

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID | TCIPG.ORG

KEY MANAGEMENT

OCTOBER 24, 2014

KARTIK PALANI and BEN UJCICH

UNIVERSITY OF ILLINOIS

UNIVERSITY OF ILLINOIS | DARTMOUTH COLLEGE | UC DAVIS | WASHINGTON STATE UNIVERSITY FUNDING SUPPORT PROVIDED BY DOE-OE AND DHS S&T

What are Keys?

- A key is the variable used as part of encryption and decryption algorithms in cryptographic systems
- During encryption, a key transforms plaintext into ciphertext
- During decryption, a key performs the reverse operation and converts ciphertext into plaintext
- <u>Motive</u>: large-scale systems need a way to manage keys

Key Management: Generation

- How can many keys be generated given that they may be needed for different purposes?
- Varying levels of security needed depending on application
- Varying levels of trustworthiness when generating keys:
 - Key ceremony: generation of root keys for a chain of trust requiring specific procedures to ensure integrity (in a certificate authority)

Types of Key Algorithms

TCIPG

Symmetric

- One key used for both encryption and decryption
- Concept of shared secret
- Shorter lengths (e.g. 128 bits)
- Algorithms
 - Data Encryption
 Standard (DES)
 - Advanced Encryption Standard (AES)
 - Triple DES (3DES)

Asymmetric

- One key used to encrypt (public key) and one key used to decrypt (private key)
- Public key infrastructure (PKI)
- Longer lengths (e.g. 2048 or 3072 bits)
- Algorithms
 - Diffie-Hellman Key
 - Exchange
 - RSA

Diffie-Hellman Key Exchange (Video)

Key Management: Storage

TCIPG

- How should keys be stored such that only those with the correct authority be able to access them?
- Best practice: "Ensure that any secret key is protected from unauthorized access"
 - Separate where keys and data are stored
 - Encrypt keys themselves (passphrase)
 - Use key vaults
 - Store in trusted platform modules and/or hardware security modules

Source: https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

TRUSTWORTHY CYBER INFRASTRUCTURE FOR THE POWER GRID | TCIPG.ORG

Hashing

- Used for: authentication, non-repudiation, integrity
- "Digital Fingerprint" of an input: unique and irreversible
- MD5 and SHA: commonly used hashing algorithms.
- Applications:
 - Password security

TCIPG

- File/memory integrity
- Message Authentication

GNU nano 2.2.4

File: shadow

root:\$5\$fSzK5SzT\$CfqIbZ5ZTDPrzihfbT.SvbIOUIEBGOoQ.8/GIHDoG50:15416:0:99999:7:::

Digital Signatures

- Technique to guarantee authenticity
- Steps involved:
 - Generate secure hash
 - Encrypt hash with private key
 - Hash + Message = Signature
 - Receiver calculates hash of message
 - Decrypt signature using public key
 - Compare decrypted signature to hash
- Authenticity: Only I can generate my signature
- Non-repudiation

Key Management: Exchange

- How can keys be efficiently exchanged with concern given to scalability and trustworthiness?
- **Direct trust**: trust since origin is known
- Hierarchical trust: trust CAs and root CAs
- Web of trust (distributed): trust based on others whom you trust; mix of above two
- Public key server
 - Access others' public keys
 - Difficult to remove old keys
 - Example: PGP Global Directory

Public Key Certificates

- Problem: signatures can be forged
 - Anyone can claim to be me
 - Distribute their public key
- Certificate Authority
 - Trusted third party
 - DigiCert, Verisign
- X.509
 - Certificate standard for the internet
 - Establishes a chain of trust

Public Key Certificates

Digital Envelope

Key Management: Replacement

- What should the length of use be for a key?
- Is the key meant to last for one session, one week, one year, many years, etc.?
- Reasons for replacement:
 - Key has been revoked
 - Key has expired

TCIPG

- Key has been compromised
 - Detected
 - Undetected
- Rekey encrypted data with new keys

Source: https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

Revocation of Certificates

- CRL: Certificate Revocation List
 - Published by CAs

- Every certificate must be checked against the CAs CRL.
- Problem?
 - CRLs have gotten way too big
 - Overhead of checking is too high
 - Current solution: your browser does not check CRLs!!
 - One of the unsolved problems of security

SSL/TLS

- Provides secure connection over the internet
- Protects the application layer

- HTTPS: HTTP protected by TLS
- Session:
 - Create association between client and server
 - Established using a handshake
 - Defines the set of cryptographic parameters
- TLS Heartbeat Protocol
 - Heartbleed!

Cipher Suite

- Named combination of cryptographic primitives:
 - key exchange algorithm (RSA/Diffie Hellman)
 - authentication algorithm (RSA, ECDSA)
 - bulk encryption algorithm (eg: AES/3DES)
 - message authentication (eg: HMAC-MD5)
- Examples:
 - RSA-RSA-AES-SHA

TCIPG

– DH-RSA-DES-SHA

Key Management in the Internet of Things

• Challenges:

- Large number of devices
- Limited processor and memory resources
- Scaling difficulty with manual configuration
- SSH as an example: What privileges can SSH access give you on a device?
- Specific challenges to the smart grid:
 Sensitive information about devices and their electricity use

Thanks!

