Autoscopy Jr.: Intrusion Detection for Embedded Control Systems

Reeves, J.
Citation:

Master's Thesis, Dartmouth College Computer Science Technical Report TR2011-704, August 2011.

Visit Publisher Online Entry:
Abstract:

We first identify several issues with the original prototype, and present a new version of the program (dubbed Autoscopy Jr.) that uses trusted location lists to verify that control is coming from a known, trusted location inside our kernel. Although we encountered additional performance overhead when testing our new design, we developed a kernel profiler that allowed us to identify the probes responsible for this overhead and discard them, leaving us with a final probe list that generated less than 5% overhead on every one of our benchmark tests. Finally, we attempted to run Autoscopy Jr. on two specialized kernels (one with an optimized probing framework, and another with a hardening patch installed), finding that the former did not produce enough performance benefits to preclude using our profiler, and that the latter required a different method of scanning for indirect functions for Autoscopy Jr. to operate.

We argue that Autoscopy Jr. is indeed a feasible intrusion detection system for embedded control systems, as it can adapt easily to a variety of system architectures and allows us to intelligently balance security and performance on these critical devices.

Publication Status:
Published
Publication Type:
M.S. Thesis
Publication Date:
08/01/2011
Copyright Notice:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

  1. The following copyright notice applies to all of the above items that appear in IEEE publications: "Personal use of this material is permitted. However, permission to reprint/publish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE."

  2. The following copyright notice applies to all of the above items that appear in ACM publications: "© ACM, effective the year of publication shown in the bibliographic information. This file is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the journal or proceedings indicated in the bibliographic data for each item."

  3. The following copyright notice applies to all of the above items that appear in IFAC publications: "Document is being reproduced under permission of the Copyright Holder. Use or reproduction of the Document is for informational or personal use only."