dedicated or real-
time systems.

– Shared infrastructure with no isolation guarantees.

– Doesn’t support the perimeter-based security model underlying the 
compliance regime.

• Can we design or tailor cloud technologies to meet the reliability, 
security, real-time performance, and compliance needs of power 
applications?

FUNDAMENTAL QUESTIONS/CHALLENGES

RESEARCH RESULTS

• Error introduced is 
small.

• Error proportional to 
original perturbation.

Goal: Perform contingency analysis in the cloud while masking sensitive 
data.

• Mask knowledge about critical contingencies.

• Mask real power flows.

• Retain efficiency.

CASE STUDY: CONTINGENCY ANALYSIS IN CLOUD

FUTURE EFFORTS

• Improve the adversary model for CA in the cloud.

• Bound the error introduced by obfuscation.

• Quantify the obfuscation and security provided.

• Develop reliable and secure cloud technologies suitable for power 
system applications.
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Security and Robustness Evaluation and Enhancement of Power System Applications:
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Approach: Apply obfuscation to CA problem before sending it to the cloud 
& apply deobfuscation on the results.

• Obfuscation: Actual flows increased with random values.

– PO = P + Po; Po = Hxo; xo is computed by fitting power flows perturbed 
uniformly at random to the system model.

• Deobfuscation: Subtract the random perturbation introduced.
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• Error: eP = Pc – P’c

– eP = 0 for DC model.

– eP ≠ 0 for AC model.

• Power flows that 
increased under 
contingency (without 
obfuscation).

– Increased for the 
most part when 
obfuscated.

– Decreased in some 
cases.

• Adversary observing 
obfuscated power flows 
cannot be sure of 
existence of violating 
contingencies.


