TCIPG Reading Group

Transport Layer Session 4

Based on:
Computer Networking: A Top Down Approach, 4™ edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.

Transport Layer

Our goals:

7 understand principles O learn about transport
behind transport layer protocols in the
layer services: Internet:

O multiplexing/ O UDP: connectionless
demultiplexing transport
O reliable data transfer O TCP: connection-oriented

transport

Transport Layer 3-2

Outline

3 3.1 Transport-layer 3 3.4 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

7 3.3 Connectionless O conhnection management

transport: UDP

Transport Layer 3-3

Transport services and protocols

3 provide /ogical communication
between app processes |
running on different hosts = ke

3 transport protocols run in end
systems

O send side: breaks app
messages into segments,
passes to network layer

O rcv side: reassembles
segments into messages,
passes to app layer

7 more than one transport o
protocol available to apps y-R-

o Internet: TCP and UDP

Transport Layer 3-4

Transport vs. network layer

3 network layer: logical Household analogy:
communication 12 kids sending letters to
between hosts 12 kids

3 transport layer: logical 7 processes = kids
communication 7 app messages = letters
between processes in envelopes

O relies on, enhances, T hosts = houses

network layer services
7 transport protocol =

Ann and Bill

3 network-layer protocol
= postal service

Transport Layer 3-5

Internet transport-layer protocols

7 reliable, in-order
delivery (TCP)
O congestion control
o flow control
O conhnection setup

7 unreliable, unordered
delivery: UDP

O no-frills extension of
“best-effort” IP

7 services not available:

O delay guarantees
O bandwidth guarantees

application
@2
networ
data link
physical
da O
phy

O network |

V% _data 'Iink =
Whysical

O
network

| datalink O

physical & &
data linkN(®
physical

network

data link

physical I network

d DO
dGTG I|nk networ

appaication

physical data link

Transport Layer

physical

3-6

Transport service requirements of common apps

Application Data loss Throughput Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video |oss-tolerant audio: Skbps-1Mbps ~ Yes, 100°s
video:10kbps-5Mbps msec

stored audio/video |oss-tolerant same as above
interactive games loss-tolerant few kbps up yes, few secs
instant messaging no loss elastic yes, 100" s
msSec
yes and no

2: Application Layer 7

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (eg Youtube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary
(e.g., Skype) typically UDP

2: Application Layer

Outline

3 3.1 Transport-layer 73 3.4 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

7 3.3 Connectionless O conhnection management

transport: UDP

Transport Layer 3-9

Multiplexing/demultiplexing

- Demultiplexing at rcv host:

delivering received segments
to correct socket

_ Multiplexing at send host: _

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

[] =socket D =process
application application application
L | |
transport '%cmipﬁ; Transport
network neTvl/or'k network
link link link
physical physical physical
host 1 host 2 host 3

Transport Layer 3-10

How demultiplexing works

I host receives IP datagrams
O each datagram has source

IP address, destination IP
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number

7 host uses IP addresses & port
numbers to direct segment to
appropriate socket

« 32 bits -

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-11

Connectionless demux

DatagramSocket serverSocket = new DatagramSocket (6428) ;

SP: 6428

DP: 9157

SP: 6428

DP: 5775

SP: 9157

client |DP: 6428

IP: A

server
IP: C

SP provides “return address”

SP: 5775

DP: 6428 (Client

IP:B

Transport Layer 3-12

Connection-oriented demux

3 TCP socket identified 73 Server host may support

by 4-tuple: many simultaneous TCP
o source IP address sockets:
O source port number O each socket identified by
O dest IP address its own 4-tuple
o dest port number 7 Web servers have
7 recv host uses all four different sockets for
values to direct each connecting client
segment to appropriq're O non-persistent HT TP will

have different socket for

socket
each request

Transport Layer 3-13

Connection-oriented demux:

Threaded Web Server

client
IP: A

—
i i [
SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9157 SP: 9157
DP: 80 server DP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-14

Client
IP:B

Outline

3 3.1 Transport-layer 73 3.4 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

7 3.3 Connectionless O connection management

transport: UDP

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

3 “no frills,” “bare bones”

Internet ftransport Why is there a UDP?
E'"OTOCO' o 7 no connection
7 “best effort” service, UDP establishment (which can
segments may be: add delay)
O lost 3 simple: no connection state
O delivered out of order at sender, receiver
To app 7 small segment header
7 connectionless: 7 no congestion control: UDP
O no handshaking between can blast away as fast as
UDP sender, receiver desired

O each UDP segment
handled independently
of others

Transport Layer 3-16

UDP: more

7 often used for streaming
multimedia apps

32 bits -

O loss tolerant Length, in |Source port #| dest port #
O rate sensitive bytes of UDP [~ length checksum
7 other UDP uses rludine
O DNS header
O SNMP
7 reliable transfer over UDP: Application
add reliability at data
application layer (message)
O application-specific

error recovery!
UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in
transmitted segment

Sender: Receiver:
7 treat segment contentsas T compute checksum of
sequence of 16-bit received segment
integers 3 check if computed checksum
3 checksum: addition (1's equals checksum field value:
complement sum) of O NO - error detected
segment contents O YES - no error detected.
7 sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field

Transport Layer 3-18

Outline

3 3.1 Transport-layer 3 3.4 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

7 3.3 Connectionless O conhnection management

transport: UDP

Transport Layer 3-19

TCP: Overview

J point-to-point:
O ohe sender, onhe receiver

3 reliable, in-order byte
steam:

O no “message boundaries”

7 pipelined:
O TCP congestion and flow
control set window size

A send & receive buffers

send buffer

receive buffer

() segment] —» ()

RFCs: 793, 1122, 1323, 2018, 2581

3 full duplex data:

O bi-directional data flow
In same connection

O MSS: maximum segment
size

7 connhection-oriented:

O handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

7 flow controlled:
wae O Sender will not

door

overwhelm receiver

Transport Layer 3-20

TCP segment structure

URG: urgent data

32 bits

source port # | dest port #

counting

(generally not used)\
ACK: ACK #

. Sequence number

by bytes
of data

valid

(not segments!)

PSH: push data now
(generally not used)— |

—acknowledgement number
E‘i o ZHBSF Receive window

/ched@n), Urg data pnter

bytes
rcvr willing

RST, SYN, FIN:— |

Optieghs (variable length)

to accept

connection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-21

TCP seq. # s and ACKs
Seq. #'s: @ Host A Hosz@

O byte stream
“number” of first user _Segsy,
: : types ' ACK=7g
byte in segment’s ‘e data <
data host ACKs
, o receipt of
ACKs: N da\a" ‘C’, echoes|
O seq # of next byte T N back ‘C’
expected from
other side host ACKs
O cumulative ACK receipt Seq=
: of echoed =43, ACk =g,
Q: how receiver handles yt \
out-of-order segments
O A: TCP spec ,
doesn’ t say, - up to . . fime
) simple telnet scenario
implementor '

Transport Layer 3-22

Outline

3 3.1 Transport-layer 3 3.4 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

7 3.3 Connectionless O connection management

transport: UDP

Transport Layer 3-23

Principles of Reliable data transfer

T important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

IP()relicnble c:hcmnel)1

4

application
layer

transport
layer

(a) provided service

I characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-24

Principles of Reliable data transfer

T important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

IP()relicnble c:hcmnel)1

4

application
layer

transport
layer

Junreliable chomhel);IA

(a) provided service (b) service implementation

I characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-25

Principles of Reliable data transfer

T important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

dt d
ID()relic:ble c>h<:1hhel)1 ret_send ()
reliable data

transfer protocol transfer protocol
(sending side) (receiving side)

udt send()i [packet | [packet] Irdt rev ()

4

application
layer

deliver data()
reliable data

transport
layer

Junreliable c:homnel);IA

(a) provided service (b) service implementation

Transport Layer 3-26

TCP reliable data transfer

3 TCP creates rdt 7 Retransmissions are
service on top of IP's triggered by:
unreliable service O timeout events

7 Pipelined segments O duplicate acks

3 Cumulative acks 3 Initially consider

simplified TCP sender:
O ignore duplicate acks

O ighore flow control,
congestion control

3 TCP uses single
retransmission timer

Transport Layer 3-27

TCP sender events:

data rcvd from app:

I Create segment with
seq #

7 seq # is byte-stream
number of first data
byte in segment

73 start timer if not
already running (think
of timer as for oldest
unacked segment)

7 expiration interval:
TimeOutInterval

timeout:

I retransmit segment
that caused timeout

T restart timer
Ack rcvd:

3 If acknowledges
previously unacked
segments

O update what is known to
be acked

O start timer if there are
outstanding segments

Transport Layer 3-28

NextSeqNum = InitialSeqNum
SendBase = InitialSeqgNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqgNum
if (timer currently not running)
start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /" end of loop forever */

TCP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively

ack’ ed byte
Example:

- SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-29

TCP: retransmission scenarios

@Hos’r A

SendBase

= 100

+«— timeout——

v

time

Host B@

lost ACK scenario

<

Sendbase
= 100
SendBase
=120

SendBase
=120

92 ‘rimeou‘r—>|

92 timeout—y*— Seq

eq-=

('p]
+ .

v premature timeout
time

Transport Layer 3-30

TCP retransmission scenarios (more)
@ Host A Host B @

Seq=

Seq=
1190, 20 S d

loss

=120

timeout———

time
Cumulative ACK scenario

v

Transport Layer 3-31

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

7 Exponential weighted moving average
7 influence of past sample decreases exponentially fast
3 typical value: a =0.125

Transport Layer 3-32

Example RTT estimation:

350 ~

300

RTT (milliseconds)
N
(€]
o

N
o
o

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

1 I

7

Lo A TR R

8 15

22 29 36 43 50 57 64 71

time (seconnds)

—o— SampleRTT —&— Estimated RTT

78 85 92 99 106

Transport Layer 3-33

TCP Round Trip Time and Timeout

Setting the timeout

7 EstimtedRTT plus “safety margin”
O large variation in EstimatedRTT -> larger safety margin
73 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-f) *DevRTT +
f* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-34

TCP Connection Management

Recall: TCP sender, receiver Three way handshake:
establish “connection”

befor'e QXChanging data ST@E 1: client host sends TCP
segments SYN segment to server
3 initialize TCP variables: O specifies initial seq #
O seq. #s O no data
o buffers, flow control Step 2: server host receives
info (e.g. ReviWindow) SYN, replies with SYNACK
3 client: connection initiator segment
Socket clientSocket = new O server allocates buffers
Socket ("hostname", "port
O specifies server initial seq.
number") ; +#

7 server: contacted by client

Socket connectionSocket =
welcomeSocket.accept() ;

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-35

Outline

3 3.1 Transport-layer 3 3.4 Connection-oriented
services transport: TCP

3 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

7 3.3 Connectionless O conhnection management

transport: UDP

Transport Layer 3-36

TCP Connection Management (cont.)

Closing a conhnection: @ client server@

: close
client closes socket: FIN

clientSocket.close() ;

Step 1: client end system

/
close
sends TCP FIN control FIN
segment to server _

K

:':

Step 2: server receives S

FIN, replies with ACK. o

Closes connection, sends £
FIN. closed ™

Transport Layer 3-37

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server@
replies with ACK.

closing .
o Enters “timed wait” - \

will respond with ACK
to received FINs

K
/ CIOSing
N
Step 4. server, receives /
ACK. Connection closed. -
K

-

Note: with small _% o
modification, can handle o close
simultaneous FINSs. =

closed

Transport Layer 3-38

TCP Connection Management (cont)

wait 30 seconds

CLOSED

TIME_WAIT

b

receive FIN
send ACK

FIN_WAIT_2

receive ACK
send nathing

TCP client
lifecycle

client application
initiates a TCP connection

send SYN

SYN_SENT

receive SYN & ACK
send ACK

h 4

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIN CLOSED

receive ACK
send nothing

LAST_ACK
A

send FIN

CLOSE_WAIT

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SYN
send SYN & ACK

¥

SYN_RCVD

receive FIN

send ACK ESTABLISHED

receive ACK
send nothing

Transport Layer

3-39

