
TCIPG Reading Group

Transport Layer Session 4

Based on:
Computer Networking: A Top Down Approach, 4th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.

Transport Layer 3-2

Transport Layer
Our goals:
❒  understand principles

behind transport
layer services:
❍  multiplexing/

demultiplexing
❍  reliable data transfer

❒  learn about transport
layer protocols in the
Internet:
❍  UDP: connectionless

transport
❍  TCP: connection-oriented

transport

Transport Layer 3-3

Outline

❒  3.1 Transport-layer
services

❒  3.2 Multiplexing and
demultiplexing

❒  3.3 Connectionless
transport: UDP

❒  3.4 Connection-oriented
transport: TCP
❍  segment structure
❍  reliable data transfer
❍  connection management

Transport Layer 3-4

Transport services and protocols
❒  provide logical communication

between app processes
running on different hosts

❒  transport protocols run in end
systems
❍  send side: breaks app

messages into segments,
passes to network layer

❍  rcv side: reassembles
segments into messages,
passes to app layer

❒  more than one transport
protocol available to apps
❍  Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-5

Transport vs. network layer

❒  network layer: logical
communication
between hosts

❒  transport layer: logical
communication
between processes
❍  relies on, enhances,

network layer services

Household analogy:
12 kids sending letters to

12 kids
❒  processes = kids
❒  app messages = letters

in envelopes
❒  hosts = houses
❒  transport protocol =

Ann and Bill
❒  network-layer protocol

= postal service

Transport Layer 3-6

Internet transport-layer protocols

❒  reliable, in-order
delivery (TCP)
❍  congestion control
❍  flow control
❍  connection setup

❒  unreliable, unordered
delivery: UDP
❍  no-frills extension of

“best-effort” IP
❒  services not available:

❍  delay guarantees
❍  bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

2: Application Layer 7

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss

loss-tolerant

loss-tolerant
loss-tolerant

no loss

Throughput

elastic
elastic
elastic

audio: 5kbps-1Mbps
video:10kbps-5Mbps

same as above
few kbps up

elastic

Time Sensitive

no
no
no

yes, 100’s
msec

yes, few secs
yes, 100’s

msec
yes and no

2: Application Layer 8

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]

FTP [RFC 959]
HTTP (eg Youtube),

RTP [RFC 1889]
SIP, RTP, proprietary

(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP

TCP or UDP

typically UDP

Transport Layer 3-9

Outline

❒  3.1 Transport-layer
services

❒  3.2 Multiplexing and
demultiplexing

❒  3.3 Connectionless
transport: UDP

❒  3.4 Connection-oriented
transport: TCP
❍  segment structure
❍  reliable data transfer
❍  connection management

Transport Layer 3-10

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2 host 3

= process = socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 3-11

How demultiplexing works
❒  host receives IP datagrams

❍  each datagram has source
IP address, destination IP
address

❍  each datagram carries 1
transport-layer segment

❍  each segment has source,
destination port number

❒  host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #
32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-12

Connectionless demux
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
 IP: A

P1 P1 P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Transport Layer 3-13

Connection-oriented demux

❒  TCP socket identified
by 4-tuple:
❍  source IP address
❍  source port number
❍  dest IP address
❍  dest port number

❒  recv host uses all four
values to direct
segment to appropriate
socket

❒  Server host may support
many simultaneous TCP
sockets:
❍  each socket identified by

its own 4-tuple
❒  Web servers have

different sockets for
each connecting client
❍  non-persistent HTTP will

have different socket for
each request

Transport Layer 3-14

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client
 IP: A

P1 P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Transport Layer 3-15

Outline

❒  3.1 Transport-layer
services

❒  3.2 Multiplexing and
demultiplexing

❒  3.3 Connectionless
transport: UDP

❒  3.4 Connection-oriented
transport: TCP
❍  segment structure
❍  reliable data transfer
❍  connection management

Transport Layer 3-16

UDP: User Datagram Protocol [RFC 768]
❒  “no frills,” “bare bones”

Internet transport
protocol

❒  “best effort” service, UDP
segments may be:
❍  lost
❍  delivered out of order

to app
❒  connectionless:

❍  no handshaking between
UDP sender, receiver

❍  each UDP segment
handled independently
of others

Why is there a UDP?
❒  no connection

establishment (which can
add delay)

❒  simple: no connection state
at sender, receiver

❒  small segment header
❒  no congestion control: UDP

can blast away as fast as
desired

Transport Layer 3-17

UDP: more
❒  often used for streaming

multimedia apps
❍  loss tolerant
❍  rate sensitive

❒  other UDP uses
❍  DNS
❍  SNMP

❒  reliable transfer over UDP:
add reliability at
application layer
❍  application-specific

error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-18

UDP checksum

Sender:
❒  treat segment contents as

sequence of 16-bit
integers

❒  checksum: addition (1’s
complement sum) of
segment contents

❒  sender puts checksum
value into UDP checksum
field

Receiver:
❒  compute checksum of

received segment
❒  check if computed checksum

equals checksum field value:
❍  NO - error detected
❍  YES - no error detected.

But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in
transmitted segment

Transport Layer 3-19

Outline

❒  3.1 Transport-layer
services

❒  3.2 Multiplexing and
demultiplexing

❒  3.3 Connectionless
transport: UDP

❒  3.4 Connection-oriented
transport: TCP
❍  segment structure
❍  reliable data transfer
❍  connection management

Transport Layer 3-20

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

❒  full duplex data:
❍  bi-directional data flow

in same connection
❍  MSS: maximum segment

size
❒  connection-oriented:

❍  handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

❒  flow controlled:
❍  sender will not

overwhelm receiver

❒  point-to-point:
❍  one sender, one receiver

❒  reliable, in-order byte
steam:
❍  no “message boundaries”

❒  pipelined:
❍  TCP congestion and flow

control set window size
❒  send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

Transport Layer 3-21

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnter checksum
F S R P A U head

len
not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-22

TCP seq. #’s and ACKs
Seq. #’s:

❍  byte stream
“number” of first
byte in segment’s
data

ACKs:
❍  seq # of next byte

expected from
other side

❍  cumulative ACK
Q: how receiver handles

out-of-order segments
❍  A: TCP spec

doesn’t say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time

simple telnet scenario

Transport Layer 3-23

Outline

❒  3.1 Transport-layer
services

❒  3.2 Multiplexing and
demultiplexing

❒  3.3 Connectionless
transport: UDP

❒  3.4 Connection-oriented
transport: TCP
❍  segment structure
❍  reliable data transfer
❍  connection management

Transport Layer 3-24

Principles of Reliable data transfer
❒  important in app., transport, link layers
❒  top-10 list of important networking topics!

❒  characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-25

Principles of Reliable data transfer
❒  important in app., transport, link layers
❒  top-10 list of important networking topics!

❒  characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-26

Principles of Reliable data transfer
❒  important in app., transport, link layers
❒  top-10 list of important networking topics!

Transport Layer 3-27

TCP reliable data transfer

❒  TCP creates rdt
service on top of IP’s
unreliable service

❒  Pipelined segments
❒  Cumulative acks
❒  TCP uses single

retransmission timer

❒  Retransmissions are
triggered by:
❍  timeout events
❍  duplicate acks

❒  Initially consider
simplified TCP sender:
❍  ignore duplicate acks
❍  ignore flow control,

congestion control

Transport Layer 3-28

TCP sender events:
data rcvd from app:
❒  Create segment with

seq #
❒  seq # is byte-stream

number of first data
byte in segment

❒  start timer if not
already running (think
of timer as for oldest
unacked segment)

❒  expiration interval:
TimeOutInterval

timeout:
❒  retransmit segment

that caused timeout
❒  restart timer
 Ack rcvd:
❒  If acknowledges

previously unacked
segments
❍  update what is known to

be acked
❍  start timer if there are

outstanding segments

Transport Layer 3-29

TCP
sender
(simplified)

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

Comment:
•  SendBase-1: last
cumulatively
ack’ed byte
Example:
•  SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Transport Layer 3-30

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

time

premature timeout

Host B

Seq=92, 8 bytes data

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Transport Layer 3-31

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Transport Layer 3-32

TCP Round Trip Time and Timeout
EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

❒  Exponential weighted moving average
❒  influence of past sample decreases exponentially fast
❒  typical value: α = 0.125

Transport Layer 3-33

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

Transport Layer 3-34

TCP Round Trip Time and Timeout
Setting the timeout
❒  EstimtedRTT plus “safety margin”

❍  large variation in EstimatedRTT -> larger safety margin
❒  first estimate of how much SampleRTT deviates from

EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
 β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

 Then set timeout interval:

Transport Layer 3-35

TCP Connection Management
Recall: TCP sender, receiver

establish “connection”
before exchanging data
segments

❒  initialize TCP variables:
❍  seq. #s
❍  buffers, flow control

info (e.g. RcvWindow)
❒  client: connection initiator
 Socket clientSocket = new

Socket("hostname","port

number");
❒  server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP

SYN segment to server
❍  specifies initial seq #
❍  no data

Step 2: server host receives
SYN, replies with SYNACK
segment
❍  server allocates buffers
❍  specifies server initial seq.

Step 3: client receives SYNACK,

replies with ACK segment,
which may contain data

Transport Layer 3-36

Outline

❒  3.1 Transport-layer
services

❒  3.2 Multiplexing and
demultiplexing

❒  3.3 Connectionless
transport: UDP

❒  3.4 Connection-oriented
transport: TCP
❍  segment structure
❍  reliable data transfer
❍  connection management

Transport Layer 3-37

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

Transport Layer 3-38

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

❍  Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

Transport Layer 3-39

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

