Wide Area Monitoring & Synchrophasors

Definition, Measurement, and Application

Cleveland Separation - Aug 14, 2003

GE Consumer & Industrial Multilin June 2005

Drivers

- Operating the grid is not going to get easier:
 - Insufficient stability margins
 - Generation and load centers displaced even more
 - Environmental and cost constraints on new transmission
 - Deregulations and pressure on asset utilization
 - No recognition for maintaining system security and margins

• Logical response:

- With limited capabilities to strengthen generation and transmission (natural stability) need to rely more on active controls (forced stability)
- Better visualization and assistance tools for operators
- Closed-loop control for events beyond response time of manual control:
 - fight to stay together
 - island controllably
 - restore quickly

Phasors

> Rotating rotors = alternate currents / voltages

> Phasors are well established means of representing ac circuits

Charles Proteus Steinmetz (1865-1923)

Complex Quantities and their use in Electrical

Engineering; Charles Proteus Steinmetz; Proceedings of the International Electrical Congress, Chicago, IL;

AIEE Proceedings, 1893; pp.33-74.

Synchrophasors Strobe Light Analogy

Strobe Light Analogy

Phasor Definition per C37.118

Standardized Synchronous Reporting Rates

System Frequency	50 Hz		60 Hz				
Report rates (phasors/sec)	10	25	10	12	15	20	30

Optional Phasor Reporting Rates:

50 phasors/sec on 50 Hz systems

60 phasors/sec on 60 Hz systems

UTC Based Synchronized Reporting

Report Rate = 60 Phasors/second

Where: 0 = Top of Second $T_n = 0 + n*(1/\text{Fs}) \text{ from top of second}$

PMU Implementation

PMU – Phasor Measurement Unit

Synchrophasor Report Format

Second of Century (SOC) – from Jan 1, 1970 - 4 bytes

Fraction of Second (modulo 2²⁴) + Time Quality

Phasors (mag and angle) – Integer or Float – 4 or 8 bytes

Other Measurements (f, df/dt, W, Var, Events)

Time Quality Byte

Bit#	<u>Function</u>
0-3	Time Server quality per PC37.118
4	Leap Second Pending
5	Leap Second Occurred
6	Leap second Direction (0 for add, 1 for delete)
7	Reserved

Total Vector Error

Influence Quantities and Error Limits

±5 Hz Frequency range resulting in:

- > Magnitude Errors
- > Angle Errors

10% Total Harmonic Distortion

10% Interfering Signal

TVE from all Sources must be < 1%

Wide Area Network Structure

Reporting Hierarchy Options

June 2005

Wide Area Monitoring and Control

Phasor Data Concentrator Function

Communication Network Requirements

- Guaranteed bandwidth
- Adjustable bandwidth
- Settable priority
- High-availability (99.99%)
- Low latency
- Standards based
- Scalable
- High noise immunity
- Support for other functions
- Automatic Configuration
- Network monitoring/management

SRP Communication Network

Palo Verde *Round Trip* Communication Timing

Site	Ethernet	G.703
Gaucho	14ms	11ms
Alameda	14ms	20ms
Indian Bend	14ms	33ms
Buckhorn	14ms	46ms

Wide Area System View

Phase Angle

+30

+20

+10

+00

-10

-20

-30

Phasor Viewing

Big Creek System Oscillations of September 13, 2000 Voltage plots for 230 busses

Other Visualization Applications

- Frequency and rate-of-change of frequency
- Positive, negative, and zero sequence plots of system voltage
- Damping constant calculations
- Power flow / change in power flow / general change detection
- Oscillation Identification / frequency calculation
- Historical Trends
- Event Signature Analysis

Functions & Applications

- Wide Area Monitoring and Advance Warning Systems
- Telemetry & Inter-utility
 Data Exchange
- Load/Generation Shedding
- Angular Instability Detection
- Wide-area Voltage Regulation
- Remedial Action & Power System Protection Schemes
- System Back-up Protection & Related Applications
- Coordinated Restoration
- Self Recovering Systems

Theoretically-founded opportunities

