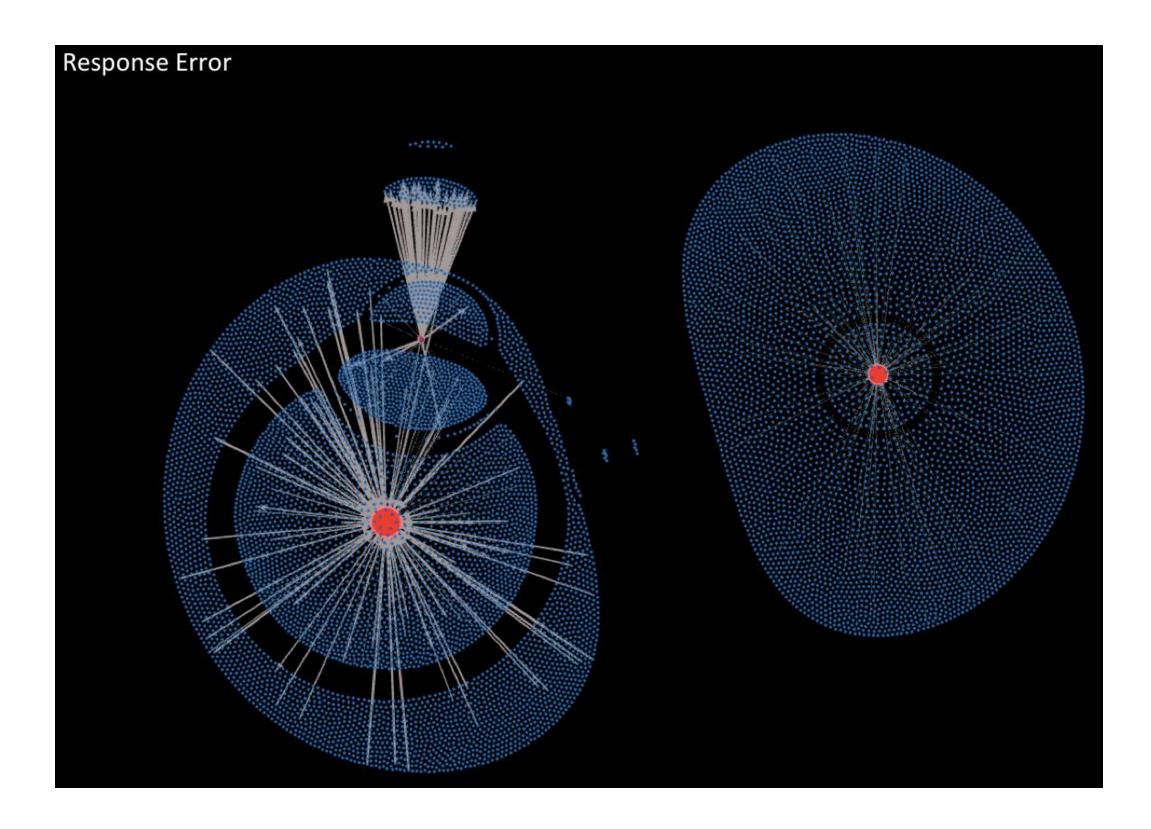
# TCIPG

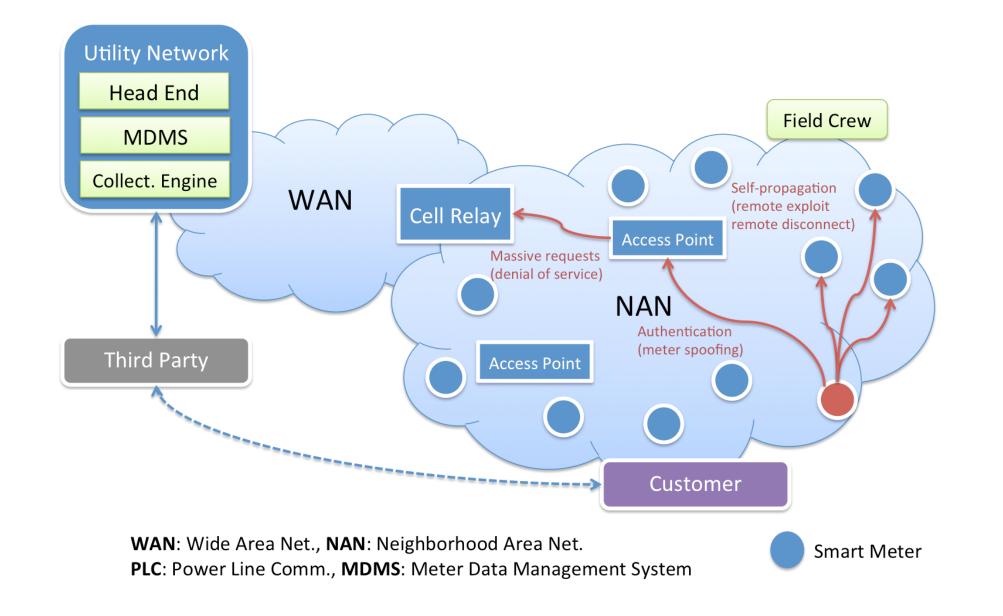
Specification-based IDS for Smart Meters

## Amilyzer: IDS Sensor for AMI

R. Berthier, A. Fawaz, E. Rogers, and W. H. Sanders

### GOALS


- Design an efficient monitoring architecture to detect and potentially prevent intrusions targeting or originating from an advanced metering infrastructure (AMI).
- Implement a prototype of this monitoring solution and validate its accuracy and applicability.

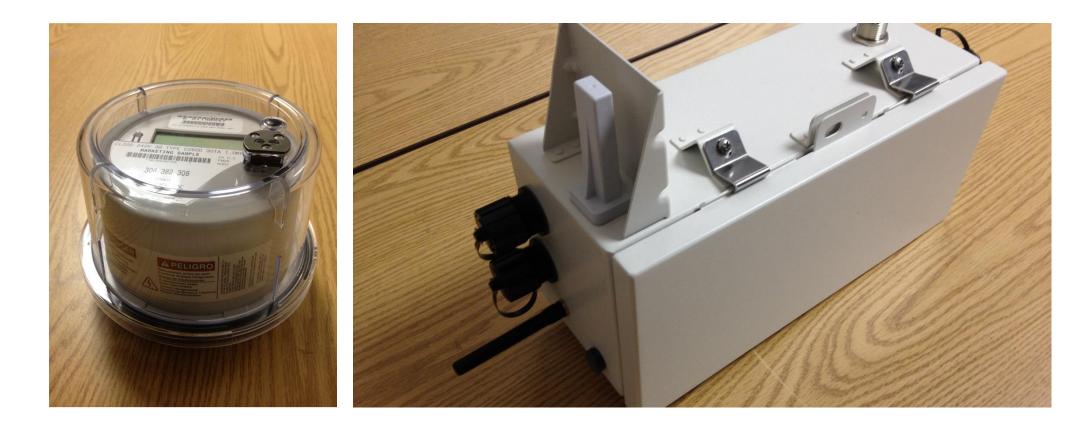

#### FUNDAMENTAL QUESTIONS/CHALLENGES

- What are the threats targeting an AMI?
- What detection technology should be developed to cover these threats?
- What monitoring architecture should be deployed?
- How should we automatically respond to security compromises?
- How should we provide large-scale situational awareness?

#### **RESEARCH RESULTS**

- Threat model reviewed.
- Dissector and parser for ANSI C12.22 and C12.19 implemented and tested.
- Comprehensive monitoring architecture implemented.
- Security policy defined based on NESCOR failure scenarios.
- Sensor prototype deployed to monitor 30,000+ meters.






#### **RESEARCH PLAN**

- Identify the characteristics of common smart meter communication use cases.
- Design a distributed monitoring framework and a security policy to ensure the detection of violations.
- Develop a C12.22 dissector and a C12.22 state machine to monitor meter traffic in real time.
- Implement a prototype in an embedded computer.
- Evaluate in a real AMI environment with hardware meters.
- Deploy at a utility site.
- Define a comprehensive security policy from known failure scenarios.

#### **BROADER IMPACT**

- Definition of a rigorous process utilities and vendors can use to design and develop an efficient monitoring architecture.
- Strong partnership with industry (EPRI, FirstEnergy, Itron, Fujitsu) to collaborate on development and evaluation, and to plan for technology transfer.
- Collaboration with other research partners (UT Dallas, Honeywell, Sandia National Labs).



• Define an IDS test plan that can be implemented by utilities.

| ig | nature d                           | efinitions | ;     |                 |                    |                   |             |       |                        |         |        |
|----|------------------------------------|------------|-------|-----------------|--------------------|-------------------|-------------|-------|------------------------|---------|--------|
| d  | Pattern                            | O          | rigin | Target          | Rate (per<br>hour) | Schedule to alert | Alert level | Count | Last Time<br>Triggered | Actions |        |
| 1  | Full write                         |            |       | 6.17.96.124.134 | I.247.84.1         |                   | Mediu 🖨     | 7     | 2014-04-08<br>15:54:00 | Update  | Delete |
|    |                                    |            |       |                 |                    |                   |             |       |                        |         |        |
|    | ert a new alert sig<br>test violat |            |       |                 |                    |                   |             |       |                        |         |        |

| Payload                                                                                      | Origin                                                        | Target                                                                            | Timestamp              | Acked                      | Signature<br>ID | Message         | Level  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|----------------------------|-----------------|-----------------|--------|
| Full writet7d26 08 00<br>00:Full read;response<br>Ok:response Ok                             | <b>172.16.1.88</b><br>6.12.96.124.134.247.84.1.22.0.1.1.64.33 | <b>172.16.1.102</b><br>6.17.96.124.134.247.84.1.22.0.1.1.64.206.57.132.203.186.33 | 2014-04-08<br>15:54:00 | 2014-<br>04-15<br>18:03:20 | 1               | Match signature | medium |
| Full writet7d26 08 00<br>00:Full read;response<br>Ok:response Ok;Full<br>writet7d1a 20 11 e6 | <b>172.16.1.88</b><br>6.12.96.124.134.247.84.1.22.0.1.1.64.33 | <b>172.16.1.102</b><br>6.17.96.124.134.247.84.1.22.0.1.1.64.206.57.132.203.186.33 | 2014-04-08<br>15:42:09 | 2014-<br>09-09<br>08:16:53 | 1               | Match signature | medium |

User interface to define signatures and review intrusion detection alerts

#### INTERACTION WITH OTHER PROJECTS

- Alerts from Amilyzer have been integrated in a security event manager in collaboration with the Response and Recovery Engine project.
- Technology developed for Amilyzer has been leveraged to improve the ADEC-G project (IDS for control system protocols).
- Amilyzer has enabled the evaluation of a framework to detect energy theft, in collaboration with the University of Miami and Pennsylvania State University.

#### FUTURE EFFORTS

- Study solutions to enable Amilyzer to support encrypted traffic.
- Investigate approaches to allow multiple Amilyzer sensors to share state information and to coordinate a distributed detection strategy.
- Complete and validate the failure-driven security policy for AMI in collaboration with EPRI and multiple industry partners.

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID | TCIPG.ORG UNIVERSITY OF ILLINOIS | DARTMOUTH COLLEGE | UC DAVIS | WASHINGTON STATE UNIVERSITY FUNDING SUPPORT PROVIDED BY DOE-OE AND DHS S&T