Memory Heat Map: Anomaly Detection in Real-Time Embedded Systems Using Memory Behavior

Choi, J., Mohan, S., Sha, L., Yoon, M.

52nd Annual Design Automation Conference (DAC '15). ACM, New York, NY, USA, Article 35, 6 pages.

Visit Publisher Online Entry:

In this paper, we introduce a novel mechanism that identi es abnormal system-wide behaviors using the predictable nature of real-time embedded applications. We introduce Memory Heat Map (MHM) to characterize the memory behavior of the operating system. Our machine learning algorithms automatically (a) summarize the information contained in the MHMs and then (b) detect deviations from the normal memory behavior patterns. These methods are implemented on top of a multicore processor architecture to aid in the process of monitoring and detection. The techniques are evaluated using multiple attack scenarios including kernel rootkits and shellcode. To the best of our knowledge, this is the rst work that uses aggregated memory behavior for detecting system anomalies especially the concept of memory heat maps.

Publication Status:
Publication Type:
Publication Date:
Copyright Notice:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

  1. The following copyright notice applies to all of the above items that appear in IEEE publications: "Personal use of this material is permitted. However, permission to reprint/publish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE."

  2. The following copyright notice applies to all of the above items that appear in ACM publications: "© ACM, effective the year of publication shown in the bibliographic information. This file is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the journal or proceedings indicated in the bibliographic data for each item."

  3. The following copyright notice applies to all of the above items that appear in IFAC publications: "Document is being reproduced under permission of the Copyright Holder. Use or reproduction of the Document is for informational or personal use only."