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Abstract— Providing efficient data aggregation while preserv- ing local recommendations. Without providing proper privacy
ing data privacy is a challenging problem in wireless sensor net- protection, such applications of WSNs will not be practical,

works research. In this paper, we present two privacy-preserving
data aggregation schemes for additive aggregation functions. The
first scheme —Cluster-based Private Data Aggregation (CPBA)

since participating parties may not allow tracking their private
data. In this paper, we discuss how to carry privacy-preserving

leverages clustering protocol and algebraic properties of poly- data aggregation in wireless sensor networks. In the following,
nomials. It has the advantage of incurring less communication we first elaborate two specific motivating applications of using

overhead. The second scheme Slice-Mix-AggRegaTe (SMARF  wireless sensor network to carry out private data aggregation.

builds on slicing techniques and the associative property of addi-
tion. It has the advantage of incurring less computation overhead.
The goal of our work is to bridge the gap between collaborative
data collection by wireless sensor networks and data privacy.
We assess the two schemes by privacy-preservation efficacy,

1) As alluded above, wireless sensors may be placed in
houses to collect statistics about water and electricity
consumption within a large neighborhood. The aggre-
gated population statistics may be useful for individual,

communication overhead, and data aggregation accuracy. We
present simulation results of our schemes and compare their
performance to a typical data aggregation scheme FAG, where
no data privacy protection is provided. Results show the efficacy
and efficiency of our schemes. To the best of our knowledge, this
paper is among the first on privacy-preserving data aggregation
in wireless sensor networks.

business, and government agencies for resource planning
purposes and usage advice. However, the readings of
sensors could reveal daily activities of a household, such
as when all family members are gone or when someone
is taking a shower (different water appliances have
distinct signatures of consumption that can reveal their
identity). Hence we need a way to collect the aggregated
sensor readings while at the same time preserve data
privacy.

Future in-home floor sensors, collecting weight infor-
mation, are used together with shoe-mounted sensors,
collecting exercise-related information, in an obesity
study to correlate exercise and weight loss. Aggregate
statistics from those data are useful for agencies such as
Department of Health and Human Services, as well as
insurance companies for medical research and financial
planning purposes. However, individual’s health data
should be kept private and not be known to other people.

I. INTRODUCTION

A wireless sensor network (WSN) is an ad-hoc network
composed of small sensor nodes deployed in large humber
to sense the physical world. Wireless sensor networks have)
very broad application prospects including both military and
civiian usage. They include surveillance [1], tracking at
critical facilities [2], or monitoring animal habitats [3]. Sensor
networks have the potential to radically change the way people
observe and interact with their environment.

Sensors are usually resource-limited and power-constrained.
They suffer from restricted computation, communication, and
power resources. Sensors can provide fine-grained raw data.
Alternatively, they may need to collaborate on in-network From these data aggregation examples, we see why preserv-
processing to reduce the amount of raw data sent, thog the privacy of individual sensor readings while obtaining
conserving resources such as communication bandwidth @&egurate aggregate statistics can be an important requirement.
energy. We refer to such in-network processing generically &be protection of privacy also gives us add-on benefits includ-
data aggregationIn many sensor network applications, théng enhanced security. Consider the scenario when an adver-
designer is usually concerned with aggregate statistics sucrsagy compromises a portion of the sensor nodes: when there is
SUM AVERAGE or MAX/MIN of data readings over a certainn0 privacy protection, the comprised nodes can overhear the
region or period. As a result, data aggregation in WSNs heata messages and decrypt them to get sensitive information.
received substantial attention. However, with privacy protection, even if data are overheard

As sensor network applications expand to include increa@nd decrypted, it is still difficult for the adversary to recover
ingly sensitive measurements of everyday life, preserving d&gnsitive information.
privacy becomes an increasingly important concern. For exam-Consequently, providing a reasonable guideline on building
ple, a future application might measure household details sugfstems that perform private data aggregation is desirable. It is
as power and water usage, computing average trends and nveddl-known that end-to-end data encryption is able to protect



private communications between two parties (such as the dafeeless sensor networks. Section IV provides our two algo-

source and data sink), as long as the two parties have agmitkms for private data aggregation. Section V evaluates the
ment on encryption keys. However, end-to-end encryption proposed schemes. We summarize our findings and lay out
link level encryption alone isiot a good candidate for private future research directions in Section VI.

data aggregation. This is because:

1) If end-to-end communications are encrypted, the in- Il. RELATED WORK

termediate nodes could not easily perform in-network . .
. In typical wireless sensor networks, sensor nodes are usually
processing to get aggregated results. . S
resource-constrained and battery-limited. In order to save

2) Even when data are encrypted at the link level, the Othreersources and energy, data must be aggregated to avoid

end of the communication is still able to decrypt it and . o
. ) o overwhelming amounts of traffic in the network. There has
get the private data. Hence privacy is violated. . . .
been extensive work on data aggregation schemes in sensor
Though research on privacy-preserving computation hagtworks, including [4], [5], [6], [7], [8], [9]. These efforts
been active in other domains including cryptography and dajfare the assumption that all sensors are trusted and all com-
mining, previously-studied schemes are not readily applicalf@unications are secure. However, in reality, sensor networks
to private data aggregations in WSNs. Most of them are eithgie Jikely to be deployed in an untrusted environment, where
not suitable for or too computational-expensive to be used ifks, for example, can be eavesdropped. An adversary may
the resource-constrained sensor networks, as we will diSC@é‘anromise cryptographic keys and manipulate the data.
in detail in Section II. Work presented in [10], [11], [12] investigates secure
In this paper, we present two privacy-preserving data aggigta aggregation schemes in the face of adversaries who
gation schemes calle@luster-based Private Data Aggregationtry to tamper with nodes or steal the information. Work
(CPDA) and Slice-Mix-AggRegaTe (SMARTgspectively, for presented in [13], [14] shows how to set up secret keys
additive aggregation functions in WSNs. The goal of our woretween sensor nodes to guarantee secure communications.
is to bridge the gap between collaborative data aggregatipgr most existing secure data aggregation schemes though,
and data privacy in wireless sensor networks. When theregi§ intermediate aggregation node has to decrypt the received
no packet loss, in bot&PDAand SMART the sensor network data, then aggregate the data according to the corresponding
can obtain greciseaggregation result while guaranteeing thajggregation function, and finally encrypt the aggregated result
no private sensor reading is released to other sensors. Obsgaf@re forwarding it. This sequence is fairly expensive for
that this is a stronger result than previously proposed protocglgta aggregation in sensor networks. To reduce computational
that are able to computgpproximateaggregates only (without gverhead, Girao et al. [15] and Castelluccia et al. [16] propose
violating privacy). Our presented schemes can be built @ging homomorphic encryption ciphers, which allow efficient
top of existing secure communication protocols. Thereforgggregation of encrypted data without decryption involved in
both security and privacy are supported by the proposed dg@{a intermediate nodes. Though these schemes are efficient to
aggregation schemes. preserve data privacy in data aggregation, they do not protect
In the CPDA scheme, sensor nodes are formed randomilye the trend of private data of a node from being known by
into clusters. Within each cluster, our design leverages #@bs neighboring nodes. This is because when the neighboring
gebraic properties of polynomials to calculate the desireddes can always overhear the sum of the private data and
aggregate value. At the same time, it guarantees that & fixed unknown number (encryption key). In contrast, the
individual node knows the data values of other nodes. Theivate data aggregation schemes we present in this paper
intermediate aggregate values in each cluster will be furthefisures that no trend about private data of a sensor node is
aggregated (along an aggregation tree) on their way to th#eased to any other nodes.
data sink. In theSMARTscheme, each node hides its private |n privacy-preservation domain, Huang, Wang and Borisov
data by slicing it into pieces. It sends encrypted data slicesg@dress the problem in a peer-to-peer network application in
different intermediate aggregation nodes. After the pieces qu&]. Privacy preservation has also been studied in the data
received, intermediate nodes calculate intermediate aggregaifing domain [18], [19], [20], [21]. Two major classes of
values and further aggregate them to the sink. In both schem@shemes are used. The first class is based on data perturbation
data privacy is preserved while aggregation is carrying out.(randomization) techniques. In a data perturbation scheme, a
We evaluate the two schemes in terms of efficacy of privaggndom number drawn from a certain distribution is added
preservation, communication overhead, and data aggregationthe private data. Given the distribution of the random
accuracy, comparing them with a commonly used data aggperturbation, recovering the aggregated result is possible. At
gation schemelAG [4], where no data privacy is provided.the same time, by using the randomized data to mask the
Simulation results demonstrate the efficacy and efficiency pfivate values, privacy is achieved. However, data perturbation
our schemes. techniques have the drawback that they do not yield accurate
The rest of the paper is organized as follows. Section dlggregation results. Furthermore, as shown by Kargupta et al.
summarizes the related work. Section Ill describes the model [20] and by Huang et al. in [21], certain types of data
and requirements of privacy-preserving data aggregation garturbation might not preserve privacy well.



Another class of privacy-preserving data mining eavesdropped by attackers to reveal private data. A good
schemes [22], [23], [24] is based on Secure Multi-party private data aggregation scheme should be robust to such
Computation (SMC) techniques [25], [26], [27]. SMC deals attacks.
with the problem of a joint computation of a function with 2) Efficiency: The goal of data aggregation is to reduce
multi-party private inputs. SMC usually leverages public-key  the number of messages transmitted within the sensor
cryptography. Hence SMC-based privacy-preserving data network, thus reduce resource and power usage. Data
mining schemes are usually computationally expensive, aggregation achieves bandwidth efficiency by using in-
which is not applicable to resource-constrained wireless network processing. In private data aggregation schemes,
sensor networks. additional overhead is introduced to protect privacy.

As we will show in the rest of this paper, unlike previous However, a good private data aggregation scheme should
privacy-preserving approaches, our new private data aggre- keep that overhead as small as possible.
gation schemes have the advantages: (1) They preserve dafj Accuracy: An accurate aggregation of sensor data is
privacy such that individual sensor data is only known to their ~ desired, with the constraint that no other sensors should
owner; (2) The aggregation result is accurate when there is no  know the exact value of any individual sensor. Accuracy
data loss; (3) They are more efficient and hence more suitable should be a criterion to estimate the performance of

for resource-constrained wireless sensor networks. private data aggregation schemes.
[1l. M ODEL AND BACKGROUND C. Key Setup for Encryption
A. Sensor Networks and the Data Aggregation Model To set context for our work, in this section, we first briefly

In this paper, a sensor network is modeled as a connect@4i€W & random key distribution mechanism proposed in [13],
graphG(V, £), where sensor nodes are represented as the @@thich our proposed schemes operate.

of verticesV and wireless links as the set of edgésThe  Security Assumptions and Key Setup:
number of sensor nodes is defined|&$ = N. In the new private data aggregation algorithmSRDA and

A data aggregatlon function is defined agt) 2 SMARTF some messages are encrypted to prevent attackers
F(dy(t),da(t),- -+, dn(t)), whered;(t) is the individual sen- from eavesdropping. Our schemes can be built on top of exist-
sor reading at timefor nodei. Typical functions off include INg key distribution and encryption schemes in wireless sensor
sum average min, max and count If d;(i = 1,---,N) is networks. Here, we briefly review a random key distribution
given, the computation of at a query server (data sink)Mmechanism proposed in [13] which we use in the design of
is trivial. However, due to the large data traffic in sensdtur schemes.
networks, bandwidth constraints on wireless links, and large!n [13], key distribution consists of three phases: (1)key
power consumption of packet transmitlordata aggregation Pre-distribution, (2)shared-key discovery, and (3)path-key es-
techniques are needed to save resources and power. tablishment. In the pre-distribution phase, a lakgg-poolof

In this paper, we focus on additive aggregation function& keys and their corresponding identities are generated. For
each sensor within the sensor netwokkkeys are randomly

that is, f(t) = Z di(t). 1t is worth noting that using grawn from thekey-pool Thesek keys form akey ring for
additive aggregauon functions is not too restrictive, sincg sensor node. During the key-discovery phase, each sensor
many other aggregation functions, includiagerage count node finds out which neighbors share a common key with
variance standard deviationand any othemomentof the itself by exchanging discovery messages. If two neighboring
measured data, can be reduced to the additive aggregatiodes share a common key then there is a secure link between

function sum[16]. two nodes. In the path-key establishment phase, a path-key is
) _ ) assigned to the pairs of neighboring sensor nodes who do not
B. Requirements of Private Data Aggregation share a common key but can be connected by two or more

Protecting the data privacy in many wireless sensor networkilti-hop secure links at the end of the shared-key discovery
applications is a major concern. The following criteria summghase.
rize the desirable characteristics of a private data aggregationn the random key distribution mechanism mentioned above,

scheme: the probability that any pair of nodes possess at least one
1) Privacy: Each node’s data should be only known t§Ommon key is:
itself. Furthermore, the private data aggregation scheme (K — k)1)?
should be able to handle to some extent attacks and Peonnect = 1 — (K —21)IK! 1)

collusion among compromised nodes. When a sensor
network is under a malicious attack, it is possible that Let the probability that any other node can overhear the
some nodes may collude to uncover the private dagacrypted message by a given key B&crneqr- It is the

of other node(s). Furthermore, wireless links may berobability that a third node possesses the same key as this

node. Therefore,

1A Berkeley mote consumes approximately the same amount of energy to _
compute 800 instructions as it does in sending a single bit of data [4]. Poverhear =

)

==



The key distribution algorithm discussed above is efficient
in terms of using a small number of keys to support secure
communication in a large-scale sensor network, hence prevent-
ing eavesdroping. This is illustrated in the following numerical
example. .
Assume a key pool of siz& = 10000, and key ring size
of £ = 200. The probability that any pair of nodes can find a @ @ @
shared key in common i8.onnee: = 98.3% by Equation (1).
In other words, the probability that a pair of nodes does not("t)erQUber{'ESLeLger:]eSS;”gngiea I(g;d?r agg )t; ebecb??:dcg'sutﬁ?;e
share a common key i$.7%. For these pairs who do not gipie)rln ngELLO messaggé elects HELLO messag()e/ to their neigh-
share a common key, they can use the path-key establishmeielf as a cluster leader randomly. bors.
procedure described above to establish a shared key. Once a
pair of nodes select a shared key, the probability that any other
node owns the same Key i8,crhear = % = 0.2%, which is
very small.

IV. PRIVATE DATA AGGREGATIONPROTOCOLS

In this section, we present two private data aggregation
protocols focusing on additive data aggregation. The first
scheme is calledCluster-based Private Data Aggregation o&‘“
(CPDA) It consists of three phases: cluster formation, cal-
culation of the aggregate results within clusters, and clustéy Node E receives multi-  (d) Several clusters have been constructed
d . Th d h . |S,kité Mi ple HELLO messages, then and the aggregation tree of cluster leaders is

ata_aggregation. The second scheme is calBbé-Mix- " andomly selects one to formed
AggRegaTe (SMART)In SMART each node hides its privatejoin.
data by slicing the data and sending encrypted data slices to
different aggregators. Then the aggregators collect and forward
data to a query server. When the server receives the aggregated Broadcast ___ Fncrypt and send
data, it calculates the final aggregation result. fessage fhessage

Fig. 1. Formation of clusters

X
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1) Formation of Clusters: The first step inCPDA is to , 4 s AN f Fe
construct clusters to perform intermediate aggregations. '\@ Eﬂf{%& e
propose a dlstrlbuteq protocol for t.h|§ purpose. ()Broadeast seeds (2)EncT;§3vf;1f§)send (3)Broadcast assembled

The cluster formation procedure is illustrated in Figure 1. A customized values information F, Fy,, F,
query servely triggers a query by &lELLO message. Upon
receiving theHELLO message, a sensor node elects itself as
a cluster leader with a probability., which is a preselected
parameter for all nodes. If a node becomes a cluster leadetyHich are distinct with each other (as shown in Figure 2(1)).
will forward the HELLO message to its neighbors; otherwiseThen nodeA calculates
the node waits for a certain period of time to geéELLO

A. Cluster-based Private Data Aggregation (CPDA) :>

Fig. 2. Message exchange

A_ A A, 2
messages from its neighbors, then it decides to join one of the Va=atryr e,
clusters by broadcasting JOIN message. As this procedure vg‘, =a+ rlAy + 752,
goes on, multiple clusters are constructed. va =a+riz i

2) Calculation within Clusters: The second step @PDA h A andrd ; d b ted b d
is the intermediate aggregations within clusters. To simpliW eréry andry” areé two random numbers generated by node

the discussion, we use a simple scenario, where a clus‘f‘e aTdt "r}BOW'; Ogly t% ncodecél. E"T”('ja”y' Tdele a.nd ¢
contains three memberst, B, and C. a, b and c represent CCUa€V4, Vg, vc anduy, vy, ve Independently as.

the private data held by nodef B and C, respectively. Let NodeB : v = b+rPx+rPa?,
A be the cluster leader of this cluster. LBtandC be cluster B _ B B, 2
- ) . vg = btriy+ryy’,

members. Our privacy-preserving aggregation protocol based
- . . . v8 = b+rPrrB2?
on the additive property of polynomials. Figure 2 illustrates c 1 2%
the message exchange among the three nodes to obtain the c c c o
desired sum without releasing individual private data. NodeC : vé{ = cof Tlcx + 7“263?27
First, nodes within a cluster share a common (non-private) vp = cHriytray,

knowledge of non-zero numbers, refer toseedsz, y, andz, vS = c+rr4rR%



Then nodeA encryptsvj and sends td using the shared key cluster has a cluster size larger than, and how to tune

betweenA andB. It also encrypts2 and sends t@¢’ using the
sharing key betweenl and C' (Figure 2(2)). Similarly node
B encrypts and sends; to A andv5 to C; nodeC encrypts
and sends/§ to A andv§ to B. When nodeA receivesv
and v§, it has the knowledge of4} 2

a + Tf‘x + ré‘lx ,
vB = b+ rPr +rP2? and v = ¢+ r{x + r§a?. Next,
node A calculates assembled valugy = vjf,‘ + vf + 0§
(a+b + c) —|— rlx + rox?, wherer; = 7' + 78 + ¢ and
ro =1y + 18 +0r§. Slmllarly nodeB and C calculate their
assembled valueBg = vy +vE +v§ = (a+b+c)+riy+

roy? and Fo :Ué—i—vg—i—vg (@+b+c)+riz + re2?

respectively. Then nod8 andC broadcast's and F; to the
cluster leaderd (Figure 2(3)). So far, nodel knows all the
assembled values:

Fa=v4408 +0§ = (a+b+¢) +riz+ rea?,
Fp=vh+vE 40§ = (a+b+c)+ry+ry?,
Fo=v8+v8 +05 = (a+b+4c¢)+riz+r22

®3)

Then the cluster leadet can deduce the aggregate value-
b+ ¢). This is because, y, z, F4, Fp, Fc are known toA.
By rewriting Equation (3) as

U=G'F, (4)
1 =z =z a+b+e
whereG= |1 y 22 |,U= r1 ,and F =
1 2z 22 T9

[Fa, Fp, Fc]', a+ b+ cis known as the first element &f.
Note thatG is of full rank, becauser, y and z are distinct
numbers.

It is necessary to encrypts, v, v§, vE, v9, andv§. For
example, if nodeC' overhears the values, then C' knows
v, v&, and Fy, thenC can deduceyy = F4 — v — 08,
and further it can obtaim if x, v4, va, v& are known.
However, if nodeAd encryptsv4 and sends it to nod®, then
node C cannot gets. With only v&, F4 andz from node
A, nodeC cannot deduce the value af However, if nodes

B andC collude by releasing!’s information ¢ andv2) to

parameterp. to reduce communication overhead dtuster
formation phase.

If a clusterC; has a size smaller tham., (|C;| < m.),
the cluster leader of’; needs to broadcast a “merge” request
to join another cluster. In the following, we show that given
a properp., the percentage of clusters that need to merge is
small, and the cluster size is in a reasonable range.

We model a sensor network as a random network, assuming
d; is the degree of a node If the nodei is the cluster leader
of a cluster ofC;, then the probability that a neighbor of
joins the(C; is

(1 po)——

= P(a neighbor ofi joins C;) = 7
iDc

wherel —p, is the probability that the neighbor is not a leader

of another cluster. Only in this case is the neighbor able to join
C;. A neighbor is surrounded by p. cluster leaders including

i, therefored— is the probability that a non-leader neighbor

of 4 joins C;. The probability that cluste€; hask members

is:

Pt =0 = (5 )pta-pt @

Therefore, the percentage of clusters that need to merge is
given by:

P(|Ci| < me)

25%

20%

o
g
S

each other, them’s data will be disclosed. To prevent such
collusion, the cluster size should be large. In a cluster of size
m, if less than(m — 1) nodes collude, the data won't be
disclosed.

3) Cluster Data Aggregation: A common technique for Hﬂ HI
data aggregation is to build a routing tree. We implement I
CPDAoon top of the TAG Tiny AGgregation [4] protocol. Each
cluster leader routes the derived sum within the cluster back
towards the query server through a TAG routing tree rooted at
the server. For a regular network with degree 2@; = 20), P(|C;| <

4) Discussions on Parameter Selection iCPDA: In  3) = 6.9% if p. 1/5; P(|C;| < 3) = 1.8% if p,.
CPDA a larger cluster size introduces a larger computationbl6. Figure 3 shows that the distribution of cluster size can
overhead (Equation (4). However, a larger cluster size is pt@e controlled by parametes. without merging. By local
ferred for the sake of improved privacy under node collusiasbservation of any sensor node, the number of clusters is
attacks. INCPDA we should guarantee a cluster size> 3. (d; + 1)p.. On the other hand, if we desife nodes in each
Generally, let's definen,. as the minimum cluster size. Wecluster, then the desired cluster size shoulcaﬂ;}?eL Therefore
should setm. > 3. Next, we discuss how to ensure everyf we target the cluster size arourid and choose,. = 7.

Percentage

.
2
S

a
g

mﬂl 1

9 10 11

I

3 4 5 7
Cluster size (degree =20)

Fig. 3. Distribution of cluster size with different.



B. Slice-Mix-AggRegaTe (SMART)

One drawback of the cluster based protocol is the compu-
tational overhead of data aggregation within clusters (Equa-
tion (4)). In this section, we present a new scheBMART
which reduces computational overhead at the cost of slightly
increased communication bandwidth consumption. As the
name suggests, “Slice-Mix-AggRegaTeMART)” is a three-
step scheme for private-preserving data aggregation.

Step 1 (“Slicing”): Each nodel (: = 1,---, N), randomly
selects a set of nodes (J = |.S;|) within h hops. For a dense
WSN, we can takér = 1. Node: then slices its private data
d; randomly intoJ pieces (i.e., represents it as a sum.Jof
numbers).

One of theJ pieces is kept at nodeitself. The remaining
J — 1 pieces are encrypted and sent to nodes in the randomly
selected sef5;. We denoted;; as a piece of data sent from
nodes to nodej. For nodes to which nodedoes not send any
slice, d;; = 0. The desired aggregate result can be expressed

as N N N
f=2di=3 ) dy ®
i=1 i=1 j=1
whered;; = 0,Vj € S;.

Step 2 (“Mixing”) : When a nodej receives an encrypted
slice, it decrypts the data using its shared key with the sender.
Upon receiving the first slice, the node waits for a certain time,
which guarantees that all slices of this round of aggregation are
received. Then, it sums up all the received slices- ) °." d;j,
whered;; =0, j ¢ S;.

Step 3 (“Aggregation”): All nodes aggregate the data and
send the result to the query server. Similar to the aggregation
step of CPDA the aggregation is designed using tree-based
routing protocols. When a node gets all data slices, it forwards
a message of the sum addressed to its parent, which in

(@) Slicing ¢ = 3,h = 1)d;;(i # j) is
encrypted and transmitted from nodeo j, where
j & S;. d;; is the data piece kept at node

r=dy) ry=djptdyytdyytdsytdg,

= @ @ =d,,+d
r.=d +d,@ r‘3de3+‘quer73 T,=dymdyy

15 V55 765

r.=d,+d +d  +d_

ptdsstdgetdyy  TEdytd prdgrdy,

a7 ver
(b) Mixing: Each node decrypts all data pieces received

and sums them up including the one kept at itsélf
asr;.

Query
Server

(c) Aggregation (No encryption is needed)

Fig. 4. lllustration of three steps IBMART

turn forwards the message along the tree. Eventually the Privacy-preservation Efficacy

aggregation reaches the root (query server). Since

N N N N N
D= dig =) > dij. ©)
j=1 j=1i=1 i=1 j=1
The final data at the root is the aggregation of all sensor dat
f by Equation (8) and (9).

Figure 4 illustrates the 3-step scheme of SIART pro-
tocol for a sensor network with network siZé = 7, slicing

In order to evaluate the performance of privacy-preservation,
we first define the privacy metric. In wireless sensor networks,
private data of a sensor nodenay be disclosed to others when
attackers can eavesdrop on communication and/or collude.
[hat is, there are two cases that may lead to privacy violation:
(1) An unauthorized sensor node holds a communication key
and is able to decrypt messages sent fronnder our key
distribution mechanism, the probability that an eavesdropper

size J — 3, and hop lengthh — 1. For SMART in step 1 has the communication key used s@nd one of its neighbors

sliced data should be encrypted asdRDA

IS povernear (EQuation (2)). (2) Multiple neighbors efcollude

to steal private data collected by. We can assume the

V. EVALUATION

probability that any two nodes collude {8, qe -

In this section we evaluate the private-preserving dataFor the simplicity of derivation, let us defing,crhear =
aggregation schemes presented in this paper. We evalyatg.a. = ¢. ¢ is interpreted as the probability that the link
how our schemes perform in terms of privacy-preservatiolevel privacy is broken. A privacy metri®(q) is defined as
efficiency, and aggregation accuracy. We U8&[4], a typical the probability that the private data of nodeis disclosed
data aggregation scheme as the baseline. Since the defigra given ¢ under either conditions abov@®(q) measures
of TAG does not take privacy into consideration, no datdie performance of the privacy-preservation of a private data
privacy protection is provided. We only use it to evaluataggregation scheme.
the efficiency and aggregation accuracy compared with ourl) Privacy-preservation Analysis dEPDA: In the CPDA

proposed schemes.

scheme, private data may be disclosed to neighbors only when



the sensor nodes exchange messages within the same cluster.
Given a cluster of size:, a node needs to semd—1 encrypted
messages to othen — 1 members within the cluster. Only if

a node knows alin — 1 keys of a given member, can it crack

the private data of the member. Otherwise, the private data
cannot be disclosed. Consequenityg) is estimated as

g - - = - -

OBz 003 004 005 006 67 008 009 0.1
q: probability that link level privacy is broken

(a) CPDA

dmaz
Plg)= > Pm=k)(1-(1-¢"H5, (10
k=m.
whered, ... IS the maximum cluster sizen. is the required
minimum cluster sizeP(m = k) represents the probability
that a cluster size i%.

2) Privacy-preservation Analysis of SMARIT the SMART
scheme, a sensor nodeslices its private data intd pieces
and then encrypts and sends- 1 pieces to its neighbors. It
keeps one piece to itself. As a result, the out-degree iaf
J — 1 and the in-degree of is the number of neighbors who
encrypt and send data piecessoOnly if an eavesdropper Fig. 5. PP(q) underCPDA and SMART
breaksJ — 1 outgoing links and all incoming links of a node
s, will it be able to crack the private data held ®yTherefore,

P(g) can be approximated by At the beginning of each simulation, a query is delivered
J from the query server to the sensor nodes. SimilarAG [4],
P(q) = ¢°~" Z Pin — degree = k) ¢, (11) the query specifies agpoch durgtionE, which is the_ amount
P of time for the data aggregation procedure to finish. Upon
receiving such a query, a parent node on the aggregation tree
.subdivides the epoch such that its children are required to
'Beliver their data (protected data {DPDA and SMART or

. . . unprotected data imTAG) in this parent-defined time interval.
Figure 5 compares privacy-preservation performance ofF. 6 h th icati headTeG,
CPDAandSMARTvia simulation, where we consider a 1000-, igure 6(a) shows the communication overhea

node random network. The average degree of a notlé. i8s CPDAwith p. = 0.3, and SMARTwith J=3 under different

we can see from Figure 5, faEPDA the smaller the value epoch durat|ons..We use _the total number of bytes of a_II
ckets communicated during the aggregation as the metric.

- . . a
of p. (the probability of a node independently becoming o . .
cluster leader), the larger the average cluster size, hencet é:h point in the figure is the average resuilt of 50 runs of

. i . _the simulation. In each run, one randomly generated sensor
better the privacy-preservation performance is. However, if a . ) . :
work topology is used. The vertical line of each data point

o . t

cluster size is larger, the computational overhead to comp&% . .
the intermediate aggregation value by Equation (4) will alsr(%‘-pr_esent.s thé5% confidence mteryal of the datq collected.
Simulation results can be explained by analyzing the num-

be larger. INSMART the larger the value of (the number !
of slices each node chooses to decompose its private dag), Of exchanged messages in each schemdA@, each
the better privacy can be achieved. However, a larfevill "0de needs to send messages for data aggregation: one

also yield larger communication overhead. For b@RDA Hello message to form an aggregation tree, and one message
and SMART there is a design tradeoff between the privadP’ dat@ aggregation. In our implementation 6PDA a

protection and computation/communication efficiency. Cluster leader sends roughlymessages and cluster members
sends3 messages for private data aggregation. Accordingly,

B. Communication Overhead 4p. + 3(1 — p.) = 3+ p. is the average number of messages
CPDA and SMART use data-hiding techniques and ensent by a node i€PDA Thus, the message overheadCRDA
crypted communication to protect data privacy. This introducéssless than twice as that TAG. SMART with J = 3, needs to
some communication overhead. In order to investigate bar@kchange2 messages during the slicing step ahdhessages
width efficiency of these schemes, we implemer@®DAand for data aggregation (the same &8G). Hence, each node
SMARTIn ns2on top of the data aggregation component dieeds4 messages for the private data aggregation. Therefore,
TAG. We did extensive simulations and collected results tbe overhead oEMARTIs double that ofTAG.
compare these two schemes together Wi%kG (no privacy Now let us further study the effect @f. on the communi-
protection). In our experiments, we consider networks wittation overhead iIlCPDA Figure 6(b) shows the result with
600 sensor nodes. These nodes are randomly deployed awer= 0.1,0.2,0.3 respectively. As we can see, the larger the
a400meters x 400meters area. The transmission range of @, value, the larger the communication overhead. It is very
sensor node i50 meters and data rate isMbps interesting to notice that whep, = 0.1, communication

PO S S ] il il

1 000z 003 004 005 006 007 008 009 O
q: probability that link level privacy is broken

(b) SMART

whered,,, .. is the maximum in-degree in a networR(in —
degree = k) is the probability that the in-degree of a node
k.
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Fig. 7. Accuracy under collision and packet loss

overhead is much lower thaPAG. This is because whem. is scheme is more accurate. An accuracy valué.ofrepresents
too small, many nodes cannot be covered due to insufficighe ideal situation.

number of cluster leaders. This also explains why accuracy iSFigure 7(a) shows the accuracy BAG, CPDA (with p, =
very low whenp. = 0.1 (in Section V-C). 0.3) and SMART (with J=3) from our simulation. Here we
Finally, let us study the effect of on the communication haye two observations. First, the accuracy increases as the
overhead iNSMART Figure 6(c) shows the result with = epoch duration increases. Two reasons contribute to this: 1)
2,3,4 respectively. As we can see, the larger thevalue, wjth a larger epoch duration, the data packets to be sent
the larger the communication overhead. This is becallsewithin this duration will have less chance to collide due to the
represents the number of slices each node chooses to decpgteased average packet sending intervals; 2) With a larger
pose its private data into. Since, in slicing phase of SMAREpoch duration, the data packets will have a better chance of
each node send$ — 1 pieces of sliced data to its selectetheing delivered within the deadline. The second observation
neighbors. Including one message for tree formation and 68&hat TAG has better accuracy th&@PDA and SMART That
for aggregation, the total number of messages exchangegsiecause without the communication overhead introduced by
roughly proportional ta/ + 1. Hence the larger the value ofpriyacy-preservation, there will be less data collisions.

J, the larger the communication overhead. Figure 7(b) shows the aggregation accuracyC&DA with
C. Accuracy respect to the selection @f.. First, we see when using the

. . . . . samep,., a larger epoch duration gives better accuracy. This
In ideal situations when there is no data loss in the nettyork Pe; 9 P 9 Y

both CPDAandSMARTshould getl00% accurate aggregation Is due to the fact that a larger epoch durat_|0n lets the data
o .. _packets have a better chance of being delivered before the
results. However, in wireless sensor networks, due to collisiopns

. . imeout. Second, we see thaPDA is sensitive top. values.
over wireless channels and processing delays, messages may larger thep, value, the higher the aggregation accuracy.

get lost or delayed. Therefore, the aggregation accuracy-is. . ) . .
affected. We define the accuracy metric as the ratio betweTIﬁls is because: (1)The largpx value is, the smaller portion

the collected sum by the data aggregation scheme used geﬁgodes are disconnected to query server thr_ough aggrega-
ST . 10N tree. Those nodes uncovered by aggregation tree cannot
the real sum of all individual sensor nodes. A higher accuracy

value means the collected sum using the specific aggreganorﬁ]tr'bme their value in aggregation. (2)A larger usuallly.
yields a smaller cluster size, which causes less collisions

2Data loss may be caused by collision in wireless channels, deadlM@thm the cluster under the S_ame epoch duration. Therefore,
missing or disconnection to the query server through an aggregation treewe recommend.2 < p. < 0.3 in CPDA protocol.
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