Trustworthy Cyber Infrastructure for Power (TCIP)

Protection Detection and Response Mechanisms

Klara Nahrstedt, Illinois
Zbigniew Kalbarczyk, Illinois

Control Communication Architecture

From presentation by D. Whitehead, “Communication and Control in Power Systems”, TCIP Summer School, June 2008

Characteristics and Goals for Control Networks and Devices

- **Characteristics**
 - Mission-oriented
 - Stable

- **Goals**
 1. **Real-time availability** to sustain the critical functions of the power grid
 2. **Integrity** to trustworthy deliver correct commands and data
 3. **Confidentiality** to safeguard trade secrets

- **Trends**
 - Update /replace existing devices, networks, software with **low cost commodity infrastructure** such as Linux, Windows, Intel-based processors, Mesh Networks, WiFi, Zigbee, Internet protocols (TCP/IP), …
Power-Grid supporting Digital Network:
State of the Art

- **Network State of the Art**
 - No routable traffic in many cases between substations and control centers
 - Serial lines between sensors and RTUs in substations
 - One way digital communication from the substation to the control center,
 - Hierarchical organization between substations and control centers
 - No wireless or very little wireless network deployment

- **Real-Time State of the Art**
 - Separate networks for real-time and management traffic

- **Network Security State of the Art**
 - Security by obscurity or perimeter security

The Problem Space

- **Real-Time Availability** is not addressed adequately under new trends
 - Real-Time Problems: Service-oriented model instead of mission-oriented model, Low stability since software changes constantly (new patches), Difficulties in maintaining configurations in real-time conditions
 - Real-Time Management Problem

- **Cyber-Security** is not addressed adequately
 - Security problems: Attacks on **Integrity** by polluting data, losing data
 - Key Management Problem
 - Authorization, Authentication, Access Control Problem
 - Attack Management Problem
 - Security problems: Attacks on **Confidentiality** by attacking Ethernet switches, IP traffic routers; end devices to get to data
 - Key Management Problem
 - Authorization, Authentication, Access Control Problem
 - Attack Management Problem
Approach: End-to-End Real-Time Trust Provisioning via Protection, Detection, Response

- **Control Center**
 - Protection Functions
 - Detection Functions
 - Response Functions

- **Substation**
 - Protection Functions
 - Detection Functions
 - Response Functions

- **Network Level**
 - Private IP-Based Network (Secure, Real-time, Monitored)

- **Coordinator Level**
 - ISO Ethernet/IP-Network (Secure, Real-time, Monitored)

- **Backup Ethernet/IP-Network (Secure, Real-time, Monitored)**

- **Private IP-Based Network (Secure, Real-time, Monitored)**

- **Sensor/Actuator Level**
 - Local HMI

- **Substation Level**
 - DFR

- **Private IP-Based Network (Secure, Real-time, Monitored)**

- **Metering and Load Control**

Approach

- **Protect, Detect, Respond**
 - **Protect:** Prevent (Plan, Admit, Reserve) violations, Enforce (Schedule, Encrypt, Sign) real-time availability, integrity and confidentiality
 - **Detect:** Monitor, Assess and Alert violations, threats, vulnerabilities, misbehaviors, errors
 - **Respond:** Act against abnormal events, Issue reconfigurations, Bridge new and legacy entities along the end-to-end path, Contain misbehaved entities
Trustworthy Cyber Infrastructure for the Power Grid

Presentations

Protect, Detect, Respond Framework

Protect: Enforce & Prevent

Detect

Respond

- **Power Grid Protocols:** IEC 61850, DNP3, ICCP, MODBUS

- **SCADA Data**
 - Encryption/Decryption
 - Keys Setup
 - Detect Violation of Keys Confidentiality
 - Re-keying Protocols

- **Per-Packet Authentication, Role Authorization, Access Control, Trust Negotiation**
 - Detection of AAA Violations
 - Password Change Access Privileges Change

- **Real-time Delivery Scheduling**
 - Quality of Service Admission, Reservation
 - GoS Monitoring Detection of GoS Degradation
 - GoS Adaptation

- **Information/Attack Assessment, Security Detection, Containment and Recovery**

Current Research Thrusts (1): Key Management

Problem:
- Allocate and distribute keys to heterogeneous devices in Power Grid over diverse networks
- Allow cryptographic functions for confidentiality and integrity
- Recover from attacks when keys are compromised

Idea:
- Simplified key management
- Resource-efficient combinatorial public key management approach

Results so far:
- Domain Cert: simplified PKI / DNSSEC certificate management
- SMOCK: resource-efficient group key scheme for legacy devices

In progress:
- Integrated hierarchical key management with diverse key schemes

Current Research Thrusts (1): Key Management

- Control Center/SCADA
- DomainCert
- DNSSEC
- SMOCK
- Gateway

New IED Devices
Legacy IED Devices

University of Illinois • Dartmouth College • Cornell University • Washington State University
Current Research Thrusts (2): AAA Management

- **Problem:**
 - Achieve confidentiality, integrity and availability in dynamic and evolvable fashion
 - Allow for robust, flexible and high performance authorization across organizations

- **Idea:**
 - Data Plane Security Architecture
 - Authorization via trust negotiation

- **Results so far:**
 - GridStat with transparent inter-changeable security modules assigned on a per status variable granularity
 - Trustbuilder2 framework
 - ABUSE: enabling human users to draw correct trust conclusions about “secure” email (Validated against Aug 2003 transcripts)

- **In progress:**
 - Exploration of end-to-end AAA/Security Architectures

(2) Trust Negotiation State Consistency Example Scenario

The scenario: Alice can be either a power operator or an internal auditor in Control Center 1, though these roles are mutually exclusive. As an internal auditor, she can also act as an information classifier. Alice wishes to access a remote service available to power operators who are information classifiers, and forces the use of an inconsistent system state to accomplish this.
Current Research Thrusts (3): Real-Time Availability

- **Problem:**
 - Deliver SCADA data in real-time within millisecond to second ranges over commodity cyber-infrastructure (wireless/wired Internet)

- **Idea:**
 - Coordinated scheduling
 - Optimized resource allocation
 - QoS-based routing and real-time streaming

- **Results so far:**
 - Consensus-based distributed control in MAC layer
 - iDSRT: Integrated and Coordinated network, CPU, node scheduling framework
 - GridStat: QoS overlay routing, multi-phase protocols

- **In progress:**
 - Integration of different QoS schemes for prevention, enforcement and adaptation of real-time traffic

(3) End-to-end Real-Time Data Delivery
(Example at the Substation)

- **Power Application**
 - SCADA Data
 - IEC 61850

- **Middleware**
 - Real-Time CPU Scheduling/Coordination

- **Network**
 - Real-Time Network Scheduling

- **PHY/MAC** (Consensus-based Distributed Control)

University of Illinois • Dartmouth College • Cornell University • Washington State University
TCIP Testbed Results: End-to-End Delay

TCIP Testbed Results: End-to-End Delay

- **Desert-Effort**
- **DSRT only**
- **EDCF only**
- **IDSRT**

iDSRT has lowest end-to-end delay

Current Research Thrusts (4): Attack Management

- **Problem:**
 - Monitor cyber and power side sensor data and provide system security state estimation
 - Understand and detect characteristics of QoS/security attacks and design effective containment strategies
 - Find optimal response and recovery actions

- **Idea:**
 - Multiple degrees and contexts of attack
 - Coarse grained and fine-grained attack containment
 - Probabilistic Real-Time Intrusion Response

- **Results so far:**
 - ACF: Attack Containment framework with jamming detection
 - RRE: Response and Recovery Engine

- **In progress:**
 - Alibi protocols for jammer identification
 - End-to-end Attack Monitoring and Detection with RRE and ACF
(4) Attack Management

Recovery and Response Framework
At the Control Center

Alerting to System Operator

Data/Control Monitor

Vulnerabilities/Attack Detection

Log Summarization

Attack Logs

Attack Containment/Cooperative Response

RRE Central Unit
Decision Making on Recovery Actions

RRE DB

Bad Data Detection

Aggregation

Correlation

Supervisory Control and Data Acquisition Networks

Power-Grid supporting Computational Base

Power infrastructure

Cyber infrastructure

Application/Middleware code

Operating system code

Hardware

(YOU ARE HERE)
The Problem Space

- Interfaces vulnerable to classic malformed input attacks
- Non-responsive SCADA devices have caused serious problems
- Power cannot be efficiently stored
- Devices must respond in near real time
- Underlying operating systems not always hard real-time
- Slow communication lines with limited bandwidth
- Devices with limited computational power
- Legacy hardware in hard-to-reach places
- Legacy software that seldom gets updated

Assume limited access

- Defenses often depend on limited adversarial access, but:
 - Deregulation
 - Increased Internet and computerized access
 - Increased opportunity for insider attack

Sensitivity

- Understandable reluctance to expose details

Not designed for grid-wide malware

- Designed for randomly varying loads, but:
 - Computerized access and smart grids enable pessimal behavior; loads changing exactly the wrong way

Current Research Thrusts (1)

Fuzz Testing

Idea:
- Reveal vulnerabilities by automatically probing interfaces with "fuzzed" input
Fuzz Testing

Results so far:
- Built LZFuzz, based on Lempel-Ziv compression
- Successfully tested and **validated** on isolated SCADA

In progress:
- Building LZFuzz into a network appliance
- Accommodates sensitivity
 - Of results
 - Of network details
 - And of protocol details, too!
- Increases scalability

Current Research Thrusts (2)

- **Fuzz Testing**
 - **Hardware Enhancements**
 - **Idea:**
 - Modify underlying CPU to tolerate inevitable vulnerabilities, errors, environmental risks in legacy applications

University of Illinois • Dartmouth College • Cornell University • Washington State University
Hardware Enhancements

- **Results so far:**
 - Reliability and Security Engine
 - Integration with power SCADA
 - Protects against pointer taintedness
 - Protects critical variables
 - Faerieplay
 - Protects critical power scheduling computation against insider attack
- **In progress:**
 - Better Mousetrap

Current Research Thrusts (3)

- **Fuzz Testing**
- **Hardware Enhancements**
- **OS Enhancements**

Idea:
- Exploit emerging tool of paenevirtualization and trusted computing for replication and security
• **Results so far:**
 - TPM support into Open Solaris

• **In progress:**
 - Trusted Zones on Demand
 • Scalable bridging of trust domains in an ISO
 • Increasing availability of legacy event-driven power apps
 - Low-impact node-based intrusion detection
 - Integration with hardware techniques

Current Research Thrusts (4)

Fuzz Testing

Hardware Enhancements

OS Enhancements

Cryptography for Constrained Devices

Idea:
- Strong, fast crypto despite limited computation power, limited bandwidth, limited physical security
Cryptography despite Constraints

- **Results so far:**
 - YASIR
 - Bump-in-the-wire
 - High security
 - Low latency
 - ECC and precomputation engines

- **In progress:**
 - Fast revocation for limited devices, limited bandwidth
 - Key management despite limited bandwidth
 - Key management for decades of transition

Current Research Thrusts (5)

- Fuzz Testing
- Hardware Enhancements
- OS Enhancements
- Cryptography for Constrained Devices
- Attested Meters

Idea:
- Security and intelligence at load and distribution sites

Trustworthy Cyber Infrastructure for the Power Grid

Presentations
Attested Meters

- **Results so far:**
 - First stage based on TPM and virtualization
 - Second stage based on mote-sized coprocessor system
 - Third stage based on typical meter industry processors

- **In progress:**
 - Kernel formally verified to code level
 - Using meter networks for emergency communications

Questions?

Power-Grid supporting Digital Networks and Distributed Systems

+ Power-Grid supporting Computing Base