An Event Buffer Flooding Attack in DNP3 Controlled SCADA Systems

Jin, D., Nicol, D.M., Yan, G.

Winter Simulation Conference (WSC), pp.2614,2626, 11-14 Dec. 2011.

Visit Publisher Online Entry:

The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communications are asynchronous across the two levels; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a compromised relay sends overly many (false) events to the data aggregator. This paper investigates the attack by implementing the attack using real SCADA system hardware and software. A Discrete-Time Markov Chain (DTMC) model is developed for understanding conditions under which the attack is successful and effective. The model is validated by a Möbius simulation model and data collected on a real SCADA testbed.

Publication Status:
Publication Type:
Publication Date:
Copyright Notice:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

  1. The following copyright notice applies to all of the above items that appear in IEEE publications: "Personal use of this material is permitted. However, permission to reprint/publish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE."

  2. The following copyright notice applies to all of the above items that appear in ACM publications: "© ACM, effective the year of publication shown in the bibliographic information. This file is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the journal or proceedings indicated in the bibliographic data for each item."

  3. The following copyright notice applies to all of the above items that appear in IFAC publications: "Document is being reproduced under permission of the Copyright Holder. Use or reproduction of the Document is for informational or personal use only."