TCIPG

Security and Robustness Evaluation and Enhancement of Power System Applications:

Trustworthy Cloud Computing for Power

György Dán, Rakesh B. Bobba, Ognjen Vuković, George Gross, and Roy H. Campbell

GOALS

- Explore the use of the cloud computing paradigm and technologies for power grid operations.
- Understand the drivers for adopting cloud computing and the associated security and reliability concerns.
- Understand the impact of cloud computing on current security compliance regimes.
- Develop techniques to use cloud technologies for power operations while addressing security, reliability, and compliance concerns.

FUNDAMENTAL QUESTIONS/CHALLENGES

- · For what power applications is cloud computing suitable?
 - Can real-time or operational applications leverage clouds?
- What are the benefits of moving to the cloud or using cloud technologies?
 - Are they just cost/efficiency and resource elasticity?
 - Are there security benefits from pooled and dedicated operational security teams?
- Can we use existing cloud technologies and meet the reliability, security, real-time performance, and compliance needs of power applications?
 - Multi-user, shared, best-effort systems rather than dedicated or realtime systems.
 - Shared infrastructure with no isolation guarantees.
 - Doesn't support the perimeter-based security model underlying the compliance regime.
- Can we design or tailor cloud technologies to meet the reliability, security, real-time performance, and compliance needs of power applications?

CASE STUDY: CONTINGENCY ANALYSIS IN CLOUD

Goal: Perform contingency analysis in the cloud while masking sensitive data.

- · Mask knowledge about critical contingencies.
- · Mask real power flows.

Approach: Apply obfuscation to CA problem before sending it to the cloud & apply deobfuscation on the results.

- · Obfuscation: Actual flows increased with random values.
 - PO = P + Po; Po = Hxo; xo is computed by fitting power flows perturbed uniformly at random to the system model.
- Deobfuscation: Subtract the random perturbation introduced.

$$- P'^{c} = P^{c,0} - H_{c} J_{c}^{-1} P_{l}^{c,0} \quad (P_{i}^{c,0} = F_{i}^{c} P_{l}^{o})$$

• Error: e_P = P^c – P'^c

RESEARCH RESULTS

 Error introduced is small

 Error proportional to original perturbation.

- Power flows that increased under contingency (without obfuscation).
- Increased for the most part when obfuscated
- Decreased in some cases.

 Adversary observing obfuscated power flows cannot be sure of existence of violating contingencies.

FUTURE EFFORTS

- · Improve the adversary model for CA in the cloud.
- · Bound the error introduced by obfuscation.
- Quantify the obfuscation and security provided.
- Develop reliable and secure cloud technologies suitable for power system applications.

RELATED PUBLICATIONS

- Alex R. Borden, Daniel K. Molzahn, Parmeswaran Ramanathan, and Bernard C. Lesieutre. "Confidentiality-preserving Optimal Power Flow for Cloud Computing." In 50th IEEE Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012.
- György Dán, Rakesh B. Bobba, George Gross, and Roy H. Campbell.
 "Cloud Computing for the Power Grid: From Service Composition to Assured Clouds." Proc. of the 5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), June 2013.
- Ognjen Vuković, György Dán, and Rakesh B. Bobba. "Confidentialitypreserving Obfuscation for Cloud-based Power System Contingency Analysis." Proc. of IEEE SmartGridComm, October 2013.