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Agenda 

• Power System Notation 

 

 

• Power Flow Analysis 

 

 

• Hands on Matpower and PowerWorld 



Simple Power System 

 Every power system has three major 
components 

– generation: source of power, ideally with a specified 
power, voltage, and frequency 

– load: consumes power; ideally with constant power 
consumption 

– transmission system: transmits power; ideally as a 
perfect conductor 



Complications 

• No ideal voltage sources exist 

• Loads are seldom constant, and we need to 
balance supply and demand in real time 

• Transmission system has resistance, inductance, 
capacitance and flow limitations 

• Simple system has no redundancy so power 
system will not work if any component fails  

 

 



Notation - Power 

• Power: Instantaneous consumption of energy 

• Power Units  

•   Watts  = voltage x current for dc (W) 

•   kW  – 1 × 103 Watt 

•   MW  –  1 × 106 Watt 

•   GW – 1 × 109 Watt 

• Installed U.S. generation capacity is about  
900 GW ( about 3 kW per person) 

• Maximum load of Champaign/Urbana about 300 
MW 



Notation - Energy 

• Energy: Integration of power over time; energy 
is what people really want (and pay for) from a 
power system 

• Energy Units 

•  Joule =  1 Watt-second (J) 

•  kWh –  Kilowatthour (3.6 x 106 J) 

•  Btu –  1055 J; 1 MBtu=0.292 MWh 

• U.S. electric energy consumption is about 3600 
billion kWh (about 13,333 kWh per person, 
which means on average we each use 1.5 kW of 
power continuously) 

 



Review of Phasors 

Goal of phasor analysis is to simplify the analysis 
of constant frequency ac systems 
 

 v(t)  =  Vmax cos(wt + qv) 

 i(t)   =  Imax cos(wt + qI) 

 
Root Mean Square (RMS) voltage of sinusoid 
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Complex Power 
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Complex Power, cont’d 
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Phasor Representation 

Euler’s identity: 𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃 

Phasor notation is developed by  

rewriting using Euler’s identity   

𝑣 𝑡 = 2𝑉cos(𝜔𝑡 + 𝜃𝑉) 

𝑣 𝑡 = 𝑟𝑒[ 2𝑉𝑒𝑗𝜔𝑡𝑒𝜃𝑉] 

 



Phasor Representation, cont’d 

The RMS, cosine-reference phasor is: 

𝑉 = 𝑉𝑒𝑗𝜃 = 𝑉∠𝜃𝑉  

𝑉 = 𝑉(cos 𝜃𝑉 + 𝑗sin 𝜃𝑉) 

𝐼  = 𝐼(cos 𝜃𝐼 + 𝑗 sin 𝜃𝐼) 

 



Complex Power 

𝑆 = 𝑉 𝐼  ∗ 

= 𝑉𝐼𝑒𝑗(𝜃𝑉−𝜃𝐼) 

= 𝑉𝐼 cos 𝜃𝑉 − 𝜃𝐼 + 𝑗 sin 𝜃𝑉 − 𝜃𝐼  

= 𝑃 + 𝑗𝑄 

𝑃: real power (W, kW, MW) 

Q: reactive power (var, kvar, Mvar) 

S: complex power (va, kva, Mva) 

Power factor (pf):  cos (𝜃𝑉 − 𝜃𝐼) 

If current leads voltage, then pf is leading 

If current lags voltage then pf is lagging 

 



Power Flow Analysis 

G 

Bus Transmission Line 

G Generators Loads 

(𝑉1, 𝜃1) (𝑉2, 𝜃2) 

(𝑉3, 𝜃3) 

• The power flow analysis is the process of solving the 
steady state of the power system 

– Steady state: voltage magnitude and angle for each bus 

– Generator: modeled as constant power delivery 

– Loads: modeled as constant power consumption 

– Transmission line: modeled as constant impedance 

 



Power Flow Analysis 

𝑆𝐺 − 𝑆𝐷 = 𝑉 𝑖𝐼  𝑖
∗
 

(𝑉 , 𝐼  : the voltage and the current that injects into bus i) 

𝐼  𝑖 =  𝐼 𝑖𝑘𝑘   

𝐼  𝑖𝑘 =
𝑉 𝑖−𝑉 𝑘

𝑍𝑖𝑘
  

(k takes indices of all buses that connected to bus i; Zik 

specifies the impedance of transmission line connecting 

bus i and bus k) 

Bus i

To other 
buses

SG
SD



Y-Bus (admittance matrix) 

𝐼𝑖 =  
𝑉𝑖−𝑉𝑘

𝑍𝑖𝑘
𝑘 =  𝑉𝑖 − 𝑉𝑘 𝑦𝑖𝑘𝑘    

= −𝑦𝑖1𝑉1 + −𝑦𝑖2𝑉2 +,… ,  𝑦𝑖𝑘 𝑉𝑖𝑘 +,…+ −𝑦𝑖𝑛 𝑉𝑛  

 = −𝑦𝑖1 −𝑦𝑖2 …  𝑦𝑖𝑘𝑘 … −𝑦𝑖𝑛

𝑉1

𝑉2

⋮
𝑉𝑖

⋮
𝑉𝑛

 

  



Y-Bus (admittance matrix), cont’d 

Write 𝐼𝑗 for all buses together: 𝐼  = 𝑌𝑉 , where 

(𝐼  = [𝐼1, 𝐼2, … , 𝐼𝑛], 𝑉 = [𝑉1, 𝑉2, … , 𝑉𝑛]) 

Construction of  Y: 

𝑌𝑖𝑖 =  𝑦𝑖𝑘𝑘    
𝑌𝑖𝑘 = 𝑌𝑘𝑖 = −𝑦𝑖𝑘 

𝑌 = 𝐺 + 𝑗𝐵 

So we have: 𝐼𝑖 =  (𝑌𝑖𝑘𝑉𝑘)𝑘  

  



Power Flow Equation at Bus j 

𝑆𝐺 − 𝑆𝐷 = 𝑉𝑖
 𝐼𝑖 

∗
 

𝑆𝐺 − 𝑆𝐷 = 𝑉𝑖
  𝐼𝑖 

∗
= 𝑉𝑖

  𝑌𝑖𝑘𝑉𝑘𝑘
∗
 

= 𝑉𝑖𝑒
𝑗𝜃𝑖  𝐺𝑖𝑘 + 𝑗𝐵𝑖𝑘  𝑉𝑘𝑘 𝑒𝑗𝜃𝑘

∗
  

= 𝑉𝑖𝑒
𝑗𝜃𝑖  𝑉𝑘 𝐺𝑖𝑘 − 𝑗𝐵𝑖𝑘 𝑒−𝑗𝜃𝑘

𝑘   

=  𝑉𝑖𝑉𝑘𝑘 𝐺𝑖𝑘 − 𝑗𝐵𝑖𝑘 𝑒𝑗(𝜃𝑖−𝜃𝑘)  

=  𝑉𝑖𝑉𝑘𝑘 𝐺𝑖𝑘 cos 𝜃𝑖 − 𝜃𝑘 + 𝐵𝑖𝑘sin (𝜃𝑖 − 𝜃𝑘)   

+𝑗 𝑉𝑖𝑉𝑘𝑘 𝐺𝑖𝑘sin (𝜃𝑖 − 𝜃𝑘) − 𝐵𝑖𝑘cos (𝜃𝑖 − 𝜃𝑘)   

Bus i

To other 
buses

SG
SD



Power Flow Equation at Bus j 

𝑃𝐺 − 𝑃𝐷 =  
 𝑉𝑖𝑉𝑘𝑘 𝐺𝑖𝑘 cos 𝜃𝑖 − 𝜃𝑘 + 𝐵𝑖𝑘sin (𝜃𝑖 − 𝜃𝑘)   

Q𝐺 − 𝑄𝐷 = 
 𝑉𝑖𝑉𝑘𝑘 𝐺𝑖𝑘sin (𝜃𝑖 − 𝜃𝑘) − 𝐵𝑖𝑘cos (𝜃𝑖 − 𝜃𝑘)   

• Slack bus: 

– 𝑉 and 𝜃 are known, used as a reference 

• PV bus, with generators connected 

– P and V are known 

• PQ bus, with only load units connected 

– P and Q are known 



Solving Power Flow Equations 

• Assuming m-1 PV buses 

– Given: 𝑉1, 𝜃1, 𝑃𝐺,2, 𝑉2, …, 𝑃𝐺,𝑚, 𝑉𝑚, 𝑃𝐷,𝑚+1, 𝑄𝐷,𝑚+1,…, 

𝑃𝐷,𝑛, 𝑄𝐷,𝑛 

– Unknown: 𝑃𝐺,1, 𝑄𝐺,1, 𝑄𝐺,2, 𝜃2, …, 𝑄𝐺,𝑚, 𝜃𝑚, 𝑉𝑚+1, 

𝜃𝑚+1,…, 𝑉𝑛, 𝜃𝑛 



Newton-Raphson Methods 

Assume (m-1) PV buses among n buses 

𝑥 =

𝜃2

𝜃3

⋮
𝜃𝑛

𝑉𝑚+1

𝑉𝑚+2

⋮
𝑉𝑛

      𝑓 𝑥 =

𝑃2(𝑥) − 𝑃𝐺,2 + 𝑃𝐷,2

𝑃3(𝑥) − 𝑃𝐺,3 + 𝑃𝐷,3

⋮
𝑃𝑛(𝑥) − 𝑃𝐺,𝑛 + 𝑃𝐷,𝑛

𝑄𝑚+1(𝑥) − 𝑄𝐺,𝑚+1 + 𝑄𝐷,𝑚+1

𝑄𝑚+2(𝑥) − 𝑄𝐺,𝑚+2 + 𝑄𝐷,𝑚+2

⋮
𝑄𝑛(𝑥) − 𝑄𝐺,𝑛 + 𝑄𝐷,𝑛

 



Multi-Variable Example 
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Solve for  =  such that ( ) 0 where

x

f ( ) 2 8 0

f ( ) 4 0

First symbolically determine the Jacobian
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𝑥 𝑡 + 1 = 𝑥 𝑡 − 𝐽−1(𝑥)f(x[t])  



Multi-variable Example, cont’d 

1
(2)

(2)

2.1 8.40 2.60 2.51 1.8284

1.3 5.50 0.50 1.45 1.2122

Each iteration we check ( )  to see if it is below our 

specified tolerance 

0.1556
( )

0.0900

If  = 0.2 then we wou
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ld be done.  Otherwise we'd 

continue iterating.  



N-R Power Flow Solution  

1 1 1

1 2

2 2 2

1 2

1 2

The most difficult part of the algorithm is determining

and inverting the n by n Jacobian matrix, ( )
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Other Power Flow Solution  

Divide the Jacobian matrix into four sub-matrices: 

𝐽 𝑥 =

𝜕𝑃

𝜕𝜃

𝜕𝑃

𝜕𝑉
𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝑉

  

Decoupled power flow: 

𝑀 𝑥 =

𝜕𝑃

𝜕𝜃
0

0
𝜕𝑄

𝜕𝑉

  



Other Power Flow Solution  

Fast decoupled power flow, assuming 𝜃𝑖 − 𝜃𝑘 ≈ 0 , 

𝑉𝑖 ≈ 1, 𝐺𝑖𝑘 ≪ 𝐵𝑖𝑘 

So we have: 
𝜕𝑃

𝜕𝜃
≈ −𝐵 = −

𝐵22 … 𝐵2𝑛

⋮ ⋮ ⋮
𝐵𝑛𝑛 … 𝐵𝑛𝑛

 

𝜕𝑄

𝜕𝑉
≈ −𝐵  =

𝐵𝑚+1,𝑚+1 … 𝐵𝑚+1,𝑛

⋮ ⋮ ⋮
𝐵𝑛,𝑚+1 … 𝐵𝑛𝑛

  

𝑀 𝑥 =
−𝐵 0

0 −𝐵  
  



DC Power Flow Analysis 

Assumption: small deviation flat voltage profile, 𝑉𝑖 ≈ 1 

and 𝜃𝑖 ≈ 0 
𝜕𝑃

𝜕𝜃
≈ −𝐵  

The ultimate steady state: 𝑃 = 𝑃0 + 𝜕𝑃, 𝜃 = 𝜃0 + 𝜕𝜃. 

In the flat voltage profile, 𝑃0 = 0, 𝜃0 = 0 

𝑃 ≈ −𝐵 𝜃 



Matpower 

• http://www.pserc.cornell.edu/matpower/ 

• runpf: run power flow analysis 

• runopf: solves an optimal power flow 

• makeYbus: Builds the bus admittance matrix 
and branch admittance matrices. 

 

http://www.pserc.cornell.edu/matpower/
http://www.pserc.cornell.edu/matpower/


PowerWorld 



PowerWorld, cont’d 



Thanks 


