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In the News: Ice and Power Lines

Ice and power lines do not mix well!

The Sperry-Piltz Ice Accumulation Index, or “SPIA Index” — Copyright, February, 2009

ICE * AVERAGE NWS
DAMAGE ICE AMOUNT WIND DAMAGE AND IMPACT
INDEX (in inches) (mph) DESCRIPTIONS
* Revised-October, 2011
<025 <15 Minimal risk of damage to exposed utility systems;
0 - no alerts or advisories needed for crews, few outages.
5 8 Some isolated or localized utility interruptions are
1 920023 15-25 possible, typically lasting only & few hours. Roads
025-050 >15 and bridges may become slick and hazardous.
0.10-0.25 25-35 Scattered utility interruptions expected, typically
2 025050 15.25 | lasting 12 to 24 hours. Roads and travel conditions
AT = may be extremely hazardous due to ice accumulation.

Quebec Ice Storm,
January 1998;
Some places got

Catastrophic damage to entire exposed utility

o < s—— more than three

several weeks in some areas. Shelters needed.

Inches of icel

‘ategories of damage are based upon combinations of precipitation totals, temperatures and wind speeds/directions.

Image source: http://i.imwx.com/web/spia-index-web.jpg



Overview

» The goal of an optimal power flow (OPF) is to
determine the “best” way to instantaneously
operate a power system.

> Usually “best” = minimizing operating cost.
» OPF combines a power flow solution with an

economic dispatch solution to determine the best
way to operate the system without limit violations

» Security constrained OPF (SCOPF) includes the
Impacts of contingencies

» OPF is used as basis for real-time pricing in major
US electricity markets such as MISO and PJM.



OPF Constraints

» OPF is an optimization that seeks to minimize a
cost function, such as operating cost, taking into
account realistic equality and inequality constraints

» Example equality constraints (primarily from the
power flow)
» bus real and reactive power balance
» generator voltage setpoints
» area MW interchange



OPF Constraints, cont’d

» Example Inequality constraints
» transmission line/transformer/interface flow limits
» generator MW limits
» generator reactive power capability curves
» bus voltage magnitudes
» transformer taps, phase shifts

» Example Controls
» generator MW outputs and voltage setpoints
» transformer taps and phase angles
» switched shunts

> loads



OPF Mathematical Formulation
<

» The OPF can be formulated quite simply as

min f(Xx,u)
st. g(x,u) =0
h(x,u) <0

where X Is the vector of the state variables,
primarily the bus voltage magntiudes and
angles, and u Is the vector of controls

» But understanding OPF requires we briefly review
power flow and economic dispatch



Power Flow Analysis
|

» The most common power system analysis tool Is
the power flow (also known sometimes as the
load flow)

» power flow determines how the power flows in a
network

» also used to determine all bus voltages and all
currents

» because of constant power models, power flow is a
nonlinear analysis technique

» power flow Is a quasi steady-state analysis tool; it is
valid on a time period of minutes (load is assumed
constant)



Power Flow Analysis
|

> Power flow involves solving the nonlinear power
balance equations to enforce KCL at each bus in
the system
» Net real and reactive power into bus sums to zero

» Inputs into the power flow are a network model
(e.g., system connectivity and line impedances),
loads being consumed at the buses (PQ buses), real
power injected by the generators, and the generator
setpoint voltage magnitudes (PV buses); also
require a system slack bus



Power Flow: 3-Phase vs Single-Phase

» Power flow (and OPF) are T
usually solved assuming =
the underlying three-phase E 4
system is balanced, hence e
an equivalent per phase s et
network iIs solved (also
known as the positive
sequence)

» Full three-phase models
can be used but they are
much more complicated




Power Flow Equations
|

» Power flow equations can be represented as just a
set of algebraic equations; essentially twice the
number of buses since there is a real power balance
eguation and a reactive power balance equation

g(x,u)=0

where X Is the vector of bus voltage angles
and magnitudes; u Is a vector of mostly
fixed parameters (which will be varied

In the OPF)



Actual Power Flow Equations

> At each bus 1 we have

Si = B+1GQ VZYuzvk*—Zwuwkejgk(Guk—JBuk)
= =

= ZMM (cosby + Jsin Gy )(Gy — 1By )
k=1

Resolving into the real and imaginary parts

n
P, = > VilV|(Gj cos by + By sinb,y ) = Pg; — Py;
k=1

Qi = 2 MV (Gysingy — By cosby) = Qg —Qp;
k=1
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Power Flow Example: Five Buses

78 MW
29 Mvar

1.00 pu
92 . OfMW
-0.0831
AGC ON
0.96 pu
127 MW
20 Mvar . v 39 Mvar
Total Hourly Cost: 5916.09 $/h Load Scalar: 0.98j)
Total Area Load: 392.0 MW MW Losses: 12.50 MW

Marginal Cost ($/MWh): 14.14 $/MWh
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Economic Dispatch
|
» Different generation resources have different
marginal (incremental) cost characteristics
» Cost to get the next MWh from the resource

» Capital costs are not considered here

» Some, such as wind and solar, may have quite low (or
sometimes even negative marginal costs); others, such as
natural gas or oil, can be much higher

» Economic dispatch seeks to minimize the total
generation dispatch costs

12



Generator Cost Curve

> The fuel-cost curve shows how the costs of
operating a unit vary with its MW output

8000 —
6000 ——

4000 ——

Fuel-cost {$/hr)

2000 ——

| | |
0 | | |

0 100 200 J00 400
Generator Power (M)
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Incremental (Marginal) cost Curve

> Plots the incremental $/MWh as a function of MW.
» Found by differentiating the cost curve

200

-

10.0

-
th
=

I

Incremental cost ($/MWWH)
&n
=
|
|

| | | |
0.0 | | | |

1] 100 200 300 400
Generator Power (M)
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Economic Dispatch: Formulation

» Economic dispatch can be formulated as a
constrained minimization

m
Minimize C; 0 Y C;(Py;)
1=1
m
Such that Z Fsi = Pb + Plosses

=1 The Inequality
Or more generally as constraints are

min 1 (u) introduced to
st. g(u) =0 include generator

h(u) <0 limits

15



Economic Dispatch and Optimality

» The optimal (or economic) dispatch occurs when
all the generators have equal marginal costs,
excepting that some generators will be constrained
at thelr maximum or minimums

» Become of the time constants (hours) associated with
starting/shutting down large thermal units, they often run
for a while at their minimum values

» Determining which generators should be online is
known as unit commitment, and Is not considered here

» In this case the locational marginal price (LMP)
would be the same at each bus in the system

16



Economic Dispatch Example

o 00000000}
What Is economic dispatch for a two generator

system Py = Ps; + P5, =500 MW and
C,(Ps;) = 1000+20P;, +0.01P% $/ hr

Using the Largrange multiplier method we know

1C1(Fe) 3 _201002P,-4 =0
dPs;

500_ PGl_ PGZ — O

17



Economic Dispatch Example, cont’d

We therefore need to solve three linear equations

20+0.02P;, - 1 =0
- 1 1 . The marginal
002 0 -1} Fs —20 cost, A, is the
0 006 -1 PF;, |=| -15 incremental cost
_ _ _ to supply one
- 1_ _1 0L 4 - = >0 more MWh
Pe1 312.5 MW
Pso |= | 187.5 MW
A | 26.2%/MWh 8




Five Bus Case Economic Dispatch

' s B E FEI g ase: Example_12_10_Nolosses.PWB Status: Running (PF) | Simulator 18 Beta -:--@-gl
& :as::auon D@; un; Ts .Dnﬁns Adr\s . — - o |
Edit Mode ° X 7 LRSS © == = T S
| B . (e Solve ~ 4 i (2 Time Step Simulation... L VAX £E E @ Other -
Colllbls W seript ~ el 7 %‘;ﬂ:gm Restore ~ E:,T;‘,:,i‘inw SE“‘?WUES Line Loading Replicator... ,\,‘D,,L-"(:‘,‘-‘t,,g D;‘T;,rznfe :%:E‘E E,z:ff:r Ennng.mms Renumbe;
Mode Log Power Flow Tools Run Mode Other Tools Edit Mode
Example_12_10_Nol osses = B =
92 MW
0o 29 Mvar
. pu .
1 1.00 nu
Area Top Generator Incremental Cost Curves B
98 MW
320
240 —
96 MW
g Xy e &
1.04 pu z
e ?
2 s
209.0 z .
46 MW G B
20 Mvar -0.0310 2
AGC ON
| | | |
Total Hourly Cost: 7022.80 $/h Load Scalar: 1.15[ 7 . ! o oo
Generator Power (W)
Total Area Load: 460.0 MW MW Losses: 18.50
Marginal Cost ($/MWh): 15.52 $/MWh

Run Mode Solution Animation Running AC Viening Current Case

Marginal impact of losses is ignored 9



Inclusion of Transmission Losses
|
» The losses on the transmission system are a
function of the generation dispatch. In general,

using generators closer to the load results in lower
losses

» This impact on losses should be included when
doing the economic dispatch

» Losses can be included by slightly rewriting the
economic dispatch Lagrangian:

(P A) = 3°C,(Ps) + APy +P.(Ps) =3 Psy)
=1 i=1

20



Impact of Transmission Losses
|

This small change then impacts the necessary
conditions for an optimal economic dispatch

(P 2) = 3.C,(Ps)+ APy +P.(Ps) =3 Psy)
=1 i=1

The necessary conditions for a minimum are now

oL(Pg,4)  _ dCi(PGi)_;t( oP_(Fs

)
oP dP oP )=
Gi Gi Gi

m
Po +PL(Ps) — 2 Fsi =0
i=1

21



Five Bus Case Economic Dispatch

Tk @ ORE o EEL o
0.8,0,0.0,
grmation

[[FI cace '

ase: Example_12_10_NoLossesPWB Status: Running (PF) | Simulator 18 Beta

e

Draw  Onelines | Tools Options  Add Ons & @
{of e &
Edit Made | Aot =) ® 47 Fault Analysis ~ % £F E @ o
[ Log (e Solve - <) (3 Time Step Simulation... = AX = Other + | Mod
Run Mode | ) Sin, ution  Simulator Contingency  Sensitivities ) Limit Difference  Scale Model  Connections
0 script ~ Fi ton  Options. Restore - Analysis. - Line Loading Replicator... Menitoring. Flows~  Case Explorer. - Snumus
Mode Log Power Flow Tools Run Mode Other Tools Edit Mode
Example_12_10_Nol osses = B =
92 MW
29 Mvar
1.05 pu
1 1.00 nu
Area Top Generator Incremental Cost Curves B
86 MW
320
240 1
85
=160 hd pe
z
1.04 pu z
<
2 B
=
T g0
46 MW g
20 Mvar —0.0334 E
AGC ON
| | | |
. . 0.0
Total Hourly Cost: 7006.11 $/h Load Scalar: 1.15@ , s ! o %

Total Area Load:
Marginal Cost ($/MWh) :

460.0 MW
14.86 $/MWh

MW Losses: 16.48

Generator Power (W)

Run Mode Solution Animation Running

AC Viening Current Case:

Marginal impact of losses is included
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Economic Dispatch and OPF
o 00000000}

> A key shortcoming of economic dispatch is it does
NOT consider transmission system constraints

» That is, just dispatching the system economically may
lead to a situation in which we have transmission system

limit violations
» OPF combines economic dispatch with the power
flow to achieve an optimal dispatch

» There are several common OPF solution
techniques; here we'll just consider the widely used
linear programming approach

23



LP. OPF Solution Method

» Solution iterates between
» solving a full ac power flow solution
» enforces real/reactive power balance at each bus
» enforces generator reactive limits
» System controls are assumed fixed
» takes into account non-linearities
» solving a primal LP

» changes system controls to enforce linearized
constraints while minimizing cost

» A key Input Is determining the sensitivities
of each constraint to each control

24



Five Bus MW Control Sensitivities

ase: Example_12_10_Nolosses.PWB Status: Running (PF) | Simulator 18 Beta

ErET TR
m Case Information Draw Onelines Tools Options Add Ons Window
- %) Abort ® “—{,I 47 Fault Analysis - 85% . Equivalencing
s  Eue B8 .. "‘ ”d-/; (4 Time Step Simulation... > 'E; 511 [% @ ol
Colllbls W seript ~ g %‘;ﬂ:gm Restore ~ E:,T;‘,:,i‘inw SE“‘?WUES Line Loading Replicator... ,\,‘D,,L-"(:‘,‘-‘t,,g D;‘T;,rznfe :%:E‘E E,?Sff:, Ennng.mms Renumbe
Mode Log Power Flow Tools Run Mode Other Tools Edit Mode
Example_12_10_Nol osses
90 MW 84 MW 84 MW 85 MW 130 MW
29 Mvar
1.05 pu A, 0.98 pu (e
1 1.00 pu
214 . 1fMw
: AGC ON
b ../
o, L/
78 MW
42 MW
122 MW
2 5
65 MW 268 . 8w 211 MW
20 Mvar —0.0495 39 Mvar
AGC ON
Total Hourly Cost: 10403.22 $/h Load Scalar: 1. 62@
Total Area Load: 648.0 MW MW Losses: 31.12 MW
Marginal Cost ($/MWh): 16.84 $/MWh

Run Mode Solution Animation Running

Viening Current Case:




Three Bus (B3) Example

e Consider a three bus case (bus 1 is system slack),
with all buses connected through 0.1 pu reactance
lines, each with a 100 MVA limit

e Let the generator marginal costs be
- Bus 1: 10 $/ MWhr; Range = 0 to 400 MW

- Bus 2: 12 $/ MWhr; Range = 0 to 400 MW
- Bus 3: 20 $/ MWhr; Range = 0 to 400 MW

e Assume a single 180 MW load at bus 2
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B3 with Line Limits NOT Enforced

10.00 $/Mwh

OAMW
60 MW

Total Cost60MW

1800 $/hr
Bus 3 %

0 MW

10.00 $/MWh

180AMW

Bus 1
10.00 $/MWh

@

180.0 Mw

Line from Bus 1
to Bus 3 Is over-
loaded; all buses
have same

marginal cost
27



B3 with Line Limits Enforced

Bus 2 20 MW 2 Bus 1

: —.—@:4444444 l:llOOO$/MWh

60.0 MW|12.00 $/MWh

100 MW 120.0 MW
< — =
OAMW
80 MW
Total Cost 100 Mw :
1920 $/hr 0™ LP OPF redispatches

Bus 3 14.00 3/Mi ¢4 remove violation.
18°@MW Bus marginal
o o costs are now
different.
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Verify Bus 3 Marginal Cost

Bus 2 19 MW iR Bus 1

_._@ NNNNNNN | 10.00 $/MWh
e -®

119.0 MW
<P 81%
OAMW \
81 MW
Total Cost % One additional MW
1934 $/hr ™ B of load at bus 3

Bus 3 14.00 5/M raised total cost by
181 MW 14 $/hr, as G2 went

0 MW up by 2 MW and G1

went down by 1MW



Why is bus 3 LMP = $14 /MWh

e All lines have equal impedance. Power flow in a
simple network distributes inversely to impedance
of path.

— For bus 1 to supply 1 MW to bus 3, 2/3 MW would take

direct path from 1 to 3, while 1/3 MW would “loop
around” from 1 to 2 to 3.

- Likewise, for bus 2 to supply 1 MW to bus 3, 2/3MW
would go from 2 to 3, while 1/3 MW would go from 2 to
1to 3.

30



Why is bus 3 LMP $ 14 / MWh, cont’d

e With the line from 1 to 3 limited, no additional
power flows are allowed on it.

e To supply 1 more MW to bus 3 we need
- Pgl+Pg2=1MW
- 2/3Pgl + 1/3 Pg2 =0; (no more flow on 1-3)

e Solving requires we up Pg2 by 2 MW and drop Pg1l
by 1 MW -- a net increase of $14.

31



Five Bus OPF Solution and LMPs

E - IR ase: Examplel2_11.pwh Status: Initialized | Simulator 18 Beta e ]
m Caseinformation  Draw  Onelines | Tools | Optons  AddOns  Window & @
(%) Abort df A7 Eault Analysis - 85% Er =D
e 52 S K Blme 2 o B o,
5 Log Solve ~ 4 A BTime Step Simulation... =*= AX =~ Other - lodif
Run Mode | ) Single Solution  Simulator Contingency ~ Sensitivities ) Limit Difference  Scale Model  Connections
148 script Full N Options. Restore ~ Analysis. - Line Loading Replicator... Manitoring. Flows~ Case Explorer. -

Made Log Power Flow Tools Run Mode Other Tools Edit Mode

8] Examplel2_ 11
p!

63 MW 63 MW 29 MW 29 MW 80 MW

29 Mvar
1.05 pu \a/ 1.00 pu . 11.00 pu

1 14.64 $/MWh 3 14.64 $/MWh 14.64 $/MWh

80 MW f, 1430MW 55 My 150 MW 53
AGC ON 39 Mvar @

72 @MW
MVA w
. AGC ON

Y 113 MW 17 MW

53 MW
1.04 pu s/ 13 MW 0.99 pu

: s 14.64 $/MWh 5 14.64 $/MWh

40 MW 185{gpw %7130 ofMw

20 Mvar AGC ON 39.2 Mvar

Total Hourly Cost: 5840.77 $/h Load Scalar: 1.00f
Total Area Load: 400.0 Mw
Marginal Cost ($/MWh): 14.64 $/Mwh

Run Mode Solution Animation Running AC Viening Current Case
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Typical Electricity Markets

e Electricity markets trade a number of different
commodities, with MWh being the most important

e A typical market has two settlement periods: day
ahead and real-time

- Day Ahead: Generators (and possibly loads) submit
offers for the next day; OPF is used to determine who
gets dispatched based upon forecasted conditions.
Results are financially binding

- Real-time: Modifies the day ahead market based upon
real-time conditions.
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Payment
|

e Generators are not paid their offer, rather they are
paid the LMP at their bus, the loads pay the LMP.

e At the residential/commercial level the LMP costs
are usually not passed on directly to the enc
consumer. Rather, they these consumers typically
pay a fixed rate.

e LMPs may differ across a system due to
transmission system “congestion.”

34



MISO LMP Contour
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