

SYNCHROPHASOR BASICS

OCTOBER 17, 2014

DANIEL(CHOU + LONG)

UNIVERSITY OF ILLINOIS | DARTMOUTH COLLEGE | UC DAVIS | WASHINGTON STATE UNIVERSITY FUNDING SUPPORT PROVIDED BY DOE-OE AND DHS S&T

A BIT OF HISTORY

- Late-1800's
 - Earliest mathematical models of Power Systems using Phasors.
 - Charles Proteus Steinmetz's 1893 paper analyzed AC networks.
- 1980's
 - First introduction of synchrophasor measuring devices.
- 1990's
 - Deployment of experimental devices.
 - First IEEE standard (C37.118.1) for PMU's and synchrophasors.

WHAT IS A SYNCHROPHASOR?

What is a Phasor?

TCIPG

 A phasor is a representation of a sinusoidal function using its magnitude and phase angle.

We have an AC waveform:

$$x(t) = A \times \cos(\omega t + \varphi)$$
 $\omega = 2\pi f$

This can be represented by: \overline{v} –

$$\bar{X} = A \angle \varphi$$

or as an RMS value:

$$\overline{X} = \frac{A}{\sqrt{2}} \angle \varphi$$

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID | TCIPG.ORG

PHASE ANGLE REPRESENTATION

 $X = A \angle \varphi \quad \leftrightarrow \quad x(t) = A * \cos(\omega t + \varphi)$

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID | TCIPG.ORG

WHAT IS A SYNCHROPHASOR?

Two voltage waveforms (Red and Blue):

WHY SYNCHROPHASORS?

-Phasors are useful, but comparisons required estimations

-SCADA does not synchronized time keeping capabilities.

-This led to a technique that:

"synchronizes the calculation of a phasor to absolute time, known as a synchronized phasor measurement or [just] synchrophasors." - Mark Adamiak

-A gps-based time stamp was introduced to allow for a reference wave.

APPROACH, SCADA VS PMU

TCIPG

SCADA has no timing synchronization

- No time synchronization
- Slow report rates
- Unable to see fast events

PMUs

- More detailed/higher resolution
- "Real" time

APPLICATIONS

- Wide area measurement/control
- Event Analysis
- Grid Automation/Optimization
 - Load Shedding

TCIPG

- Detecting faults
- System isolation

Wisconsin PMU distribution

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID | TCIPG.ORG

PHASOR MEASUREMENT UNITS

TCIPG

PMU CONTINUED

- Used to investigate system response to an atypical event
- Observe behavior over very large area
- Validate and improve models (California Arizona Line)

IEEE AND ITS LIMITATIONS

- 1% Total vector error (TVE) allowed
- Frequency error of 0.005 Hz
- Not many PMUs meet requirements
- 2014 IEEE Std relieved some of the requirements

Conformance Test Results

TCIPG

PMU	Class	Steady State Test									Dynamic State Test								
		Magnitude Variation			Phase Angle Variation			Frequency Variation			Measurement Bandwidth			Frequency Ramp			Step Change		
		TVE	FE	RFE	TVE	FE	RFE	TVE	FE	RFE	TVE	FE	RFE	TVE	FE	RFE	RT	DT	мо
A	Р	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	F	F	F
	М	S	S	S	S	S	S	F	S	S	S	F	S	F	F	F	S	F	F
A-1*	Р	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	F	S	F
	М	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	S	S	F
В	Р	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	S	F	S
	М	S	S	S	S	S	S	S	S	S	F	F	S	F	F	F	S	F	S
С	Р	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	S	S	S
	M	S	S	S	S	S	S	S	S	S	S	S	S	F	F	F	S	S	S
D	Р	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	F	F	F
	М	S	S	S	S	S	S	S	S	S	F	F	S	F	F	F	S	F	F
E	Р	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	F	S	F
	M	S	S	S	S	S	S	F	S	F	F	F	S	S	F	F	S	S	F
F	Р	S	S	S	S	S	S	F	S	S	S	F	S	F	F	F	S	S	S
	M	S	S	S	S	S	S	F	S	S	F	F	S	F	F	F	S	S	S
G	Р	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	F	S	F
	М	S	S	S	S	S	S	S	S	S	S	F	S	S	F	F	S	S	F
H	Р	S	F	S	S	F	S	S	F	S	S	S	S	S	F	F	S	S	S
	M	S	F	S	S	F	S	S	F	S	S	S	S	S	F	F	S	S	S

*PMU A-1 is an upgraded firmware of PMU A. P: Class P; M: Class M.

TVE: total vector error; FE: frequency error; RFE: rate of change of frequency error;

RT: response time; DT: delay time; MO: maximum over/under shoot

S stands for "Satisfied"; F stands for "Failed".

©2012 Mladen Kezunovic. All rights reserved

FNET

• 120 V, Single Phase PMU

- Samples at 1440 Hz and generates phasors at 10 Hz
- Over 80 installed units, monitoring wide area
- Oscillation detection
- Event detection/location
- Event visualization

QUINLAN! WHAT WE STILL NEED:

TCIPG

Something showing the time stamps possibly?
Outrice Outrice

- Practical uses
 - Limitations
 - PMU's/Fnet's?
- Future efforts
- Comparison to Scada maybe?
- Anything else? This seems short..