\\ \title{

Introduction to
 \title{ \section*{Introduction to Power System Analysis}

 Power System Analysis}}

Hui Lin, Siming Guo
Hui Lin, Siming Guo

-

tion to

Agenda

- Power System Notation
- Power Flow Analysis
- Hands on Matpower and PowerWorld

Simple Power System

- Every power system has three major components
- generation: source of power, ideally with a specified power, voltage, and frequency
- load: consumes power; ideally with constant power consumption
- transmission system: transmits power; ideally as a perfect conductor

Complications

- No ideal voltage sources exist
- Loads are seldom constant, and we need to balance supply and demand in real time
- Transmission system has resistance, inductance, capacitance and flow limitations
- Simple system has no redundancy so power system will not work if any component fails

Notation - Power

- Power: Instantaneous consumption of energy
- Power Units
-

Watts $=$ voltage \times current for $\mathrm{dc}(\mathrm{W})$
kW - 1×10^{3} Watt
MW - 1×10^{6} Watt
GW - 1×10^{9} Watt

- Installed U.S. generation capacity is about 900 GW (about 3 kW per person)
- Maximum load of Champaign/Urbana about 300 MW

Notation - Energy

- Energy: Integration of power over time; energy is what people really want (and pay for) from a power system
- Energy Units
- Joule $=1$ Watt-second (J)

- U.S. electric energy consumption is about 3600 billion kWh (about 13,333 kWh per person, which means on average we each use 1.5 kW of power continuously)

Review of Phasors

Goal of phasor analysis is to simplify the analysis of constant frequency ac systems

$$
\begin{aligned}
& v(t)=\mathrm{V}_{\text {max }} \cos \left(\omega \mathrm{t}+\theta_{\mathrm{v}}\right) \\
& i(t)=\mathrm{I}_{\max } \cos \left(\omega \mathrm{t}+\theta_{\mathrm{I}}\right)
\end{aligned}
$$

Root Mean Square (RMS) voltage of sinusoid

$$
\sqrt{\frac{1}{T} \int_{0}^{T} v(t)^{2} d t}=\frac{V_{\max }}{\sqrt{2}}
$$

Complex Power

Power

Complex Power, cont'd

Average Power

Phasor Representation

Euler's identity: $e^{j \theta}=\cos \theta+j \sin \theta$
Phasor notation is developed by
rewriting using Euler's identity

$$
\begin{aligned}
v(t) & =\sqrt{2} V \cos \left(\omega t+\theta_{V}\right) \\
v(t) & =r e\left[\sqrt{2} V e^{j \omega t} e^{\theta_{V}}\right]
\end{aligned}
$$

Phasor Representation, cont'd

The RMS, cosine-reference phasor is:

$$
\begin{gathered}
\bar{V}=V e^{j \theta}=V \angle \theta_{V} \\
\bar{V}=V\left(\cos \theta_{V}+j \sin \theta_{V}\right) \\
\bar{I}=I\left(\cos \theta_{I}+j \sin \theta_{I}\right)
\end{gathered}
$$

Complex Power

$$
\begin{gathered}
S=\bar{V} \bar{I}^{*} \\
=V I e^{j\left(\theta_{V}-\theta_{I}\right)} \\
=V I\left[\cos \left(\theta_{V}-\theta_{I}\right)+j \sin \left(\theta_{V}-\theta_{I}\right)\right] \\
=P+j Q
\end{gathered}
$$

P : real power (W, kW, MW)
Q : reactive power (var, kvar, Mvar)
S : complex power (va, kva, Mva)
Power factor $(\mathrm{pf}): \cos \left(\theta_{V}-\theta_{I}\right)$
If current leads voltage, then pf is leading
If current lags voltage then pf is lagging

Power Flow Analysis

- Bus ----- Transmission Line
(G) Generators \downarrow Loads
- The power flow analysis is the process of solving the steady state of the power system
- Steady state: voltage magnitude and angle for each bus
- Generator: modeled as constant power delivery
- Loads: modeled as constant power consumption
- Transmission line: modeled as constant impedance

Power Flow Analysis

Busi
(\bar{V}, \bar{I} : the voltage and the current that injects into bus i)

$$
\begin{aligned}
& \bar{I}_{i}=\sum_{k} \bar{I}_{i k} \\
& \bar{I}_{i k}\left.=\frac{\left(\bar{V}_{i}\right.}{}-\bar{V}_{k}\right) \\
& z_{i k}
\end{aligned}
$$

(k takes indices of all buses that connected to bus $i ; Z_{i k}$ specifies the impedance of transmission line connecting bus i and bus k)

\boldsymbol{Y}-Bus (admittance matrix)

$$
\begin{gathered}
I_{i}=\sum_{k} \frac{\left(V_{i}-V_{k}\right)}{z_{i k}}=\sum_{k}\left(V_{i}-V_{k}\right) y_{i k} \\
=\left(-y_{i 1} V_{1}\right)+\left(-y_{i 2} V_{2}\right)+\ldots,\left[\sum_{k}\left(y_{i k}\right) V_{i}\right]+\ldots+\left(-y_{i n}\right) V_{n} \\
=\left[\begin{array}{llllll}
-y_{i 1} & -y_{i 2} & \ldots & \sum_{k} y_{i k} & \ldots & -y_{i n}
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{i} \\
\vdots \\
V_{n}
\end{array}\right]
\end{gathered}
$$

\boldsymbol{Y}-Bus (admittance matrix), cont'd

Write I_{j} for all buses together: $\bar{I}=Y \bar{V}$, where
$\left(\bar{I}=\left[I_{1}, I_{2}, \ldots, I_{n}\right], \bar{V}=\left[V_{1}, V_{2}, \ldots, V_{n}\right]\right)$
Construction of Y :

$$
\begin{gathered}
Y_{i i}=\sum_{k} y_{i k} \\
Y_{i k}=Y_{k i}=-y_{i k} \\
Y=G+j B
\end{gathered}
$$

So we have: $I_{i}=\sum_{k}\left(Y_{i k} V_{k}\right)$

Power Flow Equation at Bus j

$$
\begin{aligned}
& \text { To other } \\
& \text { buses } \\
& S_{G}-S_{D}=\bar{V}_{i} \bar{I}_{i}{ }^{*}=\bar{V}_{i} \bar{I}_{i}{ }^{*}=\bar{V}_{i} \sum_{k}\left(Y_{i k} \overline{V_{k}}\right)^{*} \\
& =V_{i} e^{j \theta_{i}}\left(\sum_{k}\left(G_{i k}+j B_{i k}\right) V_{k} e^{j \theta_{k}}\right)^{*} \\
& =V_{i} e^{j \theta_{i}} \sum_{k} V_{k}\left(G_{i k}-j B_{i k}\right) e^{-j \theta_{k}} \\
& =\sum_{k} V_{i} V_{k}\left(G_{i k}-j B_{i k}\right) e^{j\left(\theta_{i}-\theta_{k}\right)} \\
& =\sum_{k} V_{i} V_{k}\left(G_{i k} \cos \left(\theta_{i}-\theta_{k}\right)+B_{i k} \sin \left(\theta_{i}-\theta_{k}\right)\right) \\
& +j \sum_{k} V_{i} V_{k}\left(G_{i k} \sin \left(\theta_{i}-\theta_{k}\right)-B_{i k} \cos \left(\theta_{i}-\theta_{k}\right)\right)
\end{aligned}
$$

Power Flow Equation at Bus j

$$
\begin{aligned}
& P_{G}-P_{D}= \\
& \quad \sum_{k} V_{i} V_{k}\left(G_{i k} \cos \left(\theta_{i}-\theta_{k}\right)+B_{i k} \sin \left(\theta_{i}-\theta_{k}\right)\right) \\
& \mathrm{Q}_{G}-Q_{D}= \\
& \quad \sum_{k} V_{i} V_{k}\left(G_{i k} \sin \left(\theta_{i}-\theta_{k}\right)-B_{i k} \cos \left(\theta_{i}-\theta_{k}\right)\right)
\end{aligned}
$$

- Slack bus:
- V and θ are known, used as a reference
- PV bus, with generators connected
- P and V are known
- PQ bus, with only load units connected
- P and Q are known

Solving Power Flow Equations

- Assuming $m-1$ PV buses
- Given: $V_{1}, \theta_{1}, P_{G, 2}, V_{2}, \ldots, P_{G, m}, V_{m}, P_{D, m+1}, Q_{D, m+1}, \ldots$, $P_{D, n}, Q_{D, n}$
- Unknown: $P_{G, 1}, Q_{G, 1}, Q_{G, 2}, \theta_{2}, \ldots, Q_{G, m}, \theta_{m}, V_{m+1}$, $\theta_{m+1}, \ldots, V_{n}, \theta_{n}$

Newton-Raphson Methods

Assume (m-1) PV buses among n buses

$$
x=\left[\begin{array}{c}
\theta_{2} \\
\theta_{3} \\
\vdots \\
\theta_{n} \\
V_{m+1} \\
V_{m+2} \\
\vdots \\
V_{n}
\end{array}\right] \quad f(x)=\left[\begin{array}{c}
P_{2}(x)-P_{G, 2}+P_{D, 2} \\
P_{3}(x)-P_{G, 3}+P_{D, 3} \\
\vdots \\
P_{n}(x)-P_{G, n}+P_{D, n} \\
Q_{m+1}(x)-Q_{G, m+1}+Q_{D, m+1} \\
Q_{m+2}(x)-Q_{G, m+2}+Q_{D, m+2} \\
\vdots \\
Q_{n}(x)-Q_{G, n}+Q_{D, n}
\end{array}\right]
$$

Multi-Variable Example

Multi-variable Example, cont'd

N-R Power Flow Solution

The most difficult part of the algorithm is determining and inverting the n by n Jacobian matrix, $\mathbf{J}(\mathbf{x})$

$$
\mathbf{J}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} \\
\frac{\partial f_{2}(\mathbf{x})}{\partial x_{1}} & \frac{\partial f_{2}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial f_{2}(\mathbf{x})}{\partial x_{n}} \\
\vdots & \ddots & \ddots & \vdots \\
\frac{\partial f_{n}(\mathbf{x})}{\partial x_{1}} & \frac{\partial f_{n}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial f_{n}(\mathbf{x})}{\partial x_{n}}
\end{array}\right]
$$

Other Power Flow Solution

Divide the Jacobian matrix into four sub-matrices:

$$
J(x)=\left[\begin{array}{ll}
\frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\
\frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V}
\end{array}\right]
$$

Decoupled power flow:

$$
M(x)=\left[\begin{array}{cc}
\frac{\partial P}{\partial \theta} & 0 \\
0 & \frac{\partial Q}{\partial V}
\end{array}\right]
$$

Other Power Flow Solution

Fast decoupled power flow, assuming $\theta_{i}-\theta_{k} \approx 0$, $V_{i} \approx 1, G_{i k} \ll B_{i k}$
So we have: $\frac{\partial P}{\partial \theta} \approx-\tilde{B}=-\left[\begin{array}{ccc}B_{22} & \ldots & B_{2 n} \\ \vdots & \vdots & \vdots \\ B_{n n} & \ldots & B_{n n}\end{array}\right]$

$$
\begin{gathered}
\frac{\partial Q}{\partial V} \approx-\tilde{\tilde{B}}=\left[\begin{array}{ccc}
B_{m+1, m+1} & \ldots & B_{m+1, n} \\
\vdots & \vdots & \vdots \\
B_{n, m+1} & \ldots & B_{n n}
\end{array}\right] \\
M(x)=\left[\begin{array}{cc}
-\tilde{B} & 0 \\
0 & -\tilde{B}
\end{array}\right]
\end{gathered}
$$

DC Power Flow Analysis

Assumption: small deviation flat voltage profile, $V_{i} \approx 1$ and $\theta_{i} \approx 0$

$$
\frac{\partial P}{\partial \theta} \approx-\tilde{B}
$$

The ultimate steady state: $P=P_{0}+\partial P, \theta=\theta_{0}+\partial \theta$.
In the flat voltage profile, $P_{0}=0, \theta_{0}=0$

$$
P \approx-\tilde{B} \theta
$$

Matpower

- http://www.pserc.cornell.edu/matpower/
- runpf: run power flow analysis
- runopf: solves an optimal power flow
- makeYbus: Builds the bus admittance matrix and branch admittance matrices.

PowerWorld

IEEE 14-Bus System

PowerWorld, cont'd

ECE ILLINOIS

Thanks

I

