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LOW-COST DELAY-CONSTRAINED MULTICAST ROUTING HEURISTICS

AND THEIR EVALUATION

Abstract

by Venkata Srinivas Irava, Ph.D.
Washington State University

August 2006

Chair: Carl H. Hauser

Critical wide-area infrastructures (CWI) need real-time monitoring and control for their

reliable operation and for fast identification and resolution of anomalies within these

infrastructures. Real-time monitoring and control is made possible by the use of multicast routing

for fast, efficient, and reliable dissemination of status information in the CWI.

The fast and efficient dissemination of status information in these infrastructures imposes

delay and cost requirements on the multicast routing heuristic. To ensure reliability in the face of

network failures the multicast graphs constructed by the heuristic need to have at least two paths

from the source to each destination in the network.

Satisfying the delay requirements of the application ensures that the data delivered to the

destination is fresh. Reducing the total cost of the multicast graph helps in lowering resource

usage. Additionally, having two node-disjoint paths from the source to each destination makes a

multicast graph resilient to node or edge failures and improves its survivability against such

failures.

This dissertation presents new heuristics for constructing survivable and non-survivable

low-cost delay-constrained multicast graphs and presents more extensive evaluations than have

typically been used to demonstrate properties of multicast routing heuristics.

The edge-priority based dynamic weight heuristic (DWH) proposed in this work constructs

v



non-survivable, low-cost, delay-constrained multicast trees. DWH assigns dynamic weights to

edges based on how close the edge is to violating the delay bound of the application. The

effective-edge-costs (edge-costs influenced by edge-weights) are then used as indicators of the

relative merit of including the edge in the paths from the source to the destination node.

Dynamic weight disjoint path pairs (DW-DPP) heuristic is the survivable variant of DWH and

constructs delay influenced (like in DWH edges are assigned varying weights based on the delay

bound requirements) shared disjoint path pairs from the source to each destination node. Edges

can be shared by paths to multiple destination nodes thus reducing the total cost of the multicast

graph.

The evaluations show that DWH and DW-DPP construct multicast graphs with 10−15% lower

costs than the node-priority based heuristics that are also explored in this work.
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CHAPTER ONE

INTRODUCTION

Efficient and reliable operation of critical wide-area infrastructure (CWI) systems is realized through

real-time monitoring and control of such systems. It is essential for the multiple CWI controllers to

have a clear picture of its status at all times. A real-time picture of the CWI helps the controllers in

better allocating network resources or to effectively and efficiently respond to the demands of the

network. Such real-time monitoring and control requirements of these infrastructures are realized

through the use of a multicast routing heuristic which can efficiently disseminate data through the

network.

Multicast routing chooses paths in a network from a source to multiple destination nodes.

Multicast routing heuristics construct multicast trees spanning the source node and the multicast

destination nodes. Additionally, constrained multicast QoS routing heuristics construct multicast

trees that satisfy path QoS requirements (such as meeting end-to-end delay bounds on paths from

the source to destination nodes) and tree QoS requirements (such as constructing trees with mini-

mal cost). Multicast graphs with disjoint paths to destinations are protected against failures along

a single path and hence are said to be more survivable than ones that have a single path to each

destination (non-survivable multicast trees). Node-survivable multicast graphs have node-disjoint

paths to each destination while edge-survivable multicast graphs have edge-disjoint paths.

The problem of constructing a minimum-cost multicast tree, a Steiner tree, is NP-complete [1].

Several Steiner tree heuristic solutions have been proposed in the past [2], [3], and [4]. Since the

simpler Steiner tree problem is NP-complete the problem of constructing a minimum-cost, delay-

constrained multicast graph (either non-survivable or survivable) is also NP-complete and hence

can only be solved by heuristic solutions (and not by algorithmic ones).
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1.1 Motivation

The electric power-grid is an example of a CWI system which requires real-time monitoring and

control so that the supply and demand requirements of the grid are balanced at all times. Real-

time monitoring and control of the grid is also useful in responding effectively and efficiently to

anomalies in the grid, such as the loss of a power generation station.

GridStat, [5], [6], [7], and [8] is a publish-subscribe middleware framework being developed at

Washington State University for efficient, secure and reliable dissemination of status information

in the electric power grid. The dissemination of the status information from the publishers of

such information in a reliable and timely manner to the subscribers enables the subscribers to

have a real-time picture of the status of the grid. The dissemination of status information in these

networks imposes delay, cost and path-redundancy requirements on the multicast routing heuristic.

Each subscriber in the GridStat framework is a computer application associated with a trusted

utility organization. GridStat makes each status item available to all subscribers that request it.

These subscribers are thus better able to respond to the demand and supply fluctuations within the

grid ensuring robust and efficient operation of the grid. GridStat middleware framework is shown in

Figure 1.1. The GridStat middleware as shown in the figure is situated above the operating system

and provides a common programming framework for distributed applications situated above it.

One of the goals of GridStat is to provide QoS guarantees in data delivery through the use of an

optimized multicast routing heuristic. The three basic requirements of any such multicast routing

heuristic are:

1. The paths from the source to each destination must meet the delay bound of the application.

2. The multicast tree constructed by the multicast routing heuristic should have low tree cost.

3. The multicast tree should be constructed sequentially. That is the online heuristic should

incrementally construct and expand the multicast tree as new destinations are added over
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time. This is opposed to the offline scenario in which it is necessary for the publisher to

identify all the subscribers of the multicast session ahead of time and before the start of the

multicast session.

These three requirements will ensure the following three things for applications that use the

GridStat framework:

1. Data are delivered in a timely manner to each subscriber.

2. The routing heuristic makes efficient use of available resources in the communication net-

work.

3. Online multicast tree construction enables the subscribers to join the multicast tree at the

point where they need the status data. Therefore it is not necessary for subscribers to syn-

chronize their joining the multicast session with the other subscribers.

Low-Cost Delay-Constrained Multicast Routing Heuristics

Multicast routing heuristics in the literature do not address all the three requirements listed above.

This dissertation proposes and extensively evaluates online, low-cost, delay-constrained multicast

routing heuristics that satisfy these requirements.

This dissertation presents and evaluates new edge-priority-based heuristics: Dynamic Weight

Heuristic (DWH) and its two variants Unit Weight Heuristic (UWH) and Zero Weight Heuristic

(ZWH). In addition to these heuristics, new online variants of the node priority based QoS Dependent

Multicast Routing (QDMR) heuristic proposed in [9] are also considered in the evaluations. All

of these heuristics incrementally construct multicast trees that meet the delay requirements of the

application while attempting to keep the tree cost low.

An additional goal of the GridStat framework is to have redundancy in the data delivery pro-

cess. Redundancy in data delivery helps ensure that the data is delivered in a reliable manner to

the subscribers. Having disjoint paths to each subscriber node makes multicast delivery resilient
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against failures along a single path, enhancing the reliability of the framework. Therefore the

multicast graph constructed needs to have disjoint paths to each destination.

Low-cost delay-constrained disjoint path pair heuristics for multicast routing

Disjoint path pair (DPP) multicast routing heuristics incrementally construct shared disjoint path

pair multicast graphs. Applications delay requirements must be met on each of the redundant paths

and as before low-cost is desirable. Note that in the case of disjoint path pairs the multicast graph

is no longer a tree.

This dissertation presents and evaluates a new disjoint-path-pair variant of DWH called Dynamic

Weight Disjoint Path Pairs (DW-DPP) and two variants: Unit Weight Disjoint Path Pairs (UW-

DPP), and Zero Weight Disjoint Path Pairs (ZW-DPP). In addition to these heuristics, new disjoint-

path-pair online variants of QDMR are also evaluated. All of these heuristics incrementally con-

struct shared disjoint path pair graphs. Like before, the heuristics construct DPP graphs that meet

the delay requirements of the application along both the redundant paths while trying to keep the

DPP graph cost low.

Evaluation of low-cost delay-constrained multicast routing heuristics

Additionally, this dissertation is also motivated in part by the need for an effective evaluation

technique for such multicast routing heuristics. Researchers in the past, [10], [11], [12], have

resorted to evaluating such heuristics under a limited context, often focussing on small example

graphs (< 20 nodes) that serve to illustrate the operation of the heuristic but which give little sense

of its performance on bigger networks. These limited evaluations make it difficult to predict the

performance of a heuristic relative to others and also its performance in a different environment.

Performance of the heuristics discussed here is determined by:

• Evaluating the heuristics’ performance on several different graphs of the same type: com-

paring the heuristics’ performance on several graphs of the same type but with varying node
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degrees helps in identifying whether the heuristics’ performance is affected by the node de-

gree of the graph used in the evaluation.

• Evaluating the heuristics’ performance on disparate graphs: a evaluation technique which

satisfies this requirement helps predict the performance of a heuristic in a different environ-

ment. For example, it is difficult to predict the performance of a heuristic on a pure random

graph1 if the evaluation was only conducted on Waxman graphs 2.

• Evaluating the heuristics’ performance on a large number of graphs: comparing the heuris-

tics’ performance over a large number of graphs of the same type helps in establishing the

relative performance of the heuristics over a range of graphs.

• Comparing the heuristics’ performance to the optimal solution. Experimental comparison

to the optimal solution may not be feasible as the problem of constructing an optimized

multicast tree is NP-complete, [1].

• Evaluating the heuristics’ performance over a range of delay bound values: this requirement

enables the heuristics’ performance comparison over the range of the delay requirements of

the application. Such evaluations reveal the cost performance of the heuristics as the delay

requirements vary from easy to satisfy to hard to satisfy.

In this dissertation both the multicast tree and shared disjoint path pair low-cost delay-constrained

multicast routing solutions are extensively evaluated based on the above listed evaluation tech-

niques.

1.2 Problem Statement

The low-cost delay-constrained multicast routing problem is formulated in standard terms:
1A simple random graph generation method, [13], where edges are added probabilistically between nodes placed

on a plane
2Waxman is a random graph generation method, [14], in which the probability of an edge existing between two

nodes depends on the distance between the two nodes and on the user defined parameters α and β
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• A network is represented as a graph G = (N, E) where N is the node-set in the network and

E is the edge-set in the network.

• The numbers of nodes and edges in the network are |N | and |E| respectively.

• The multicast destination set is M, and m = |M| is the number of the multicast destination

nodes in the network.

• The source and destination nodes in the graph are represented by s and d respectively.

• An edge in the network is represented by e ∈ E or more explicitly an edge from node p to

node q is represented by epq ∈ E.

• The cost and delay associated with an edge epq are cepq and depq respectively.

• A node in the network is represented by n ∈ N or more explicitly a node with a label p is

represented by np ∈ N.

• The cost and delay associated with a node np are cnp and dnp respectively.

• The node-set ND represents the nodes that need to be explored in the Dijkstra algorithm.

• A heuristic H denotes any low-cost, delay-constrained multicast routing heuristic.

• The multicast solution constructed by a multicast routing heuristic H is GHM = (NM, EM)

where M ⊆ NM.

• The delay and cost from the source to a node d along the path Psd are labelled as DPsd and

CPsd respectively.

• The tree (or graph) cost of the multicast solution constructed by H, TH, is the sum of the cost

of edges in GHM , ∑e∈EM ce.
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• A path from node s to node d is an alternating sequence of nodes and edges and is labelled

Psd.

• A path pair (P1
sd, P2

sd) is node-disjoint (P1
sd, P2

sd)ND if the paths have no common nodes (and

no common edges). A path pair is edge-disjoint (P1
sd, P2

sd)ED if the paths have no common

edges (a less stringent requirement).

• The end-to-end delay of path Psd is the sum of the delays on the edges in the path.

DPsd =
∑

e∈Psd

de

• Delay bound (∆) is the maximum allowable end-to-end delay from the source to any multi-

cast destination node in the tree.

• Satisfies delay bound (Sat∆) is a property of (G, H, M, ∆). If s is the source node:

Sat∆ =























true if DPsd ≤ ∆ (∀ d ∈ M);

f alse otherwise.

• Sat∆(d) is a property of (G, H, d, ∆). If s is the source node:

Sat∆(Psd) =























true if DPsd ≤ ∆;

f alse otherwise.

The minimum-cost delay-constrained single path multicast routing problem: Given a network

G = (N, E) and a multicast destination set M find a multicast solution GM = (NM, EM) having a

path Psd for each d ∈ M such that Sat∆(d) is 1 and ∑e∈EM ce is minimum.

The minimum-cost delay-constrained disjoint path multicast routing problem: Given a network

G = (N, E) and a multicast destination set M find a multicast solution GM = (NM, EM) having

path pairs (P1
sd, P2

sd)ND for each d ∈ M where Sat∆ is 1 for each path in every path pair, such that
∑

e∈EM ce is minimum.
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1.3 Contributions

1.3.1 Non-survivable online low-cost delay-constrained multicast routing heuristics

A non-survivable online low-cost, delay-constrained multicast routing heuristic called Dynamic

Weight Heuristic (DWH) is presented and evaluated. DWH dynamically assigns a delay influenced

weight coefficient Wepq to each edge epq in the network. The shortest path algorithm in the first

phase is run using the effective cost (cost influenced by the weight coefficient), cepq ∗Wepq , on each

edge and computes the lowest-effective-cost path. If the lowest-effective-cost path to a destination

fails to meet the delay bound of the application then a second phase constructs and merges the

least-delay path to that destination to the multicast tree (if the least-delay path satisfies the delay

bound of the application).

Two extreme variants of DWH: UWH the least-cost-path variant and ZWH the low-total-cost

variant are also used in the evaluations. The evaluations show that DWH on an average constructs

multicast trees with about 10% lower cost than the node-priority based heuristics derived from

QDMR that are also explored in this work.

1.3.2 Survivable online low-cost delay-constrained multicast routing heuristics

A survivable low-cost delay-constrained variant of DWH called Dynamic Weight Disjoint Path

Pairs (DW-DPP) is presented and evaluated. DW-DPP incrementally constructs shared disjoint

path pairs to each multicast destination node. Like before, DW-DPP assigns a weight coefficient

to each edge in the network and constructs delay-influenced shared disjoint path pairs. If any

path in the delay-influenced disjoint path pair to a destination fails to meet the delay bound of the

application then the least-delay disjoint path pair to that destination is added to the multicast graph.

UW-DPP, the least-cost disjoint path pair variant of DW-DPP, and ZW-DPP the low-total-cost

disjoint path pair variant of DW-DPP are also considered in the evaluations. The evaluations show

that DW-DPP on an average constructs multicast graphs with about 15% lower cost than the node-

priority based survivable heuristics derived from QDMR that are also explored in this work.
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CHAPTER TWO

LITERATURE SURVEY

This chapter presents a literature survey of low-cost, delay-constrained multicast routing heuris-

tics. Additionally, it also contains a survey of related work in the evaluation of multicast routing

heuristics: on the selection of appropriate graph models for evaluation of routing heuristics, and on

the structure and size of multicast destination sets for multicast routing heuristics. A description

of the different metrics available for evaluating the performance of a multicast routing heuristic is

also presented. The chapter also presents a technique for comparing a multicast routing heuristic’s

performance to the best achievable solution.

2.1 Comparison with other heuristics

An important aspect in the evaluation of any multicast routing heuristic is the comparison of the

heuristic’s performance to other heuristics which exist in the literature for the same problem space.

2.1.1 Non-survivable low-cost delay-constrained multicast routing heuristics

Several heuristics for problems closely related to the construction of non-survivable, low-cost,

delay-constrained, multicast trees have been proposed in the past. In [15] an offline heuristic called

Delay Variation Multicast Algorithm (DVMA) for the construction of multicast trees satisfying

end-to-end delay and delay-variation (among the different destinations) constraints is presented.

Here, least-delay paths to all destinations are first computed and the longest among them is selected

as the initial multicast tree (to minimize the delay variation among the nodes). Other nodes are

added to the multicast tree by finding the least-delay paths to them from the multicast tree. Tree

cost is not considered as a metric in this heuristic.

A non-survivable offline delay-insensitive heuristic Destination Driven Multicast (DDMC)

with the aim of reducing the total tree cost is presented in [16]. This heuristic computes paths

on the premise that paths going through the destination nodes should have a higher priority than
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other paths. DDMC also assumes knowledge of all the destination nodes prior to the construction

of the multicast tree. The destination nodes are made to appear as new sources in paths to other

destination nodes by re-setting their cost estimate from the source to zero during the execution of a

shortest-path heuristic. This tends to reduce the over-all cost of the multicast tree. DDMC requires

only one pass of a shortest path heuristic. After this pass the resulting spanning tree is trimmed so

as to only include destination nodes as its leaves. However DDMC ignores delay.

The QDMR heuristic mentioned in Section 1.1 is an improved heuristic based on DDMC. It

considers both delay and tree cost in computing multicast trees. In QDMR destination nodes are

assigned higher but variable priority (unlike in DDMC) during the multicast tree construction. This

variable priority in QDMR is based on how far the candidate destination node is from violating

the delay bound. The farther the destination node is from violating the delay bound the higher its

priority and the more likely it is to be included in paths to other destination nodes.

This delay-influenced sharing of paths helps in reducing the multicast tree cost. QDMR exe-

cutes one pass of a shortest path heuristic. If however the priority-influenced least-cost paths to

some destination nodes are unable to meet the delay bound of the application then the least-delay

paths to these nodes (with Sat∆ = 1) are merged to the multicast tree.

The extended Prim-Dijkstra tradeoff algorithm (EPDT), [11], is a variant of QDMR and assigns

a bounded coefficient (the coefficient assigned is always ≤ 0.5) to the destination nodes in the tree.

EPDT is based on the premise that the variable priority being assigned in QDMR is effective in

including destination nodes such as d in paths to other destination nodes when DPsd is far lower than

∆. EPDT assigns priorities to destination nodes based on the delays of their adjacent nodes in the

shortest path heuristic, this ensures that destination nodes are assigned higher priority regardless

of the delay bounds of the application. However this also results in better delay performance of

QDMR (relative to EPDT) at lower delay bound values.

DDMC, QDMR, and EPDT assume knowledge of all the destination nodes before constructing

the multicast tree. In this research work we assume that the destination nodes arrive in a sequential
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fashion and hence build an online version of QDMR heuristic called DQDMR (Dynamic QDMR)

and an online version of EPDT heuristic DEPDT (Dynamic EPDT).

The QDMR, DQDMR, and DEPDT heuristics change the priority of only destination nodes in

choosing paths. In the online heuristics we hypothesize that considering either edges or nodes al-

ready in the tree for inclusion in subsequent paths would further lower the tree cost. In Section 3.1

we propose tree-node-priority online variants of QDMR and EPDT called TQDMR (Tree node pri-

ority based online QDMR) and TEPDT (Tree node priority based online EPDT). The relationships

among DDMC and QDMR related heuristics is illustrated in Figure 2.1.

 
 
 
 
 
 
 
 
 
 
 
 

QDMR 

DQDMR DEPDT 

DDMC 

EPDT 

TQDMR TEPDT 

Delay sensitivity 
(based on �) 
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Destination node priority influenced, low-
cost, offline, non-survivable, delay-
insensitive multicast routing heuristic. 
 

Figure 2.1: QDMR and related heuristics map for non-survivable
low-cost delay-constrained multicast routing

2.1.2 Survivable low-cost delay-constrained multicast routing heuristics

Survivable low-cost delay-constrained multicast routing heuristics ensure survival of multicast

routing, in the face of failures along a single path, by constructing low-cost multicast graphs having

at least two node/edge disjoint paths to each destination while satisfying the delay requirements of

the application along each such path. Depending on the approach used in protecting the multicast

tree, the heuristics are classified as:

• Dual Multicast Trees (DMT): DMT heuristics construct two node/edge-disjoint multicast
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trees servicing the different multicast destination nodes. One approach to constructing a

node-survivable DMT is presented in [10]. In this approach the internal nodes and edges in

the primary tree are removed before constructing the secondary tree, limiting the heuristic’s

ability to find feasible paths.

• Single Multicast Graph with Protection (SMTP): SMTP heuristics construct a single multi-

cast tree. However, each vulnerable segment in the tree is protected by providing a back-up

path between the end nodes of the segment. A vulnerable segment is a path beginning or

ending with the source node, a destination node or an intermediate fork node. An interme-

diate fork node is one that services destinations on more than one out-going edge. In [12]

the authors present an approach for constructing an edge-survivable SMTP. Identification

of vulnerable segments and providing back-up paths to each such segment in the tree is a

complicated process. A simpler approach would assume the vulnerable segment to be a

path from the source node to a destination node and provide a back-up for this segment (or

provide a disjoint path pair to each destination in the multicast graph).

• Multicast Graphs with Disjoint Path Pairs (MGDPP): This approach constructs a single

multicast graph. However, the multicast graph constructed has disjoint path pairs to each

multicast destination node. The paths in a path pair might share edges/nodes with other path

pairs in the network but do not share edges/nodes with each other.

Construction of survivable point-to-point paths has been investigated by Suurballe in [17] and

later by Bhandari in [18]. Bhandari’s vertex splitting algorithm [18], Figure 2.2, constructs a node-

disjoint shortest path pair from a single source to a single destination in the network. The path pair

(P̂1
sd, P̂2

sd) constructed is optimal in the sense that ∀disjoint path pairs (P1
sd, P2

sd) between s and d:

(DP̂1
sd
+ DP̂2

sd
) ≤ (DP1

sd
+ DP2

sd
)
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The algorithm consists of two passes of a suitable shortest path algorithm (such as a modified

Dijkstra’s algorithm, [18], or the Bellman-Ford algorithm, [19]) with a network transformation in

between.

After the first pass of the shortest path algorithm the network transformation in Bhandari’s

algorithm, Figure 2.2, first replaces each edge along the shortest path (found in the first pass) with

an arc directed towards the destination. It then splits each internal node along the shortest path

into two colocated nodes and joins them with a zero length arc directed towards the destination.

Then each external edge originally incident on the internal node is split into two arcs such that

one arc emanates from one co-located node and the other terminates on the other co-located node

and together with the zero-length arc they form a cycle. The tranformation ends after assigning

negative weights to the arcs along the shortest path and reversing the direction of the arcs. Then

the second pass of the shortest path alogorithm is run resulting in the second path in the path pair.

In interlacing paths section of the algorithm, any common edges in the paths of the path pair

are removed and remaining edges of the path pair are re-grouped to form the final node disjoint

shortest path pair. Finally the tranformed graph is restored by uniting the split nodes along the

shortest path, removing the zero-length arcs, and transforming the arcs along the shortest path into

their original edges.

The paths of a shortest path pair found by Bhandari’s algorithm may fail to meet a delay con-

straint when paths of a different (possibly longer in total) path pair would. Thus, the shortest path

pair algorithm is only a heuristic for the delay-constrained problem (an NP-complete problem).

A heuristic for incremental construction of an edge survivable MGDPP called Optimal Path

Pair based Shared Disjoint Paths (OPP-SDP) algorithm was presented in [12]. In OPP-SDP edge-

disjoint path pairs to destination nodes are built sequentially using Suurballe’s disjoint path pair

algorithm [17] and using the delay experienced on the edge as the metric. In this approach the

delay experienced on the edges already present in the tree is set to zero to favor their re-use as each

new multicast destination node is added.
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BhandariTransform(G, Psd)
{

Replace each edge e ∈ Psd with an arc a directed towards d
Split each internal node ni ∈ Psd (ni < {ns, nd}) into two co-located
nodes n1

i , n2
i such that |an1

i→n2
i
| = 0 with n2

i closer to d
Split each external edge exi and eix originally incident on internal nodes

in Psd into two arcs one emanating from an2
i→nx and the other

terminating anx→n1
i
on the co-located nodes such that

an1
i→n2

i
, an2

i→nx , anx→n1
i
forms a cycle

Reverse direction and assign negative weights to arcs along Psd
}

InterlacePaths(P′sd, P′′sd)
{

(Pa
sd, Pb

sd) = RemoveCommonEdges(P′sd, P′′sd)
(P1

sd, P2
sd) = RegroupRemainingEdges(Pa

sd, Pb
sd)

Return (P1
sd, P2

sd)
}

RestoreTranformedGraph(G, P′sd, P′′sd)
{

Unite the split nodes into the original nodes

Remove the zero length arcs

Transform the arcs along the shortest path into their orginal edges

}

Figure 2.2: Bhandari’s algorithm
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OPP-SDP as it favors re-use of edges finds paths more successfully and produces lower cost

multicast graphs than approaches such as [10], which construct DMT and compute secondary trees

without re-using any edges or nodes from the primary tree. However, since OPP-SDP favors re-

use of edges in the multicast tree, the paths discovered are not the shortest ones possible and may,

unnecessarily, fail to meet the delay requirements of the application.

2.2 Selection of appropriate graph models for evaluation of routing heuristics

2.2.1 Network Generation Methods

For analysis of a multicast routing heuristic’s performance and to predict its behavior in a real-

world scenario it is necessary to generate graphs which closely resemble the target networks. There

are three major types of graph generation methods in practise [20]: a. random, b. regular, c.

hierarchical.

In random methods (due to Erdös and Rényi, [13]) the nodes in the graph are placed randomly

on a plane and an edge between any two nodes is added with the help of a probability function.

There is no inherent structure in this type of graphs. In regular methods the edges between nodes

are added in a structured manner for example rings and meshes. In hierarchical methods larger

graphs are recursively built from smaller graph components. The smaller graph components (for

example a domain) are connected and are usually built using the random methods.

2.2.2 A quantitative comparison of graph-based models for Internet topology

In [20] Zegura et al. present a methodology for selecting graphs resembling target networks such as

the Internet. This methodology is useful for studying problems such as multicast routing through a

quantitative comparison of graph generation methods. The prime focus of these comparative stud-

ies is on the generation and evaluation of flat random (non-hierarchical) and hierarchical graphs.

The flat random methods studied are Pure Random (Random for short) and Waxman, [14], along

with the new methods introduced in the paper Exponential and Locality. The hierarchical methods
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Table 2.1: Flat Random Graph Generation Methods
Method Random Waxman Exponential Locality
Probability p αe

−duv
β×L αe

−duv
(L−duv) α if duv < C

β if duv ≥ C

considered in the study are N-Level and the Transit-Stub (TS) method.

In the flat random methods the nodes are distributed in a plane and the probability of an edge

existing between any two nodes u and v in the plane varies based on the generation method as

shown in Table 2.1.

In Table 2.1, p is a fixed number, 0 < α, β ≤ 1 are user parameters, duv is the Euclidean distance

between the nodes u and v, L is the maximum distance between any two nodes in the graph, C is

the parameter identifying two edge classes for the Locality method with each class acquiring a

different probability value (α or β) based on the distance between the two nodes being considered.

The N-Level method constructs a hierarchical graph by iteratively expanding a top-level con-

nected random graph on a square plane. The square is divided into equal-sized square units and

the nodes in the graph are assigned to these square units.

During every iteration of the N-Level method each node in the top-level graph is replaced by a

lower-level connected graph and the top-level edges are replaced by those connecting the replaced

lower-level graphs. The lower-level connected graph is built on a square of size equal to the square

unit housing the node it is replacing.

The TS method constructs graphs that resemble the topological properties of the Internet. The

Internet is a network of computer networks (or routing domains). A routing domain is either a stub

or a transit domain. Information exchanged between two nodes u and v in the network only passes

through a stub domain S if either u ∈ S or v ∈ S , a restriction differentiating it from a transit

domain. Transit domains (or back-bone networks) transfer information between nodes located in

lower-level stub domains attached to them.
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A TS graph is constructed by first generating a flat connected random graph each node of

which is replaced by another connected graph representing a transit domain resulting in a network

of transit domains. Each node in every transit domain is then connected to one or more new

connected graphs representing the stub domains connected to that node forming a TS graph. If

required additional Transit-Stub or Stub-Stub edges are added to improve connectivity.

Several evaluation metrics are used to compare the graph generation methods. The topological

metrics considered in the work are:

• Average node degree: The ratio of twice the total number of edges over the total number of

nodes in the network 2|N |
|E| .

• Diameter: The diameter of a network is the longest path length in the set containing the

shortest paths between any two nodes in the network. The shortest paths can be computed

and measured based on several metrics such as hop-count, Euclidean edge length, and rout-

ing policy weight. Composite diameter metrics such as hop-length are also considered. For

example, if hop-length is considered as the diameter metric then the shortest paths are com-

puted using the hop-count metric but are measured using the Euclidean edge length metric.

• Number of biconnected components: The number of distinct connected sub-graphs in a

graph, such that any two edges in each sub-graph are on a common simple cycle. A small

number of biconnected components in a graph usually implies that it is well connected.

Application specific metrics considered in the work are (MRA refers to the multicast routing

algorithm being evaluated):

• Packet-hops ratio: The ratio of the number of edges in all the multicast trees from all sources

to all receivers (with a multicast tree constructed for each source) constructed by the MRA to

the number of edges in all the multicast trees constructed by an algorithm which constructs
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shortest path trees. This metric gives us an idea of the number of hops travelled by the

packets.

• Delay ratio: The ratio of the maximum delay observed in the MRA to that observed using

an algorithm which constructs shortest-path trees.

Comparison of graph generation methods

The evaluation process is rationalized by making the graph generation methods generate graphs

with a fixed number of nodes and a fixed average number of edges.

In the hierarchical methods higher level domains exist to connect lower level domains with

limited connectivity between the different levels resulting in a higher number of biconnected

components than the flat random methods. However connectivity within the domains is better

and hence paths have more (usually shorter) intra-domain edges and fewer (usually longer) inter-

domain edges resulting in lower length but higher hop diameters than the flat random methods.

A comparison of the hierarchical methods reveals that the TS method, because of the extra

transit level, has lower connectivity among the different levels resulting in a higher number of

biconnected components than the 2-Level method (N = 2). Extra Transit-Stub and Stub-Stub

edges will increase connectivity and decrease the number of biconnected components for the TS

method.

Lack of a higher level in the 2-level method results in higher policy-length diameter than the

TS method but does not affect the policy-hop diameter. The three-tier domain structure of the TS

method results in fewer (usually longer) inter domain edges and hence the path lengths are lower

resulting in lower policy-length diameters than the 2-Level method.

Multicast Routing

The differences in graph generation methods’ performance affecting center-based multicast routing

are also explored. Packet-hops and maximum delay are used as metrics for the evaluation. For each

run of the experiment the maximum delay and packet-hop values are recorded assuming each node
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as the center of the shared tree. This leads to the collection of two results: maximum delay and

packet-hops for an optimal center and maximum delay and packet-hops averaged over all centers.

These results are normalized as before to those obtained by a shortest-path-tree routing algorithm.

The different experiments conducted in this section help us understand whether the graph gen-

eration method’s performance has an affect on center-based multicast routing. From the tests it

is evident that there is a significant difference in the optimal center ratios1 of the three methods

(Random, Exponential, and TS) with very little difference observed for average center ratios2. The

means for the optimal center ratios for both packet-hops and maximum delay vary by 12−13% be-

tween the two flat-random methods (very little difference between themselves) and the hierachical

TS .

However the performance variance observed in the TS method itself (variance between the 25th

and 75th percentile) is significantly less than that observed in the flat-random methods. Therefore

for an equivalent sample size respresentation one would require a higher number of Random or

Exponential graphs than TS graphs for evaluating the performance based on these metrics.

Also the frequency distribution of the metric values (ratios) for the TS method is different to

that of the two random methods with most runs (a much higher number than for the flat methods)

achieving multicast trees closer to those obtained by a shortest-path-tree routing algorithm (metric

value ratio = 1). This frequency distribution is more spread-out in the flat methods. Lower variance

in frequency distribution in TS method is because of the topology of the TS graph generated. TS

graphs have low connectivity between different domain levels limiting the routing possibilities,

hence center based trees constructed are closer to the shortest-path trees for these methods.

These results indicate that the selection of a particular graph generation method for a routing

problem is important and an awareness of how different graph generation methods affect a multicast
1The ratios of maximum delay and packet-hops for an optimal center in center-based multicast routing to the

maximum delay and packet-hops obtained in a shortest-path-tree routing algorithm
2The ratios of maximum delay and packet-hops averaged over all the centers in center-based multicast routing to

the maximum delay and packet-hops obtained in a shortest-path-tree routing algorithm
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routing algorithm’s performance is essential for truer and more broader understanding of such an

algorithm’s performance.

2.2.3 A Better Model for Generating Test Networks

Doar introduces a similar (but different) approach to TS in [21]. This approach henceforth called

Layers views a network as a set of networks each of which is made of smaller networks. Layers

first creates a top-level network of WANs to which it attaches smaller networks representing the

MANs. Nodes in each MAN are then connected to a number of LANs.

The number and size of the WANs, MANs, and LANs is specified by parameter values. LANs

in the network are connected using a star topology. In the top two levels of the hierarchy (WAN,

MAN) intra-network edges are added with the help of minimum spanning trees.

Researchers responsible for the TS and Layers graph generators stress the importance of hierar-

chical structure of the Internet. They say that the multi-level domain structure is the most important

distinguishing feature affecting routing decisions in such networks. Because of the importance of

the hierarchical structure accorded in the topology generation for these methods they are called

structural generators [22].

2.2.4 Degree-Based Topology Generators

In 1999 Faloutsos et al. published a seminal paper, [23], which stated that the Internet degree dis-

tribution follows a power-law relationship. Thus the graphs generated by the structural generators

like TS and Layers were not considered to be adequate representations of real internetworks. As

a result degree-based generators which generate graphs with power-law degree distributions have

been developed. One such generator; power-law random graph generator (PLRG), [24], assigns

degrees drawn from a power-law distribution to the nodes in the graph. In PLRG the number of

nodes (n) with degree (d) is:

n = eα
dβ (2.1)
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where e is the base of the natural logarithm, and α and β are parameters to the graph model. If

the degree distribution of the nodes in the graph is drawn on a log-log scale, β is the negative slope

while α is the intercept of the degree-distribution line.

PLRG assigns links to the N nodes in the graph by making dx clones of every node x (dx is the

degree of node x) in the graph. It then randomly assigns edges to the clones of a pair of nodes and

repeats this assignment until there are no clones of any node that are not assigned to an edge left.

This matching is then translated to the original graph. If an edge exists between a clone of node u

and a clone of node v then an edge is added between nodes u and v in the original graph.

Barabási and Albert [25] generate power law topologies using a graph evolution model. The

graph evolution model produces networks with either power-law or exponential degree distribu-

tions based on the frequency of the following three processes: addition of new nodes to a graph;

modification of existing edges in the graph; and addition of new edges to the graph.

The graph evolution model is an extension of the model proposed in [26] for the generation

of power law topologies which identified and incorporated in its construction two mechanisms

responsible for the existence of power laws in networks such as the Internet. They are: networks

grow continuously through the addition of new nodes that attach to existing nodes, and new nodes

in the network are more likely to connect to existing higher degree nodes.

2.2.5 Comparison of Structural and Degree-Based Generators

In [22] Tangmunarunkit et al. compare structural generators to degree-based generators using

topological metrics. The comparison in these metrics shows that degree-based generators are better

at generating graphs which resemble the Internet than are the structural generators. Surprisingly

the graphs generated by degree-based generators have a loosely hierarchical structure more similar

to the structure of the Internet than the graphs generated by structural generators.

Three different types of networks are used in the comparison process:
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• Generated Networks: The network graphs are generated using three types of graph genera-

tors (representatives of such generators used in the comparison are also shown):

– Flat Random Generators: Waxman method .

– Structural Generators: TS and Layers method.

– Degree-Based Generator: PLRG method.

• Measured Networks: Measured networks are graph representations of actual networks such

as the Internet built using detailed measurement studies. The measured Internet graphs used

in the comparison process are: autonomous system level (AL) graph built using BGP routing

tables and the router level (RL) graph built with the help of traceroutes [27].

• Canonical Networks: Canonical networks are parametrizable and well established non-real

world networks, useful as a distinguising type in the comparison of generated and measured

networks. Mesh, k-ary tree, and Erdos-Renyi random graph are the canonical networks used

in the comparison process.

The focus in the comparative study is more on illustrating qualitative differences among the

different networks by classifying the performance as high or low than showing quantitative differ-

ences. To effectively compare such disparate networks and to usefully distinguish them, several

topological metrics were investigated. Three of those metrics were found to effectively capture all

the distinguishing features of these networks while taking into account differences such as network

size (these metrics are then used to distinguish the different types of graph generators):

• Expansion X(h): Ratio of the number of nodes which are within h hops from a node in the

graph to the total number of nodes in the graph. This is calculated by computing the number

of nodes within h hops (Xi
h) from each node ni in the graph, averaging the result over all

nodes in the graph, and dividing the average by the total number of nodes in the graph.
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Expansion is an improvement over the un-normalized reachability metric, [28], and is useful

in comparison of un-equal size networks.

X(h) =

∑

ni∈N Xih

|N |

|N |

• Resilience R(p): Average minimum number of links in an p-node ball (ball containing p

nodes), centered around a node, that must be cut to create two equal dis-connected partitions

of the original graph in the ball [29]. The ability of the graph to remain connected in the face

of link failures is illustrated by the Resilience metric. If the minimum number of links in an

p-node ball centered around a node ni that need to be cut to create two equal disconnected

partitions of the original graph in the ball are Ri
p then:

R(p) =
∑

ni∈N Ri
p

|N |

• Distortion: Distortion, [30], measures how a spanning tree S affects routing choices in a

graph G. Distortion of S is defined to be the average minimum number of extra edges

needed to travel between any two nodes of S which are end-nodes of an edge in G if the

travel is restricted to using S . Distortion for the graph is minimum such distortion over all

possible spanning trees of the graph. Distortion metric D(n) computes the distortion of a

n-node ball centered around a node in the graph. If Di
p is the distortion of a p-node ball

centered around node ni in the graph then,

D(p) =
∑

ni∈N Di
p

|N |

Both the measured networks exhibit high expansion, high resilience and low distortion. This

high-low combination of the three metric values of the measured networks is only exhibited by the
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degree-based generator PLRG and not by the structural generators.

The tests were also run on four other degree-based generators (apart from PLRG) all of which

produced graphs that had high expansion, high resilience, and low distortion matching the mea-

sured networks. Thus degree-based generators are better at producing graphs which are similar to

the Internet than the structural generators.

Hierarchy

For an understanding of the closeness of the different networks hierarchical structure to the Internet,

a link-based hierarchical metric the vertex cover of the traversal set of a link in the network (for

brevity called link importance in this work)3 was developed. Link importance of a link is the

minimum number of nodes that are dependent and hence affected by the loss of that link in the

network. In a flat network all links have similar values for link importance while in a hierarchical

network some links (for example links in the backbone network) are used more often than others

and hence have higher link importance values than others.

TS, Layers, and Tree construct strictly hierarchical graphs4. RL, AL, and PLRG fall into

the moderately hierarchical group (here the highest link importance values are lower than those

observed in the strictly hierarchical group). Random, Mesh and Waxman have almost uniform link

importance distribution suggesting that these networks have little or no hierarchy. Therefore, the

moderately hierarchical nature of the Internet is better reflected in degree-based generators than

the structural generators which have much stricter hierarchy.

Also, PLRG networks exhibit a high degree of correlation betweeen link importance values and

degree of the end nodes of the links. This high level of correlation in PLRG implies that links with

high link importance more often than not connect nodes with high degree. Since PLRG follows a

power-law degree distribution, there are a significant number of nodes with high node degree. So,

a good fraction of links in the network have high link importance values.
3Less informative term link values is used in [22] for this metric.
4Level of hierarchy is classified into 3 groups: strict, moderate, and loose.
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Therefore even though degree-based generators enforce no explicit structure in the construc-

tion process the power-law nature of the degree distribution ensures a moderate level of hierarchy

matching the moderately hierarchical nature of the Internet. In summary, the degree-based gener-

ators such as PLRG are better at generating networks with similar characteristics to the Internet.

2.3 Structure and size of multicast destination sets

2.3.1 Measuring and Modelling the Group Membership in the Internet

Cui et al. develop a group membership model in [31] that reflects membership characteristics in

real internetworks. Data from real network scenarios such as IETF-Audio, IETF-Video, NASA

multicasts over the Mbone and membership characteristics in net games (network games) are used

to measure membership metrics and for building a group membership model. The group member-

ship model is useful in generating simulated multicast membership distributions across the network

mirroring real distributions and is thus helpful in evaluations of multicast routing protocols. The

group membership metrics used in the work are:

• Member Clustering: The member clustering metric quantifies the network proximity of

the multicast group members. Clustering is calculated using the network-aware clustering

method, [32], which first extracts the IP addresses and netmasks of the group members from

BGP dump tables and groups all the members with the same longest matching netmask into

a cluster.

• Group Participation Probability: Probability that a cluster is part of a multicast group.

– Multiple Group Participation: The ratio of the number of multicast groups (gc) that the

cluster c is associated with to the total number of groups (g) in the network: gc
g .

– Time-based Participation: The percentage amount of time that cluster spends in the

multicast group.
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• Pairwise correlation in Group Participation: Probability that two independent clusters are

part of a group. Pairwise correlation between two clusters is the correlation coefficient (nor-

malized covariance) of the two clusters.

Knowledge of member clustering can be very useful in multicast routing protocol design and de-

ployment. In a network in which more members are clustered (closer to other members) it is

advantageous to have a multicast tree to distribute data among the members. Clustering was ob-

served to be insignificant for members of net games. Only about 10% (maximum of 16 multicast

members) of the clusters have 2 or more group members in net games while the corresponding fig-

ures for MBone real and cumulative data sets is 20% (50 multicast members) and 60% (500-1000

multicast members) respectively.

Studies conducted on the group participation probability of the clusters show that the proba-

bility distribution is not uniform across all scenarios. The group participation probability is not

uniform for MBone. The cumulative distribution of participation probabilities for MBone shows a

linear increase from 0 to 1. Whereas more than 95% of the clusters in net games have a participa-

tion probability of less than 0.1 indicating a more uniform group participation probability.

The pairwise correlation in group participation is observed to be strong in MBone related

datasets while being weak in netgames related datasets. This tends to confirm the hypothesis

that group membership model reflecting uniform node participation probability is not reflective of

all the multicast membership models. Therefore, a new comprehensive group membership model

(GEM) is presented.

GEM first utilizes the pre-specified clustering method to assign nodes to different clusters. It

then creates groups and randomly associates member clusters to the groups using group partici-

pation probability distribution and pairwise correlation in group participation. GEM then selects

nodes for these clusters based on the pre-specified cluster size distribution.

Three different desirable member cluster generation algorithms are presented in the paper:
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1. Uniform distribution without correlation: The probability distribution of clusters joining a

multicast group is uniform. Also clusters in the network act independently. This algorithm

is useful for modelling net games member distributions.

2. Non-uniform distribution without correlation: The probability distribution of clusters joining

a multicast group is non-uniform. However clusters in the network still act in an independent

manner.

3. Non-uniform distribution with correlation: The probability distribution of clusters joining a

multicast group is non-uniform. However some pairs of clusters are more likely to be a part

of a multicast group. This algorithm is useful for modelling MBone member distributions.

Experimental validation of GEM is also conducted. The plotted curves of the metrics for the

multicast groups generated (through GEM) and measured (through orginal datasets) show a good

match for group participarion probability distribution and cluster size distribution and a near match

for pairwise correlation in group participation.

2.3.2 On Multicast Trees: Structure and Size Estimation

Dolev et al. characterize the structure and size of the multicast trees extracted from the internet in

[33]. It is shown that such multicast trees follow power law distributions first reported by [23] for

rank-degree and for sub-tree rank-size. Building on an earlier work, [34], which discovered that

the distribution of the number of nodes at a distance from a particular node in the Internet is close

to a Gamma distribution, the distance distribution of nodes of a particular degree (2 to 6) from the

tree root is explored and is found to be close to a Gamma distribution.

Also, most high-degree nodes are found to be located at the core of the network closer to the

tree root. The results also show that multicast trees where nodes have a higher node degree (better

connected) have a low tree-height. And a linear relationship, both through empirical investigation

and analytically, is identified between the number of high-degree nodes of at least a particular
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degree and the number of clients5 in the multicast tree. This empirical relationship is established

through the use of a new fast sender-based client size estimation algorithm which uses the power

law distributions in the network topology to project an estimate of the client-size.

2.4 Evaluation Metrics

In order to judge the quality of the multicast tree constructed it is necessary to identify and define

applicable evaluation metrics for evaluating the multicast trees. There are two kinds of evaluation

metrics: application metrics, and topological metrics.

2.4.1 Topological Metrics

The performance of a multicast algorithm is also dependent upon the topology of the networks

used. Therefore, it is important to first understand and then evaluate the characteristics of the net-

works on which the multicast algorithm is run. Some of the topological metrics (used in [20]) are

average node-degree, diameter and number of bi-connected components described in the Section

2.2.2:

In [22] three topological metrics useful for distinguishing the graphs generated by structural

and degree-based generators were investigated. The three metrics are (Section 2.2.5 contains an

explanation of these metrics) : expansion, resilience, and distortion.

In [35] the size and stability of the multicast architecture of the Internet is analyzed. Analysis is

based on monitoring data collected over a period of three years from four topologically seperated

core routers. A new metric called Connectedness of the network is introduced:

• Connectedness: Connectedness of a multicast capable network is the total number of multi-

cast capable routers attached to the network.

Any evaluation technique developed should be able to identify evaluation metrics both appli-

cation and topology specific which are most applicable for the evaluation of a particular multicast
5The leaf nodes in the multicast tree are called clients.
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routing heuristic.

2.4.2 Application Metrics

Some of the most commonly used application metrics are:

• Tree cost: Sum of the costs of all the edges in the multicast tree ∑e∈EM ce.

• Blocking Probability: Probability that a request for multicast tree construction will be blocked

for the lack of sufficient resources in the network. We estimate blocking probability through

the metric fraction of connections blocked (FCB). FCB is the ratio of the number of times

the heuristic is successful in constructing a multicast tree (satisfying the requirements of the

application such as ∆) to the total number of requests for the construction of multicast tree if

each request is made with a different destination set.

FCB = 1 −
∑

M∈MM Sat∆(G,H,M,∆)
|MM|

where, MM represents the different multicast destination sets.

• End-to-End Delay: Maximum of the delays from the source to the multicast destination

nodes maxd∈M DPsd .

Evaluation metrics for IP multicast protocols are presented in [36]:

• Tree Construction Latency: The time required to construct a multicast tree spanning the

multicast destination set.

• Member Join Latency: The time elapsed between the issuance of a join-request by a new

member and data reception at the new member node.

• Member Leave Latency: The time elapsed between the issuance of a leave-request by a

member and the end of data reception at the member node.
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• Transmission Latency: Time taken to transmit a packet from the source to the multicast

destination node. This metric is the same as to the end-to-end delay metric defined earlier.

• Delay Jitter: The difference between the maximum and minimum end-to-end delays experi-

enced at a node.

• Aggregate Bandwidth Consumption: Sum of individual bandwidth consumption of all links

in the multicast tree. Individual bandwidth consumption of a link is the bandwidth utilized

at that link in support of the multicast tree.

• Delay Variation: The delay variation between any two nodes is the absolute difference be-

tween the end-to-end delays experienced by the two nodes. Maximum inter-destination de-

lay variation is the maximum difference between the end-to-end delays experienced by any

two destination nodes. A multicast routing algorithm satisfying delay and delay variation

constraints is presented in [15]:

• Available Bandwidth: Bandwidth available on the link after the allocation of requisite band-

width to the multicast tree, if the link is part of the tree. A new multicast routing algorithm

in [37] attempts to maximize available bandwidth while satisfying delay and delay variation

constraints.

In [38], approaches for the creation of a set of multicast trees are presented. The idea behind

maintaining a set of trees is that in case the first multicast tree fails it can be replaced by an

alternate tree to minimize the interruption time for the multicast routing. Several new metrics are

also presented in this work:

• Average Cost of a Multicast Scheme: The weighted average of the tree cost all the trees

computed by the scheme (weighted by the fraction of time each such tree is used).

• Dcost of a Dtree: A Dtree is a sub-graph of a multicast tree composed of a parent node (any

non-leaf node in the multicast tree) and its child edges such that this node and its edges do
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not appear in any other Dtree of the multicast tree. The Dcost of a Dtree is the cost of an

edge in the Dtree whose cost is the maximum among all the Dtree edges. The Dcost of a

multicast tree is the sum of the Dcosts of all the Dtrees in the multicast tree. This metric

is applicable to ad hoc mobile networks where the transmission cost from a node to other

nodes in its vicinity is equivalent to the cost of transmission to the highest cost node.

• Dcost of a multicast tree: The Dcost of a multicast tree is the sum of the Dcosts of all the

Dtrees in the multicast tree.

• Average Dcost of a Multicast Scheme: Average Dcost of a multicast scheme is the weighted

average of the Dcost of all the multicast trees computed by the scheme (weighted by the

amount of the time each such tree is used).

• Time of Failure of the Tree: Time at which the first failure of a link in the tree occurs.

• Time of Failure of the System: Time at which the first failure of all the multicast tree paths

to a destination node occurs. Time of failure of the system is also referred to as mean time

between interruptions.

• Increase in Mean Time between Interruptions: This is the difference between the time of

the failure of the system and the time of failure of the tree. Increase in mean time between

interruptions is the extra amount of time the tree survives after the first failure of a link in a

multicast tree because of the additional multicast trees with alternate paths computed which

would not have been possible with only a single tree.

• Probability of Usefulness: Ratio of the number of times in which the system time is greater

than the time of failure of the tree over the total number of times the tree is run in the scheme.
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2.5 Comparison to the best achievable solution

Computing the best achievable solution for the problem space may not always be feasible because

of the fact that delay-constrained multicast routing is NP-complete as is the delay constrained

disjoint path pairs problem. However in [39] an approach which uses enumeration of sub-graphs

for computing best achievable solutions for small networks is provided.

The idea behind enumeration of subgraphs is simple: for each subset of the graphs edges (in a

16 edge graph there can be 65536 such subsets) determine if it is a solution (i.e. determine whether

it connects the source to all the destinations in the tree). Determine whether the delay bound

requirement to all the destinations is satisfied by the paths to the destinations in the graph. If the

delay bound requirement is satisfied then the subset represents a successful candidate multicast

tree for the problem space. Compute all such multicast trees and select one which has the lowest

achievable multicast tree cost. Also a filtration method is employed to reduce the exploration effort

in the enumeration process.
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CHAPTER THREE

LOW-COST DELAY-CONSTRAINED MULTICAST ROUTING
HEURISTICS

Building on the previous work in low-cost, delay-constrained multicast routing heuristics, this

chapter presents a description of all the online, low-cost, delay-constrained multicast routing

heuristics (both the edge-priority based heuristics proposed in this work and the node-priority

based heuristics derived from QDMR) considered in this work.

3.1 Non-survivable low-cost delay-constrained multicast routing heuristics

DWH and the other non-survivable, online, low-cost, delay-constrained multicast routing heuristics

considered in this work:

• First Phase: Construct delay influenced least-cost (lowest-effective-cost) paths to each des-

tination.

• Second Phase: Merge the least-delay paths, if paths constructed in the first phase fail to meet

the delay requirements of the application.

In all the heuristics, destinations and edges along the paths to the destination are added incre-

mentally (for each destination) to the multicast tree.

In DWH, edges not present in the multicast tree are assigned a weight coefficient of unity.

Edges that are already present in the multicast tree are assigned a weight coefficient based on how

close the delay to the end of the edge (from the source) is to a user-specified parameter, k. Tree

edges that are closer to violating the delay bound receive a higher coefficient and hence are less

likely to be included in subsequent paths.

Using delay-influenced effective cost instead of actual cost of the edge in the path computation

means that DWH favors edges already present in the multicast tree for use in paths to new nodes
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Table 3.1: Weight Coefficient Calculation
Wepq = 1 (epq < GM)
Wepq = 1 (epq ∈ GM && rpq ≥ 1)
Wepq = rpq (epq ∈ GM && rpq < 1)

thus reducing the tree cost. The weight coefficient for each edge (epq) in the network is determined

by first computing a coefficient, (rpq):

rpq =
dnp + depq

k

The weight coefficients (Wepq) assigned to edges are described in Table 3.1.

Two extreme variants of DWH: UWH and ZWH are also considered and evaluated along

with the other heuristics. In UWH the edges in the tree retain their original cost values (Wepq =

1 ∀epq ∈ GM) and hence paths to destinations are the least-cost paths possible, however the tree

produced usually has a higher cost than DWH and ZWH. This is because the least-cost paths to

some destinations might not meet the delay bound of the application requiring the computation

and merging (in to the tree) of the least-delay paths to such destinations in the second phase of the

heuristic and thus increasing the multicast tree cost.

In ZWH tree edges are assigned a weight coefficient of zero so that they are more likely to be re-

used in paths to other destinations. ZWH favors re-use of edges, but ignores the delay requirements

(like UWH) in the first phase, so may sometimes end up with a more expensive multicast tree as it

has to merge the least-delay path in the second phase.

In addition to the routing heuristics explained earlier and as noted in Section 2.1.1 four addi-

tional online heuristics DQDMR, DEPDT, TQDMR, TEPDT (all variants of QDMR) have been

compared in the evaluation. In DQDMR, DEPDT, TQDMR, and TEPDT (like in QDMR) the

weight coefficients are assigned to nodes instead of the edges during the computation of the lowest-

effective-cost paths. The motivation for these heuristics is as follows:
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• DQDMR : DQDMR, dynamic QDMR, is the destination node priority influenced online

least-cost-path variant of QDMR. In DQDMR the weight coefficient, rpq, assigned to a des-

tination node is:

rpq =























dnp
∆

if p ∈ M;

1 otherwise.

• DEPDT : DEPDT, dynamic EPDT, is the destination node priority influenced online least-

cost-path variant of EPDT. In DEPDT the weight coefficient, rpq, assigned to a destination

node is:

rpq =























dnp
dnp+dnq

if p ∈ M;

1 otherwise.
In DEPDT the weight coefficient assigned to a destination node is always ≤ 0.5, this is

because dnq ≥ dnp . In contrast, DQDMR does not assign such bounded coefficients. DQDMR

assigns a weight coefficient of 1 if the node is not a destination node, otherwise the weight

coefficient is dependant on dnp (when p is a destination node).

• TQDMR: TQDMR assigns variable priority to the multicast tree nodes instead of just the

destination nodes (as done in DQDMR) and hence achieves a better sharing of edges (and

hence lower total cost) as the multicast tree nodes are more numerous than the destination

nodes. The evaluations show that TQDMR usually constructs multicast trees with lower tree

cost than DQDMR. In TQDMR the weight coefficient, rpq, assigned to a tree node is:

rpq =























dnp
∆

if p ∈ NM;

1 otherwise.

• TEPDT : TEPDT, a variant of DEPDT, assigns variable priority to the multicast tree nodes

(as in TQDMR). The evaluations show that TEPDT almost always constructs multicast trees

with lower cost than DEPDT. In TEPDT the weight coefficient, rpq, assigned to a tree node

is:
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rpq =























dnp
dnp+dnq

if p ∈ NM;

1 otherwise.

Figure 3.4 presents an algorithmic description of the construction of online, non-survivable,

low-cost, delay-constrained multicast tree heuristics considered in this work.

In these heuristics, if the lowest-effective-cost path computed satisfies the delay bound require-

ment of the application then the nodes and the edges in this path are added to the multicast tree

GM and the next destination node from the destination set is considered for incremental expansion

of the multicast tree. This process continues until paths to all the destination nodes are computed

at which point the heuristic is deemed to be successful in the construction of the multicast tree for

the destination set.

If the lowest-effective-cost path computed fails to meet the delay bound requirement of the

application then the least-delay path to the destination node is computed as shown in Figure 3.3.

If this least-delay path satisfies the delay bound requirement of the application then the nodes

and edges along the path are merged to the multicast tree. The multicast tree construction then

continues to the next destination node in the destination set.

The lowest-effective-cost path for DQDMR, DEPDT, TQDMR, and TEPDT heuristics is com-

puted as shown in Figure 3.1 by assigning variable priority to certain nodes in the graph. Variable

priority is assigned to destination nodes in DQDMR and DEPDT, and multicast tree nodes (in-

cluding the destination nodes) in TQDMR and TEPDT. The lowest-effective-cost path for DWH,

UWH, ZWH heuristics is computed as shown in Figure 3.2 by assigning variable priority to edges

in the multicast tree.

Merging is accomplished by adding nodes and edges along the reverse path from the destination

towards the source until a multicast tree node v is encountered. If the sum of the cumulative delays

to v (from the destination node along the reverse path) and the delay from the source to v (along

the forward path from the source) is less than the delay bound requirement, the merging process

terminates.
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DijkstraQDMR(G, M, GM, H, np, nd, ND)
{

if np = nd
return

for each epq {

if dnp + depq < ∆ {

if cnq > cnp ∗ CoeffQ(H,M,NM) + cepq {

cnq = cnp ∗ CoeffQ(H,M,NM) + cepq {

dnq = dnp + depq

}

}

}

ni = ExtractMinCostNode(ND)
DijkstraQDMR(G,M,GM,H, ni, nd,ND)

}

CoeffQ(H,M,NM)
{

if H = DQDMR

rpq =

{ dnp
∆

if p ∈ M;
1 otherwise.

else if H = DEPDT

rpq =















dnp
dnp+dnq

if p ∈ M;
1 otherwise.

else if H = TQDMR

rpq =

{ dnp
∆

if p ∈ NM;
1 otherwise.

else if H = TEPDT

rpq =















dnp
dnp+dnq

if p ∈ NM;
1 otherwise.

return rpq
}

Figure 3.1: DijkstraQDMR for (DQDMR, DEPDT, TQDMR, TEPDT)

If however the least-delay path fails to satisfy the delay bound requirement then the heuristics

are deemed unable to construct the multicast tree for this destination set and the request for the

construction of a multicast tree is called blocked.

3.1.1 Computational Complexity

The computational complexity of all the heuristics considered in this section is O(|M||E|log|N |).

This is because the Dijkstra algorithm (complexity O(|E|log|N |), [9]) is run once for each node

in the destination set. This uniform computational complexity of the heuristics allows for a fair

evaluation of the performance of the heuristics.

3.2 Survivable low-cost delay-constrained multicast routing heuristics

Survivable online low-cost delay-constrained multicast routing heuristics incrementally construct

low-cost shared disjoint path pairs to each destination while satisfying the delay requirements of

the application along both the paths in each path pair. OPP-SDP, [12], constructs low-cost shared
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DijkstraDWH(G, M, GM, H, np, nd, ND)
{

if np = nd
return

for each epq {

if cnq > cnp + cepq ∗ CoeffD(H, EM) {
cnq = cnp + cepq ∗ CoeffD(H, EM)
dnq = dnp + depq

}

}

ni = ExtractMinCostNode(ND)
DijkstraDWH(G,M,GM,H, ni, nd,ND)

}

CoeffD(H,M,NM)
{

if H = DWH

if epq ∈ EM

rpq =

{ dnp+depq
∆

if dnp+depq
∆
< 1;

1 otherwise.
else

rpq = 1
else if H = UWH

rpq = 1
else if H = ZWH

if epq ∈ EM
rpq = 0
else

rpq = 1
}

Figure 3.2: DijkstraDWH for (DWH, UWH, ZWH)

DijkstraDelay(G, M, GM, H, np, nd, ND)
{

if np = nd
return

for each epq {

if dnq > dnp + depq {

dnq = dnp + depq

}

}

ni = ExtractMinDelayNode(ND)
DijkstraDWH(G,M,GM,H, ni, nd,ND)

}

Figure 3.3: DijkstraDelay (∀H)
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disjoint path pairs to each destination in the graph. However OPP-SDP does not consider the delay

requirements of the application in its multicast graph construction.

One approach to improving the delay performance of OPP-SDP is to modify the heuristic so

that it uses cost of the edge as its metric in its initial disjoint path pair construction1. If the path

pair constructed using cost as the metric fails to meet the delay bound of the application then the

least-delay path pair from the source to the destination, if found to satisfy the delay bound of the

application is added to the multicast graph.

This will ensure that the heuristic will meet the delay bound of the application, if possible, while

constructing low-cost multicast graphs. However, since optimal disjoint path pair construction is

NP-complete the heuristic may sometimes fail to construct a successful path pair (meeting the

delay requirements) even when a feasible solution exists for the problem.

Also redundancy is further improved by using Bhandari’s node-disjoint shortest path pair al-

gorithm instead of edge-disjoint shortest path pairs algorithm used by OPP-SDP. This improved

heuristic is called the Zero Weight Disjoint Path Pair (ZW-DPP).

Another variant of ZW-DPP proposed and evaluated is the Unit Weight Disjoint Path Pair (UW-

DPP) heuristic. In UW-DPP, edges retain their original cost values throughout the multicast graph

construction process resulting in least-cost path pairs. However, since edge re-use is not favored

the multicast graph cost is usually higher than the cost of graphs produced by ZW-DPP.

An ideal solution would minimize graph cost while meeting the delay requirements. The idea

presented in QDMR, [9], for constructing a non-survivable delay-constrained low-cost multicast

graph is again used here (as in DWH) with some improvements. This new approach called Dy-

namic Weight Disjoint Path Pairs (DW-DPP) heuristic dynamically assigns a weight coefficient,

Wepq , to each edge in the network. The shortest path pair algorithm is run using Wepq × cepq , the

effective cost, instead of cepq the cost of the edge.
1The effective cost of the edges already present in the multicast graph is set to zero to favor their re-use in subse-

quent path pair calculations
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Using effective cost instead of actual cost in the first phase of computation means that DW-

DPP favors edges already present in the multicast graph for use in paths to new nodes, but not as

aggressively as does ZW-DPP thus reducing the likelihood that the more costly least-delay path

pair will be added in the second phase.

As in ZW-DPP and UW-DPP, DW-DPP adds destinations incrementally. Edges not present in

the multicast graph are assigned a weight coefficient of unity. And edges that are already present

in the multicast graph are assigned a weight coefficient based on how close the delay to the end

of the edge (from the source) is to a user-specified parameter, k (as in DWH). The relationships

among DWH, ZWH, UWH, and their survivable variants is illustrated in Figure 3.5

 

DWH UWH ZWH 

DPP 

DWH-DPP UWH-DPP ZWH-DPP 

Tree edge priority influenced, low-cost, 
delay-constrained, online, non-survivable 
multicast routing heuristic. 
 

Low total cost 
variant of DWH 

Least-cost-path 
variant of  DWH 

Survivability (disjoint path pairs) 

Figure 3.5: DWH and related heuristics map for survivable low-cost
delay-constrained multicast routing

As has been done in the survivable case the heuristics DW-DPP, UW-DPP, and ZW-DPP are

compared to the disjoint path pair variants of the QDMR based heuristics which are listed below:

• DQDMR-DPP: Disjoint path pairs variant of DQDMR.

• TQDMR-DPP: Disjoint path pairs variant of TQDMR.

• DEPDT-DPP: Disjoint path pairs variant of DEPDT.
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• TEPDT-DPP: Disjoint path pairs variant of TEPDT.

The relationships among the QDMR based heuristics and their survivable variants is illustrated

in Figure 3.6.

 
 
 
 
 
  
 
 
 
 
 

 

DPP 

DQDMR-DPP DEPDT-DPP 

TQDMR-DPP TEPDT-DPP 

Survivability (disjoint path pairs) 

QDMR 

DQDMR DEPDT 

EPDT 

TQDMR TEPDT 

Delay sensitivity (based on 
neighboring node delays) 

Online Online 

Tree node priority 
influenced 

Tree node priority 
influenced 

DDMC 
Delay sensitivity 
(based on ∆) 

Figure 3.6: QDMR and related heuristics map for survivable low-
cost delay-constrained multicast routing

The capabilities of all the multicast routing heuristics considered in this work are illustrated

in the Figure 3.7. The capabilities listed in the columns convey whether the particular multicast

routing heuristic:

• Incrementally constructs multicast graphs for each new destination.

• Constructs low-cost multicast graphs.

43



• Constructs multicast graphs with delays on the paths from the source to destination nodes

meeting the delay bound.

• Builds shared disjoint path pair multicast graphs.

• Constructs multicast graphs by assigning varying priorities to nodes in the graph.

• Constructs multicast graphs by assigning varying priorities to edges in the graph.

Heuristics Online Low-
cost 

Delay-
constrained 

DPP Node-
priority 

Edge-
priority 

DDMC − � − − � − 
QDMR − � � − � − 
EPDT − � � − � − 
DQDMR � � � − � − 
DEPDT � � � − � − 
TQDMR � � � − � − 
TEPDT � � � − � − 
ZWH � � � − − � 
UWH � � � − − � 
DWH � � � − − � 
DQDMR-
DPP 

� � � � � − 

DEPDT-
DPP 

� � � � � − 

TQDMR-
DPP 

� � � � � − 

TEPDT-
DPP 

� � � � � − 

ZW-DPP � � � � − � 
UW-DPP � � � � − � 
DW-DPP � � � � − � 
 

Figure 3.7: Heuristic Capabilities

Figure 3.9 presents an algorithmic description of the online, survivable, low-cost, delay-constrained

multicast graph heuristics considered in this work. In the first phase the heuristics all compute a

lowest-effective-cost node-disjoint path pair to each destination using Bhandari’s algorithm [18],

2.2.
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The lowest-effective-cost path pair is constructed by first computing a lowest-effective-cost

path (first path) using the appropriate (for the heuristic) dijstra algorithm, applying the Bhandari

transformation and then computing the second path. The first and second paths are interlaced to

remove the common edges and the remaining edges are regrouped to form the lowest-effective-cost

disjoint path pair.

If both the paths in lowest-effective-cost disjoint path pair satisfy the delay bound requirement,

the nodes and edges along the path pair are added to the disjoint path pair multicast routing solution

and the heuristic considers the next destination in the destination set. This process continues until

path pairs to all the destination nodes are computed at which point the heuristic is deemed to be

successful in the construction of a disjoint path pair multicast routing solution for the destination

set.

If any of the paths in the lowest-effective-cost path pairs computed fails to meet the delay bound

requirement of the application then the least-delay path pair to the destination node is computed.

If both the paths in the least-delay path satisifies the delay bound requirement of the application

then the nodes and the edges along the path pair are added to the disjoint path pair solution. This

continues until there are no destination nodes in the destination set.

If however any of the paths in the least-delay path pair fails to satisfy the delay bound require-

ment then the heuristics are deemed unable to construct the disjoint path pair multicast routing

solution for this destination set and the routing request is blocked.

3.2.1 Example showing the working of DW-DPP heuristic

Figure 3.8(a) shows a 10 node 16 edge graph used for explaining the working of DW-DPP heuristic.

In the example graph, the cost and delay values are labeled on each edge as ce/de. For example,

for the edge e56 the cost and delay values are 5 and 4 respectively. In this example, ∆ = 15 and

k = 30. Here, DW-DPP is trying to construct shared DPP graph spanning destination nodes 5, 8

and the source node 0. DW-DPP incrementally constructs disjoint path pairs to each destination:
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Destination 5

In the first phase DW-DPP computes the lowest-effective-cost path pair to destination node 5.

As there no edges in the shared DPP graph to start with, DW-DPP computes the least-cost path

pair to 5. First path Pa
05 computed is 0 => 6 => 5. DW-DPP then transforms the graph using

Bhandari’s technique as shown2 in Figure 3.8(b) and computes the second path in the path pair,

Pb
05 (0 => 4 => 5). As there are no interlacing edges in the path pair and as (DPa

05
= 7) < ∆ and

(DPb
05
= 10) < ∆, DW-DPP is successful in finding the path pair for this destination which is added

to the DPP graph.

Destination 8

As edges e06, e04, e65, and e45 are in the DPP graph, the effective cost on these edges is considered

in the first phase of computing the path pairs. For example, effective costs on the edges are:

Fe06 =
dn0+de06

k × ce05 =
0+3
30 × 3 = 0.3

Fe04 =
dn0+de04

k × ce04 =
0+4
30 × 4 = 0.53

Fe65 =
dn6+de65

k × ce65 =
3+4
30 × 5 = 1.17

Fe45 =
dn4+de45

k × ce45 =
4+6
30 × 6 = 2

Figure 3.8(c) shows the DPP graph after the edges in the path pair to destination node 5 are added

to it. The edges present in the multicast graph are shown in bold and are now labeled with their

effective edge costs which will be used in computing path pairs to destination node 8. The lowest-

effective-cost path pair to 8 computed using the above effective costs is:

(Pa
08, Pb

08) = (0 => 6 => 8, 0 => 4 => 5 => 8)

However as (DPb
08
= 18) > ∆, DW-DPP reverts to the second phase and computes the least-delay

2The affected edges are shown in bold. Also note that the split nodes, 61 and 62 (split from the node 6), are joined
by a zero length arc.
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path pair to 8.

(Pc
08, Pd

08) = (0 => 6 => 8, 0 => 3 => 2 => 8)

As (DPc
08
= 7) < ∆ and (DPd

08
= 13) < ∆, DW-DPP is successful in finding path pairs to node

8 which are added to the DPP graph. Thus DW-DPP successfully finds a survivable, delay-

constrained, low-cost multicast graph spanning the destination nodes. Figure 3.8(d) shows the

final DPP graph containing all the edges (shown in bold) in the path pair to destination nodes 5 and

8.
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Figure 3.8: A 10 node 16 edge graph for explaining the working of DW-DPP
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3.2.2 Computational Complexity

The calculation of running time of shared disjoint path pairs heuristics used in this work is broken

down below:

• First pass of modified Dijkstra’s algorithm: The first pass of the modified dijsktra’s algorithm

takes O(|N |2) time.

• Bhandari’s Transformation: Bhandari’s transformation is achieved in O(|E||N |) time.

• Second pass of modified Dijkstra’s algorithm: The second pass of the modified dijsktra’s

algorithm takes O(|N |2) time.

• Bhandari’s Restoration: Bhandari’s method for restoring the transformed graph takes O(|E||N |)

time.

The shared disjoint path pairs are computed for each destination in the destination set. Hence

the computational complexity of survivable low-cost, delay-constrained multicast routing heuris-

tics is O(|M|(N2 + |E||N |)).

3.3 Evaluation of multicast routing heuristics

Chapter 4 presents an evaluation of the non-survivable low-cost delay-constrained multicast rout-

ing heuristics and Chapter 5 presents an evaluation of the survivable heuristics. Both the non-

survivable and survivable multicast routing heuristics are evaluated in a structured manner as fol-

lows:

1. The heuristics’ performance is evaluated on four different Waxman, [14], graphs with vary-

ing node degree values. The Waxman method is widely used, [15], [9], [40], [22], and [10]

for the generation of random graphs.

2. The heuristics’ performance is evaluated and their performance compared on Waxman graphs,

a pure random graph (a random graph generation method due to Erdös and Rényi, [13]), a
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ConstructLCLDDPP(G,H,M, s,NM)
{

for each d ∈ M
{

Pa
sd =































DijkstraQDMR(G,M,GM,H, ns, nd,N − ns)
if H ∈ DQDMR,DEPDT,T QDMR,T EPDT ;

DijkstraDWH(G,M,GM,H, ns, nd,N − ns)
if H ∈ DWH,ZWH,UWH.

BhandariTransform(G, Pa
sd)

Pd
sd =































DijkstraQDMR(G,M,GM,H, ns, nd,N − ns)
if H ∈ DQDMR,DEPDT,T QDMR,T EPDT ;

DijkstraDWH(G,M,GM,H, ns, nd,N − ns)
if H ∈ DWH,ZWH,UWH.

(P1
sd, P2

sd) = InterlacePaths(Pa
sd, Pb

sd)
Restore the transformed graph(G, Pa

sd, Pb
sd)

if Sat∆(P1
sd) && Sat∆(P2

sd)
Add each e ∈ P1

sd, P2
sd and each n ∈ P1

sd, P2
sd to GM

else {

Pa
sd = DijkstraDelay(G,M,GM,H, ns, nd,N − ns)
BhandariTransform(G, Pa

sd)
Pb

sd = DijkstraDelay(G,M,GM,H, ns, nd,N − ns)
(P1

sd, P2
sd) = InterlacePaths(Pa

sd, Pb
sd)

RestoreTransformedGraph(G, Pa
sd, Pb

sd)

if Sat∆(P1
sd) && Sat∆(P2

sd)
Add each e ∈ P1

sd, P2
sd and each n ∈ P1

sd, P2
sd to GM

else

return Failure

}

}

return Success
}

Figure 3.9: Low-cost delay-constrained disjoint path pair heuristics
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locality graph (a graph generation similar to the Waxman method) proposed by Zegura in

[20], and a hierarchical Transit-Stub graph [20].

3. The heuristics’ performance is evaluated on 100 different Waxman graphs.

4. The heuristics’ performance is compared to the optimal solution which is obtained by ex-

haustively enumerating edge subsets on a small graph.

5. The evaluations of the heuristics’ performance is conducted at varying delay bound values

reflecting a wide range of delay requirements of the application.

The evaluations show that the new heuristics, DWH and DW-DPP, at high k generally construct

multicast graphs with lower cost than the other online heuristics. Also in DWH and DW-DPP the

cost of the multicast graphs constructed decreases with increasing k.
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CHAPTER FOUR

EVALUATION OF LOW-COST DELAY-CONSTRAINED MULTICAST
ROUTING HEURISTICS

This chapter presents the evaluation of the multicast routing heuristics (QDMR, DQDMR, DEPDT,

TQDMR, TEPDT, ZWH, UWH, and DWH) which construct multicast trees with low tree cost

while meeting the delay requirements on paths to destinations. Hence the relevant evaluation

metric average tree cost is selected to compare the performance of the heuristics at various delay

bound values. Also, we are trying to anwser the following questions in our evaluations:

• Is there a change in the heuristic’s performance with respect to others in its problem space

with varying node degrees in a graph?

• Does the heuristic’s performance change when it is executed on different types of graph?

• How is the average total cost performance of a heuristic when it is executed on a large

number of graphs?

• How do the heuristic performances compare to the optimal solution on a graph?

• Does the relationship between the cost and delay of an edge affect the performance of the

heuristic?

• How does the heuristic’s performance vary with varying delay bound values representing

varying delay requirements of the application?

Most heuristic evaluations in the literature try to answer a few of the above listed questions by

performing the evaluations on a single graph or a few graphs, not considering the different delay

cost relationships of the edges, not evaluating the heuristics on different types of graphs, and not

comparing the heuristics performance to the optimal solution [11], [10], [12]. A structured evalu-

ation of the heuristics as presented in this work will serve as a useful guide to future researchers.
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The evaluation of the heuristics presented in this dissertation covers all of the above mentioned

requirements for an effective evaluation of low-cost, delay-constrained multicast routing heuristics.

The evaluation process is broken down into the following sections so as to allow for an extensive

comparison of the heuristics:

• Evaluation of the heuristics on 4 Waxman graphs: In Section 4.1 the heuristics are all com-

pared on 4 different Waxman graphs with average node degrees (6.02, 5.00, 4.04, and 3.04)

covering a range of graphs of the same type with varying connectivity. The average node

degrees in this set were selected to cover a range of values (with a difference in node de-

gree of about one between adjacent elements) and from a high close to 6 (representing a

well-connected graph) to a low of 3.04 (representing a sparsely-connected graph).

• Evaluation on disparate graphs: In Section 4.2 the heuristics are compared on different

graphs. The graphs used in this section include 10 different Waxman graphs, a Pure Random

graph, a Locality graph, and a Transit-Stub graph. This section will help answer the question

of whether the type of the graph used in the evaluation affects the heuristic’s performance.

• Evaluations on 100 different Waxman Graphs: In Section 4.3 the heuristics are compared

on 100 different 100 node Waxman graphs. The average node degrees of the graphs used in

this section varies from a low of 3.04 to a high of 5.26. The average node degrees of all the

100 graphs used in the evaluation are listed in the Table 4.8. Comparing the heuristics per-

formance averages on a large number of graphs helps the reader in assessing the heuristic’s

average performance with respect to its peers over a number of graphs.

• Comparison to the Optimal Solution: In Section 4.4 the heuristics’ performance is compared

to the optimal solution on a 10 node 16 edge graph. This helps us in understanding the

heuristics’ performance relative to the optimal value. Since finding the optimal solution is

an NP-complete problem we use a small 16 edge graph in this evaluation.
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Each edge in the graphs generated is labelled with its Euclidean length. In this evaluation the

edge label represents the delay experienced on the edge (de). For an effective comparison of tree

cost performance of the heuristics and to understand whether the relationship between the cost and

delay associated with an edge affects the heuristics relative performance three different scenario’s

each assigning different cost values for the edges in the graph are considered:

• EQUAL: The cost of an edge has the same numerical value as the delay experienced on the

edge. This scenario reflects the case when queuing delay is considered as the delay on the

edge. When the queuing delay increases it is necessary to the increase the buffer size which

increases the cost associated with the edge.

• RANDOM: The costs of the edges are a random permutation of the delays experienced on

the edges in the graph. This scenario respresents the case where there is no relationship

between the cost and delay associated with an edge, hence the cost associated with an edge

is randomly assigned from the delays experienced on the graph edges.

• REVERSE: The costs of the edges are the delays in reverse order. That is the highest delay

edge gets the lowest delay of any edge as its cost.

The heuristics are compared at various delay bound values at a session size of m = 40 (each

multicast session services a set of 40 nodes). The delay bound is increased from 20 to 900 in

increments of 20. The k value for DWH is taken from the following set k ∈ {20, 100, 160, 300, 900}

to capture a broad spectrum of DWH behavior.

4.1 Evaluation of the heuristics on 4 Waxman graphs

In this section the heuristics are evaluated on 4 different Waxman graphs with varying node degrees.

In each figure, reporting the average tree cost values, each data point on the graph represents 100

multicast sessions used in the simulation. That is for every graph during the simulations, 100

different multicast destination sets are input to each heuristic at every delay bound value. The
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average tree cost of the heuristic (which is plotted in the graphs) is the average of the tree costs for

the 100 sessions in that configuration.

In each Figure the order of the heuristics in the legend also illustrates the differences in the

relative performance of the heuristics. The heuristic exhibiting the worst relative performance is

listed at the top of the legend while the heuristic exhibiting the best relative performance is listed

at the bottom.

As all the heuristics merge the least-delay path (to a destination node) to the multicast tree, if

the shortest paths computed based on edge-cost fail to meet the delay bound, the FCB value for all

the heuristics is equal. Alternatively, unless there is no feasible path meeting the delay bound to

any destination in the destination-set the heuristics will not block the request for the construction of

the multicast tree. This has been confirmed through the evaluations conducted in this work. Hence

the FCB results are not reported. Therefore only tree cost is used as a performance comparison

metric henceforth.

Figure 4.1 compares the heuristics’ tree cost performance for varying delay bound values when

run on a 100 Node Waxman graph (Degree=6.02, α = 0.25, β = 0.21) for the EQUAL cost

scenario. The offline QDMR heuristic constructs multicast trees with lower cost than all other

heuristics which is plausible as it has knowledge of all the destination nodes (which the online

heuristics do not have) prior to the construction of the multicast tree and utilizes this information

to lower the tree cost.

However it is interesting to note that the online destination node priority influenced variants

of QDMR heuristic, DQDMR and DEPDT, construct multicast trees with the highest tree cost.

This is because both DQDMR and DEPDT only assign variable priority to the destination nodes

in the graph and not the more numerous tree nodes in the graph which would result in a higher

reduction in the tree cost of the heuristics. Both TQDMR and TEPDT, the online tree node priority

influenced variants of QDMR, are able to better utilize paths passing through the existing nodes in

the multicast tree and hence construct lower cost multicast trees than DQDMR and DEPDT.
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Figure 4.1: Tree cost versus ∆ at m = 40 (EQUAL cost) Waxman
graph: 100 Nodes, Degree=6.02, α = 0.25, β = 0.21

The dynamic weight heuristic, DWH, at low k values (< 160) behaves like the least-cost path

heuristic (UWH) and constructs multicast trees with tree costs similar to that of UWH. DWH at

higher k values (≥ 160) constructs multicast trees with lower tree cost than even TQDMR and

TEPDT (the best online variants of QDMR) and at high k values (k = 900) constructs multicast

trees with tree cost similar to those constructed by ZWH (the least tree cost heuristic) and the

offline QDMR.

This relative tree cost performance (with minor variations) is also seen in both the REVERSE

and RANDOM cost scenarios as shown in Figure 4.2 and Figure 4.3. Here the DWH based heuris-

tics have higher costs than the DQDMR based heuristics at lower delay bound values (≤ 200 in

the RANDOM cost scenario and ≤ 300 in the REVERSE cost scenario) and lower costs at higher

delay bound values.

DWH (at ≥ 300) and ZWH construct multicast trees with lower tree cost than TQDMR and

TEPDT (the best online variants of QDMR) in both RANDOM and REVERSE scenarios. These
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Figure 4.2: Tree cost versus ∆ at m = 40 (RANDOM cost) Waxman
graph: 100 Nodes, Degree=6.02, α = 0.25, β = 0.21

results indicate that the edge-priority based heuristics (DWH, ZWH) have better tree cost perfor-

mance over the node-priority based heuristics (DQDMR, DEPDT, TQDMR, TEPDT). Figures 4.4

- 4.12 illustrate similar differences for three other Waxman graphs with degrees (5.00, 4.04, and

3.04).

4.2 Evaluation on disparate graphs

As has been illustrated above, the performance of a multicast routing heuristic is dependent on

the network/graph used for routing. To further illustrate the heuristics’ relative performance, the

heuristics are executed over several disparate graphs. In this evaluation phase ten different kinds

of 100 node Waxman graphs were used. The properties of the Waxman graphs generated along

with the parameters used during the generation process are shown in Table 4.1. Also used in the

evaluation process are:

• Pure Random A 100 node Pure Random graph (generated with probability p = 0.055) with

average node degree 5.36.
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Figure 4.3: Tree cost versus ∆ at m = 40 (REVERSE cost) Waxman
graph: 100 Nodes, Degree=6.02, α = 0.25, β = 0.21
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Figure 4.4: Tree cost versus ∆ at m = 40 (EQUAL cost) Waxman
graph: 100 Nodes, Degree=5.00, α = 0.235, β = 0.195

57



 0

 500

 1000

 1500

 2000

 2500

 0  100  200  300  400  500  600  700  800  900

Av
er

ag
e 

Tr
ee

 C
os

t

Delay Bound

Legend
DEPDT
DQDMR
UWH
DWH k=20
DWH k=100
DWH k=160
DWH k=300
TEPDT
TQDMR
DWH k=900
ZWH
QDMR

Figure 4.5: Tree cost versus ∆ at m = 40 (REVERSE cost) Waxman
graph: 100 Nodes, Degree=5.00, α = 0.235, β = 0.195
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Figure 4.6: Tree cost versus ∆ at m = 40 (RANDOM cost) Waxman
graph: 100 Nodes, Degree=5.00, α = 0.235, β = 0.195
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Figure 4.7: Tree cost versus ∆ at m = 40 (EQUAL cost) Waxman
graph: 100 Nodes, Degree=4.04, α = 0.210, β = 0.165
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Figure 4.8: Tree cost versus ∆ at m = 40 (REVERSE cost) Waxman
graph: 100 Nodes, Degree=4.04, α = 0.210, β = 0.165
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Figure 4.9: Tree cost versus ∆ at m = 40 (RANDOM cost) Waxman
graph: 100 Nodes, Degree=4.04, α = 0.210, β = 0.165
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Figure 4.10: Tree cost versus ∆ at m = 40 (EQUAL cost) Waxman
graph: 100 Nodes, Degree=3.04, α = 0.190, β = 0.165
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Figure 4.11: Tree cost versus ∆ at m = 40 (REVERSE cost) Wax-
man graph: 100 Nodes, Degree=3.04, α = 0.190, β = 0.165
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Figure 4.12: Tree cost versus ∆ at m = 40 (RANDOM cost) Wax-
man graph: 100 Nodes, Degree=3.04, α = 0.190, β = 0.165
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Table 4.1: Ten Waxman Graphs
Name Average Node Degree Graph Parameters
Waxman1 3.46 α = 0.19, β = 0.15
Waxman2 3.04 α = 0.19, β = 0.15
Waxman3 3.36 α = 0.19, β = 0.15
Waxman4 3.36 α = 0.19, β = 0.15
Waxman5 3.30 α = 0.19, β = 0.15
Waxman6 5.42 α = 0.24, β = 0.20
Waxman7 5.40 α = 0.24, β = 0.20
Waxman8 4.76 α = 0.24, β = 0.20
Waxman9 5.30 α = 0.24, β = 0.20
Waxman10 5.14 α = 0.24, β = 0.20

• Locality A 100 node Locality graph (average node degree = 5.76), generated with the fol-

lowing parameters (α = 0.06, β = .005, and C = 35.35).

• Transit-Stub A 100 node Transit-Stub graph with average node degree 3.74. The Transit-

Stub graph has 1 transit domain of 4 nodes, 3 stub domains for each transit node and an

average of 8 nodes per stub domain.

The performance of the heuristics over the ten Waxman graphs, pure random, locality, and

transit-stub graphs (for the EQUAL cost scenario) is shown in Table 4.2. The evaluation results for

the other two cost scenarios are shown in Table 4.4 (REVERSE cost) and Table 4.6 (RANDOM

cost). In these tables the heuristics’ performance order for a particular graph is listed in descending

order along a row with the heuristic producing highest cost multicast trees listed at the left end and

the heuristic producing lowest cost multicast trees listed at the right end.

Average cost of the multicast tree is the average over all the trees constructed for each graph.

For example for each graph at each delay bound value 100 different 40 node multicast destination

sets are fed to the heuristic and the heuristic attempts to construct a multicast tree for each set.

If it is successful in its endeavor the multicast tree cost for that set is recorded. The delay bound
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is varied from 20 to 900 in increments of 20 resulting in each heuristic attempting to construct a

multicast tree for 4500 (100 × 45) instances. The average tree cost displayed in the table is the

average over the successful among the 4500 instances. For example, for Waxman2 graph DEPDT

constructs multicast trees with highest average tree cost of 1882.58 while DWH (at k = 900)

constructs multicast trees with least average tree cost of 1388.71.

Further, to help in the relative performance assessment the heuristics are divided into three

different groups as shown below.

1. QDMR: The only heuristic in this group is the offline QDMR.

2. DQDMR: The online variants of QDMR (DQDMR, DEPDT, TQDMR, TEPDT) are part of

this group. These heuristics all assign variable priority to the nodes in the graph (either the

destination node or the tree nodes) so as to construct low-cost multicast trees meeting the

delay bound.

3. DWH: DWH and its variants (DWH, ZWH, UWH) comprise this group. These heuristics

assign varying priorities to the in-tree edges in the graph.

Tables 4.3, 4.5, and 4.7 present an alternative representation of the relative tree cost perfor-

mance of the different heuristics on these disparate graphs for the three different cost scenarios

(EQUAL, REVERSE, and RANDOM respectively). Here the heuristics are all arranged in fixed

columns so as to distinguish the performance of the heuristics in the different groups. The DQDMR

group heuristics are listed followed by DWH and QDMR. This compact presentation helps the

reader appreciate the average tree cost performance of each heuristic relative to its peers.

Figures 4.13 - 4.18 illustrate the tree cost performance of the three different groups of heuristics

for EQUAL, REVERSE, and RANDOM cost scenarios. The figures plot the low and high values

of the average tree cost observed in each heuristic group for each kind of graph. For example in the

EQUAL cost scenario for Waxman1 graph DEPDT and TQDMR construct the highest and lowest
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cost multicast trees in the DQDMR group and their tree cost values are plotted as the high and low

tree cost values for DQDMR group respectively.

In order to improve the presentation clarity the performance of the 13 different graphs for each

cost scenario is presented in two graphs. The first graph in each case presents the performance of

the heuristics for graphs W1 (short for Waxman1), W2, W3, W4, W5, and W6 (Disparate Graphs-

I). The second graph in each case presents the performance of the heuristics for graphs W7, W8,

W9, W10, Random (Pure Random), Locality, and TS (Transit-Stub) (Disparate Graphs-II).

4.2.1 EQUAL cost scenario

From Table 4.2 it is clear that the graph used in the evaluation process affects the relative perfor-

mance of the heuristics. This is because the heuristics’ relative performance order is not consistent

over any two graphs in the set. More specifically there is a variation in relative performance of

the heuristics based on the type of the graph used in the evaluation process making it difficult to

predict their relative performance in a new environment.

The general conclusions (relevant for most of the cases) that can be drawn from the data shown

in the table are the following:

• The destination node priority influenced online variants of QDMR, (DQDMR and DEPDT)

generally construct the highest cost multicast trees (with some exceptions Waxman7 and

Waxman9).

• DWH (at k = 900), ZWH, and the offline QDMR consistently construct the lowest cost

multicast trees.

• The tree node priority influenced online variants of QDMR, (TQDMR and TEPDT) gener-

ally construct multicast trees with lower tree cost than the destination node priority influ-

enced online variants DQDMR and DEPDT.

• DWH (at k = 900) and ZWH consistently construct lower cost multicast trees than TQDMR
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and TEPDT (the best online variants of the QDMR heuristic).

For the six Waxman graphs (W1 to W6) shown in Figure 4.13 it is interesting to note that the

low value of the tree cost for DWH group heuristics is close to (sometimes lower than) the cost of

the trees constructed by QDMR and is lower than the low value of the tree cost for the DQDMR

group heuristics. Also the high value of the tree cost for DWH group heuristics is lower than the

high value of the tree cost of the multicast trees constructed by the DQDMR group heuristics.

Similarly for the rest of the graphs (Disparate Graphs-II) shown in Figure 4.14 the low value

of the tree cost for DWH group heuristics is close to the cost of the trees constructed by QDMR

and is much lower than the low value of the tree cost for the DQDMR group heuristics. However

the high value of the tree cost for the DWH group heuristics is close to (and for the Random case

higher than) the high value of the multicast trees constructed by the DQDMR group heuristics.

4.2.2 REVERSE cost scenario

From the Table 4.4 (REVERSE cost scenario) it is again evident that the graph used in the evalu-

ation process affects the relative performance of the heuristics. However, the general conclusions

that can be drawn from the data shown in the table are the following :

• The destination node priority influenced online variants of QDMR, (DQDMR and DEPDT)

and UWH generally construct the highest cost multicast trees.

• DWH (k = 900), TQDMR, ZWH, and the offline QDMR generally construct the lowest cost

multicast trees.

• The tree node priority influenced online variants of QDMR, (TQDMR and TEPDT) gener-

ally construct multicast trees with lower tree cost than DQDMR and DEPDT.

From the disparate graphs listed in Figure 4.15 and Figure 4.16 it is clear that the low value

of the tree cost for DWH group heuristics is lower than or close to the low value of the tree cost

for the DQDMR group heuristics and the high value of tree cost for the DWH group heuristics is
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Figure 4.13: Heuristics Performance on Disparate Graphs-I
(EQUAL cost)
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Figure 4.14: Heuristics Performance on Disparate Graphs-II (EQUAL cost)
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lower than the high value of the tree cost of the multicast trees constructed by the DQDMR group

heuristics in 9 of the 13 graphs used in this section.
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Figure 4.15: Heuristics Performance on Disparate Graphs-I (REVERSE
cost)

4.2.3 RANDOM cost scenario

As explained above the graph used in the evaluation process affects the relative performance of the

heuristics as is evidenced in Table 4.6 (RANDOM cost scenario). However, the following general

conclusions can be drawn from the data shown in the table:

• DWH (k = 900), ZWH, and the offline QDMR consistently construct the lowest cost multi-

cast trees.
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• The destination node priority influenced variants of QDMR (DQDMR and DEPDT) gener-

ally construct the highest cost multicast trees.

• The tree node priority influenced online variants of QDMR, (TQDMR and TEPDT) con-

sistently construct lower cost multicast trees than the destination node priority influenced

online variants DQDMR and DEPDT.

• DWH with increasing k values constructs lower cost multicast trees.

From the disparate graphs listed in Figure 4.17 and Figure 4.18 it is evident that the low value of

the tree cost for DWH group heuristics is close to (and sometimes lower than) the cost of the trees

constructed by QDMR and much lower than the low value of the tree cost for the DQDMR group

heuristics. Here, the high value of tree cost for the DWH group heuristics is mostly (except for the

Random graph case) lower than the high value of the tree cost of the multicast trees constructed

by the DQDMR group heuristics for all the graphs. These results illustrate that the DWH based

heuristics construct lower cost multicast trees more consistently than the DQDMR based heuristics

which is further confirmed through evaluations of the heuristics over 100 graphs in Section 4.3.

4.3 Evaluations on 100 different Waxman Graphs:

If a heuristic’s relative performance is deemed to be dependent on the graph used in the eval-

uation process then it is imperative for the heuristic designer to test the heuristic on the target

graphs or to extensively evaluate the heuristic’s relative performance on graphs resembling target

networks/graphs.

In this section the heuristics are all compared on one hundred different 100 node Waxman

graphs. The properties of the Waxman graphs generated along with the parameters used during the

generation process are shown in Table 4.8. The heuristic runs are simulated on these 100 different

Waxman graphs for an extensive comparison of the heuristics’ performance. All the heuristics are

compared against DQDMR to measure their relative performance.
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Figure 4.17: Heuristics Performance on Disparate Graphs-I (RANDOM
cost)
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Figure 4.18: Heuristics Performance on Disparate Graphs-II (RANDOM
cost)
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Table 4.8: Properties of the 100 Waxman Graphs
Waxman Average Node Degree Graph Parameters
01 - 05 3.46, 3.04, 3.36, 3.36, 3.30 α = 0.190, β = 0.150
05 - 10 3.32, 3.76, 3.24, 3.34, 3.30 α = 0.195, β = 0.150
10 - 15 3.50, 3.84, 3.30, 3.40, 3.50 α = 0.195, β = 0.155
15 - 20 3.56, 3.92, 3.36, 3.78, 3.44 α = 0.200, β = 0.155
20 - 25 3.74, 4.16, 3.50, 3.88, 4.22 α = 0.200, β = 0.160
25 - 30 3.86, 4.20, 3.66, 3.56, 3.94 α = 0.205, β = 0.160
30 - 35 3.72, 3.94, 4.30, 3.88, 3.68 α = 0.205, β = 0.165
35 - 40 3.86, 4.00, 4.04, 4.34, 4.08 α = 0.210, β = 0.165
40 - 45 3.96, 4.26, 4.20, 4.46, 4.34 α = 0.210, β = 0.170
45 - 50 4.04, 4.38, 4.30, 4.56, 4.30 α = 0.215, β = 0.170
50 - 55 4.24, 4.48, 3.86, 4.44, 4.68 α = 0.215, β = 0.175
55 - 60 4.30, 4.48, 3.94, 3.88, 4.58 α = 0.220, β = 0.175
60 - 65 4.44, 4.58, 4.14, 4.04, 4.78 α = 0.220, β = 0.180
65 - 70 4.48, 4.66, 4.22, 4.10, 4.88 α = 0.225, β = 0.180
70 - 75 4.60, 4.56, 4.70, 4.28, 4.18 α = 0.225, β = 0.185
75 - 80 4.66, 4.64, 4.22, 4.80, 4.62 α = 0.230, β = 0.185
80 - 85 4.88, 4.80, 4.30, 4.88, 4.78 α = 0.230, β = 0.190
85 - 90 4.90, 4.94, 4.40, 5.00, 4.90 α = 0.235, β = 0.190
90 - 95 5.06, 5.16, 4.54, 5.12, 5.00 α = 0.235, β = 0.195
95 - 100 5.14, 5.22, 4.60, 5.26, 5.08 α = 0.240, β = 0.195
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On each graph each heuristic’s run occurs with a specific delay bound. Further, during each

run the heuristic constructs multicast trees for 100 different multicast instances each of size 40

(40 node multicast destination sets). The average tree cost, averaged over the number of times

(among the 100 multicast instances) in which a tree was successfully constructed, is computed and

recorded. The delay bound values over the different runs are varied from 20 to 900 in increments

of 20. Therefore average tree cost metric is measured and recorded 45 times on each graph and

4500 times over the 100 graphs. The total average tree cost of the heuristic is the average over the

successful among the 4500 instances. Recall that all the heuristics have the same set of successes.

Tables 4.9, 4.10, and 4.11 compare the heuristics’ performance with respect to DQDMR for

the 100 graphs. The tables from the left to right (along the columns) denote the following:

1. Heuristic(H): The heuristic (H) that is being compared to DQDMR.

2. Average CH: The average cost of multicast trees found by heuristic H ( Total CH
TimesH

).

3. Average CDQDMR: The average cost of multicast trees found by DQDMR ( Total CDQDMR
TimesDQDMR

). As

the average CDQDMR value is the same along all the rows, this column is eliminated and the

information is included in the table caption.

4. CH
CDQDMR

: The ratio of the average cost of trees found by H over that found by DQDMR over

all instances Average CH

Average CDQDMR
.

The heuristics are arranged with the highest average tree cost heuristics listed at the top and the

lowest average tree cost heuristics listed at the bottom.

4.3.1 EQUAL cost scenario

Table 4.9 shows the relative difference in the performance of the heuristics over 100 different Wax-

man graphs in the EQUAL cost scenario with respect to DQDMR. Listed below are the conclusions

from the data shown in the table:
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• DEPDT and DQDMR on an average construct multicast trees with the highest cost. Note

that the ratio is CH
CDQDMR

= 1 for DQDMR.

• DWH (at k = 900), ZWH, and the offline QDMR on an average construct multicast trees

with lowest cost.

• The heuristics have the following performance order from worst to best in terms of tree cost

over the 100 different graphs (DEPDT, DQDMR, DWH-020, UWH, DWH-100, TEPDT,

TQDMR, DWH-160, DWH-300, DWH-900, ZWH, and QDMR)

• DWH (at k ≥ 160) constructs on an average lower cost multicast trees than the best online

variants of QDMR (TQDMR and TEPDT).

• The percentage difference in the performance of the best heuristic (offline QDMR) and the

worst heuristic (DEPDT) is 36.66%.

• The percentage difference in the performance of DWH with respect to QDMR improves

from 17.38% at k = 100 to 1.42% at k = 900. DWH with increasing k constructs multicast

trees with lower cost.

4.3.2 REVERSE cost scenario

Table 4.10 shows the relative difference in the performance of the heuristics over 100 different

Waxman graphs in the REVERSE cost scenario with respect to DQDMR. Listed below are the

conclusions from the data shown in the table:

• DQDMR and DEPDT on an average construct multicast trees with the highest cost.

• DWH (at k = 900), and the offline QDMR on an average construct multicast trees with

lowest cost.
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• The heuristics have the following performance order from worst to best in terms of tree cost

over the 100 different graphs DEPDT, DQDMR, UWH, DWH-020, DWH-100, DWH-160,

TEPDT, DWH-300, TQDMR, ZWH, DWH-900, and QDMR

• DWH (at k ≥ 20), UWH, and ZWH all on an average construct lower cost multicast trees

than TQDMR and TEPDT (the best online variants of QDMR)

• The percentage difference in the performance of the best heuristic (offline QDMR) and the

worst heuristic (DEPDT) is 28.84%.

• The percentage difference in the performance of DWH with respect to QDMR improves

from 14.60% at k = 100 to 3.94% at k = 900. DWH with increasing k constructs multicast

trees with lower cost.

4.3.3 RANDOM cost scenario

Table 4.11 shows the relative difference in the performance of the heuristics over 100 different

Waxman graphs in the RANDOM cost scenario with respect to DQDMR. Listed below are the

conclusions from the data shown in the table:

• DEPDT and DQDMR on an average construct multicast trees with the highest cost.

• ZWH, DWH (at k = 900, and k = 300), and the offline QDMR on an average construct

multicast trees with lowest cost.

• The heuristics have the following performance order from worst to best in terms of tree cost

over the 100 different graphs DEPDT, DQDMR, UWH, DWH-020, DWH-100, DWH-160,

TEPDT, TQDMR, DWH-300, ZWH, DWH-900, and QDMR

• DWH (at k ≥ 20), UWH, and ZWH all on an average construct lower cost multicast trees

than TQDMR and TEPDT (the best online variants of QDMR)
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Table 4.9: Heuristics’ Cost Comparison wrt DQDMR over 100 graphs
(EQUAL cost), Average CDQDMR=1554.698

Heuristic(H) Average CH
CH

CDQDMR

DEPDT 1576.202 1.01383
DWH-020 1457.641 0.93757

UWH 1455.416 0.93614
DWH-100 1353.853 0.87081

TEPDT 1315.964 0.84644
TQDMR 1288.695 0.82890

DWH-160 1271.990 0.81816
DWH-300 1210.958 0.77890
DWH-900 1169.755 0.75240

ZWH 1160.927 0.74672
QDMR 1153.349 0.74185

• The percentage difference in the performance of the best heuristic (offline QDMR) and the

worst heuristic (DEPDT) is 27.17%.

• The percentage difference in the performance of DWH with respect to QDMR improves

from 13.21% at k = 100 to 1.55% at k = 900. DWH with increasing k constructs multicast

trees with lower cost.

4.4 Comparison to the optimal solution:

In this section the heuristics’ performance is compared to the optimal solution. The minimum cost

delay constrained disjoint path multicast routing problem can be solved on small graphs through

the use of exhaustive enumeration. A 10 node 16 edge graph is used in the comparison process.

The exploration effort in exhaustively enumerating the 65536 edge subsets is reduced by using a

filtration technique:

• Determine whether the edge subset forms a connected component.
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Table 4.10: Heuristics’ Cost Comparison wrt DQDMR over 100 graphs
(REVERSE cost), Average CDQDMR=1476.814

Heuristic(H) Average CH
CH

CDQDMR

DEPDT 1542.820 1.04469
UWH 1434.172 0.97113

DWH-020 1428.329 0.96717
DWH-100 1380.930 0.93507
DWH-160 1341.829 0.90860

TEPDT 1324.684 0.89699
DWH-300 1292.553 0.87523
TQDMR 1286.873 0.87138

ZWH 1265.853 0.85715
DWH-900 1252.517 0.84812

QDMR 1204.984 0.81593

Table 4.11: Heuristics’ Cost Comparison wrt DQDMR over 100 graphs
(RANDOM cost), Average CDQDMR=1420.143

Heuristic(H) Average CH
CH

CDQDMR

DEPDT 1459.173 1.02748
UWH 1340.630 0.94401

DWH-020 1338.587 0.94257
DWH-100 1299.069 0.91474
DWH-160 1258.777 0.88637

TEPDT 1252.176 0.88173
TQDMR 1227.730 0.86451

DWH-300 1203.950 0.84777
DWH-900 1165.208 0.82049

ZWH 1164.339 0.81987
QDMR 1147.406 0.80795
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• Determine whether the connected component has the source and the all the destination nodes.

• Determine whether the paths from the source to the destinations along the connected com-

ponent meet the delay bound of the application.

The connected components which meet the above mentioned requirements are candidate multicast

trees. From among these, select one which has the lowest tree cost. This multicast tree represents

the lowest achievable cost (AC) for a delay-constrained minimum cost multicast tree.

Figure 4.19 shows the cumulative distribution of the relative tree costs obtained by the heuris-

tics, compared to the optimal tree cost of the multicast tree constructed for 100 different multicast

destination sets. Relative tree cost of a heuristic is the ratio of the cost of the tree constructed by

the heuristic divided by AC. The cumulative distribution of the relative costs of the heuristics also

shows a similar pattern as was observed in other evaluations. That is DWH (at high k values) and

ZWH generally construct multicast trees with lower tree cost than the online heuristics. QDMR

the offline multicast routing heuristic constructs multicast trees with a worst relative tree cost of

only 120%. ZWH and DWH (at k = 50) have a worst relative tree cost of 1.4 which is better than

the other online heuristics.

4.5 Summary

This chapter presents the evaluation of all the online, non-survivable, low-cost, delay-constrained

multicast routing heuristics considered in this work. The evaluations are conducted in a structured

manner and result in the following conclusions for all the three cost scenarios:

4.5.1 Evaluation of the heuristics on 4 Waxman graphs

• DQDMR and DEPDT construct higher cost multicast trees than all other heuristics.

• TQDMR and TEPDT construct lower cost multicast trees than DQDMR and DEPDT.

• DWH (at k = 900) constructs lower cost multicast trees than TQDMR.

85



 0

 20

 40

 60

 80

 100

 1  1.2  1.4  1.6  1.8  2

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n

Relative Tree Cost

Legend
QDMR
ZWH
DWH (k=50)
DWH (k=30)
TEPDT
TQDMR
DWH (k=20)
DWH (k=10)
DQDMR
DWH (k=5)
DEPDT
UWH

Figure 4.19: Cumulation distribution of the relative cost of the heuristics
(|N | = 10, |E| = 16, m = 6, ∆ = 50)

• DWH (at k = 900), and ZWH construct lower cost multicast trees than all other online

heuristics.

4.5.2 Evaluation on disparate graphs

• TQDMR and TEPDT construct lower cost multicast trees than DQDMR and DEPDT.

• DWH with increasing k constructs lower cost multicast trees.

4.5.3 Evaluations on 100 different Waxman graphs

• DWH (at k = 900) and ZWH on an average construct lower cost multicast trees than all other

online heuristics.

• DWH (at k = 900) constructs multicast trees with 10%, 3%, and 5% lower cost than the

best node-priority based heuristic TQDMR for EQUAL, REVERSE, and RANDOM cost

scenarios respectively.
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• TQDMR constructs multicast trees with 21%, 15%, and 16% lower cost than DQDMR for

EQUAL, REVERSE, and RANDOM cost scenarios respectively.

4.5.4 Comparison to the optimal solution

• ZWH and DWH (at k = 50) construct multicast trees with a worst relative tree cost of 1.4

(compared to the optimal solution) which is better than the other online heuristics.

87



CHAPTER FIVE

EVALUATION OF SURVIVABLE LOW-COST DELAY-CONSTRAINED
MULTICAST ROUTING HEURISTICS

This chapter presents the evaluation of the survivable multicast routing heuristics (DQDMR-DPP,

DEPDT-DPP, TQDMR-DPP, TEPDT-DPP, ZW-DPP, UW-DPP, and DW-DPP) which construct

node disjoint path pairs (DPP) to each destination node with low DPP graph cost while meeting

the delay requirements on paths to destinations. Hence the relevant evaluation metric average DPP

graph cost is selected to compare the performance of the heuristics at various delay bound values.

The heuristics as done in Chapter 4 are evaluated extensively and in a structured manner.

• Evaluation of the heuristics on 4 Waxman graphs: In Section 5.1 the heuristics are all eval-

uated on 4 different Waxman, [14], graphs with average node degrees (5.86, 6.86, 7.88, and

8.86) covering a range of graphs of the same type but with varying connectivity.

• Evaluation on disparate graphs: In Section 5.2 the heuristics are compared on different

graphs. The graphs used in this section include 10 different Waxman graphs, a Pure Random

graph, a Locality graph, and a Transit-Stub graph. This section will help answer the question

of whether the type of the graph used in the evaluation affects the heuristics performance.

• Evaluations on 100 different Waxman Graphs: In Section 5.3 the heuristics are compared

on 100 different 100 node Waxman graphs. The average node degree of the graphs used in

this section varies from a low of 5.16 to a high of 8.86. Note that these graphs have on an

average higher node degree than the ones used in Chapter 4, that is because node disjoint

paths in a graph are only possible when the nodes in the graph are doubly-connected. The

average node degrees of all the 100 graphs used in the evaluation are listed in the Table 5.9.

• Comparison to the Optimal Solution: In Section 5.4 the heuristics’ performance is compared

to the optimal solution on a 10 node 16 edge graph.
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Table 5.1: Heuristic running times (in seconds) on a Waxman graph:100
Nodes, Degree=5.86, α = 0.245, β = 0.210

Heuristic Running Time
DW-DPP (k = 20) 0.0169
DW-DPP (k = 100) 0.0171
DW-DPP (k = 160) 0.0172
DW-DPP (k = 300) 0.0174
DW-DPP (k = 900) 0.0178
UW 0.0168
ZW 0.0181
DQDMR-DPP 0.0185
DEPDT-DPP 0.0185
TQDMR-DPP 0.0204
TEPDT-DPP 0.0205

Other evaluation criterion which are of interest in the evaluation of multicast routing heuristics

are the evaluation of the heuristics based on the computational complexity and the running time of

the heuristics. Computational complexity has not been considered as an evaluation metric in this

research work because of the fact that all the heuristics have the same computational complexity

as stated in Chapter 3.

The running times of all the heuristics are also similar as illustrated in Table 5.1. The heuristics

are all run on an Intel Pentium 4 machine with a clock speed of 2.4 GHz and with 512 MB of

RAM. The running times listed in the table are the averages over the successful among the 100

multicast graph construction instances when the heuristics are executed on a 100 node Waxman

graph with average node degree 5.76 (graph construction parameters, α = 0.245 and β = 0.21).

As shown in the table the running times of the heuristics are similar and are in the range [0.0168,

0.0205] seconds.
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5.1 Evaluation of the heuristics on 4 Waxman graphs

The heuristics all construct low-cost disjoint path pairs to each destination, therefore the average

cost of DPP graph computed over the 100 multicast sessions is used as the performance metric

and as a data point in the graphs. The simulation set-up is similar to that used for non-survivable

heuristics in Chapter 4.

Figure 5.1 compares the heuristics’ DPP graph cost performance for varying delay bound val-

ues when run on a 100 Node Waxman graph (Degree=5.86, α = 0.245, β = 0.210) for the EQUAL

cost scenario. From the figure we observe:

• DW-DPP (at k = 900) and ZW-DPP construct DPP graphs with lower cost than all other

heuristics. While DEPDT-DPP and DQDMR-DPP construct DPP graphs with higher cost

than all other heuristics.

• The cost of the DPP graphs constructed by DW-DPP decreases with increasing k. DW-DPP

at low k (< 100) values constructs DPP graphs with similar cost to its least-cost-path DPP

variant UW-DPP and at high k (≥ 300) constructs DPP graphs with costs similar to its least

graph cost DPP variant ZW-DPP. Also DW-DPP at k ≥ 160 constructs DPP graphs with

lower cost than the tree node priority influenced DPP variants of QDMR, TQDMR-DPP and

TEPDT-DPP.

• However, TQDMR-DPP and TEPDT-DPP construct lower cost DPP graphs than the desti-

nation node priority influenced DPP variants of QDMR, DQDMR-DPP and DEPDT-DPP.

Considering the tree nodes which are more in number than the destination nodes helps in

producing lower cost DPP graphs.

Figure 5.2 compares the heuristics on the same graph but for REVERSE cost scenario. In

this figure the node priority influenced heuristics (DQDMR-DPP variants) construct lower cost

DPP graphs than the edge priority influenced heuristics (DW-DPP variants) at lower delay bound
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man graph: 100 Nodes, Degree=5.86, α = 0.245, β = 0.210

values (< 400) but higher cost DPP graphs at higher delay bound values. However with increasing

delay bound values the heuristics’ performance is comparable to that observed in the EQUAL cost

scenario.

Figure 5.3 compares the heuristics for the RANDOM cost scenario. We observe that the heuris-

tics DPP graph cost performance is similar to that observed in EQUAL cost case with minor mod-

ifications.

It is also interesting to note that in all the three cost scenarios, ZW-DPP constructs higher cost

DPP graphs at lower delay bound values and lower cost DPP graphs (close to that constructed by

DW-DPP at k = 900) at higher delay bound values. A reason for this can be the delay-insensitivity

inherent in ZW-DPP. At lower delay bound values the lower total cost focussed ZW-DPP fails

initially to meet the delay bound in the first pass of the heuristic and is forced to add the least delay

path pairs to that destination to the DPP graph adding to the cost of the final DPP graph.

Figures 5.4 - 5.12 illustrate similar differences for three other Waxman graphs with degrees

(6.86, 7.88, and 8.86).
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Figure 5.2: DPP graph cost versus ∆ at m = 40 (REVERSE cost)
Waxman graph: 100 Nodes, Degree=5.86, α = 0.245, β = 0.210
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Figure 5.3: DPP graph cost versus ∆ at m = 40 (RANDOM cost)
Waxman graph: 100 Nodes, Degree=5.86, α = 0.245, β = 0.210
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Figure 5.4: DPP graph cost versus ∆ at m = 40 (EQUAL cost) Wax-
man graph: 100 Nodes, Degree=6.86, α = 0.265, β = 0.225
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Figure 5.5: DPP graph cost versus ∆ at m = 40 (REVERSE cost)
Waxman graph: 100 Nodes, Degree=6.86, α = 0.265, β = 0.225
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Figure 5.6: DPP graph cost versus ∆ at m = 40 (RANDOM cost)
Waxman graph: 100 Nodes, Degree=6.86, α = 0.265, β = 0.225
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Figure 5.7: DPP graph cost versus ∆ at m = 40 (EQUAL cost) Wax-
man graph: 100 Nodes, Degree=7.88, α = 0.280, β = 0.245
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Figure 5.8: DPP graph cost versus ∆ at m = 40 (REVERSE cost)
Waxman graph: 100 Nodes, Degree=7.88, α = 0.280, β = 0.245
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Figure 5.9: DPP graph cost versus ∆ at m = 40 (RANDOM cost)
Waxman graph: 100 Nodes, Degree=7.88, α = 0.280, β = 0.245
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Figure 5.10: DPP graph cost versus ∆ at m = 40 (EQUAL cost)
Waxman graph: 100 Nodes, Degree=8.86, α = 0.295, β = 0.255
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Figure 5.11: DPP graph cost versus ∆ at m = 40 (REVERSE cost)
Waxman graph: 100 Nodes, Degree=8.86, α = 0.295, β = 0.255
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Figure 5.12: DPP graph cost versus ∆ at m = 40 (RANDOM cost)
Waxman graph: 100 Nodes, Degree=8.86, α = 0.295, β = 0.255

5.2 Evaluation on disparate graphs

As the performance of a multicast routing heuristic is dependant on the graph used in the evalu-

ation process, to get a better understanding of the heuristics’ performance on different graphs the

evaluations in this section are performed on ten 100 node Waxman graphs. The properties of the

Waxman graphs used in this section are listed in Table 5.2. Apart from these Waxman graphs the

evaluations were also conducted on:

• Pure Random A 100 node Pure Random graph with average node degree 5.98. This random

graph was generated with the probability (p = 0.063)

• Locality A 100 node Locality graph (average node degree = 5.96), generated with the fol-

lowing parameters (α = 0.062, β = .005, and C = 35.00).

• Transit-Stub A 100 node Transit-Stub graph with average node degree 7.94. The Transit-

Stub graph has 1 transit domain of 4 nodes, 3 stub domains for each transit node and an

average of 8 nodes per stub domain. The higher average node degree in the Transit-Stub
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graph is to account for the poor connectivity between the different domains. Even at this

node-degree some of the nodes in the graph are singly connected.

The performance of the heuristics over the different graphs listed above and for the EQUAL cost

scenario is shown in Table 5.3. The evaluation results for the other two cost scenarios are shown

in Table 5.5 (REVERSE cost) and Table 5.7 (RANDOM cost). In these tables the heuristics’

performance order for a particular graph is listed in descending order along a row as done in

Chapter 4. Note that in the tables the heuristics’ names are abbreviated to account for the limited

space in the table. The heuristics used in the evaluation are the DPP variants of the heuristics listed.

Average DPP graph cost is the average over all the DPPs constructed for each graph used in the

evaluation. For each heuristic at each delay bound value the average DPP graph cost is the average

cost of the DPP graphs constructed for the 100 multicast destination sets that are fed at that delay

bound value. The delay bound is varied from 20 to 900 in increments of 20 to account for 4500

DPP graph construction instances.

To help in the relative performance assessment, the heuristics are divided into two groups:

1. DQDMR-DPP Group These heuristics are the online DPP variants of QDMR. These are the

destination node priority influenced DPP variants, DQDMR-DPP and DEPDT-DPP, and the

tree node priority influenced DPP variants, TQDMR-DPP and TEPDT-DPP.

2. DW-DPP Group These heuristics are DPP variants of DWH and its related heuristics. The

heuristics that are part of this group are DW-DPP, UW-DPP and ZW-DPP.

Tables 5.4, 5.6, and 5.8 present an alternative illustration of the average cost of DPP graphs

constructed by the heuristics. The heuristics are arranged in fixed columns for a better illustration

of the performance difference between the two groups. The DQDMR-DPP group heuristics are

listed on the left side of the table and the DW-DPP based heuristics are listed on the right side of

the table.
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Figures. 5.13 - 5.18 illustrate the tree cost performance of the two different heuristics groups

for EQUAL, REVERSE, and RANDOM cost scenarios. The figures plot the low and high values

of the average DPP graph cost observed in each heuristic group for each kind of graph.

In order to improve the presentation clarity the performance of the 13 different graphs for each

cost scenario is presented in two graphs. The first graph in each case presents the performance of

the heuristics for graphs W1 (short for Waxman1), W2, W3, W4, W5, and W6 (Disparate Graphs-

I). The second graph in each case presents the performance of the heuristics for graphs W7, W8,

W9, W10, Random (Pure Random), Locality, and TS (Transit-Stub) (Disparate Graphs-II).

5.2.1 EQUAL cost scenario

From Table 5.3 we see that the graph used in the evaluation process affects the performance of the

heuristic. These general conslusions can be drawn from the data in the table:

• DW-DPP (at k = 900) consistently constructs the lowest cost DPP graphs. DW-DPP (at

k=300 and at k = 900) together with ZW-DPP construct lower cost DPP graphs than all

other heuristics.

• The DEPDT heuristic usually constructs higher cost DPP graphs than all other heuristics.

• The tree node priority influenced DPP variants of QDMR, (TQDMR-DPP and TEPDT-DPP)

generally construct lower cost DPP graphs than the more restrictive destination node priority

influenced DPP variants of QDMR (DQDMR-DPP and DEPDT-DPP).

For the six Waxman graphs (W1 to W6) listed in Figure 5.13 (Disparate Graphs-I) it is inter-

esting to note that the low value of the DPP graph cost for DW-DPP group heuristics is lower than

that for DQDMR-DPP group heuristics. Also the high value of the DPP graph cost for DW-DPP

group heuristics is usually lower than the high value for the DQDMR-DPP group heuristics.

Similarly for the rest of the graphs (Disparate Graphs-II) shown in Figure 5.14, the low-high

bar columns show that the low value of the DPP graph cost for DW-DPP group heuristics is always
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Table 5.2: Ten Waxman Graphs
Name Average Node Degree Graph Parameters
Waxman1 6.14 α = 0.250, β = 0.215
Waxman2 5.94 α = 0.250, β = 0.215
Waxman3 5.50 α = 0.250, β = 0.215
Waxman4 6.12 α = 0.250, β = 0.215
Waxman5 6.10 α = 0.250, β = 0.215
Waxman6 7.36 α = 0.270, β = 0.235
Waxman7 6.82 α = 0.270, β = 0.235
Waxman8 6.66 α = 0.270, β = 0.235
Waxman9 7.50 α = 0.270, β = 0.235
Waxman10 7.22 α = 0.270, β = 0.235

lower than the low value of the DPP graph cost for the DQDMR-DPP group heuristics. However

the high value of the DPP graph cost for the DW-DPP group heuristics is sometimes higher than

the high value of DPP graphs constructed by the DQDMR-DPP group heuristics. UW-DPP and

DW-DPP (at low k) construct higher cost DPP graphs as they are more inclined towards improving

their delay performance than their DPP graph cost performance.

5.2.2 REVERSE cost scenario

From the Table 5.5 (REVERSE cost scenario) we again observe that the graph used in the evalua-

tion process influences the relative performance of the heuristics. However, the general conclusions

that can be drawn from the data shown in the table are the following :

• DW-DPP (k = 900) consistently constructs lower cost DPP graphs than all other heuristics.

• The tree node priority influenced DPP variants of QDMR, (TQDMR-DPP and TEPDT-DPP)

generally construct DPP graphs with lower cost than DQDMR-DPP and DEPDT-DPP.

• UW-DPP along with DEPDT-DPP constructs the highest cost DPP graphs.
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Figure 5.13: Heuristics Performance on Disparate Graphs-I (EQUAL cost)

103



0

500

1000

1500

2000

2500

3000

3500

4000

4500

DQ
DM

R-
DP

P

DW
-D

PP

DQ
DM

R-
DP

P

DW
-D

PP

DQ
DM

R-
DP

P

DW
-D

PP

DQ
DM

R-
DP

P

DW
-D

PP

DQ
DM

R-
DP

P

DW
-D

PP

DQ
DM

R-
DP

P

DW
-D

PP

DQ
DM

R-
DP

P

DW
-D

PP
Waxman7 Waxman8 Waxman9 Waxman10 Random Locality TS

DP
P 

G
ra

ph
 C

os
t

Low High

Figure 5.14: Heuristics Performance on Disparate Graphs-II (EQUAL cost)
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From the disparate graphs listed in Figure 5.15 and Figure 5.16 it is evident that the low value

of the DPP graph cost for DW-DPP and related heuristics is lower than or close to the low value of

the DPP graph cost for DQDMR-DPP and related heuristics. Conversely the high value of the DPP

graph cost is higher for DW-DPP group than for DQDMR-DPP group. This is because UW-DPP

and DW-DPP (at k < 100) on some occasions construct higher cost DPP graphs.
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Figure 5.15: Heuristics Performance on Disparate Graphs-I (RE-
VERSE cost)

5.2.3 RANDOM cost scenario

As noted earlier the relative performance of the heuristics is influenced by the graph used in the

evaluations as is evidenced in Table 5.7 (RANDOM cost scenario). However, the following general

conclusions are drawn from the data shown in the table:
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Figure 5.16: Heuristics Performance on Disparate Graphs-II (RE-
VERSE cost)
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• DW-DPP (k = 900), and DW-DPP (k = 300) construct the lowest cost DPP graphs among

the different heuristics.

• DW-DPP with increasing k values constructs lower cost DPP graphs.

• DEPDT-DPP generally constructs DPP graphs with higher cost than the other heuristics.

• TQDMR-DPP and TEPDT-DPP consistently construct lower cost DPP graphs than DQDMR-

DPP and DEPDT-DPP.

From the disparate graphs’ high-low evaluations illustrated in Figure 5.17 and Figure 5.18 it

is evident that the low value of DPP graph cost for DW-DPP group heuristics is lower than the

low value for DQDMR-DPP group heuristics. And the high value of DPP graph cost is lower in

DW-DPP group heuristics than in DQDMR-DPP group heuristics.

5.3 Evaluations on 100 different Waxman Graphs:

In this section the heuristics are all compared on one hundred different 100 node Waxman graphs.

The properties of the Waxman graphs generated along with the parameters used during the gen-

eration process are shown in Table 5.9. The heuristic runs are simulated on these 100 different

Waxman graphs for an extensive comparison of the heuristics’ performance. All the heuristics are

compared against DQDMR-DPP to measure their relative performance.

Tables 5.10, 5.11, and 5.12 compare the heuristics’ performance with respect to DQDMR-DPP

for the 100 graphs. The tables from the left to right (along the columns) denote the following:

1. Heuristic(H): The heuristic (H) that is being compared to DQDMR-DPP.

2. Average CH: The average cost of multicast trees found by heuristic H ( Total CH
TimesH

).

3. Average CDQDMR−DPP: The average cost of multicast trees found by DQDMR-DPP

(Total CDQDMR−DPP
TimesDQDMR−DPP

). As the average CDQDMR−DPP value is the same along all the rows, this

column is eliminated and the information is included in the table caption.
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Figure 5.17: Heuristics Performance on Disparate Graphs-I (RANDOM
cost)
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Figure 5.18: Heuristics Performance on Disparate Graphs-II (RANDOM
cost)
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Table 5.9: Properties of the 100 Waxman Graphs
Waxman Average Node Degree Graph Parameters
01 - 05 5.86, 5.66, 5.16, 5.76, 5.68 α = 0.245, β = 0.210
05 - 10 6.02, 5.76, 5.34, 5.96, 5.84 α = 0.250, β = 0.210
10 - 15 6.14, 5.94, 5.50, 6.12, 6.10 α = 0.250, β = 0.215
15 - 20 6.26, 6.04, 5.58, 6.30, 6.32 α = 0.255, β = 0.215
20 - 25 6.46, 6.22, 5.74, 6.54, 6.50 α = 0.255, β = 0.220
25 - 30 6.58, 6.28, 5.86, 6.68, 6.58 α = 0.260, β = 0.220
30 - 35 6.82, 6.44, 6.04, 6.84, 6.70 α = 0.260, β = 0.225
35 - 40 6.94, 6.50, 6.20 , 6.96, 6.86 α = 0.265, β = 0.225
40 - 45 7.04, 6.64, 6.34, 7.22, 7.00 α = 0.265, β = 0.230
45 - 50 7.20, 6.74, 6.42, 7.30, 7.12 α = 0.270, β = 0.230
50 - 55 7.36, 6.82, 6.66, 7.50, 7.22 α = 0.270, β = 0.235
55 - 60 7.52, 7.00, 6.80, 7.62, 7.32 α = 0.275, β = 0.235
60 - 65 7.70, 7.12, 6.96, 7.76, 7.48 α = 0.275, β = 0.240
65 - 70 7.74, 7.20, 7.12, 7.84, 7.76 α = 0.280, β = 0.240
70 - 75 7.88, 7.46, 7.22, 7.96, 7.84 α = 0.280, β = 0.245
75 - 80 8.02, 7.64, 7.44, 8.16, 8.06 α = 0.285, β = 0.245
80 - 85 8.14, 7.80, 7.72, 8.34, 8.24 α = 0.285, β = 0.250
85 - 90 8.24, 7.90, 7.84, 8.52, 8.36 α = 0.290, β = 0.250
90 - 95 8.46, 8.06, 8.02, 8.64, 8.50 α = 0.290, β = 0.255
95 - 100 8.60, 8.08, 8.06, 8.86, 8.66 α = 0.295, β = 0.255
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4. CH
CDQDMR−DPP

: The ratio of the average cost of trees found by H over that found by DQDMR-

DPP over all instances Average CH

Average CDQDMR−DPP
.

The heuristics are arranged such that the highest average tree cost heuristics are listed at the

top and the lowest average tree cost heuristics are listed at the bottom.

5.3.1 EQUAL cost scenario

Table 5.10 shows the relative difference in the performance of the heuristics over 100 different

Waxman graphs in the EQUAL cost scenario with respect to DQDMR-DPP. Listed below are the

conclusions from the data shown in the table:

• DW-DPP (at k = 20), DEPDT-DPP, UW-DPP and DQDMR-DPP on an average construct

DPP graphs with the highest cost. Note that the ratio CH
CDQDMR−DPP

is 1 for DQDMR-DPP.

• DW-DPP (at k = 900), ZW-DPP on an average construct DPP graphs with lowest cost.

• The heuristics have the following performance order from worst to best in terms of DPP

graph cost over the 100 different graphs (DW-DPP-020, DEPDT-DPP, UW-DPP, DQDMR-

DPP, DW-DPP-100, TEPDT-DPP, TQDMR-DPP, DW-DPP-160, DW-DPP-300, ZW-DPP,

and DW-DPP-900).

• DW-DPP at (k ≥ 160) constructs on an average lower cost DPP graphs than the best online

variants of QDMR (TQDMR-DPP and TEPDT-DPP).

• The percentage difference in the performance of the best heuristic (DW-DPP at k = 900) and

the worst heuristic (DW-DPP at k = 20) is 39.33%. DW-DPP with increasing k constructs

DPP graphs with lower cost.

• The percentage difference in the performance of DW-DPP at k = 900 and DQDMR-DPP is

36.26%.
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5.3.2 REVERSE cost scenario

Table 5.11 shows the relative difference in the performance of the heuristics over 100 different

Waxman graphs in the REVERSE cost scenario with respect to DQDMR-DPP. Listed below are

the conclusions from the data shown in the table:

• DW-DPP (at k = 900) constructs DPP graphs with lower cost than the other heuristics.

• UW-DPP and DW-DPP (at k = 20) on an average construct DPP graphs with higher cost

than other heuristics.

• The heuristics have the following performance order from worst to best in terms of tree cost

over the 100 different graphs (UW-DPP, DW-DPP-020, ZW-DPP, DW-DPP-100, DEPDT-

DPP, DW-DPP-160, DQDMR-DPP, TEPDT-DPP, DW-DPP-300, TQDMR-DPP, DW-DPP-

900).

• DQDMR-DPP constructs DPP graphs on an average with lower cost than UW-DPP, DW-

DPP (k = 20), ZW-DPP, DW-DPP (k = 100), respectively.

• The percentage difference in the performance of the best heuristic (DW-DPP at k = 900) and

the worst heuristic (UW-DPP) is 20.65%.

• The percentage difference in the performance of DW-DPP at k = 900 and DQDMR-DPP is

5.48%.

• DW-DPP with increasing k constructs DPP graphs with lower cost.

5.3.3 RANDOM cost scenario

Table 5.12 shows the relative difference in the performance of the heuristics over 100 different

Waxman graphs in the RANDOM cost scenario with respect to DQDMR-DPP. Listed below are

the conclusions from the data shown in the table:
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Table 5.10: Heuristics’ Cost Comparison wrt DQDMR-DPP over 100
graphs (EQUAL cost), Average CDQDMR−DPP=2617.564

Heuristic(H) Average CH
CH

CDQDMR−DPP

DW-DPP-020 2676.584 1.02255
DEPDT-DPP 2671.639 1.02066
UW-DPP 2657.625 1.01530
DW-DPP-100 2354.915 0.89966
TEPDT-DPP 2315.608 0.88464
TQDMR-DPP 2219.666 0.84799
DW-DPP-160 2157.021 0.82406
DW-DPP-300 2004.411 0.76575
ZW-DPP 1960.684 0.74905
DW-DPP-900 1920.957 0.73387

• DEPDT-DPP, DW-DPP (at k = 20), UW-DPP, and DQDMR-DPP on an average construct

DPP graphs with the highest cost.

• DW-DPP (at k = 900) on an average constructs the lowest cost DPP graphs.

• The heuristics have the following performance order from worst to best in terms of tree

cost over the 100 different graphs DEPDT-DPP, DW-DPP-020, UW-DPP, DQDMR-DPP,

DW-DPP-100, TEPDT-DPP, DW-DPP-160, TQDMR-DPP, DW-DPP-300, ZW-DPP, DW-

DPP-900

• The percentage difference in the performance of the best heuristic (DW-DPP k = 900) and

the worst heuristic (DEPDT-DPP) is 24.14%.

• The percentage difference in the performance of DW-DPP at k = 900 and DQDMR-DPP is

19.83%

• DW-DPP with increasing k constructs DPP graphs with lower cost.

117



Table 5.11: Heuristics’ Cost Comparison wrt DQDMR-DPP over 100
graphs (REVERSE cost), Average CDQDMR−DPP=2625.886

Heuristic(H) Average CH
CH

CDQDMR−DPP

UW-DPP 3003.282 1.14372
DW-DPP-020 2967.209 1.12998
ZW-DPP 2916.534 1.11069
DW-DPP-100 2845.639 1.08369
DEPDT-DPP 2758.636 1.05055
DW-DPP-160 2735.721 1.04183
TEPDT-DPP 2615.255 0.99595
DW-DPP-300 2596.797 0.98892
TQDMR-DPP 2503.200 0.95328
DW-DPP-900 2489.344 0.94800

Table 5.12: Heuristics’ Cost Comparison wrt DQDMR-DPP over 100
graphs (RANDOM cost), Average CDQDMR−DPP=2390.514

Heuristic(H) Average CH
CH

CDQDMR−DPP

DEPDT-DPP 2476.591 1.03601
DW-DPP-020 2448.107 1.02409
UW-DPP 2447.766 1.02395
DW-DPP-100 2310.680 0.96660
TEPDT-DPP 2246.365 0.93970
ZW-DPP 2218.875 0.92820
DW-DPP-160 2208.305 0.92378
TQDMR-DPP 2168.806 0.90726
DW-DPP-300 2084.627 0.87204
DW-DPP-900 1994.960 0.83453
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5.4 Comparison to the optimal solution:

The heuristics’ are all compared to the optimal solution on a small graph. The minimum cost

delay constrained disjoint path multicast routing problem can be solved on small graphs through

the use of exhaustive enumeration. A 10 node 16 edge graph is used in the comparison process.

The exploration effort in exhaustively enumerating the 65536 edge subsets is reduced by using a

filtration tecnhique:

• Determine whether the edge subset forms a connected component.

• Determine whether the connected component has the source and the all the destination nodes.

• Determine whether both the paths in the path pair to each destination along the connected

component meet the delay bound of the application.

From among the connected components that meet above listed requirements select one which has

the lowest cost. This disjoint path pair graph represents the lowest achievable cost (AC) for a

delay-constrained minimum cost disjoint path multicast routing problem.

Figure 5.19 shows the cumulative distribution of the relative DPP graph cost obtained by the

heuristics, compared to the optimal DPP graph constructed for 100 different multicast destination

sets. Relative DPP graph cost of a heuristic is the ratio of cost of the DPP graph constructed by the

heuristic divided by AC.

This comparison to the optimal solution confirms the fact that DW-DPP (at high k ≥ 30) and

ZW-DPP construct DPP graphs with lower cost than the other heuristics. DW-DPP (at k = 30 and

k = 50) has a worst relative tree cost of 2.0 which is better than the other online heuristics. UW-

DPP has the worst relative DPP graph cost performance. The relative DPP Graph cost performance

of QDMR based variants is close to that of DW-DPP (at k = 20). The relative DPP graph cost

performance of DW-DPP improves with increasing k.
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Figure 5.19: Cumulation distribution of the relative cost of the heuristics
(|N | = 10, |E| = 16, m = 6, ∆ = 50)

5.5 DW-DPP behavior at varying k

In order to predict an appropriate k value for DW-DPP, its behavior at various k values is observed

both at different delay bound values on a single Waxman graph and at a fixed delay bound value

on four different Waxman graphs (with varying node degree).

Figure 5.20 plots the change in DW-DPP performance (with respect to average DPP graph

cost) for varying k at different delay bound values ∆ = {140, 160, 300, 600, 900} (representing a

wide range of the delay requirements of the application) on a single 100 node Waxman graph

(average node degree=5.86). The value for k is changed from 20 to 3000 in increments of 20.

From the figure it is clear that the average DPP graph cost performance improves with increasing

k at all delay bound values.

At low k values as DW-DPP is more focussed on the delay performance, the lowest-effective-

cost path pairs computed at this k may fail to meet the delay requirement of the application, re-

quiring the adding of the more costly least-delay path pairs and hence resulting in higher cost DPP

graphs. However at higher k DW-DPP is more focussed on the cost performance and constructs
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Table 5.13: DW-DPP graph cost performance at different k
k Average DPP Graph Cost Difference wrt k = 3000
20 2452.90 24.30%
100 2274.16 15.24%
160 2143.26 8.61%
300 2039.72 3.37%
600 1990.92 0.89%
900 1986.18 0.65%
1800 1976.70 0.17%
3000 1973.31 0%

lower cost DPP graphs. This is because, the weight coefficients assigned to the edges decrease with

increasing k resulting in higher likelihood of them being re-used reducing the DPP graph cost.

We observe the same DW-DPP behavior with respect to k when run on four different 100 node

Waxman graphs (average node degrees=5.86, 6.86, 7.88, 8.86) as shown in Figure 5.21 (k value is

changed from 20 to 3000 in increments of 20). From the figure it is clear that the cost of the graphs

constructed by DW-DPP generally decreases with increasing k.

The DPP graph cost performance at different k values at (∆ = 300) when run on the 100 node

Waxman graph (average node degree=5.86) is listed in Table 5.13. The first and second columns

in the table list the k value and the cost of DPP graph constructed by DW-DPP at that k. The third

column lists the percentage difference in DPP graph cost for the graphs constructed by DW-DPP

at that k (along the row) and DW-DPP at k = 3000. The DPP graph cost performance of DW-DPP

(with respect to its performance at k = 3000) improves from being 24.30% higher (at k = 20), to

being 8.61% higher (at k = 160), to being 0.65% higher (at k = 900). Therefore DW-DPP at any

k ≥ 900 constructs low cost DPP graphs and therefore any k ≥ 900 is an appropriate k value for

DW-DPP in this environment.
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Figure 5.20: Average DPP graph cost versus k at m = 40 on a Waxman
graph: 100 Nodes, Degree=5.86, α = 0.245, β = 0.210
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Figure 5.21: Average DPP graph cost versus k at m = 40, and ∆ = 300 on
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5.6 Summary

This chapter presents the evaluation of all the online, survivable, low-cost, delay-constrained mul-

ticast routing heuristics considered in this work. The evaluations are conducted in a structured

manner and result in the following conclusions for all the three cost scenarios:

5.6.1 Evaluation of the heuristics on 4 Waxman graphs

• DQDMR-DPP and DEPDT-DPP generally construct higher cost multicast graphs than all

other heuristics.

• TQDMR-DPP and TEPDT-DPP generally construct lower cost multicast graphs than DQDMR-

DPP and DEPDT-DPP.

• DW-DPP (at k = 900) constructs lower cost multicast graphs than TQDMR-DPP.

• ZW-DPP constructs higher cost DPP graphs at lower delay bound values and higher cost

DPP graphs at higher delay bound values.

• DW-DPP (at k = 900), and ZW-DPP generally construct lower cost multicast graphs than all

other heuristics.

5.6.2 Evaluation on disparate graphs

• DW-DPP (at k = 900) on average constructs lower cost multicast graphs than all other

heuiristics.

• TQDMR-DPP and TEPDT-DPP construct lower cost multicast graphs than DQDMR-DPP

and DEPDT-DPP.

• DW-DPP with increasing k constructs lower cost multicast graphs.
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5.6.3 Evaluations on 100 different Waxman graphs

• DW-DPP (at k = 900) on an average constructs lower cost multicast graphs than all other

online heuristics.

• DW-DPP (at k = 900) constructs multicast graphs with 16%, 1%, and 9% lower cost than the

best node-priority based heuristic TQDMR-DPP for EQUAL, REVERSE, and RANDOM

cost scenarios respectively.

• TQDMR-DPP constructs multicast graphs with 18%, 5%, and 10% lower cost than DQDMR-

DPP for EQUAL, REVERSE, and RANDOM cost scenarios respectively.

5.6.4 Comparison to the optimal solution

• DW-DPP (at k = 50 and k = 30) constructs multicast graphs with a worst relative graph cost

of 2.0 (compared to the optimal solution) which is better than the other online heuristics.

5.6.5 DW-DPP behavior at varying k

• The DPP graph cost performance of DW-DPP improves with increasing k.

• DW-DPP (at k ≥ 900) constructs multicast graphs with lower cost than all other heuristics.

• Any k ≥ 900 is an appropriate k for DW-DPP when it is run on graphs resembling those used

in the evaluations in this work.
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CHAPTER SIX

CONCLUSION

This dissertation proposes and evaluates heuristics for the construction of both survivable and non-

survivable low-cost, delay-constrained multicast graphs. The new heuristics were motivated from

the need for such heuristics in critical infrastructure frameworks such as GridStat. The heuristics

and their evaluation in a structured manner will not only help in applications such as GridStat but

will also be a useful resource for future researchers.

The dynamic weight heuristic (DWH) is a new heuristic proposed in this work which produces

low-cost, delay-constrained multicast trees. DWH assigns dynamic weights to edges in the tree

while computing paths. These edge weights are then used as indicators of the relative merit of

including the edge in the paths. Edge weights are computed based on the closeness of the delay

(from the source to the end of the edge) to the parameter k. If in the first phase the path found using

delay-influenced edge-costs fails to meet the delay bound of the application, then a second phase

merges the least-delay path to that destination to the multicast tree (if the delay along the least-

delay path meets the delay bound). Therefore, DWH meets the twin goals of having a low-cost and

a delay-constrained multicast tree.

Two variants of DWH, the least-cost-path variant UWH, and the least total cost variant ZWH

are also considered in the evaluation process. These heuristics are then compared to QDMR and its

online variants, DQDMR and DEPDT (which assign variable priority to the destination nodes in

the tree). Two improved heuristics based on DQDMR and DEPDT are also proposed and evaluated.

They are the tree node priority based variants of QDMR, TQDMR and TEPDT.

The DWH heuristic developed for low-cost, delay-constrained multicast routing is modified by

making it compute shared disjoint path pairs instead of individual paths to the destination nodes.

The modified heuristic is called the Dynamic Weight Disjoint Path Pairs (DW-DPP) heuristic.

The path pairs are computed using Bhandari’s vertex splitting algorithm. The online heuristics
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used in the evaluation of non-survivable multicast routing are modified, like before, to construct

shared disjoint path pairs to each destination node. The modified heuristics are UW-DPP, ZW-DPP,

DQDMR-DPP, DEPDT-DPP, TQDMR-DPP, and TEPDT-DPP.

Both the survivable and non-survivable heuristics are evaluated in a structured manner to help

appreciate the differences between the heuristics and see how the performance varies with varying

characteristics of the graphs used in the evaluation:

1. The heuristics are compared on four different 100 node Waxman graphs with a difference

of about one in the node degree between adjacent graphs. This enables the evaluation of

the heuristics on graphs of varying node degree but of the same type. The evaluations show

that DWH and DW-DPP (at k = 900) construct lower cost multicast graphs than TQDMR

and TQDMR-DPP (the best node-priority-based heuristic) respectively. Further TQDMR

and TQDMR-DPP construct lower cost multicast graphs than DQDMR and DQDMR-DPP

respectively.

2. The heuristics are evaluated on Waxman, Pure Random, Locality, and Transit-Stub graphs.

The heuristic’s performance varies with the type of graph used in the evaluation process as

has been demonstrated in the evaluations. The evaluations show that DWH and DW-DPP

with increasing k construct lower cost multicast graphs.

3. The heuristics are also evaluated on 100 different Waxman graphs. These evaluations cover

a range of graph characteristics and are useful in establishing the average performance of

the heuristics over a large number of graphs. The evaluations show that DWH (at k = 900)

constructs multicast trees with 10%, 3%, and 5% lower cost than TQDMR and DW-DPP (at

k = 900) constructs multicast trees with 16%, 1%, and 9% lower cost than TQDMR-DPP

for EQUAL, REVERSE, and RANDOM cost scenarios respectively.

4. The heuristics are also compared to the optimal solution to assess their relative performance
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with respect to the lowest achievable solution. The evaluations show that DWH and DW-DPP

(at k = 50) construct multicast trees with a worst relative tree cost of 1.4 and 2.0 respectively

which are better then the other online heuristics.

Also, the heuristics produce costs that are within 28% and 40% of each other for the non-

survivable and survivable cases respectively. For a system designer this gives an estimate of the

benefit that the more sophisticated multicast heuristics may provide in reducing the cost of the

multicast graphs (trees).

Finally, for the evaluation environments used in this research work and as shown in Section 5.5,

DW-DPP improves its DPP graph cost performance with increasing k and at (k ≥ 900) generally

outperforms other heuristics and is the ideal heuristic for such environments.

6.1 Future Work

The future work in this research will include the implementation of the DW-DPP heuristic on

the GridStat publish-subscribe middleware framework. DW-DPP (at high k values) as shown in

Chapter 5 performs better than any other heuristic in terms of its DPP graph cost performance.

Also, the DPP graph cost performance of DW-DPP improves with increasing k as shown in Section

5.5.

Like in Section 5.5 an appropriate k value for DW-DPP for use in GridStat can be determined

by running a few experiments. In each experiment DW-DPP behavior at different k values (for

example in Section 5.5 the k value is varied from 20 to 3000 in increments of 20) for a specific

delay bound value when run on the GridStat target graph environment is plotted to ascertain the

most appropriate k value. The experiments are run at different delay bound values representing the

different hard-to-satisfy and easy-to-satisfy delay bound cases of the GridStat environment. These

experiments will help the GridStat researcher in selecting an appropriate k value for DW-DPP for

use in GridStat.

Another important point which a GridStat researcher has to contend with during the design
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phase is the selection of appropriate cost values for the different edges in the graph. Presently

we consider three different delay-cost relationships (EQUAL, REVERSE, and RANDOM) for

assigning cost values to edges based on the delays on the edges. Of these the RANDOM scenario

(there is no relationship between the delay and cost of an edge and the cost values assigned to

edges are delays of different graph edges selected at random) represents the most practical delay-

cost relationship.

However cost of an edge is not currently coupled with the resources available on the edge. An

important question which the GridStat researcher will have to answer is whether or not the cost

of an edge in the graph should be coupled to the resources available on the edge and whether this

leads to a more accurate reflection of the actual cost of using the edge in multicast routing.

Also as seen in the non-survivable case (Chapter 4) offline QDMR heuristic’s tree cost per-

formance is better still than the online DWH heuristic. If the preliminary multicast destination

set (representing the potential preliminary subscribers) in GridStat is known ahead of time and is

relatively stable, that is only a few additional subscribers are expected to join the multicast session

after the start of the session, then there is potentially some benefit in using a hybrid offline-online

heuristic for constructing the multicast graph. This heuristic first computes an offline multicast

graph for the known destination set (known subscribers) and incrementally expands (online part

of the heuristic) the constructed graph by adding a path pair to each new subscriber that joins the

multicast session.

However there are no offline survivable delay-constrained low-cost multicast routing heuristics

existing in the literature and the future work will involve development of such heuristics. Also a

hybrid offline-online heuristic when developed will make it possible for the GridStat researcher to

compare and evaluate the benefits of using such a hybrid heuristic over a purely online heuristic

such as DW-DPP in GridStat.

128



BIBLIOGRAPHY

[1] M. Garey, and D. Johnson, “Computers and Intractability: A Guide to the theory of NP-

completeness,” New York: W. H. Freeman and Co., 1979.

[2] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner trees,” Acta Informatica,

vol. 15, pp. 141-145, 1981.

[3] H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in

graphs,” Math. Japonica, vol. 24, pp. 573-577, 1980.

[4] G. Robins and A. Zelikovsky, “Improved Steiner Tree Approximation in Graphs,” Proceed-

ings of the eleventh annual ACM/SIAM Symposium on Discrete Algorithms (SODA 2000), pp.

770-779, Jan 2000.

[5] C.H. Hauser, D.E. Bakken, and A. Bose, “A failure to communicate: next generation com-

munication requirements, technologies, and architecture for the electric power grid” IEEE

Power and Energy Magazine, vol. 3, no. 2, pp. 47-55, Mar.-Apr. 2005.

[6] C.H. Hauser, D.E. Bakken, I. Dionysiou, K.H. Gjermundrd, V.S. Irava, and A. Bose, “Secu-

rity, trust, and QoS in next-generation control and communication for large power systems”,

Proceedings of the Workshop on Complex Network and Infrastructure Protection (CNIP06),

Rome, 28-29 March, 2006.

[7] K.H. Gjermundrod, “Flexible QoS-Managed Status Dissemination Middleware Framework

for the Electric Power Grid,” PhD thesis, Washington State University, Pullman, Washington,

Aug. 2006. Available from http://griffin.wsu.edu.

[8] “GridStat,” www.gridstat.net, Washington State University, 2006.

129



[9] L. Guo and I. Matta, “QDMR: An efficient QoS Dependent Multicast Routing Algorithm,”

Proceedings of the Fifth IEEE Real-Time Technology and Applications Symposium (RTAS

’99), pp 213, 1999.

[10] A. Fei, J. Cui, M. Gerla, and D. Cavendish, “A dual-tree scheme for fault-tolerant multicast,”

Proceedings of IEEE International Conference on Communications, 2001, vol. 3, pp.690-

694, Jun. 2001.

[11] M. Aissa, and A. B. Mnaouer, “A new delay constrained algorithm for multicast tree con-

struction,” International Journal of Communication Systems, vol. 17, no. 10, pp. 985-1000,

Dec. 2004.

[12] N. K. Singhal, L. H. Sahasrabuddhe, and B. Mukherjee, “Provisioning of Survivable Mul-

ticast Sessions Against Single Link Failures in Optical WDM Mesh Networks,” Journal of

Lightwave Technology, vol. 21, no. 11, pp. 2587-2594, Nov. 2003.
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