Attack Prevention and Detection

David M. Nicol

Department of Energy Short Course on Cyber Security for the Power Grid Washington, DC

Monday, March 25, 2013

Overview

- Authentication
- Cryptography
- Intrusion Detection
- Firewalls
- NERC SIP

Authentication

Basics

- Authentication: binding of identity to subject
 - Identity is that of external entity (my identity, the Illini Union Bookstore, *etc*.)
 - Subject is computer entity (process, network connection, etc.)
- Two steps
 - Identification step: present identifier to security system. Registration
 - Verification step: Present or generate authentication information that corroborates the binding between entity and identifier

Establishing Identity

- One or more of the following
 - What entity knows (*e.g.* password, private key)
 - What entity has (e.g. badge, smart card)
 - What entity is (*e.g.* fingerprints, retinal characteristics)
 - What entity does (e.g., voice pattern, handwriting, typing rhythm)
 - Where entity is (*e.g.* In front of a particular terminal)
- Example: Credit card transaction
- Multi-factor authentication
 - Use multiple elements to prove identity

Password-based Authentication

- External entity is bound to system ID (user account)
- Authentication Step
 - External entity presents password
 - System compares with previously stored password
 - If password matches, system starts process with bound ID
- Later access control decisions made against ID
- Privilege decisions made against ID

Password Vulnerabilities

- Password systems widely used, but very vulnerable
 - Offline dictionary attack
 - Specific account attack
 - Workstation hijacking
 - Sticky notes
 - Password reuse
 - Social engineering
 - Electronic monitoring

Password Storage

- Store as cleartext
 - If password file compromised, all passwords revealed
- Encipher file
 - Need to have decipherment, encipherment keys in memory
 - Reduces to previous problem
- Store one-way hash of password
 - If file read, attacker must still guess passwords or invert the hash

Dictionary Attacks

- Trial-and-error from a list of potential passwords
 - Off-line (type 1): know functions and registered information, and repeatedly try different guesses $g \in A$ until the list is done or passwords guessed
 - Examples: crack, john-the-ripper
 - On-line (type 2): have access to verification functions. Try guesses until one succeeds.
 - Examples: trying to log in by guessing a password

Preventing Attacks

- How to prevent this:
 - Hide information so that either authentication input, authentication functions, or stored verification information cannot be found. Prevents obvious attack from above
 - Example: UNIX/Linux shadow password files
 - Hides c's
 - Block access to all verification methods
 - Prevents attacker from knowing if guess succeeded
 - Example: preventing *any* logins to an account from a network
 - Prevents knowing results of verification function or accessing verification function.

Approaches: Password Selection

- Random selection
 - Any password from A equally likely to be selected
 - See previous example
 - Make sure it's random!
- Pronounceable passwords
- User selection of passwords

User Password Education

- Use the first letter of each word in a phrase
 - "My dog's first name is Rex." becomes "MdfniR"

Token Based Authentication

- Memory Cards
 - Stores data like an ATM card
 - Does no computation
 - Generally combined with PIN (2-factor)
- Smart Card
 - Storage and computation

Token-based Authentication Protocols

- Static:
 - User authenticates to memory card, and memory card authenticates to system
- Dynamic Password Generator:
 - System periodically creates and displays new password
 - User enters current password
- Challenge response:
 - See next slide

Challenge-Response

- User and system share a secret function
- User proves knowledge of secret function by answering challenge

TRUSTWORTHY CYBER THE POWER GRID

Token-based Authentication

- Something you have
- Memory Cards
 - No computation on the card
 - Need special reader to pull data off the card
 - Need pin to decrypt data off of card
 - E.g., ATM card or debit card
- By adding PIN (something you know) you get multi-factor authentication

Token Based Authentication

- Smart Card
 - Computation on the card
 - Plug in with USB or wireless communication (credit card)
- Authentication options
 - Static equivalent to memory card
 - Dynamic password generator generates a unique password every minute.
 - Challenge response

Biometrics

- Automated measurement of biological, behavioural features that identify a person
 - Fingerprints: optical or electrical techniques
 - Maps fingerprint into a graph, then compares with database
 - Measurements imprecise, so approximate matching algorithms used
 - Voices: speaker verification or recognition
 - Verification: uses statistical techniques to test hypothesis that speaker is who is claimed (speaker dependent)
 - Recognition: checks content of answers (speaker independent)

Other Characteristics

- Can use several other characteristics
 - Eyes: patterns in irises unique
 - Measure patterns, determine if differences are random; or correlate images using statistical tests
 - Faces: image, or specific characteristics like distance from nose to chin
 - Lighting, view of face, other noise can hinder this
 - Keystroke dynamics: believed to be unique
 - Keystroke intervals, pressure, duration of stroke, where key is struck
 - Statistical tests used

Cryptography

Classical Cryptography

- Sender, receiver share common key
 - *symmetric cryptography*
 - Keys may be the same, or trivial to derive from one another
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called *product ciphers*

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example : Reverse every group of four non-space characters

THE WINTER OF OUR DISCONTENT

Becomes

WEHTETNIOFORIDRUNOCNTNET

• More generally known as 'permutation'

TCIPG.ORG | 22

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Cæsar cipher)
 - Plaintext is HELLO WORLD
 - Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - Ciphertext is KHOOR ZRUOG

Substitution Ciphers

- Modern crypto systems substitute blocks of characters, in conjunction with other operations
- 'S-box' (substitution box)

- Modern crypto systems substitute blocks of characters, in conjunction with other operations
- 'S-box' (substitution box)

Block Cipher

View a message as a sequence of data blocks of the same size $B_0B_1B_2B_3B_4B_5...$ Encryption of a block using Key N. $E_K(B_i)$

Sequence of keys

Encrypted s K_0 K_1 K_2 K_3 K_4 $K_5...$

 $E_{K_0}(B_0)E_{K_1}(B_1)E_{K_2}(B_2)E_{K_3}(B_3)E_{K_4}(B_4)E_{K_5}(B_5)...$

One-time Pad

Keys are random, jointly independent

- Means knowledge of any subset gives no information about any particular key
- "One-time pad" means that keys are not re-used
- Impossible to break except by brute force

Hard to realize, approximations

- "Book cipher"
- Enigma machine

AES (Advanced Encryption Standard)

US NIST issued call for ciphers in 1997

Requirements

- Private key symmetric block cipher
 128-bit data, 128/192/256-bit keys
- Stronger & faster than Triple-DES
- Active life of 20-30 years (+ archival use)
- Provide full specification & design details
- Both C & Java implementations
- NIST have released all submissions & unclassified analyses

AES Evaluation Criteria

- -general security
- software & hardware implementation ease
- -implementation attacks
- flexibility (in en/decrypt, keying, other factors)

Everything organized around a 'block matrix' of bytes as the basic unit of encryption (128 bits, below)

$a_{0,0}$	$a_{0,1}$	a _{0,2}	<i>a</i> 0,3
$a_{1,0}$	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$
$a_{2,0}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
a _{3,0}	$a_{3,1}$	a _{3,2}	a _{3,3}

Steps involve a) byte-by-byte substitution

Steps involve b) Shifting rows

Steps involve c) Mixing columns (fancy math: multiplication over Galois field)

Steps involve

d) Use of key (different key per 'round'

TCIPG.ORG | 33

This sequence of steps applied in each of several 'rounds'

(b) Decryption

Public Key Cryptography

Key K = (e,d) has two parts

- 'e', the "public" part
- 'd', the private part

Alice wants to send message m to Bob

- Bob's key is (eBob,dBob)
- She looks up on a database Bob's public key, eBob
- She encrypts (particular function E) m using eBob, E(eBoB,m)
 - Can be transmitted in the clear
- Bob receives E(eBob,m), applies decode function D using private key dBob:
 - D(dBob,E(eBob,m)) = m

Alice and Bob share NO secret information!

Public Key Cryptography

Can be used to prove possession of a private key:

- A message is 'signed' with Alice's private key dAlice
 - D(dAlice,m)
 - Note use of D, not E, but D==E in some systems
- Bob (and anyone else) receives message (m, D(dAlice,m)) and can look up Alice's public key eAlice
 - Compute E(eAlice,D(dAlice,m)) = m, and compare with m in message
- What this proves:
 - (a) that the signature computed was computed on m
 - Providing a proof of integrity
 - (b) that the signer had possession of Alice's private key
 - Is this proof that the signer was Alice?
- RSA most common algorithm of this type

Public Key Cryptography

- In practice public key crypto is computationally much more expensive than symmetric
- It is used principally to
 - Encode and exchange symmetric 'session keys', after which the crypto is done using AES or some other symmetric scheme
 - Sign a digest of a message, as a means of integrity
- A 'one-way' hash function h takes an arbitrarily long message m, and computes h(m) whose result size is fixed, e.g., 180 or 256 bytes
 - 'one-way' means that knowing h(m) it is computationally difficult to discover m
- Given (m,D(private,h(m))) the receiver can
 - Compute h(m)
 - Compare computed h(m) with E(public,D(private,h(m)))

Public Key Infrastructure

- PKI is a framework for using and managing public key crypto systems
- Most prevalent use is with digital certificates
- Problem : Bob receives signed message, reported from Alice.
 Why should he believe it is from Alice?
- A (digital) certificate is issued by a certificate authority who
 - Verifies that a requester claiming to be Alice, is indeed Alice
 - Creates a digital document that
 - States this certificate asserts that Alice's identity has been verified
 - Contains a public key to be used in communication with Alice
 - Contains a signed hash of the certificate, signed by the private key of the certificate authority
- So if Bob trusts the certificate authority (to what?), he will trust the public key that the certificate holds

Use of certificates

- SSL connection
 - Client wishes to communicate sensitive information to a server (e.g., credit card)
 - Server offers certificate with its public key
 - If client trusts the certificate and the certificate issuer, sensitive information can be encrypted with server's public key
- Integrity of software
 - e.g., driver for some device
 - Certificate issued for software, contains h(C), signed by private key of issuer
 - System looks up public key of issuer, recomputes h(C), decodes version contained in cert, accepts if comparison checks out

Intrusion Detection

Intrusion Detection System

- Device or software that monitors network or activities
 - For things know or suspected of being malicious
 - Policy violations
- NIDS (Network Intrusion Detection System)
 - Monitor traffic via connection to hub or switch, placed for best visibility
 - Example: SNORT
- HIDS (Host-based Intrusion Detection System)
 - Watches system calls, log files, file-system modifications
 - Example: Tripwire

Intrusion Detection System

Passive System

- Raises alerts, but takes no actions

Reactive System

- When "enough" evidence present of intrusion, some action taken, e.g.
 - Reset connection
 - Isolate LAN
 - Block traffic from suspected source
- Any reactive system has potential for being vector for attack designed to repeatedly trigger
 - Because legitimate use is impacted by reaction

Statistical Anomaly Detection

Idea is to observe statistics of behavior, and react

Assumes some notion of "normal" is known

Difficulties

- "normal" can have high variance, making it easier for abnormal to look normal
- Attributes of behavior have to be specified
 - The more the attributes the better the ability to differentiate, but the less data is there is train on
- What's the difference between "abnormal" and "rare"???

Signature Based IDS

System examines packets (particularly coming into host) and looks for malware

- Needs a database of "signatures"
- Most common defense against viruses, but
 - There's a lag between when new malware appears, and when it can be identified and put in the DB
 - Malware can hide by auto-mutation to change signatures.

Firewalls

Firewall Goal

• Insert *after the fact security* by wrapping or interposing a filter on network traffic

Firewall Requirements

- All traffic between network section A and network section B (and visa versa) must pass through the firewall (or a consistently controlled set of firewalls)
- Only authorized traffic (as specified by the security policy) is allowed to pass
- The firewall itself is immune to penetration

"Typical" corporate network

Packet Filter Firewall

- IP packet contains [src ip, src port, dst ip, dst port, protocol]
 - (ip,port) is standard Internet address
 - Protocol describes how the packet is handled by sender and receiver

Packet Filter

- Can block traffic based on source and destination address, ports, and protocol
- Does not look at data contents

Rule Scenario

Example Packet Filter Rules

• Rules attached to outside interface

Action	Source Addr	Src port	Dest Addr	Dest Port	Protocol	Comment
Block	Outside host	*	*	*	*	Don't trust
Allow	*	*	Our Mail Server	25	ТСР	Allow mail traffic

Action	Source Addr	Source Port	Dest Addr	Dest Port	Protocol	Comment
Block	*	*	Outside host	*	*	Don't trust
Allow	Our Mail Server	25	*	*	ТСР	Allow Mail traffic

A Better Example

• Rules attached to inside interface

Action	Source Addr	Source Port	Dest Addr	Dest Port	Proto	Comment
Allow	Inside networks	*	*	25	ТСР	Allow traffic to all mail servers

Action	Source Addr	Source Port	Dest Addr	Dest Port	Proto	Flags	Comment
Allow	*	25	Inside networks	*	ТСР	ACK	Allow return traffic from all mail servers

Application Proxy Firewall

- Firewall software runs in application space on the firewall
- The traffic source must be aware of the proxy and add an additional header
 - Now transparent proxy support is available (TPROXY)
- Leverage basic network stack functionality to sanitize application level traffic
 - Block java or active X
 - Filter out "bad" URLs
 - Ensure well formed protocols or block suspect aspects of protocol

Ingress and Egress Filtering

- Ingress filtering
 - Filter out packets from invalid addresses before entering your network
- Egress filtering
 - Filter out packets from invalid addresses before leaving your network

Limits to firewalls

- Cannot analyze encrypted traffic
 - Beyond header information
- Relies on port as indicator of service
 - Newer firewalls dynamically analyze traffic to determine protocol
- Tracking IP addresses instead of people
- Management is complex

NERC CIP Standards

NERC

FERC contracts with North American Electric Reliability Corporation for

- Development of reliability standards for bulk electric power systems
- Compliance enforcement of NERC standards
 - Monitoring, audits, investigations
 - Financial penalties for non-compliance

NERC Auditing

NERC conducts periodic, independent assessments of reliability and adequacy of utilities

- Development of reliability standards for bulk electric power systems
- Compliance enforcement of NERC standards
 - Monitoring, audits, investigations
 - Financial penalties for non-compliance

NERC Standards

- Developed with industry cooperation
- Reviewed and approved by NERC Board of Trustees
- Approved by FERC
 - Then become law

NERC Standards Overview

There are 14 different standards domains

Here we are interested in those pertaining to

- Critical Infrastructure Protection
 - Identify control elements critical to operation, and protection of access to them
 - Electronic Security Barrier (CIP—05)
 - Networking boundary behind which all critical cyber assets reside
 - Assess through the ESP

CIP 005

- CIP 005 presents challenges in both compliance and audit
- Requirement R1 calls for the documentation of an Electronic Security Perimeter and the access points to the ESP
 - any connection that crosses the ESP from outside (e.g. dial-up modem) to device inside
 - Endpoints of connections between different ESPs
- Requirement R1 requires documentation of all connections within ESP

Typical Utility Installation

Process Control networks are connected in enterprise systems

- Many utilities use a combination of diagrams and the configurations of their firewalls to define the ESP and security controls surrounding the ESP
- The utility needs to document organizational processes and technical and procedural mechanisms for control of electronic access

Vulnerability Assessment

- The vulnerability assessment requirement of CIP 005 calls for a review of controls
- The review of connections available in a firewall are not easily found without the use of a tool or the expenditure of significant man hours.

The need for a tool

- Utilities primarily use firewalls to establish access points to their critical systems
- Reviewing long and often complex firewall configurations (sometimes exceeding thousands of lines) is time consuming
- There is no automated method to verify the diagram of the ESP
- Audits are typically scheduled to last only a matter of days and auditors need a method to process this complex data without connecting to the network

Our tool : Network Access Tool (NetAPT)

- From only the configuration files of firewalls, NetAPT
 - Finds the devices and how the network is connected
 - Displays network graphically
 - Finds all connections that the firewalls allow

NetAPT

- NetAPT user can
 - Find all ways that a given device can be reached
 - Find all ways that a given device can reach others
 - Find all connections that use a certain protocol

Example of an EMS network

Analysis

- Analysis can be performed using the global policies established in the tool
- Analysis will show all incoming traffic allowed through the access point into the critical network
- Analysis can verify that all Critical Cyber Assets are accounted for and there are no extraneous CCA's

NetAPT for the auditor

- NetAPT provides a means for auditors to review security controls inside ESP's without having to directly access the ESP
- Time spent in review of firewall configurations can be significantly reduced
- Standardizing on a tool such as NetAPT would allow for consistent presentations of this sensitive data across utilities

