Optimal Power Flow (OPF) and Security Constrained OPF

Professor Tom Overbye Department of Electrical and Computer Engineering

December 6, 2013

In the News: Ice and Power Lines

Ice and power lines do not mix well!

The Sperry-Piltz Ice Accumulation Index, or "SPIA Index" – Copyright, February, 2009

ICE DAMAGE INDEX	* AVERAGE NWS ICE AMOUNT (in inches) *Revised-October, 2011	WIND (mph)	DAMAGE AND IMPACT DESCRIPTIONS	
0	< 0.25	< 15	Minimal risk of damage to exposed utility systems; no alerts or advisories needed for crews, few outages.	
1	0.10 - 0.25	15 - 25	Some isolated or localized utility interruptions are possible, typically lasting only a few hours. Roads	
T	0.25 - 0.50	> 15 and bridges may	and bridges may become slick and hazardous.	
•	0.10-0.25	25 - 35	Scattered utility interruptions expected, typically lasting 12 to 24 hours. Roads and travel conditions	
2	0.25-0.50	15 - 25	lasting 12 to 24 hours. Roads and travel conditions may be extremely hazardous due to ice accumulation.	
in the second	0.50-0.75	< 15		
	0.50 - 0.75 0.10 - 0.25 0.25 - 0.50	>= 35	possible, typically lasting only a few hours. Roads and bridges may become slick and hazardous. 15 Scattered utility interruptions expected, typically lasting 12 to 24 hours. Roads and travel conditions may be extremely hazardous due to ice accumulation. 15 Numerous utility interruptions with some damage to main feeder lines and equipment expected. Tree limb damage is excessive. 15 Outages lasting 1 – 5 days. 15 Prolonged & widespread utility interruptions with extensive damage to main distribution feeder lines & some high voltage transmission lines/structures. Outages lasting 5 – 10 days. 15 Catastrophic damage to entire exposed utility	
3	0.25 - 0.50	25 - 35		
	0.50 - 0.75	15 - 25		
	0.75 - 1.00	< 15		
	0.25 - 0.50	>= 35	Prolonged & widespread utility interruptions with extensive damage to main distribution	
1	0.50 - 0.75	25 - 35		
4	0.75-1.00	15 - 25	feeder lines & some high voltage transmission	
	1.00-1.50	< 15	S Prolonged & widespread utility interruption 5 with extensive damage to main distribution 5 feeder lines & some high voltage transmission 1 lines/structures.	
	0.50 - 0.75	>=35	Catastrophic damage to entire exposed utility systems, including both distribution and transmission networks. Outages could last several weeks in some areas. Shelters needed.	
5	0.75 - 1.00	>=25		
	1.00 - 1.50	>=15		
	> 1.50	Any		

Quebec Ice Storm, January 1998; Some places got more than three inches of ice!

ategories of damage are based upon combinations of precipitation totals, temperatures and wind speeds/directions.

Overview

The goal of an optimal power flow (OPF) is to determine the "best" way to instantaneously operate a power system.

Usually "best" = minimizing operating cost.

- OPF combines a power flow solution with an economic dispatch solution to determine the best way to operate the system without limit violations
- Security constrained OPF (SCOPF) includes the impacts of contingencies
- > OPF is used as basis for real-time pricing in major US electricity markets such as MISO and PJM.

OPF Constraints

- OPF is an optimization that seeks to minimize a cost function, such as operating cost, taking into account realistic equality and inequality constraints
- Example equality constraints (primarily from the power flow)
 - bus real and reactive power balance
 - generator voltage setpoints
 - > area MW interchange

OPF Constraints, cont'd

- Example Inequality constraints
 - transmission line/transformer/interface flow limits
 - > generator MW limits
 - > generator reactive power capability curves
 - bus voltage magnitudes
 - transformer taps, phase shifts
- Example Controls
 - generator MW outputs and voltage setpoints
 - > transformer taps and phase angles
 - switched shunts
 - > loads

OPF Mathematical Formulation

> The OPF can be formulated quite simply as

 $\min f(\mathbf{x}, \mathbf{u})$
s.t. $\mathbf{g}(\mathbf{x}, \mathbf{u}) = \mathbf{0}$

$$h(\mathbf{x},\mathbf{u}) \leq \mathbf{0}$$

where \mathbf{x} is the vector of the state variables, primarily the bus voltage magnitudes and angles, and \mathbf{u} is the vector of controls

 But understanding OPF requires we briefly review power flow and economic dispatch

Power Flow Analysis

- The most common power system analysis tool is the power flow (also known sometimes as the load flow)
 - power flow determines how the power flows in a network
 - also used to determine all bus voltages and all currents
 - because of constant power models, power flow is a nonlinear analysis technique
 - power flow is a quasi steady-state analysis tool; it is valid on a time period of minutes (load is assumed constant)

Power Flow Analysis

- Power flow involves solving the nonlinear power balance equations to enforce KCL at each bus in the system
 - > Net real and reactive power into bus sums to zero
- Inputs into the power flow are a network model (e.g., system connectivity and line impedances), loads being consumed at the buses (PQ buses), real power injected by the generators, and the generator setpoint voltage magnitudes (PV buses); also require a system slack bus

Power Flow: 3-Phase vs Single-Phase

- Power flow (and OPF) are usually solved assuming the underlying three-phase system is balanced, hence an equivalent per phase network is solved (also known as the positive sequence)
- Full three-phase models can be used but they are much more complicated

Power Flow Equations

Power flow equations can be represented as just a set of algebraic equations; essentially twice the number of buses since there is a real power balance equation and a reactive power balance equation

 $\mathbf{g}(\mathbf{x},\mathbf{u})=\mathbf{0}$

where **x** is the vector of bus voltage angles and magnitudes; **u** is a vector of mostly fixed parameters (which will be varied in the OPF)

Actual Power Flow Equations

> At each bus i we have

ท

$$S_{i} = P_{i} + jQ_{i} = V_{i}\sum_{k=1}^{n}Y_{ik}^{*}V_{k}^{*} = \sum_{k=1}^{n}|V_{i}||V_{k}|e^{j\theta_{ik}}(G_{ik} - jB_{ik})$$

$$= \sum_{k=1}^{n} |V_i| |V_k| (\cos \theta_{ik} + j \sin \theta_{ik}) (G_{ik} - jB_{ik})$$

Resolving into the real and imaginary parts

$$P_{i} = \sum_{k=1}^{n} |V_{i}|| V_{k} |(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) = P_{Gi} - P_{Di}$$
$$Q_{i} = \sum_{k=1}^{n} |V_{i}|| V_{k} |(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) = Q_{Gi} - Q_{Di}$$

Power Flow Example: Five Buses

Economic Dispatch

- Different generation resources have different marginal (incremental) cost characteristics
 - Cost to get the next MWh from the resource
 - Capital costs are not considered here
 - Some, such as wind and solar, may have quite low (or sometimes even negative marginal costs); others, such as natural gas or oil, can be much higher
- Economic dispatch seeks to minimize the total generation dispatch costs

Generator Cost Curve

The fuel-cost curve shows how the costs of operating a unit vary with its MW output

Incremental (Marginal) cost Curve

- > Plots the incremental \$/MWh as a function of MW.
- Found by differentiating the cost curve

Economic Dispatch: Formulation

Economic dispatch can be formulated as a constrained minimization

Minimize (

$$C_{\mathrm{T}} \Box \sum_{i=1}^{m} C_{i}(P_{Gi})$$

Such that

$$\sum_{i=1}^{m} P_{Gi} = P_D + P_{Losses}$$

Or more generally as min $f(\mathbf{u})$ s.t. $\mathbf{g}(\mathbf{u}) = \mathbf{0}$ $\mathbf{h}(\mathbf{u}) \le \mathbf{0}$ The inequality constraints are introduced to include generator limits

Economic Dispatch and Optimality

- The optimal (or economic) dispatch occurs when all the generators have equal marginal costs, excepting that some generators will be constrained at their maximum or minimums
 - Become of the time constants (hours) associated with starting/shutting down large thermal units, they often run for a while at their minimum values
 - Determining which generators should be online is known as unit commitment, and is not considered here
- In this case the locational marginal price (LMP)
 would be the same at each bus in the system

Economic Dispatch Example

What is economic dispatch for a two generator system $P_D = P_{G1} + P_{G2} = 500 \text{ MW}$ and $C_1(P_{G1}) = 1000 + 20P_{G1} + 0.01P_{G1}^2 \$ / hr$ $C_2(P_{G2}) = 400 + 15P_{G2} + 0.03P_{G2}^2$ \$/hr Using the Largrange multiplier method we know $\frac{dC_1(P_{G1})}{dP_{G1}} - \lambda = 20 + 0.02P_{G1} - \lambda = 0$ $\frac{dC_2(P_{G2})}{-\lambda} = 15 + 0.06P_{G2} - \lambda = 0$ dP_{G2} $500 - P_{G1} - P_{G2} = 0$

Economic Dispatch Example, cont'd

We therefore need to solve three linear equations

20 + 0.02	$2P_{G1} - \lambda$	=0	
15 + 0.06	$P_{G2} - \lambda$	= 0	
$500 - P_{G2}$	$_{1} - P_{G2} =$	0	
0.02	0 -1]	$\left\lceil P_{G1} \right\rceil$	□ -20
0 0	0.06 -1	$ P_{G2} =$	-15
1	-1 0	[λ]	_500
$\left\lceil P_{G1} \right\rceil$	312.5	MW]	
$ P_{G2} =$	187.5	MW	
	26.2 \$/	MWh	

The marginal cost, λ , is the incremental cost to supply one more MWh

Five Bus Case Economic Dispatch

Marginal impact of losses is ignored

Inclusion of Transmission Losses

- The losses on the transmission system are a function of the generation dispatch. In general, using generators closer to the load results in lower losses
- This impact on losses should be included when doing the economic dispatch
- Losses can be included by slightly rewriting the economic dispatch Lagrangian:

$$L(\mathbf{P}_{G},\lambda) = \sum_{i=1}^{m} C_{i}(P_{Gi}) + \lambda(P_{D} + P_{L}(P_{G}) - \sum_{i=1}^{m} P_{Gi})$$

Impact of Transmission Losses

This small change then impacts the necessary conditions for an optimal economic dispatch

$$L(\mathbf{P}_{G},\lambda) = \sum_{i=1}^{m} C_{i}(P_{Gi}) + \lambda(P_{D} + P_{L}(P_{G}) - \sum_{i=1}^{m} P_{Gi})$$

The necessary conditions for a minimum are now

$$\frac{\partial L(\mathbf{P}_{G},\lambda)}{\partial P_{Gi}} = \frac{dC_{i}(P_{Gi})}{dP_{Gi}} - \lambda(1 - \frac{\partial P_{L}(P_{G})}{\partial P_{Gi}}) = 0$$

$$P_D + P_L(P_G) - \sum_{i=1}^{m} P_{Gi} = 0$$

Five Bus Case Economic Dispatch

Marginal impact of losses is included

Economic Dispatch and OPF

- A key shortcoming of economic dispatch is it does NOT consider transmission system constraints
 - That is, just dispatching the system economically may lead to a situation in which we have transmission system limit violations
- OPF combines economic dispatch with the power flow to achieve an optimal dispatch
- There are several common OPF solution techniques; here we'll just consider the widely used linear programming approach

LP OPF Solution Method

Solution iterates between

- solving a full ac power flow solution
 - enforces real/reactive power balance at each bus
 - enforces generator reactive limits
 - > system controls are assumed fixed
 - takes into account non-linearities
- solving a primal LP
 - changes system controls to enforce linearized constraints while minimizing cost

A key input is determining the sensitivities of each constraint to each control

Five Bus MW Control Sensitivities

Three Bus (B3) Example

- Consider a three bus case (bus 1 is system slack), with all buses connected through 0.1 pu reactance lines, each with a 100 MVA limit
- Let the generator marginal costs be
 - Bus 1: 10 \$ / MWhr; Range = 0 to 400 MW
 - Bus 2: 12 \$ / MWhr; Range = 0 to 400 MW
 - Bus 3: 20 \$ / MWhr; Range = 0 to 400 MW
- Assume a single 180 MW load at bus 2

B3 with Line Limits NOT Enforced

B3 with Line Limits Enforced

Verify Bus 3 Marginal Cost

Why is bus 3 LMP = \$14 /MWh

- All lines have equal impedance. Power flow in a simple network distributes inversely to impedance of path.
 - For bus 1 to supply 1 MW to bus 3, 2/3 MW would take direct path from 1 to 3, while 1/3 MW would "loop around" from 1 to 2 to 3.
 - Likewise, for bus 2 to supply 1 MW to bus 3, 2/3MW would go from 2 to 3, while 1/3 MW would go from 2 to 1 to 3.

Why is bus 3 LMP \$ 14 / MWh, cont'd

- With the line from 1 to 3 limited, no additional power flows are allowed on it.
- To supply 1 more MW to bus 3 we need
 - Pg1 + Pg2 = 1 MW
 - 2/3 Pg1 + 1/3 Pg2 = 0; (no more flow on 1-3)
- Solving requires we up Pg2 by 2 MW and drop Pg1 by 1 MW -- a net increase of \$14.

Five Bus OPF Solution and LMPs

Typical Electricity Markets

- Electricity markets trade a number of different commodities, with MWh being the most important
- A typical market has two settlement periods: day ahead and real-time
 - Day Ahead: Generators (and possibly loads) submit offers for the next day; OPF is used to determine who gets dispatched based upon forecasted conditions. Results are financially binding
 - Real-time: Modifies the day ahead market based upon real-time conditions.

Payment

- Generators are not paid their offer, rather they are paid the LMP at their bus, the loads pay the LMP.
- At the residential/commercial level the LMP costs are usually not passed on directly to the end consumer. Rather, they these consumers typically pay a fixed rate.
- LMPs may differ across a system due to transmission system "congestion."

MISO LMP Contour

https://www.misoenergy.org/LMPContourMap/MISO_MidWest.html

