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Abstract 1 Introduction

In distributed proof construction systems, information rashe process of making informed authorization decisions
lease policies can make it unlikely that any single nogie¢ dynamic environments where trust relationships can-
in the system is aware of the complete structure of angt be determined a priori is widely accepted as a difficult
particular proof tree. This property makes it difficult fotask. This is particularly true in context-rich environments
queriers to determine whether the proofs constructed gach as pervasive computing spaces, as the set of permis-
ing these protocols sampled a consistent snapshot of §lige actions may depend on the physical context of the
system state; this has previously been shown to have dipaice. This context can be sampled through the use of
consequences in decentralized authorization systems. shsors deployed throughout the environment. To address
fortunately, the consistency enforcement solutions pt@is complexity, several rule-based systems have been de-
sented in previous work were designed for systems digined for specifying and checking authorization policies
which only information encoded in certificates issued iy pervasive computing environments (e.§,4, 11, 20]).
certificate authorities is used during the decision-makimgcently, frameworks for constructing and validatitis-
process. Further, they assume that each piece of certifiéslited proofs have been proposed to address the limi-
evidence used during proof construction is available to thgions of using centralized knowledge bases for making
decision-making node at runtime. authorization decision$[ 17, 24).

In this paper, we generalize these previous results angn authorization systems based on distributed proving,
present lightweight mechanisms through which consigsource access requests are permitted if a resource owner
tency constraints can be enforced in proof systemsdan construct a well-formed proof tree whose root is a
which the full details of a proof may be unavailable tggical statement granting the requester access to the re-
the querier and the existence of certificate authorities %urce_ The t0p0|ogy ofa proof tree shows the |Ogica| de-
certifying evidence is unlikely; these types of distributegendencies among the facts in the tree; that is, the leaves
proof systems are likely candidates for use in pervasigethis tree represent base facts, while intermediate nodes
computing and sensor network environments. We presg#iresent inferences made using these facts. Such a proof
modifications to one such distributed proof system th@ée need not be formed solely from facts in the resource
enable two types of consistency constraints to be &fwner’s local knowledge base; subtrees of a proof may
forced while still respecting the same confidentiality ansk produced by other entities in the network provided that
integrity policies as the original proof system. Further, Wge resource owner trusts the integrity of information pro-
present the details of a performance analysis conductegiifed by these entities (e.g., as # [L7, 24]). In some
illustrate the modest overheads (less than 30%) of consgjgstems, information release policies may prevent por-
tency enforcement on distributed proof construction. tions of a subproof from being revealed to certain nodes

*A shorter version of this paper will appear in the Proceedings “? the proof tree17). Animportant observation is that the

the 12th ACM Symposium on Access Control Models and Technol gic-al leaves of a diStribUteq proof trge form one possi-
gies [13]. bleviewof the state of the environment in which the proof




was constructed. Resource access is granted becaussemsor network environments.

that view of the system, it was possible to construct aln this paper, we build upon the results presented4 [
proof tree justifying the access request. If the facts madad show how to ensure that distributed proofs con-
ing up a proof tree represent stable assertions (i.e., fagttsicted using these more general forms of trusted in-
whose validity will not change), then this view is actualljormation can be formed by sampling consistent system
a snapshot of the system and the semantics of policy sabtes without impeding on the autonomy of nodes in the
isfaction remain the same as in centralized proof systersgstem (e.g., by requiring participation in a wide-scale
However, ifany facts in the proof tree are not constantransaction-management protocol). Further, we present
then in some circumstances, it is possible to form a prasglutions to the consistency problem that work even if
tree justifying access to a particular resource that wowddme details of a proof tree are hidden from the query
have been denied iany centralized system. That is, arissuer by information flow policies; for comparison, the
inconsistent view can lead a prover to think that certasolutions presented irlf]] assumed that the policy eval-
logical facts were true simultaneously when, in fact, theyator had complete knowledge of the proof tree formed
were not. Clearly, this can lead to the permission of und#uring the protocol. Although we focus our presentation
sirable accesses to system resources. on authorization systems based on distributed proving, the

For example, consider a hospital wired with sensotl‘:SChn'ql.Jes d_escrlbed in this paper are applicable to any
stem in which autonomous entities wish to leverage de-

such as occupancy detectors, location tracking devic@é, . ; ) o . .
and door lock sensors. Now, a clinician, Alice, decides {Egntrallzed information to make decisions in a potentially

use the projector located in her office to review the meac_jversanal environment.

ical records of several patients that she is working With.ThZe rest of th'_s pager II<S orga(rjuzed as flollows.d_ln SEC'
In order for the system to permit the use of the proje on , We overview backgroun materia regarcing the
gtnbuted proof construction protocol that we will mod-

tor to view medical records, it must be the case that tf}y ¢ . . . Sechd
occupancy of Alice’s office is one, Alice is located in helfy 10 enforce view consistency constraints. Sectdor-

office, and the door to her office is locked. When Alice réUaIIY defines our sysFem model anq th? levels of view
guests this access, the system might first check that the%cgjsstency that we W'_Sh to_ enforce in th|s_pape_3r. I_n Sec-
cupancy of her office is one and then proceed to check tigp 4 we present modifications to an existing distributed

Alice is currently located in her office. As this check is peroof construction protocol to gnable thg use of two types
ing made, Bob enters the room and closes the door behﬁ)'tl&onsstent views when making authorization decisions.

him, which automatically locks. The system determin éjrther', we present proqfs that the security and privacy
that Alice is located in her office and then checks thBfOPerties of the underlying proof system have not been

the door is locked; since the door is locked the medi Fered by our quifications. Wwe qugntitatively evaluate
records are displayed on the projector. This is a clear §i€ Performance impact of our consistency enforcement

olation of the policy protecting patient records that migﬁfhemes in Sectidmand review related vvprk n Sectiéh
have legal ramifications, as Bob may not be authorized W th_en present our conclusions and directions for future
view the records being projected. In addition to this tyd’&ork in Section?.

of accidental violation of system view consistency, inten-

tional attacks on the system are also possible. 2 Backg round

The adverse effects of inconsistent views on authoriza-
tion systems has been examined previously in the liteta-this section, we discuss the Minami-Kotz distributed
ture [14]. In this work, the authors focused on studyingroof construction protocol presented iv], as later sec-
the properties of systems in which all attestations ustans of this paper focus on modifying this protocol to
during proof construction were encoded in certificates ishAsure that authorization decisions are made using con-
sued by one or more trusted Certificate Authorities (CAsjstent states. Unfortunately, space limitations prevent us
The solutions for enforcing the use of consistent statiesm presenting this proof system in its entirety, so we in-
presented in14] rely on the timing and sequencing oftead present several examples that illustrate the key fea-
checks for certificate revocation that can be made usituges of this system; interested readers can referfidr
protocols such as OCSRY or COCA [26]. Unfortu- a more in-depth treatment of this proof construction sys-
nately, these solutions cannot be used in proof constrtem. We chose to explore the consistency problem within
tion frameworks that rely on simple digital signatures dhe context of this protocol as it allows portions of a proof
keyed MACs to authenticate proof facts, including maryee to be hidden from certain entities participating in the
of those designed to be used in pervasive computingamnstruction of the proof tree, including the node issuing



on the right side of the clause are the conditions that must
Request
Logica query

be satisfied to derive the granting decisigrnt(P) on
nference Enci the left. If a useBobissues a request to read a medical
Resource gine . .
Proof database, the proof tree in Figl2eould be constructed
$ based on the above rule. The root node in the tree repre-
Context | _Context event Knowledge base sents the rule and the two leaf nodes represent the facts.
= — Notice that the variablé® in the rule is replaced with a
Authorization server constanBoh A user’s location, which is expressed with

the location predicate, is a dynamic fact; i.e., the second
variable of the predicatécation should be updated dy-
namically as Bob changes his location.

Figure 1: Structure of an authorization
server.
grant(Bob):- role(Bob, doctor), location(Bob, hospital)

| _ | v 2.2 Proof Decomposition
role(Bob, doctor) location(Bob, hospital)

Multiple authorization servers in different administrative
Figure 2: Sample proof tree. domains can cooperate to handle authorization queries in
a peer-to-peer manner. These peer-to-peer interactions
o are guided by each entityiategrity policies which spec-
the query, whereas most other distributed proof framg; sets of entities trusted to handle particular types of
works assume that the querying node gathers all sUPPQiaries. For example, if Alice specifies the integrity pol-
ing evidence Iocally prl'orto making adeusmn._ The_teci Sy trust(location(P, L)) = {Bob}, then she trusts Bob
niques developed in this paper for use in the Minami-Ko{g' ccurately answer queries regarding the location of
proof construction system can also be applied to other digrer entities. In the most basic case, the principal who
tributed proof systems with less restrictive properties. g ,es a query trusts the principal who handles this query
in terms of the integrity of the query result. As such, the
2.1 Structure of the Authorization Server  handler principal need not disclose the entire proof tree
. L that she generates, she needs only to return a proof that
Flgur_e_l shows the siruciure of an auth_orlzatlon S€VEfates whether the fact in the query was true. In general,
consisting of a knowledge base and an inference engif&never. the querier may nabmpletelytrust the query
The knowledge base stores both authorization policies dler :smd thus her integrity policies might place con-
facts including context information. The context Servel -ints on the rules used by the handler to generate the
publishes context_events an(_j updates fact_s in the_kno rfc')of tree. In this case, a more complete proof tree, whose
edge base dynamically. The inference engine receives ftermediate nodes are digitally signed, would need to be

thorization queries from remote servers, such as resouGR med by the handler. This way, the querier can verify
servers processing users’ access requests. The infer(ﬁq i '

. . ) '€ INTeref\eher integrity policies were respected.
engine then attempts to derive logical proofs justifying _. . . .
. : o Figure 3 describes one possible collaboration between
these queries using the facts in its local knowledge base

and possibly even interactions with remote parties. ggquener and hander. Suppqse that hA)S_'un by prin-
mgal Alice, who owns a projector, receives an autho-

the inference engine cannot construct a proof, it returns .. .
g P rization query? grant(Dave, projector) that asks whether

a proof that contains a false value. In the open envir . : .
P P OI_L%ave is granted access to that projector. Since Al-

ment of pervasive computing, each server could belonq 0, o o
. - : : ce’s authorization policy in her knowledge base refers to
a different administrative domain.

Rules and facts in a knowledge base are representeg ég_questers location (i.elpcation(P, room112)), Al-

a set of Horn clauses in Prolog. For example, a medidgy_'SSUes @ querylocation(Dave, room112) 10 host

; - . B run by Bob. Alice chooses Bob, because Bob sat-
database may define an authorization policy that requwefs S . - )
isfies Alice’s integrity policies for queries of the type

g;i?&iisctgf;ﬁ%:;f daa;c:LeerPr?orQSi?;h;ps fgﬁg\t,f,)é and tOlocatz‘on(P, L). Bob processes the query from Alice,
' because Alice satisfies Bob's confidentiality policies for
queries of the typdocation(P, L) as defined in Bob’s
grant(P) :- role(P, doctor), location(P, hospital) policy acl(location(P,L)) = {Alice}. Bob derives
the fact that Dave is imoom112from the location of
The atomsrole(P, doctor) and location(P, hospital) his device using the factscation(pdal5, room112) and



\L ?grant(Dave, projector)

Integrity policies Confidentiality policies

trust(location(P, L)) = {Bob} acl(location(P. L)) = {Alice}

?ocation(Dave, room112)

Engine (location(Dave,room112), TRUE) Engine

location(P, L):- owner(P, D), location(D, L)

grant(P, projector):- location(P,room112) owner(Dave, pdalb)

location(pdal5, room112)

Knowledge base

Knowledge base
Host A (Alice) Host B (Bob)

Figure 3: Remote query between two principals. Alice is a principal who maintains a projector, and Bob is a principal
who runs a location server.

owner(Bob, pdal5). However, he only needs to retempt to decrypt that encrypted fact. We assume that, in
turn a proof that contains a single root node that statbss example, each principal who issues a query trusts the
that location(Dave, room112) is true, because Aliceintegrity of the principal who receives that query in terms
believes Bob’s statement about people’s location (i.ef,the correctness of whether the fact in the query is true
location (P, L)) according to her integrity policies. Theor not. For examplep,’s integrity policies contain a pol-
proof of the query is thus decomposed into two subprooty trust(qy) = {p1}.

maintained by Alice and Bob. Suppose that queny;’s result (i.e., true or false) de-
pends on the results of querigsandgs, which are han-
dled by principales andpy, respectively, and that; and
p4 choose principalp, andp;, respectively, as receivers

Each fact provider maintains a setafnfidentiality poli- Sincep. does not satisfy their confidentiality policies. Be-
ciesthat determine which entities are authorized to recei¢@Use principap, cannot decrypt the results from princi-
the facts that she provides. These policies are enforcedP@sps andps, p2 encrypts those results with the public
encrypting a query result (along with a querier-providdg®y of principalp;, whichp, chose as areceiver. Principal
nonce to ensure freshness) using the public key of an guforwards the encrypted results frgmg andp, because
thorized receiver. Each query is accompanied by a [{§€ query result of; is the conjunction of those results.
of upstream principals who could possibly receive the aRtincipalp, decrypts the encrypted result frgm and ob-
swer of the query; this enables the handler to choose!affs the encrypted results originally sent from principals
authorized recipient from the list of upstream principats andps. Sincep, is a receiver of the proof fromy,

that satisfies her confidentiality policies. It is thereforer decrypts the proof that contains a true value. Since a
possible to obtain an answer for some initial query evaHery result forg, depends on the encrypted proof from
when some number of intermediate principals in the digs. Principalp, forwards itin the same way. The principal
tributed proof do not satisfy the confidentiality policiego finally decrypts it and obtains an answer for quesy

of a fact provider. Figurd shows an example collabora-The key observation here is that principalis not aware
tion among principaly, p1, p», andps. When principal of.thtla fact that the query result is originally produced by
po issues an authorization quegyto principalp:, p; is- Principalps.

sues a subsequent query, which causes principals’s This proof system applies public-key operations only
gueriesgs andgs. Since a receiver principal of a prooto a randomly generated symmetric key and uses that
might not be a principal who issues a query, a reply forsgmmetric key to encrypt and decrypt a proof; that is,
query is a tupldp;, (pf)x,) wherep; is an identity of a a proof consists of a new symmetric key encrypted with
receiver principal andpf )k, is an encrypted proof with a receiver’'s public key and a proof encrypted with that
the receiver’s public key. We associate a receiver prisgmmetric key. In addition to the public-key encryp-
cipal identity with an encrypted proof so that a principdion, the querier and handler principals use another shared
who receives an encrypted fact can decide whether togtmmetric key to protect other data fields (e.g., a re-

2.3 Enforcement of Confidentiality Policies
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Figure 4: Enforcement of confidentiality policies. The first item in a proof tuple is a receiver principal, and the second
item is a proof tree encrypted with the receiver’s public key.

ceiver identity) in a query and a proof from eavesdroppetle providing entity’s private key. As was described in
We assume that the two principals share the symmet&iection2, the proof construction process is assumed to
key via a protocol using public-key operations when th®e policy-directed. Each entity maintains a collection
querier and handler principal authenticate with each othwdrintegrity policiesthat indicate which other entities are
for the first time. trusted to answer different types of queries; adherence to
these integrity policies can be checked by verifying the
o signatures on responses to any issued subqueries. Each
3 Definitions entity e also maintains a collection ebnfidentiality poli-
ciesthat control the release of subproofs generated.by
We begin this section by describing the system modghis interplay between integrity policies and confidential-
within which the Minami-Kotz distributed proof construcity policies implies that the complete details of a proof
tion protocol discussed in Secti¢hwas designed to betree may not be available to entities in the system. In par-
used. We then show that existing solutions to the viayylar, the querying entity will not learn any details of the
consistency problem are not applicable due to fundameyoof tree beyond those specified by his or her integrity
tal differences between system models. Lastly, we fQfplicies. Further, intermediate nodes in a proof tree may
mally define the view consistency problem within the coirt learn whether the proof construction protocol was suc-
text of our system model and present the definitions @ssful, as the results of subqueries issued by these nodes

three important view consistency levels. may be hidden from them by the query target's confiden-
tiality policies (see Sectiof.3for an example of this be-
3.1 System Model havior). These assumptions imply that the view consis-

tency solutions developed ir14] cannot be used in this
Distributed proof construction protocols were designed g@wironment.

be used in open-system environments consisting of a pos-

sibly infinite set of autonomous entitie§, Each entity

e € £ possesses one or more public key certificates ttgap  Problem Definition

can be used to authenticate messages signeddryto

encrypt messages that are to be sent.toThese cer- As was observed in Sectioh the use of inconsistent

tificates are made publicly available by one or more kejews of a system during policy evaluation can lead to

servers or through the use of decentralized peer-to-psignations in which a policy evaluator believes that certain

protocols. Without loss of generality, we will assume thédcts held true simultaneously when, in fact, they did not.

each node uses only one public key certificate during thé now more precisely define this problem.

construction of any single distributed proof. We place no

limitations on the temporal duration of executions of theefinition 1 (Validity). An entitye can determine that

proof construction protocol, nor do we assume any levame proof factf is valid at time¢ if either (i) f is in

of clock synchronization exists between entitie€in e's local knowledge base at tinieor (ii) f is considered
All evidence used during the construction of a disrlid at timet by a remote entity who is trusted to provide

tributed proof takes the form of assertions signed withformation regardingy.



Note that asserting the validity of some fgcat a par- made regarding the validity of certain facts. Given that
ticular timet by invoking case (ii) of the above definitionany such view contains onlgcal observations, it is un-
is not a straight-forward task. Consider the case whdilely to capture a precise snapshot of the system state.
some entitye issues a query for fact to another entity As such, the consistency level of these views is of the
e’ at timet;,,. Due to delays in the network and processtmost importance. Although such a view may contain
ing delays at ande’, it is likely thate’ will not receive data associated with any number of facts, unless noted
the query until some tim& > t;,,. Similarly, e is un- otherwise, we assume without loss of generality that an
likely to receivee’’s response to his query until some timentity e will only wish to enforce consistency constraints
tre > t'. Thereforee cannot conclude that was valid on views comprised of facts associated with a single dis-
at eithert,,, or ¢,.,; he can only infer thayf was valid tributed proof.
at sometime t wheret;ss < t < t,,; We will discuss
methods for fine-tuning these types of inferences laterefinition 6 (View Consistency). A viewV is said to be
the paper. As facts are collected and validated, an entityconsistent if and only i/ satisfies some predicate
builds aview of the system that will be used to construahat places temporal constraints on the observed validity
a proof of authorization. intervals of the facts whose state data are storein

Definition 2 (Fuzzy Validity Interval). The interval
[ts,te] is afuzzy validity intervalfor some factf if f can
be shown to be valid at some (possibly unknown) tim
such that, < ¢ < ..

33 Levels of Consistency

We now describe three increasingly-stringent levels of

Definition 3 (Concrete Validity Interval). The interval View consistency relevant to distributed proof construc-
[t,,t.] is aconcrete validity intervafor some factf if f 10N protocols for use in the system model described in
can be shown to be valid at all timésuch thatt, < + < S€ction3.1

te.

Definition 4 (Fact State). Let the sefl” contain all possi- 3.3.1 Incremental Consistency
ble time stamps, let denote the null value, and lébe a
predefined length parameter. Tfeet statefor a fact f as The most basic definition of view consistency that one can
observed by some entity is then denoted by the five-tipi@gine is what we will refer to as incremental consis-
s = (id, e, to,ty, fuzzy) € 0,1} x £ x T U {L} x tency. Intuitively, an incrementally consistent view is a
T U{L} x B. The valueid is an/-bit identifier assigned Vview in which each fact was valid at some point during
to the factf (which may simply be an encoding of thahe construction of the related proof tree. To formally de-
fact), e identifies the entity from whicli was obtained, fine the notion of incremental consistency, we first define
t, andt,, are local timestamps, anflizzy is a Boolean the predicateshecked : S — B, fuzzy : S — B, and
value indicating whethejt,,, t.,] specifies a fuzzy or con-concrete : § — B.
crete validity interval. The set of all possible fact state
tuples is denoted by.

checked(s) = (s.ito # L) A (sty # L) A (Sta < S.8y)

Entities in the system create fact state tuples as the va-
.- ) ; . . 1)
lidity of certain facts is revealed during the execution of
the distributed proof protocol. In the remainder of this pa- fuzzy(s) = checked(s) A s.fuzzy (2)
per, we will use dot notation to access the fields of fact concrete(s) = checked(s) A —s. fuzzy (3)

state tuples. For instanceid represents the identifier of

the fact whose state is stored 4n Note that if given &  The predicatechecked(s) ensures that the fact state
fgct state tuple for a fact f has glther of its.t,, or s.t, tuple s contains a fully-defined validity interval. The
fields s_e_t tol, then no conclusions can be drawn abo%zzy(s) predicate is true if and only i encodes a fully-
the validity status off. defined fuzzy validity intervalponcrete(s) is true if and
only if s encodes a fully-defined concrete validity inter-
val. Given these predicates, we can now formally define
the notion of incremental consistency for distributed proof

We have now defined an entitys view of the sys- systems via the predicatg,,. : 2° x ' x T'— B as fol-
tem as some collection of local observations thdtas lows:

Definition 5 (View). Aview is any collection of fact state
tuples that has no more than one tuple for iy, ¢) pair.



used during the proof construction is not a stable asser-
tion. The other consistency levels defined in this section
Ginc(Vits,te) = Vs €V :checked(s) (4)  will address this problem.
N(fuzzy(s) —
((ts < s.ta) A (s.ty < te))) 3.3.2 Query Consistency

Nconcrete(s) — The next more stringent level of consistency that we de-

((sta <ty <sty,)V fine is query consistency. Informally, this consistency
(5.tq <te <t)) level guarantees that all facts used to construct a dis-
tributed proof were valid simultaneously at the time that
The predicatep;,,.—which is a reformulation of the the query triggering that proof construction was issued.
predicateg;,. presented inJ4]—is satisfied by a view We formally define query consistency in terms of the
V during some intervalt,,t.] if and only if each fact predicatep e, : 2° x T — B, as follows:
state tuple in the view contains a fully-specified validity
interval, each fuzzy validity interval is a subinterval of

[ts, te], @and each concrete validity interval overldps.] Gquery(Vitiss) = Vs eV :concrete(s) (5)
at some point. This gives us the following definition for A(sty < tigs < s.ty)

an incrementally consistent proof construction and an as-

sociated theorem. Definition 8 (Query Consistency). A view V' is query

finiti | . , consistentwith respect to a query issued at timg; if
Definition 7 (Incremental Consistency). A viewV gen- and only ifpguery (V; iss) is true.

erated between the time that a given query was issued,

tiss, and the time that the completed proof tree was re-|f an authorization policy is satisfied using a query con-

ceived by the issuet, ..., is incrementally consisterif = sistent view, the semantics of policy satisfaction in the dis-

and only ifpinc(V, tiss, treo) is true. tributed proof construction setting remain the same as if
the proof had been constructed using a centralized proof
framework supporting transactional evaluation (e.g., a
\f!?olog theorem prover). In the event that any facts nec-
essary to construct a given proof of authorization are un-

Proof. Assume that the distributed proof construction aptable (i.e., their value can change once set), a view con-
gorithm succeeds in constructing a proof tree using a viélptency level that is at least as strong as query consis-
that is not incrementally consistent. This implies th&NCY should be enforced to ensure that the satisfaction of
there exists some facf that was not true at any point@ diven authorization policy carries the same meaning as
during execution of the proof construction protocol. Thigolicy writers and analysts would expect it to have.

means that the validity status fgr(which must berue

for the proof to succeed) was contributed to the progf3.3 Interval Consistency

treebeforethe proof construction process was started or. ) ] ] )
equivalently, was a replayed validity status from an carlishe most stringent consistency level that we consider in

execution of the protocol. However, each validity stat@iS Paper is interval consistency. We say that some view
returned by a fact provider is causally-linked to the quel 1S interval consistent during some interifal, ¢ | if each
executed by a querier-provided nonce (s&d)] which fact state tuple i/ encodes a concrete validity |nt<_arval
prevents both the incorporation of old validity informatiof@t includes at least., .]. More formally, we define
and replay attacks. This implies thatwas valid during Interval consistency using the predica(g crvai : 25 x

the protocol execution, which is a contradiction. 0 1 x T — B, as follows:

Theorem 1. The Minami-Kotz distributed proof construc
tion protocol always uses incrementally consistent vie
when evaluating authorization policies.

The fact that existing distributed proof construction
protocols use incrementally consistent views when mak-@interval (Vs ts,te) = Vs €V : concrete(s)  (6)
ing authorization decisions is exactly what leads to the A(sto <ts <te < sty)
types of safety violations discussed in SectionThis is
because incremental consistency provides no guaranteefnition 9 (Interval Consistency). A viewV is inter-
regarding the overlap of the observed validity periods fual consistentffor a time interval[ts, t.] if and only if
facts whose state is stored inin the event thaanyfact ¢;niervar(V, s, te) is true.



The above definition of interval consistency is a redlgorithm 1 A query consistency enforcement algorithm
formulation of the definition of interval consistency pre4: // Receive afact response tuple relevant to a query issued at fime
sented in 14], altered to fit within the formalization of 2 ’F’JLOCFSOSn"QCefF“;'éf(' fog'yf'?‘(’;"ée‘}f’g';efgi cTv e %)
the consistency problem presented in Sec8dh In dis-  4: .., — NOW
tributed proving, the notion of interval consistency is use tr\?’%iﬁfEﬁcﬂée{fﬁ?Sf{ls, o false)
ful for two primary reasons. First and foremost, inter?: eise
val consistency is important in the event that a resouréé V.insert(ENCODE(f), e, tiss, NOW, true)
provider wishes to monitor the conditions that lead to the: // Check the query consistency condition on a vigwelative
permission of a given resource access. For instance, ﬁéﬁ;ﬂ;gﬁeéﬁgéﬂgigﬂ?ﬁws tias €T)
hospital smart room discussed in Sectbbmay wish to 13: forall s € v do
first check that Alice is the only person located in h%é 'fské?jé]yf;/ls(éiss < 8.ta) V (8.t < tiss) then
locked office before allowing her to project patient records: return true
onto the wall and then continue to monitor these condi-
tions. If her door subsequently became unlocked, for in-
stance, access to the projector could be revoked. an ideal algorithm run by an omniscient entlty could con-
At the implementation level, interval consistency cagfruct ag-consistent view 14]. Further, we will ensure
also be useful in the event that a proof tree is constructé@t each proposed modification ipalicy-safe modifica-
that permits access to a given resource, but that view cHfD to the proof construction protocol. That is, we will
not be shown to be query consistent. The fact that a préBpW that our modifications do not violate the Integrlty or
could be formed at all implies that it is possible that theonfidentiality policies specified by each entity.
facts that make up the proof were valid simultaneously,
even though this could not be guaranteed from the viewp  Query Consistency
used to construct the proof. If it is faster to recheck a proof
than it would be to generate the proof tree again, then thisVe now show that with relatively minor changes, the
recheck could lead to an interval consistent view duriddinami-Kotz distributed proof construction protocol can
the interval[t, ey, trecheck], Wheret,., is the time that the be modified to use query consistent views when making
original proof was returned to the resource provider agdthorization decisions. As presented 17][ this proof
trecheck 1S the time at which the resource provider begircg)nstruction algorithm assumes that each knowledge base
revalidation of the proof tree. We will explore this cas&B is defined as a subset of all possible fagts Rather,
further in Sectiomt.3. we will define a knowledge bas€B as a subset of x
T in which each fact is associated with the local time at
which it was inserted intd(B. This allows each node to
4 Algorithm Details track the duration of a given fact’s validity locally.
To leverage this new knowledge base format, the for-
In this section, we discuss modifications to the Minaminat of query responses must also be altered. Rather than
Kotz distributed proof construction algorithm that ensugen entitye responding to some queRy with a Boolean
the use of consistent system views during policy evaltesponsé < B indicating whetherf is considered valid
ation. As this algorithm trivially ensures that an increby e (as in Sectior2), they will instead respond with a
mentally consistent view is used (by Theorémwe will  fact response tuplef the form (b,d) € B x T. Theb
focus our discussion on creating query and interval castemponent of this tuple indicates whetheconsidersf
sistent views. to be valid, as before, and thlecomponent of this tuple
represents the length of time thaticknowledges thaf
has been true, or some duration less than this if the exact
duration of validity is considered sensitive. In the event
In this section, we will be concerned with both the corredhat f is a base atomd is (at most) the difference be-
ness and security properties of our proposed proof caween the current time and the time associated with
struction algorithm modifications. In addition to proving’s knowledge base; if is the head of a Horn clausgé
the soundness of our consistency enforcement algorithmsfi, . . ., f., thend is set to be (at most) the minimum
we will also address their proximity tmleal complete- such duration associated with any ff,..., f,. In the
ness A ¢-consistency enforcement algorithm is said to limse thatf is false,d is set to 0. Note that neithef nor
ideally complete if and only if it is capable of constructingny fi, . . ., f,, need to be locally-stored facts.
¢-consistent views for all protocol executions in which Given the above modifications to the formats of en-

4.1 Preliminaries



tities’ knowledge bases and query responses, we nquery consistent with respect to the time, by Defini-

present the details of Algorithrh, which facilitates the tion 8, provided that all concrete validity intervals estab-

creation of query consistent views. In Algorithinand lished by RevFACT are correct. Line$ through8 of Al-

all other algorithms presented in this paper, we make therithm1 ensure that RvFACT inserts a concrete validity

following assumptions regarding the local data structuriegerval into V' if and only if the validity durationd, re-

accessible by entities in the system: ported by the fact provider is longer than the query round

trip time, even when adjusted to assume the largest pos-
e The current local time is available via the local varisible clock drift between entities. Since the query and its
able NOW. associated response can be causally linked by nonces used

e The absolute value of the maximum clock drift ratg' the un_d?rlyiﬂgtptrhooffcnt)tnstruggon proiolttzol (e, ¢
between any two entities in the system is no mo e can nfer that the tact provider sent I'S response (o

than some constant This does notimply that clockst € query .at some time > ;... This |.mpl_|es that the
are in any way synchronized, only that for each fact associated with the state tuple being inserted ¥nto
time units that pass one entity, no less thdh — §) Wlfls Va"_%lattisf becgfusef thCrl\(ltt_ 6)<St Zé; st for
time units and no more than(1 + ) time units pass ? post5| e<\;aiJes§ such thalisss = b = trev smée
at any other entity. rev — Liss < d(1 =),

e Fact state tuples can be inserted into a view dakeorem 3. Algorithm1is a policy-safe modification to
structure via the functioninsert : {0,1}¢ x & x the Minami-Kotz distributed proof construction protocol.

IT'xTxB -k Note, for instance, thatp ot |y (17, the Minami-Kotz distributed proof con-
Vansert(id, e, ,1', b) will replace any existing fact gy, cion algorithm was proven to construct a proof of
state tuples irt” that have the identifiefd and were g1 rization only if the integrity policies of every par-
received from entity (see Definitiord). ticipating entity are satisfied. Since Algorithbrdoes not
e The function ENCODE : F — {0, 1}* returns an en- alter the mechanism through with the proof construction
coding of some facf € F suitable for insertion into algorithm constructs proof trees, it does not affect the en-
a view (see Definitior). forcement of any entity’s integrity policies. We now show
that Algorithm1 does not affect the enforcement of any
Algorithm 1 consists of two functions that are to bentity’s confidentiality policies.
used by the querying entity. Whenever the querier issuedn [17], the distributed proof construction algorithm
a new guery, she records the query issue time and was also shown to construct proof trees only if the con-
chooses a view to which the results of her query ardidentiality policies of each participating entity are satis-
considered relevant; need not be a new empty view. Irfied. Recall that these confidentiality policies are enforced
the event that the response to her queryus, Alice in- Dby optionally encrypting query responses of fobne B
vokes the RVFACT function. If the fact provider attestsusing a key bound to some entityigher up the proof tree
that the fact whose status was queried was valid for sothan the direct querying entity (see Sectib8). Since the
durationd that is longer than the time between when theodified query responses of forfh d) € B x T returned
guery was issued and when its response was received, ltlyis: fact provider using Algorithri can be encrypted in
function inserts a fact state tuple intbasserting that the this same manner, each entity’s confidentiality policies are
corresponding fact was valid at tintg,,. Otherwise, a still enforced. Therefore, Algorithrh makes only query-
fact state tuple encoding a fuzzy interval is inserted ingafe modifications to the underlying distributed proof con-
V. The function GIECKQUERY checks to see thal,,.,, Struction protocol. O

is true, as defined by Equati&n . . o
'S trie, as defined by =quat Although Algorithm1 is sound (by Theoremd), it is

Theorem 2. If the function CHECKQUERY(V, t;,,) re- Not ideally complete. It could be the case that a certain
turnstrue, thenV’ is query consistent relative to the querjact was valid at the time that a query was issued, even if

issue timet;ss, provided thatV’ was constructed usingthe validity duration reported by the fact provider is less
only theRcVFACT function. than the query round-trip time; this is an inevitable con-

sequence of the use of casual orderings rather than syn-
Proof. The CHECKQUERY function clearly enforces thechronized clocks. Although not a violation of ideal com-
constraint that all fact state records encode concreleteness, this algorithm can also fail in the event that the
validity intervals that include the timeé,,;. Thus validity of some fact is not monitored until the first query
CHECKQUERY(V, tiss) < ¢query(V,tiss) and V is regarding this fact is issued. Both of these cases make it



desirable to have an efficient means of revalidating a giverin an attempt to balance the efficiency of the leaf expo-
view, as it is likely to be found consistent if recheckedure strategy with the privacy preservation of the requery
This leads directly to the stronger notion of interval corstrategy, we propose theaf indirection strategyor con-
sistency. structing interval consistent views. As was the case with
the query enforcement strategy presented in Seetign
. we require slight modifications to formats of the entities’
4.3 Interval Consistency knowledge bases and query resporfsige will define a

. . , , , : knowledge bas& B as a subset of x {0,1}¢ in which
Establishing an interval consistent view typically 'nVOIVE.Ef%\cts are associated with some locally-unique identifier. It

obse_rvmg that the validity statuses of the_ facts ComprISIElgimportant that each time a fact is inserted into a knowl-
the view do not change or fluctuate during the course of

) : edge base, it is associated with a previously-unused lo-
several observations of portions of the systdd.[In the : - P . :
oo ) ; . cal identifier in{0, 1}*. Further, an entity will respond
distributing proving setting, one cannot simply constru .
. . X ) - 0 a query of the forn? f with a response tuple of the
a given proof twice to establish an interval of validity,

!z n
there would be no guarantee that the values of facts dida’rg)f)r (b, ({¢',id))xc,) € B x {0,1}". Theb component

his tuple indicates whetherconsidersf to be valid,
fluctuate between proofs or even that the same proof tree. e , .
as’in the unmodified proof system. Theandid com-
was generated for each quénfhe requery method can

succeed, however, if we leverage caches at intermedr%\?nents of this tuple form an association tuple from the

¢ i i i
nodes to ensure that the same proof tree is constructeaegg x {0, 1} 85 descnbgd above, t'hough this associ
tlon tuple is encrypted with the public key of the orig-

each invocation and that fluctuations can be detected Vi erving entitva. As in the leaf exposure strate
cache misses caused by proactive revocations). The inter- querying Yi: P rategy,
mediate node caches proposedis][could be modified ¢ may choose to b'T‘d herself to .the prpof tree, in which
to suit this purpose casee’ = e andid is set to the identifier currently as-

. o . sociated withf in e's knowledge base. Howevet,can
. Although th's modn‘led_requery _strategy fo_r ensUNNBstead choose a trusteairect entity ie, at random, ob-
interval consistent views is appealing due to its SImp|IFéin a noncen from ie, and bindie to the proof tree by
ity, it is in fact a worst-case strategy for a number of re atiinge’ = ic and id,: . Each inditect ontity main.
Sons. First, _this strategy r(_aqui.res exces sive gtorage of ] %ms a smalfemote cachehat associates locally-chosen
at mtermedlate nodes which is undesirable if nodes wigh, o with(entity, fact identifief pairs to facilitate the
to remain autonomous. Second, the requery strategx}g

ires that th i f tree be t d twi Foof recheck process.
uIres hat The Snire proo? ree be averser ke, E¥ehrhe |eaf-indirection strategy for constructing interval

though only the yalggs managed by the leaves of the PrA8hsistent views is implemented by Algorithn Prior
tree are of any significance to whether the proof SucceeH)Sexplaining this algorithm in detail, we first assume that

this rgsults n h.'gh communlcatlon overheads. .Lastly, dgﬁtities have access to the following local data structures
to reliance on intermediate node caches, a failuranyf nd methods, in addition to those required in Secticn

node contributing to the proof tree can cause the revali(i1

tion process to fail. e Each entity maintains a set of locally-trusted indirect
A perhaps more optimal st_rategy would be to alter the entities, Indirect.

proof construction protocol in such a way as that the )

querying entity would learn not only whether a proof suc- ® The symbol—, denotes random assignment from

ceeded, but also a seta$sociation tupleseach of which some set. For example, . Indirect chooses a

binds the identity of some leaf entityin the proof tree to random member from the set of trusted indirect enti-

a fact identifier that can be used to recheck the status of Ues:

the fact provided by. This strategy eliminates the need e An entity’s node identifier can be accessed via the

for intermediate node caches, incurs the lowest possible local variableME.

overall communication overheads during a proof recheck,.

and fails only if a data-providing entity fails. Even though

this leaf exposure strategy is optimal in many respects, it

can potentially violate the confidentiality policies of the

leaf entities. 2Although the modifications required for the leaf indirection strategy
are presented independently of the modifications required for query con-

1Recall that the portions of the proof tree outside of the queriegsstency, this need not be the case. In practice, both sets of modifications
integrity policies are unknown to the querier; these portions of the prazn be used together to allow for the creation of either query or interval
tree may differ between invocations and go undetected. consistent views.

The function GETFRESHNONCE: 1 — {0,1}*
chooses a previously unused identifier to be associ-
ated with some fact or fact provider.
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Algorithm 2 An interval consistency enforcement algoAssoclATION function to generate the association tuple
rithm

1: // Generate an association tuple for the fact associated with idertifier
: I to be sent to the initial querying entity

. Function GENERATEASSOCIATION(id € {0, 1}z,q €é)
. if ¢ not authorized to learn fact associated withthen

52:

e <, Indirect
id’ < INSERTREMOTE(e, id)
return (e, id’)
else
return (ME, id)

1 Il Accepts an entry to th&emoteCache table after

: Il entity e calls INSERTREMOTE

: Function INSERTASSOCIATIONe € £, id € {0, 1}%)
. id" « GETFRESHNONCE()

: RemoteCache.insert(id’, e, id)

s return id’

. Il Insert a fact state tuple associated with the association réeond )
1 I/ bound to a query issued at timg, 5 into the viewV.

: Function RCVASsod{e, id) € € x {0,1}%,t;ss € T,V € 25)
» Viinsert(id, e, t;ss, NOW  true)

: Il Recheck the fact tuples making up a viév
: Function RECHECKVIEW(V € 2°)
cforall s € Vdo

t— NOW
if ASKREMOTE(s.id, s.e) then
if s.fuzzy then
V.insert(s.id, s.e, s.t,, t, false)
else
V.insert(s.id, s.e, s.tq, t, false)

. // Revalidate the fact identified bl
. Function RECHECKFACT(id € {0, 1}%)
1 if KB.contains(id) then

return true

1 if RemoteCache.contains(id) then

(e, id") «— RemoteCache.lookup(id)
b «— ASKREMOTE(e, id")
if =b then
RemoteCache.delete(id)
return b

! else

return false

. Il Check the interval consistency condition on a vigwelative
1 //'to the time interva(t s, te|

: Function CHECKINTERVAL(V € 25 ¢, € T,te €T)

s forall s € Vdo

if s.fuzzy V (ts < s.ta) V (s.t,, < te)then
return false
return true

a base fact to some proof tree invokes thENGRATE-

that will be propagated back up the proof tree to the ini-
tial querier. If the entity; for whom this association tuple

is being prepared is authorized by the local entity’s confi-
dentiality policies to learn the value of the fact associated
with id, this function binds the local entity to the provided
fact identifier. If ¢ is not authorized to learn of the lo-
cal entity’s involvement in the proof process, a randomly-
chosen trusted indirect entity is bound to the proof tree via
a call to the NSERTREMOTE(e, id) function. This func-
tion triggers the execution of theN6ERTASSOCIATION
function at the entitye; INSERTASSOCIATION chooses a
fresh nonce and binds this to the pé&if, id), wheree’ is

the entity who calledNSERTREMOTE(e, id). The nonce

is then returned to the enti/. The initial querier thus
receives both the proof tree constructed by the algorithm
discussed in Sectidhand a list of association tuples bind-
ing either leaf entities or indirect leaf entities to the proof
tree. Each of these association tuples is used to construct
fact state tuples in some vieW by using the RVAssoc
function.

The initial querier can then attempt to establish an in-
terval of consistency through one or more calls to the
RecHECKVIEW(V) function. For each fact state tuple
s € V, this function uses the #&KREMOTE function to
query the remote entity.c to see if the fact associated
with s.id is still valid. If the fact associated withis still
valid, then the validity interval ins is updated. Fuzzy
validity intervals are turned into concrete validity inter-
vals ranging from the end of the fuzzy interval until the
time that the recheck was invoked; concrete validity in-
tervals are just extended. ThesRREMOTE(id, e) func-
tion works by invoking the RCHECKFACT(id) function
at the entitye. This function returngrue if the fact as-
sociated withid is still in e’s local knowledge base or
in the knowledge base of the entity associated with the
nonceid in e’s remote cache, and returfalse other-
wise. The function @ECKINTERVAL (V) checks to see
thatg;ntervar (V') holds, as defined by Equati@n

e The local knowledge base is accessible via ﬂﬁeorem 4. If the functionCHECKINTERVAL (V. £, £.)

data structureKB. The function KB.contains :
{0,1}* — B checks whether the fact associated w
a given identifier is currently in the local knowledg

base.

e An entity's remote cache is accessible via tHe

returnstrue, thenV is interval consistent on the interval

?S,te] provided thatV” was constructed using only calls

o0 theRcvAssocand RECHECKV IEW functions.

roof. The QHECKINTERVAL(V,ts,t.) function en-

RemoteCache data structure. This data structure hdgrees the constraint that all fact state tuple/iencode

member functiongnsert : {0,1}¢ x & x {0,1}* —

concrete validity intervals that include at least the inter-

L, contains : {0,1}* — B, lookup : {0,1}¢ — val [ts,te]. Therefore, GIECKINTERVAL(V,ts,t.) <

& x {0,1}¢, anddelete : {0,1}* — L.

Dinterval (V. ts,te) which implies thatV is interval
consistent on the intervaltg, t.] by Definition 9,

Algorithm 2 works as follows. An entity contributing provided that all concrete validity intervals estab-

lished by RevAssocand RECHECKVIEW are correct.
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RcVvAssod(e, id), t;ss) inserts a fuzzy validity interval soning similar to that used above, the call ts®¥REMOTE
bounded by the query issue tintg,,, and the associationon line 39 will cause RECHECKFACT to returntrue in the
tuple receipt time for the fagt described by identifieid. event that the facf’ associated wittid’ in ¢’’s knowledge
This is a legitimate action, as nonces used by the undease has not yet been revoked. Again, we know that this
lying proof construction protocol (sedT]) allow us to is not a false positive, as&3¥FRESHNONCE ensures that
causally link the query and its response and therefore fzt identifiers are used at most once.fifhas been re-
tablish that the fact provider assertgd validity at some moved frome”’s knowledge base, but not froa’s remote
timet > t¢;,,. We must now show that BCHECKVIEW cache, this call to AKREMOTE will return false. This
updates these fuzzy intervals correctly. will cause the entry associated withto be removed from

Assuming that the AKREMOTE function correctly de- e's remote cache; RCHECKFACT will then returnfalse,

termines whether a given fact is still true at the préS expected. .
viding entity, RECHECKVIEw extends the validity inter- The fact that RCHECKFACT behaves as expected im-

val for each fact state tuple whose corresponding factiieS that ASKREMOTE correctly assesses the contin-
still valid. Assume that the recheck process for a fatnd validity of remotely store facts. This, in turn,
state tuples corresponding to some fagt starts when implies that RECHECKVIEW correctly updates the va-
NOW = t, and succeeds. ¥ encodes the fuzzy validity“d'ty intervals encoded in the fact state tuples of a
interval [s.t,,, s.t.], s is updated to encode the concretgiven view initially const.ructed b.y one or more calls
validity interval [s.,,, t.], sincef was true at some time!® theé RCVASsoC function.  Since views can be
t < s.t, and was not yet revoked at some later tithe> correctly constructed_ by calls to thecRAssoc and
t.. If s encodes a concrete validity intenvalt,, s.t,,|, RECHECKVIEW functions and we have shown that
it is extended to encode the concrete validity intervGHECKINTERVAL(V, ts,te) < bintervar (Vi ts, tec), We
[5.ta, t,]. We now show that REHECKFACT (id)—which €an conclude that KECKINTERVAL(V,,,t.) returns
is invoked at entitye by the call ASKREMOTE(id, ¢)— true if and only ifV is interval consistent on the interval
b

correctly assesses the validity of the fact associated Witk te- O

the identifierid. Note that although Algorithn2 is shown to be sound
We must consider both the case in which the factby Theorem, it is not ideally complete. That is, an om-
associated with the identifieid was originally stored niscient entity may have been able to observe an interval
in e’s local knowledge base and the case in whidh consistent view even if Algorithr@ fails. This can occur
was an entry ire’s remote cache. In the case whefe because the set of rechecks initiated after the tintakes
was stored ire’s local knowledge base, ling5 of Algo- a non-zero amount of time to complete. As with the com-
rithm 2 returnstrue if e's knowledge base still containspleteness limitations discussed in Sectibg, this is an
the fact f associated withid; we know thatf has not artifact of relying on causal orderings to establish validity
yet been revoked because th& BERESHNONCE func- intervals, rather than perfectly synchronized clocks. We
tion ensures that fact identifiers are not reusedf Has now show that Algorithn® is a policy-safe modification
since been removed fromis knowledge base, then theo the underlying distributed proof construction protocol.

call to KB.contains(id) will fail. The check on line37 ) . _ e
will then fail because the state tuple associated with 1heorem 5. Algorithm2 is a policy-safe modification to

was originally stored locally and thus would not be assHe Minami-Kotz distributed proof construction protocol.

ciated by GTFRESHNONCE with an entry ine’s remote  proof, As was the case with Algorithra, Algorithm 2
cache. This failure would then caus&@BHECKFACT 10 §oes not affect the construction of distributed proof trees.
returnfalse, which implies that RCHECKFACT performs  therefore, the proof given irlf] stating that proof trees
correctly in the case in which the fagtassociated with 416 constructed only if the integrity policies specified by
identifier id was originally stored ir’s local knowledge o5ch participating entity are respected still holds. We
base. must now show that the confidentiality policies specified
We now consider the case in whic¢li was originally by each entity are still respected. To this end, we must
associated with an entry iis remote cache. Lin88first show that no unauthorized entity along the path from the
determines the tuplée’, id’) associated with the identi-querierq to some fact providee can learn both the fact
fier id in e’s remote cache. If this lookup fails, we knowf provided bye and f’s validity as reported by. To ad-
that the fact that was indirectly associated with the idedress the most general case, we will assume that learning
tifier id has been revoked, as entriescia remote cache e’s identity is sufficient for an unauthorized entity to infer
are only removed after failed lookups (by lidg). By rea- f. We then show that (i) each entity participating in the
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construction of the proof tree that is not entitled to kno N

f cannot learr’s identity, and (ii) entities that do know (1) q — [ | ;_@
but should not learif’s validity cannot infer it. 1
We first treat case (i) and show that each unauthoriz ’
entity v in the proof tree that should not leafndoes not ™
learne’s identity. There are two sub-cases:= g and (2) q —p |1‘;_> e — 1
u # q. Consider the case whetas anintermediate entity /’
in the proof tree; thatisy # ¢. In this casey cannot learn - f
e's identity, as the association tuple that might possib ™~
bind e to the proof tree is encrypted witfis public key, > 1 >
K,. Inthe case that = ¢, we must show that cannot © |1,"_> I"
learne’s identity. In this caseq receives an associatior l f, f

tuple binding an indirect entitye to the fact provided by -
e. Sinceie is trusted bye not to reveale’s identity, ¢
cannot learn the identity of and thus cannot infer the® a —»| 1 i—» .. —> |,
hidden factf provided bye. -
Note that case (i) is handled by the encryption of sen: : fs
tive query responses as described in Se@i@nSince the i
incorporation of association tuples into query respons —» ... —» |
does not affect this encryption process, the proof constri
tion algorithm will correctly enforce the confidentiality f
of responses as proven ih7. As we have shown that
each entity that should not learn the fgcprovided bye
cannot learnf and that entities that should not leafis
validity cannot learn it, we can conclude th&$ confi-
dentiality policies are correctly enforced. Since beth
confidentiality policies and integrity policies are correctl
enforced, we can conclude that Algoritt?ris a policy-
safe modification to the underlying proof system. [

Figure 5. A diagram illustrating several possible proof
tree structures. Inference nodes are represented by
squares and fact leaves are represented by circles. The
dashed lines indicate the expected leaves of the proof tree
¥s perceived by the querier.

Although Algorithm?2 is a policy-safe modification to entities implied by;'s integrity policies, henceforth called
the Minami-Kotz distributed proof construction framethe set ofexpected leavesf the proof tree. To prove
work, it does nonetheless reveal additional information #ais claim, we must explore two case| = |.A|, and
the initial querying entityg. Specifically, in addition to |E| < |A]. If |E| = |A], we know that each expected leaf
knowing the portion of the initial proof tree specified byiodee € E is either a fact provider or the initiator of a
its integrity policies,q learns a list of association tupleghain of inference forming a linear subproof whose leaf
declaring certain entities to be (possibly indirect) contrifprovides a fact to the proof generateddiy query. Ife is
utors of atomic facts to the proof tree. We now prove thatentioned explicitly in an association tuplec A, then
this list of association tuples gives thenly minimal in- ¢ cannot conclude whether contributed directly to the
formation regarding the structure of the generated prg@pof tree or was chosen as an indirect entity for the actual

tree beyond what is implied by its integrity policies. leaf,e’, of the linear subproof initiated kyy These two in-
distinguishable sub-cases are shown in Figuparts (1)

Theorem 6. Given the set of association tuple$ = and (2). Note that in Figur, each inference nod, is

{{e1,m1),...,(ei;n;)} associated with a given proofassociated with a unique entity, by our prior assump-

tree, the initial querierg learns only the number of enti-tion. If ¢ is not explicitly mentioned in any association

ties contributing facts to the proof tree, and in some cas@gple in A, theng cannot differentiate between the case

whether the proof tree extends beyond the proof tree iff-which e contributed a fact to the proof tree via an in-

plied by their integrity policies. direct entity and the case in whichinitiated a chain of
inference resulting in a linear subproof.

Proof. Assume without loss of generality that each entity If |E| < |A|, thengq knows that the proof tree cer-
involved in the construction of a distributed proof makesinly extends beyond the proof tree implied by her in-
at most one inference step. Let the getontain the leaf tegrity policies and that at least orec FE initiated a
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subproof contributing multiple facts to the proof. In the 4500

event that E| > 1, ¢ cannot infer which entity or enti- g0 | PO at expostye o
ties in £ initiated subproofs contributing multiple factsto | Leafindirection ——=-- ]
the proof, as the set of association tuplsncodes no T
structural information. {E| = 1, thenq clearly knows & 30| e
that the onlye € F initiated a subproof contributing mul- \E; 2500 | |
tiple facts to the proof tree. Howevey, cannot differ- § 2000 - i
entiate between linear and branching chains of inference, ool 7

again, as no structural information is encoded in thedset
This case is illustrated in Figugeparts (3) and (4). This 1000
shows that; learns no information beyond the number of  sw0

e

facts used in the proof tree and whether, in some cases, | " ‘ ‘ ‘ ‘ ‘

the proof tree extends beyond the expected leaves of the  © 5 oo 5200 230 300 %
proof tree. O Number of nodes in a proof tree

5 Evaluation Figure 6: Latency for handling queries.

In this section, we measure the performance impact of
our consistency enforcement algorithms. The envirofic@l applications. Authorization, confidentiality, and in-
ment in which we ran our tests consisted of a 25 notfgrity policies were generated for each of these principals
cluster connected with 100Mbit Ethernet. Each node hadtomatically and in such a fashion as to ensure that valid
a 3.2GHz Intel Pentium D 940 dual-core processor aRfPOf trees of the appropriate size could be constructed.
2GB RAM, and runs RedHat Linux AS 4 and Sun MiFor each size of proof tree analyzed during these experi-
crosystem’s Java runtime (v1.4.2). Our system has &pents, measurements were taken during the construction
proximately 12,500 lines of Java code, of which abo@f ten different proof trees of varying internal structure.
600 lines represent extensions to the core implementatiofrigure6 compares the query-handling latencies of three
of the proof construction system described 18] We different proof construction algorithms; each data point
used the Java Cryptographic Extension (JCE) framewdskan average of 50 runs (5 runs for each of the 10 dif-
to implement RSA and Triple-DES (TDES) cryptographiterent proof trees generated per proof size). pheof
operations. A 1024-bit public key whose public exponeg@nstructioncurve illustrates the cost of generating the
is fixed to 65537 was used in all of our experiments apdoof tree corresponding to some initial query. Note that
the RSA signing operation used MDB1] to compute the unless Algorithml is used, no guarantees about the con-
hash value for each message to be signed. We used Owistency level of the view used to construct these proof
CBC TDES in EDE model?] to perform symmetric key trees can be made. THeaf exposurecurve illustrates
operations. The length of our DES keys was 192 bits, aff¢ cost of using the leaf exposure strategy to guarantee
the padding operation in TDES operations conforms tat proofs are generated using interval consistent views.
RFC 1423 §]. In this case, the identities of all leaf nodes in the system
During our experiments, we measured the latency @fe forwarded to the initial querier, who can then recheck
constructing distributed proof trees using two differeffie validity of each base fact directly. Recall from Sec-
strategies to ensure interval consistency. These exptfin 4.3 that, in many ways, this scenario represents a
ments utilized 25 servers, each of which was run bytigne-optimal strategy for constructing interval consistent
different principal. Each query issued during our expeyiews. Theleaf indirectioncurve represents the cost of
iments was of the formigrant(P, R) whereP is a prin- ensuring that proofs are generated using interval consis-
cipal andR is a resource. The body of each rule in arfgnt views through the use of the leaf indirection strategy
knowledge base is of the form(co),...,an_1(c,_1) described in Algorithn®.
where eachy; is a predicate symbol and eachis a con-  Figure 6 shows that these two strategies for enforc-
stant. Our experiments attempted to create proof tréeg the use of interval consistent views cost little more
containing up to 35 nodes. We believe that proof treestbfin generating the initial distributed proof. Specifically,
this size are significantly larger than would be required the leaf exposure strategy takes only about 10-15% more
most applications, thus, our results should provide guidene than generating the initial proof tree, while the leaf
lines about the worst-case latency for a wide array of praneirection strategy takes only 25—-30% more time than
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generating the initial proof tree. These results confiroan then be accessed as policies are evaluated. These
our earlier conjecture that the leaf indirection strategy [dug-ins could be used to enforce consistency constrains
a close approximation of the time-optimal leaf exposuseich as those discussed in this paper, although it is un-
strategy. The leaf indirection strategy is also vastly mocéear how one would enforce consistency constraints that
efficient than the naive requery strategy which, by dedepend orall contextual facts used in a given policy. By
inition, would require 100% more time than generatingpntrast, we show several ways in which the underlying
the initial proof tree. Although these results depend qmoof system can be used to enforce these types of con-
our specific implementations of the distributed proof costraints without requiring any involvement by policy writ-
struction and consistency enforcement algorithms, it @ss.
still interesting to note that it is possible to recheck proofs Concurrency control and consistency enforcement in
muchfaster than they can be constructed; this may leaddistributed systems2p], distributed database®]| and
the design of more efficient distributed proof engines distributed shared memont][is another area of closely
the future. These efficiency results combined with Therelated work. In general, solutions to the consistency
rems5 and6 firmly establish the leaf indirection strategyroblem in these domains assume that multiple entities
(as implemented by Algorithr) as a low-cost, privacy- will be updating values stored at multiple locations within
preserving method for ensuring the use of interval consiRe system and as such, maintaining data consistency is
tent views during the construction and evaluation of dief concern to everyone. Therefore, the solutions pre-
tributed proofs. sented typically involve the cooperation of multiple enti-
ties, as every entity has incentive to cooperate. However,
in distributed authorization protocols, there is very little
6 Related Work incentive for each autonomous entity participating in the
proof construction to take part in complicated consistency
The problem of sampling consistent system views direservation protocols, as the consistency of a particular
ing decentralized authorization pl'OtOCO'S was first StUﬁew is 0n|y of concern to the po||cy evaluator. There-
ied in [14]. This work focused on certificate-based authgore, the solutions developed in the distributed systems,
rization protocols in which the entity enforcing a givegistributed databases, and distributed shared memory lit-
policy was assumed to have access to all certificates ugegture are not suitable for our problem domain; the solu-
during the policy satisfaction process (e.§, 7, 8, 15, tions that we develop in this paper require only the cooper-
23, 24, 25]). The solutions to the view consistency probation of a minimal number of participants in the protocol.
lem presented in14] leveraged the semantics of certifi- A final area of related work is the collection of system
cate issuance and revocation to build consistent viewgte snapshots in distributed systems. Collecting consis-
based on particular orderings of online certificate valigent snapshots that can be used to evaluate stable predi-
|ty checks; these checks are facilitated thrOUgh prOtOCQﬁtes over the system state is a well-known prob|em, to
such as OCSPLP] and COCA P6]. We extend these pre-which a solution is presented ia(]. Unfortunately, the
vious results by demonstrating that lightweight view conmstable nature of fact statuses prevents the use of this al-
sistency enforcement schemes can also be designedyfgtithm for solving the view consistency problem. There
more general decentralized authorization frameworks dRist algorithms for collecting distributed state snapshots
which (i) portions of a proof tree may be hidden fronthat can be used to evaluate unstable predicates (for a sur-
the policy evaluator and (ii) simple assertions authenfiey, see3]), though these algorithms have very high over-

cated with digital signatures or keyed HMACs are usefads and make unreasonable assumptions about process
as proof atoms, rather than CA-issued certificates. Theg@peration for our problem domain.

more general authorization frameworks are likely candi-
dates for use in pervasive computing systems and sensor
networks. 7 Conclusions and Future Work

The Antigone Context Framework (ACF) provides a
general-purpose framework for incorporating contextuial this paper, we explored the problem of enforcing con-
data into authorization policy enforcement systeffy].[ sistency constraints on the system views used during pol-
ACF allows policy writers to incorporate contextual asey evaluation in an authorization system based on dis-
sertions into policies without requiring that the policy lartributed proof construction. In particular, we focused on
guage include support for obtaining this data from the esnabling the use of consistent system views when eval-
ternal world. Users of the ACF can write plug-ins for thaating policies within the proof construction framework
framework that obtain this contextual information, whicpresented in17]. This framework complicates the view
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consistency problem, as the confidentiality and integrityg alternate means of policy satisfaction in the event that
policies declared by entities in the system may render thertain view consistency constraints are not met, as time-
full details of a given proof tree unavailable to the initidiness is an important consideration for most authorization
querier. Further, simple signed assertions are used as fagttems.

in the system, rather than CA-issued certificates.

Within this framework, we formally defined the viewACknOWledgmentS
consistency problem and several important levels of view

consistency. We then presented efficient algorithms {054 41q Winslett were supported by the NSF under grants
enforcing two interesting levels of view consistencyig_ 9331707, CNS-0325951. and CNS-0524695 and by
proved the soundness of each algorithm, commented iy, jia National Laboratories under grant number DOE
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