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Abstract

In distributed proof construction systems, information re-
lease policies can make it unlikely that any single node
in the system is aware of the complete structure of any
particular proof tree. This property makes it difficult for
queriers to determine whether the proofs constructed us-
ing these protocols sampled a consistent snapshot of the
system state; this has previously been shown to have dire
consequences in decentralized authorization systems. Un-
fortunately, the consistency enforcement solutions pre-
sented in previous work were designed for systems in
which only information encoded in certificates issued by
certificate authorities is used during the decision-making
process. Further, they assume that each piece of certified
evidence used during proof construction is available to the
decision-making node at runtime.

In this paper, we generalize these previous results and
present lightweight mechanisms through which consis-
tency constraints can be enforced in proof systems in
which the full details of a proof may be unavailable to
the querier and the existence of certificate authorities for
certifying evidence is unlikely; these types of distributed
proof systems are likely candidates for use in pervasive
computing and sensor network environments. We present
modifications to one such distributed proof system that
enable two types of consistency constraints to be en-
forced while still respecting the same confidentiality and
integrity policies as the original proof system. Further, we
present the details of a performance analysis conducted to
illustrate the modest overheads (less than 30%) of consis-
tency enforcement on distributed proof construction.

∗A shorter version of this paper will appear in the Proceedings of
the 12th ACM Symposium on Access Control Models and Technolo-
gies [13].

1 Introduction

The process of making informed authorization decisions
in dynamic environments where trust relationships can-
not be determined a priori is widely accepted as a difficult
task. This is particularly true in context-rich environments
such as pervasive computing spaces, as the set of permis-
sible actions may depend on the physical context of the
space. This context can be sampled through the use of
sensors deployed throughout the environment. To address
this complexity, several rule-based systems have been de-
signed for specifying and checking authorization policies
in pervasive computing environments (e.g., [2, 4, 11, 20]).
Recently, frameworks for constructing and validatingdis-
tributed proofs have been proposed to address the limi-
tations of using centralized knowledge bases for making
authorization decisions [6, 17, 24].

In authorization systems based on distributed proving,
resource access requests are permitted if a resource owner
can construct a well-formed proof tree whose root is a
logical statement granting the requester access to the re-
source. The topology of a proof tree shows the logical de-
pendencies among the facts in the tree; that is, the leaves
of this tree represent base facts, while intermediate nodes
represent inferences made using these facts. Such a proof
tree need not be formed solely from facts in the resource
owner’s local knowledge base; subtrees of a proof may
be produced by other entities in the network provided that
the resource owner trusts the integrity of information pro-
vided by these entities (e.g., as in [6, 17, 24]). In some
systems, information release policies may prevent por-
tions of a subproof from being revealed to certain nodes
in the proof tree [17]. An important observation is that the
logical leaves of a distributed proof tree form one possi-
bleviewof the state of the environment in which the proof
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was constructed. Resource access is granted because, in
that view of the system, it was possible to construct a
proof tree justifying the access request. If the facts mak-
ing up a proof tree represent stable assertions (i.e., facts
whose validity will not change), then this view is actually
a snapshot of the system and the semantics of policy sat-
isfaction remain the same as in centralized proof systems.
However, if any facts in the proof tree are not constant,
then in some circumstances, it is possible to form a proof
tree justifying access to a particular resource that would
have been denied inany centralized system. That is, an
inconsistent view can lead a prover to think that certain
logical facts were true simultaneously when, in fact, they
were not. Clearly, this can lead to the permission of unde-
sirable accesses to system resources.

For example, consider a hospital wired with sensors
such as occupancy detectors, location tracking devices,
and door lock sensors. Now, a clinician, Alice, decides to
use the projector located in her office to review the med-
ical records of several patients that she is working with.
In order for the system to permit the use of the projec-
tor to view medical records, it must be the case that the
occupancy of Alice’s office is one, Alice is located in her
office, and the door to her office is locked. When Alice re-
quests this access, the system might first check that the oc-
cupancy of her office is one and then proceed to check that
Alice is currently located in her office. As this check is be-
ing made, Bob enters the room and closes the door behind
him, which automatically locks. The system determines
that Alice is located in her office and then checks that
the door is locked; since the door is locked the medical
records are displayed on the projector. This is a clear vi-
olation of the policy protecting patient records that might
have legal ramifications, as Bob may not be authorized to
view the records being projected. In addition to this type
of accidental violation of system view consistency, inten-
tional attacks on the system are also possible.

The adverse effects of inconsistent views on authoriza-
tion systems has been examined previously in the litera-
ture [14]. In this work, the authors focused on studying
the properties of systems in which all attestations used
during proof construction were encoded in certificates is-
sued by one or more trusted Certificate Authorities (CAs).
The solutions for enforcing the use of consistent states
presented in [14] rely on the timing and sequencing of
checks for certificate revocation that can be made using
protocols such as OCSP [19] or COCA [26]. Unfortu-
nately, these solutions cannot be used in proof construc-
tion frameworks that rely on simple digital signatures or
keyed MACs to authenticate proof facts, including many
of those designed to be used in pervasive computing or

sensor network environments.
In this paper, we build upon the results presented in [14]

and show how to ensure that distributed proofs con-
structed using these more general forms of trusted in-
formation can be formed by sampling consistent system
states without impeding on the autonomy of nodes in the
system (e.g., by requiring participation in a wide-scale
transaction-management protocol). Further, we present
solutions to the consistency problem that work even if
some details of a proof tree are hidden from the query
issuer by information flow policies; for comparison, the
solutions presented in [14] assumed that the policy eval-
uator had complete knowledge of the proof tree formed
during the protocol. Although we focus our presentation
on authorization systems based on distributed proving, the
techniques described in this paper are applicable to any
system in which autonomous entities wish to leverage de-
centralized information to make decisions in a potentially
adversarial environment.

The rest of this paper is organized as follows. In Sec-
tion 2, we overview background material regarding the
distributed proof construction protocol that we will mod-
ify to enforce view consistency constraints. Section3 for-
mally defines our system model and the levels of view
consistency that we wish to enforce in this paper. In Sec-
tion 4, we present modifications to an existing distributed
proof construction protocol to enable the use of two types
of consistent views when making authorization decisions.
Further, we present proofs that the security and privacy
properties of the underlying proof system have not been
altered by our modifications. We quantitatively evaluate
the performance impact of our consistency enforcement
schemes in Section5and review related work in Section6.
We then present our conclusions and directions for future
work in Section7.

2 Background

In this section, we discuss the Minami-Kotz distributed
proof construction protocol presented in [17], as later sec-
tions of this paper focus on modifying this protocol to
ensure that authorization decisions are made using con-
sistent states. Unfortunately, space limitations prevent us
from presenting this proof system in its entirety, so we in-
stead present several examples that illustrate the key fea-
tures of this system; interested readers can refer to [17] for
a more in-depth treatment of this proof construction sys-
tem. We chose to explore the consistency problem within
the context of this protocol as it allows portions of a proof
tree to be hidden from certain entities participating in the
construction of the proof tree, including the node issuing
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Figure 1: Structure of an authorization
server.
grant(Bob):- role(Bob, doctor), location(Bob, hospital)

role(Bob, doctor) location(Bob, hospital)

Figure 2: Sample proof tree.

the query, whereas most other distributed proof frame-
works assume that the querying node gathers all support-
ing evidence locally prior to making a decision. The tech-
niques developed in this paper for use in the Minami-Kotz
proof construction system can also be applied to other dis-
tributed proof systems with less restrictive properties.

2.1 Structure of the Authorization Server

Figure 1 shows the structure of an authorization server
consisting of a knowledge base and an inference engine.
The knowledge base stores both authorization policies and
facts including context information. The context server
publishes context events and updates facts in the knowl-
edge base dynamically. The inference engine receives au-
thorization queries from remote servers, such as resource
servers processing users’ access requests. The inference
engine then attempts to derive logical proofs justifying
these queries using the facts in its local knowledge base
and possibly even interactions with remote parties. If
the inference engine cannot construct a proof, it returns
a proof that contains a false value. In the open environ-
ment of pervasive computing, each server could belong to
a different administrative domain.

Rules and facts in a knowledge base are represented as
a set of Horn clauses in Prolog. For example, a medical
database may define an authorization policy that requires
a requesterP to hold a role membership “doctor” and to
be physically located at the “hospital” as follows.

grant(P ) :- role(P, doctor), location(P, hospital)

The atomsrole(P, doctor) and location(P, hospital)

on the right side of the clause are the conditions that must
be satisfied to derive the granting decisiongrant(P ) on
the left. If a userBob issues a request to read a medical
database, the proof tree in Figure2 could be constructed
based on the above rule. The root node in the tree repre-
sents the rule and the two leaf nodes represent the facts.
Notice that the variableP in the rule is replaced with a
constantBob. A user’s location, which is expressed with
the location predicate, is a dynamic fact; i.e., the second
variable of the predicatelocation should be updated dy-
namically as Bob changes his location.

2.2 Proof Decomposition

Multiple authorization servers in different administrative
domains can cooperate to handle authorization queries in
a peer-to-peer manner. These peer-to-peer interactions
are guided by each entity’sintegrity policies, which spec-
ify sets of entities trusted to handle particular types of
queries. For example, if Alice specifies the integrity pol-
icy trust(location(P,L)) = {Bob}, then she trusts Bob
to accurately answer queries regarding the location of
other entities. In the most basic case, the principal who
issues a query trusts the principal who handles this query
in terms of the integrity of the query result. As such, the
handler principal need not disclose the entire proof tree
that she generates, she needs only to return a proof that
states whether the fact in the query was true. In general,
however, the querier may notcompletelytrust the query
handler and thus her integrity policies might place con-
straints on the rules used by the handler to generate the
proof tree. In this case, a more complete proof tree, whose
intermediate nodes are digitally signed, would need to be
returned by the handler. This way, the querier can verify
that her integrity policies were respected.

Figure3 describes one possible collaboration between
a querier and handler. Suppose that hostA run by prin-
cipal Alice, who owns a projector, receives an autho-
rization query?grant(Dave, projector) that asks whether
Dave is granted access to that projector. Since Al-
ice’s authorization policy in her knowledge base refers to
a requester’s location (i.e.,location(P, room112 )), Al-
ice issues a query?location(Dave, room112 ) to host
B run by Bob. Alice chooses Bob, because Bob sat-
isfies Alice’s integrity policies for queries of the type
location(P,L). Bob processes the query from Alice,
because Alice satisfies Bob’s confidentiality policies for
queries of the typelocation(P,L) as defined in Bob’s
policy acl(location(P,L)) = {Alice}. Bob derives
the fact that Dave is inroom112 from the location of
his device using the factslocation(pda15 , room112 ) and
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Figure 3: Remote query between two principals. Alice is a principal who maintains a projector, and Bob is a principal
who runs a location server.

owner(Bob, pda15 ). However, he only needs to re-
turn a proof that contains a single root node that states
that location(Dave, room112 ) is true, because Alice
believes Bob’s statement about people’s location (i.e.,
location(P,L)) according to her integrity policies. The
proof of the query is thus decomposed into two subproofs
maintained by Alice and Bob.

2.3 Enforcement of Confidentiality Policies

Each fact provider maintains a set ofconfidentiality poli-
ciesthat determine which entities are authorized to receive
the facts that she provides. These policies are enforced by
encrypting a query result (along with a querier-provided
nonce to ensure freshness) using the public key of an au-
thorized receiver. Each query is accompanied by a list
of upstream principals who could possibly receive the an-
swer of the query; this enables the handler to choose an
authorized recipient from the list of upstream principals
that satisfies her confidentiality policies. It is therefore
possible to obtain an answer for some initial query even
when some number of intermediate principals in the dis-
tributed proof do not satisfy the confidentiality policies
of a fact provider. Figure4 shows an example collabora-
tion among principalsp0, p1, p2, andp3. When principal
p0 issues an authorization queryq0 to principalp1, p1 is-
sues a subsequent queryq1, which causes principalp2’s
queriesq2 andq3. Since a receiver principal of a proof
might not be a principal who issues a query, a reply for a
query is a tuple(pi, (pf )Ki

) wherepi is an identity of a
receiver principal and(pf )Ki is an encrypted proof with
the receiver’s public key. We associate a receiver prin-
cipal identity with an encrypted proof so that a principal
who receives an encrypted fact can decide whether to at-

tempt to decrypt that encrypted fact. We assume that, in
this example, each principal who issues a query trusts the
integrity of the principal who receives that query in terms
of the correctness of whether the fact in the query is true
or not. For example,p0’s integrity policies contain a pol-
icy trust(q0) = {p1}.

Suppose that queryq1’s result (i.e., true or false) de-
pends on the results of queriesq2 andq3, which are han-
dled by principalsp3 andp4, respectively, and thatp3 and
p4 choose principalsp0 andp1, respectively, as receivers
sincep2 does not satisfy their confidentiality policies. Be-
cause principalp2 cannot decrypt the results from princi-
palsp3 andp4, p2 encrypts those results with the public
key of principalp1, whichp2 chose as a receiver. Principal
p2 forwards the encrypted results fromp3 andp4 because
the query result ofq1 is the conjunction of those results.
Principalp1 decrypts the encrypted result fromp2 and ob-
tains the encrypted results originally sent from principals
p3 andp4. Sincep1 is a receiver of the proof fromp4,
p1 decrypts the proof that contains a true value. Since a
query result forq0 depends on the encrypted proof from
p3, principalp1 forwards it in the same way. The principal
p0 finally decrypts it and obtains an answer for queryq0.
The key observation here is that principalp0 is not aware
of the fact that the query result is originally produced by
principalp3.

This proof system applies public-key operations only
to a randomly generated symmetric key and uses that
symmetric key to encrypt and decrypt a proof; that is,
a proof consists of a new symmetric key encrypted with
a receiver’s public key and a proof encrypted with that
symmetric key. In addition to the public-key encryp-
tion, the querier and handler principals use another shared
symmetric key to protect other data fields (e.g., a re-
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Figure 4: Enforcement of confidentiality policies. The first item in a proof tuple is a receiver principal, and the second
item is a proof tree encrypted with the receiver’s public key.

ceiver identity) in a query and a proof from eavesdroppers.
We assume that the two principals share the symmetric
key via a protocol using public-key operations when the
querier and handler principal authenticate with each other
for the first time.

3 Definitions

We begin this section by describing the system model
within which the Minami-Kotz distributed proof construc-
tion protocol discussed in Section2 was designed to be
used. We then show that existing solutions to the view
consistency problem are not applicable due to fundamen-
tal differences between system models. Lastly, we for-
mally define the view consistency problem within the con-
text of our system model and present the definitions of
three important view consistency levels.

3.1 System Model

Distributed proof construction protocols were designed to
be used in open-system environments consisting of a pos-
sibly infinite set of autonomous entities,E . Each entity
e ∈ E possesses one or more public key certificates that
can be used to authenticate messages signed bye or to
encrypt messages that are to be sent toe. These cer-
tificates are made publicly available by one or more key
servers or through the use of decentralized peer-to-peer
protocols. Without loss of generality, we will assume that
each node uses only one public key certificate during the
construction of any single distributed proof. We place no
limitations on the temporal duration of executions of the
proof construction protocol, nor do we assume any level
of clock synchronization exists between entities inE .

All evidence used during the construction of a dis-
tributed proof takes the form of assertions signed with

the providing entity’s private key. As was described in
Section2, the proof construction process is assumed to
be policy-directed. Each entity maintains a collection
of integrity policiesthat indicate which other entities are
trusted to answer different types of queries; adherence to
these integrity policies can be checked by verifying the
signatures on responses to any issued subqueries. Each
entitye also maintains a collection ofconfidentiality poli-
ciesthat control the release of subproofs generated bye.
This interplay between integrity policies and confidential-
ity policies implies that the complete details of a proof
tree may not be available to entities in the system. In par-
ticular, the querying entity will not learn any details of the
proof tree beyond those specified by his or her integrity
policies. Further, intermediate nodes in a proof tree may
not learn whether the proof construction protocol was suc-
cessful, as the results of subqueries issued by these nodes
may be hidden from them by the query target’s confiden-
tiality policies (see Section2.3 for an example of this be-
havior). These assumptions imply that the view consis-
tency solutions developed in [14] cannot be used in this
environment.

3.2 Problem Definition

As was observed in Section1, the use of inconsistent
views of a system during policy evaluation can lead to
situations in which a policy evaluator believes that certain
facts held true simultaneously when, in fact, they did not.
We now more precisely define this problem.

Definition 1 (Validity). An entitye can determine that
some proof factf is valid at time t if either (i) f is in
e’s local knowledge base at timet, or (ii) f is considered
valid at timet by a remote entity who is trusted to provide
information regardingf .
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Note that asserting the validity of some factf at a par-
ticular timet by invoking case (ii) of the above definition
is not a straight-forward task. Consider the case where
some entitye issues a query for factf to another entity
e′ at timetiss. Due to delays in the network and process-
ing delays ate ande′, it is likely that e′ will not receive
the query until some timet′ > tiss. Similarly, e is un-
likely to receivee′’s response to his query until some time
trcv > t′. Therefore,e cannot conclude thatf was valid
at eithertiss or trcv; he can only infer thatf was valid
at sometime t wheretiss ≤ t ≤ trcv; we will discuss
methods for fine-tuning these types of inferences later in
the paper. As facts are collected and validated, an entity
builds aviewof the system that will be used to construct
a proof of authorization.

Definition 2 (Fuzzy Validity Interval). The interval
[ts, te] is a fuzzy validity intervalfor some factf if f can
be shown to be valid at some (possibly unknown) timet
such thatts ≤ t ≤ te.

Definition 3 (Concrete Validity Interval). The interval
[ts, te] is a concrete validity intervalfor some factf if f
can be shown to be valid at all timest such thatts ≤ t ≤
te.

Definition 4 (Fact State). Let the setT contain all possi-
ble time stamps, let⊥ denote the null value, and let` be a
predefined length parameter. Thefact statefor a factf as
observed by some entity is then denoted by the five-tuple
s = 〈id , e, tα, tω, fuzzy〉 ∈ {0, 1}` × E × T ∪ {⊥} ×
T ∪ {⊥} × B. The valueid is an`-bit identifier assigned
to the factf (which may simply be an encoding of that
fact), e identifies the entity from whichf was obtained,
tα and tω are local timestamps, andfuzzy is a Boolean
value indicating whether[tα, tω] specifies a fuzzy or con-
crete validity interval. The set of all possible fact state
tuples is denoted byS.

Entities in the system create fact state tuples as the va-
lidity of certain facts is revealed during the execution of
the distributed proof protocol. In the remainder of this pa-
per, we will use dot notation to access the fields of fact
state tuples. For instances.id represents the identifier of
the fact whose state is stored ins. Note that if given a
fact state tuples for a factf has either of itss.tα or s.tω
fields set to⊥, then no conclusions can be drawn about
the validity status off .

Definition 5 (View). A view is any collection of fact state
tuples that has no more than one tuple for any〈id , e〉 pair.

We have now defined an entitye’s view of the sys-
tem as some collection of local observations thate has

made regarding the validity of certain facts. Given that
any such view contains onlylocal observations, it is un-
likely to capture a precise snapshot of the system state.
As such, the consistency level of these views is of the
utmost importance. Although such a view may contain
data associated with any number of facts, unless noted
otherwise, we assume without loss of generality that an
entity e will only wish to enforce consistency constraints
on views comprised of facts associated with a single dis-
tributed proof.

Definition 6 (View Consistency).A viewV is said to be
φ-consistent if and only ifV satisfies some predicateφ
that places temporal constraints on the observed validity
intervals of the facts whose state data are stored inV .

3.3 Levels of Consistency

We now describe three increasingly-stringent levels of
view consistency relevant to distributed proof construc-
tion protocols for use in the system model described in
Section3.1.

3.3.1 Incremental Consistency

The most basic definition of view consistency that one can
imagine is what we will refer to as incremental consis-
tency. Intuitively, an incrementally consistent view is a
view in which each fact was valid at some point during
the construction of the related proof tree. To formally de-
fine the notion of incremental consistency, we first define
the predicateschecked : S → B, fuzzy : S → B, and
concrete : S → B.

checked(s) ≡ (s.tα 6= ⊥) ∧ (s.tω 6= ⊥) ∧ (s.tα ≤ s.tω)
(1)

fuzzy(s) ≡ checked(s) ∧ s.fuzzy (2)

concrete(s) ≡ checked(s) ∧ ¬s.fuzzy (3)

The predicatechecked(s) ensures that the fact state
tuple s contains a fully-defined validity interval. The
fuzzy(s) predicate is true if and only ifs encodes a fully-
defined fuzzy validity interval;concrete(s) is true if and
only if s encodes a fully-defined concrete validity inter-
val. Given these predicates, we can now formally define
the notion of incremental consistency for distributed proof
systems via the predicateφinc : 2S × T × T → B as fol-
lows:
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φinc(V, ts, te) ≡ ∀s ∈ V : checked(s) (4)

∧(fuzzy(s)→
((ts ≤ s.tα) ∧ (s.tω ≤ te)))
∧(concrete(s)→

((s.tα ≤ ts ≤ s.tω) ∨
(s.tα ≤ te ≤ tω))

The predicateφinc—which is a reformulation of the
predicateφinc presented in [14]—is satisfied by a view
V during some interval[ts, te] if and only if each fact
state tuple in the view contains a fully-specified validity
interval, each fuzzy validity interval is a subinterval of
[ts, te], and each concrete validity interval overlaps[ts, te]
at some point. This gives us the following definition for
an incrementally consistent proof construction and an as-
sociated theorem.

Definition 7 (Incremental Consistency).A viewV gen-
erated between the time that a given query was issued,
tiss, and the time that the completed proof tree was re-
ceived by the issuer,trcv, is incrementally consistentif
and only ifφinc(V, tiss, trcv) is true.

Theorem 1. The Minami-Kotz distributed proof construc-
tion protocol always uses incrementally consistent views
when evaluating authorization policies.

Proof. Assume that the distributed proof construction al-
gorithm succeeds in constructing a proof tree using a view
that is not incrementally consistent. This implies that
there exists some factf that was not true at any point
during execution of the proof construction protocol. This
means that the validity status forf (which must betrue
for the proof to succeed) was contributed to the proof
treebeforethe proof construction process was started or,
equivalently, was a replayed validity status from an earlier
execution of the protocol. However, each validity status
returned by a fact provider is causally-linked to the query
executed by a querier-provided nonce (see [17]), which
prevents both the incorporation of old validity information
and replay attacks. This implies thatf was valid during
the protocol execution, which is a contradiction.

The fact that existing distributed proof construction
protocols use incrementally consistent views when mak-
ing authorization decisions is exactly what leads to the
types of safety violations discussed in Section1. This is
because incremental consistency provides no guarantees
regarding the overlap of the observed validity periods for
facts whose state is stored inV in the event thatany fact

used during the proof construction is not a stable asser-
tion. The other consistency levels defined in this section
will address this problem.

3.3.2 Query Consistency

The next more stringent level of consistency that we de-
fine is query consistency. Informally, this consistency
level guarantees that all facts used to construct a dis-
tributed proof were valid simultaneously at the time that
the query triggering that proof construction was issued.
We formally define query consistency in terms of the
predicateφquery : 2S × T → B, as follows:

φquery(V, tiss) ≡ ∀s ∈ V : concrete(s) (5)

∧(s.tα ≤ tiss ≤ s.tω)

Definition 8 (Query Consistency). A view V is query
consistentwith respect to a query issued at timetiss if
and only ifφquery(V, tiss) is true.

If an authorization policy is satisfied using a query con-
sistent view, the semantics of policy satisfaction in the dis-
tributed proof construction setting remain the same as if
the proof had been constructed using a centralized proof
framework supporting transactional evaluation (e.g., a
Prolog theorem prover). In the event that any facts nec-
essary to construct a given proof of authorization are un-
stable (i.e., their value can change once set), a view con-
sistency level that is at least as strong as query consis-
tency should be enforced to ensure that the satisfaction of
a given authorization policy carries the same meaning as
policy writers and analysts would expect it to have.

3.3.3 Interval Consistency

The most stringent consistency level that we consider in
this paper is interval consistency. We say that some view
V is interval consistent during some interval[ts, te] if each
fact state tuple inV encodes a concrete validity interval
that includes at least[ts, te]. More formally, we define
interval consistency using the predicateφinterval : 2S ×
T × T → B, as follows:

φinterval(V, ts, te) ≡ ∀s ∈ V : concrete(s) (6)

∧(s.tα ≤ ts ≤ te ≤ s.tω)

Definition 9 (Interval Consistency). A viewV is inter-
val consistentfor a time interval [ts, te] if and only if
φinterval(V, ts, te) is true.
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The above definition of interval consistency is a re-
formulation of the definition of interval consistency pre-
sented in [14], altered to fit within the formalization of
the consistency problem presented in Section3.2. In dis-
tributed proving, the notion of interval consistency is use-
ful for two primary reasons. First and foremost, inter-
val consistency is important in the event that a resource
provider wishes to monitor the conditions that lead to the
permission of a given resource access. For instance, the
hospital smart room discussed in Section1 may wish to
first check that Alice is the only person located in her
locked office before allowing her to project patient records
onto the wall and then continue to monitor these condi-
tions. If her door subsequently became unlocked, for in-
stance, access to the projector could be revoked.

At the implementation level, interval consistency can
also be useful in the event that a proof tree is constructed
that permits access to a given resource, but that view can-
not be shown to be query consistent. The fact that a proof
could be formed at all implies that it is possible that the
facts that make up the proof were valid simultaneously,
even though this could not be guaranteed from the view
used to construct the proof. If it is faster to recheck a proof
than it would be to generate the proof tree again, then this
recheck could lead to an interval consistent view during
the interval[trcv, trecheck], wheretrcv is the time that the
original proof was returned to the resource provider and
trecheck is the time at which the resource provider begins
revalidation of the proof tree. We will explore this case
further in Section4.3.

4 Algorithm Details

In this section, we discuss modifications to the Minami-
Kotz distributed proof construction algorithm that ensure
the use of consistent system views during policy evalu-
ation. As this algorithm trivially ensures that an incre-
mentally consistent view is used (by Theorem1), we will
focus our discussion on creating query and interval con-
sistent views.

4.1 Preliminaries

In this section, we will be concerned with both the correct-
ness and security properties of our proposed proof con-
struction algorithm modifications. In addition to proving
the soundness of our consistency enforcement algorithms,
we will also address their proximity toideal complete-
ness. A φ-consistency enforcement algorithm is said to be
ideally complete if and only if it is capable of constructing
φ-consistent views for all protocol executions in which

Algorithm 1 A query consistency enforcement algorithm
1: // Receive a fact response tuple relevant to a query issued at timetiss

2: // from some entitye. Only invoked ontrue facts.
3: Function RCVFACT(f ∈ F, d ∈ T, e ∈ E, tiss ∈ T, V ∈ 2S )
4: trcv ← NOW
5: if trcv − tiss ≤ d(1− δ) then
6: V.insert(ENCODE(f), e, tiss, tiss, false)
7: else
8: V.insert(ENCODE(f), e, tiss, NOW , true)
9:
10: // Check the query consistency condition on a viewV relative
11: // to a query issued at timetiss.
12: Function CHECKQUERY(V ∈ 2S , tiss ∈ T )
13: for all s ∈ V do
14: if s.fuzzy ∨ (tiss < s.tα) ∨ (s.tω < tiss) then
15: return false
16: return true

an ideal algorithm run by an omniscient entity could con-
struct aφ-consistent view [14]. Further, we will ensure
that each proposed modification is apolicy-safe modifica-
tion to the proof construction protocol. That is, we will
show that our modifications do not violate the integrity or
confidentiality policies specified by each entity.

4.2 Query Consistency

We now show that with relatively minor changes, the
Minami-Kotz distributed proof construction protocol can
be modified to use query consistent views when making
authorization decisions. As presented in [17], this proof
construction algorithm assumes that each knowledge base
KB is defined as a subset of all possible facts,F . Rather,
we will define a knowledge baseKB as a subset ofF ×
T in which each fact is associated with the local time at
which it was inserted intoKB . This allows each node to
track the duration of a given fact’s validity locally.

To leverage this new knowledge base format, the for-
mat of query responses must also be altered. Rather than
an entitye responding to some query?f with a Boolean
responseb ∈ B indicating whetherf is considered valid
by e (as in Section2), they will instead respond with a
fact response tupleof the form 〈b, d〉 ∈ B × T . The b
component of this tuple indicates whethere considersf
to be valid, as before, and thed component of this tuple
represents the length of time thate acknowledges thatf
has been true, or some duration less than this if the exact
duration of validity is considered sensitive. In the event
that f is a base atom,d is (at most) the difference be-
tween the current time and the time associated withf in
e’s knowledge base; iff is the head of a Horn clausef
:- f1, . . . , fn, thend is set to be (at most) the minimum
such duration associated with any off1, . . . , fn. In the
case thatf is false,d is set to 0. Note that neitherf nor
anyf1, . . . , fn need to be locally-stored facts.

Given the above modifications to the formats of en-
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tities’ knowledge bases and query responses, we now
present the details of Algorithm1, which facilitates the
creation of query consistent views. In Algorithm1 and
all other algorithms presented in this paper, we make the
following assumptions regarding the local data structures
accessible by entities in the system:

• The current local time is available via the local vari-
ableNOW .

• The absolute value of the maximum clock drift rate
between any two entities in the system is no more
than some constantδ. This does not imply that clocks
are in any way synchronized, only that for eachn
time units that pass one entity, no less thann(1− δ)
time units and no more thann(1 + δ) time units pass
at any other entity.

• Fact state tuples can be inserted into a view data
structure via the functioninsert : {0, 1}` × E ×
T × T × B → ⊥. Note, for instance, that
V.insert(id , e, t, t′, b) will replace any existing fact
state tuples inV that have the identifierid and were
received from entitye (see Definition5).

• The function ENCODE : F → {0, 1}` returns an en-
coding of some factf ∈ F suitable for insertion into
a view (see Definition4).

Algorithm 1 consists of two functions that are to be
used by the querying entity. Whenever the querier issues
a new query, she records the query issue timetiss and
chooses a viewV to which the results of her query are
considered relevant;V need not be a new empty view. In
the event that the response to her query istrue, Alice in-
vokes the RCVFACT function. If the fact provider attests
that the fact whose status was queried was valid for some
durationd that is longer than the time between when the
query was issued and when its response was received, this
function inserts a fact state tuple intoV asserting that the
corresponding fact was valid at timetiss. Otherwise, a
fact state tuple encoding a fuzzy interval is inserted into
V . The function CHECKQUERY checks to see thatφquery

is true, as defined by Equation5.

Theorem 2. If the functionCHECKQUERY(V, tiss) re-
turnstrue, thenV is query consistent relative to the query
issue timetiss, provided thatV was constructed using
only theRCVFACT function.

Proof. The CHECKQUERY function clearly enforces the
constraint that all fact state records encode concrete
validity intervals that include the timetiss. Thus
CHECKQUERY(V, tiss) ↔ φquery(V, tiss) and V is

query consistent with respect to the timetiss by Defini-
tion 8, provided that all concrete validity intervals estab-
lished by RCVFACT are correct. Lines5 through8 of Al-
gorithm1ensure that RCVFACT inserts a concrete validity
interval intoV if and only if the validity duration,d, re-
ported by the fact provider is longer than the query round
trip time, even when adjusted to assume the largest pos-
sible clock drift between entities. Since the query and its
associated response can be causally linked by nonces used
in the underlying proof construction protocol (see [17]),
we can infer that the fact provider sent its response to
the query at some timet ≥ tiss. This implies that the
fact associated with the state tuple being inserted intoV
was valid attiss becauset − d(1 − δ) ≤ tiss ≤ t for
all possible values oft such thattiss ≤ t ≤ trcv since
trcv − tiss ≤ d(1− δ).

Theorem 3. Algorithm1 is a policy-safe modification to
the Minami-Kotz distributed proof construction protocol.

Proof. In [17], the Minami-Kotz distributed proof con-
struction algorithm was proven to construct a proof of
authorization only if the integrity policies of every par-
ticipating entity are satisfied. Since Algorithm1 does not
alter the mechanism through with the proof construction
algorithm constructs proof trees, it does not affect the en-
forcement of any entity’s integrity policies. We now show
that Algorithm1 does not affect the enforcement of any
entity’s confidentiality policies.

In [17], the distributed proof construction algorithm
was also shown to construct proof trees only if the con-
fidentiality policies of each participating entity are satis-
fied. Recall that these confidentiality policies are enforced
by optionally encrypting query responses of formb ∈ B
using a key bound to some entitye higher up the proof tree
than the direct querying entity (see Section2.3). Since the
modified query responses of form〈b, d〉 ∈ B×T returned
by a fact provider using Algorithm1 can be encrypted in
this same manner, each entity’s confidentiality policies are
still enforced. Therefore, Algorithm1 makes only query-
safe modifications to the underlying distributed proof con-
struction protocol.

Although Algorithm1 is sound (by Theorem2), it is
not ideally complete. It could be the case that a certain
fact was valid at the time that a query was issued, even if
the validity duration reported by the fact provider is less
than the query round-trip time; this is an inevitable con-
sequence of the use of casual orderings rather than syn-
chronized clocks. Although not a violation of ideal com-
pleteness, this algorithm can also fail in the event that the
validity of some fact is not monitored until the first query
regarding this fact is issued. Both of these cases make it
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desirable to have an efficient means of revalidating a given
view, as it is likely to be found consistent if rechecked.
This leads directly to the stronger notion of interval con-
sistency.

4.3 Interval Consistency

Establishing an interval consistent view typically involves
observing that the validity statuses of the facts comprising
the view do not change or fluctuate during the course of
several observations of portions of the system [14]. In the
distributing proving setting, one cannot simply construct
a given proof twice to establish an interval of validity, as
there would be no guarantee that the values of facts did not
fluctuate between proofs or even that the same proof tree
was generated for each query.1 The requery method can
succeed, however, if we leverage caches at intermediate
nodes to ensure that the same proof tree is constructed at
each invocation and that fluctuations can be detected (via
cache misses caused by proactive revocations). The inter-
mediate node caches proposed in [18] could be modified
to suit this purpose.

Although this modified requery strategy for ensuring
interval consistent views is appealing due to its simplic-
ity, it is in fact a worst-case strategy for a number of rea-
sons. First, this strategy requires excessive storage of data
at intermediate nodes which is undesirable if nodes wish
to remain autonomous. Second, the requery strategy re-
quires that the entire proof tree be traversed twice, even
though only the values managed by the leaves of the proof
tree are of any significance to whether the proof succeeds;
this results in high communication overheads. Lastly, due
to reliance on intermediate node caches, a failure ofany
node contributing to the proof tree can cause the revalida-
tion process to fail.

A perhaps more optimal strategy would be to alter the
proof construction protocol in such a way as that the
querying entity would learn not only whether a proof suc-
ceeded, but also a set ofassociation tuples, each of which
binds the identity of some leaf entitye in the proof tree to
a fact identifier that can be used to recheck the status of
the fact provided bye. This strategy eliminates the need
for intermediate node caches, incurs the lowest possible
overall communication overheads during a proof recheck,
and fails only if a data-providing entity fails. Even though
this leaf exposure strategy is optimal in many respects, it
can potentially violate the confidentiality policies of the
leaf entities.

1Recall that the portions of the proof tree outside of the querier’s
integrity policies are unknown to the querier; these portions of the proof
tree may differ between invocations and go undetected.

In an attempt to balance the efficiency of the leaf expo-
sure strategy with the privacy preservation of the requery
strategy, we propose theleaf indirection strategyfor con-
structing interval consistent views. As was the case with
the query enforcement strategy presented in Section4.2,
we require slight modifications to formats of the entities’
knowledge bases and query responses.2 We will define a
knowledge baseKB as a subset ofF × {0, 1}` in which
facts are associated with some locally-unique identifier. It
is important that each time a fact is inserted into a knowl-
edge base, it is associated with a previously-unused lo-
cal identifier in{0, 1}`. Further, an entitye will respond
to a query of the form?f with a response tuple of the
form 〈b, (〈e′, id〉)Kq

〉 ∈ B × {0, 1}n. Theb component
of this tuple indicates whethere considersf to be valid,
as in the unmodified proof system. Thee′ and id com-
ponents of this tuple form an association tuple from the
setE × {0, 1}`, as described above, though this associ-
ation tuple is encrypted with the public key of the orig-
inal querying entity,q. As in the leaf exposure strategy,
e may choose to bind herself to the proof tree, in which
casee′ = e and id is set to the identifier currently as-
sociated withf in e’s knowledge base. However,e can
instead choose a trustedindirect entity, ie, at random, ob-
tain a noncen from ie, and bindie to the proof tree by
settinge′ = ie and id = n. Each indirect entity main-
tains a smallremote cachethat associates locally-chosen
nonces with〈entity, fact identifier〉 pairs to facilitate the
proof recheck process.

The leaf-indirection strategy for constructing interval
consistent views is implemented by Algorithm2. Prior
to explaining this algorithm in detail, we first assume that
entities have access to the following local data structures
and methods, in addition to those required in Section4.2:

• Each entity maintains a set of locally-trusted indirect
entities,Indirect .

• The symbol←r denotes random assignment from
some set. For example,e ←r Indirect chooses a
random member from the set of trusted indirect enti-
ties.

• An entity’s node identifier can be accessed via the
local variableME .

• The function GETFRESHNONCE: ⊥ → {0, 1}`
chooses a previously unused identifier to be associ-
ated with some fact or fact provider.

2Although the modifications required for the leaf indirection strategy
are presented independently of the modifications required for query con-
sistency, this need not be the case. In practice, both sets of modifications
can be used together to allow for the creation of either query or interval
consistent views.
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Algorithm 2 An interval consistency enforcement algo-
rithm
1: // Generate an association tuple for the fact associated with identifierid
2: // to be sent to the initial querying entityq
3: Function GENERATEASSOCIATION(id ∈ {0, 1}`, q ∈ E)
4: if q not authorized to learn fact associated withid then
5: e←r Indirect
6: id′ ← INSERTREMOTE(e, id)
7: return 〈e, id′〉
8: else
9: return 〈ME , id〉
10:
11: // Accepts an entry to theRemoteCache table after
12: // entitye calls INSERTREMOTE

13: Function INSERTASSOCIATION(e ∈ E, id ∈ {0, 1}`)
14: id′ ← GETFRESHNONCE()
15: RemoteCache.insert(id′, e, id)
16: return id′

17:
18: // Insert a fact state tuple associated with the association record〈e, id〉
19: // bound to a query issued at timetiss into the viewV .
20: Function RCVASSOC(〈e, id〉 ∈ E × {0, 1}`, tiss ∈ T, V ∈ 2S)
21: V .insert(id, e, tiss, NOW , true)
22:
23: // Recheck the fact tuples making up a viewV
24: Function RECHECKV IEW(V ∈ 2S )
25: for all s ∈ V do
26: t← NOW
27: if ASKREMOTE(s.id, s.e) then
28: if s.fuzzy then
29: V.insert(s.id, s.e, s.tω, t, false)
30: else
31: V.insert(s.id, s.e, s.tα, t, false)
32:
33: // Revalidate the fact identified byid
34: Function RECHECKFACT(id ∈ {0, 1}`)
35: if KB.contains(id) then
36: return true
37: if RemoteCache.contains(id) then
38: 〈e, id′〉 ← RemoteCache.lookup(id)
39: b← ASKREMOTE(e, id′)
40: if ¬b then
41: RemoteCache.delete(id)
42: return b
43: else
44: return false
45:
46: // Check the interval consistency condition on a viewV relative
47: // to the time interval[ts, te]

48: Function CHECKINTERVAL(V ∈ 2S , ts ∈ T, te ∈ T )
49: for all s ∈ V do
50: if s.fuzzy ∨ (ts < s.tα) ∨ (s.tω < te) then
51: return false
52: return true

• The local knowledge base is accessible via the
data structureKB . The functionKB .contains :
{0, 1}` → B checks whether the fact associated with
a given identifier is currently in the local knowledge
base.

• An entity’s remote cache is accessible via the
RemoteCache data structure. This data structure has
member functionsinsert : {0, 1}` × E × {0, 1}` →
⊥, contains : {0, 1}` → B, lookup : {0, 1}` →
E × {0, 1}`, anddelete : {0, 1}` → ⊥.

Algorithm 2 works as follows. An entity contributing
a base fact to some proof tree invokes the GENERATE-

ASSOCIATION function to generate the association tuple
that will be propagated back up the proof tree to the ini-
tial querier. If the entityq for whom this association tuple
is being prepared is authorized by the local entity’s confi-
dentiality policies to learn the value of the fact associated
with id , this function binds the local entity to the provided
fact identifier. If q is not authorized to learn of the lo-
cal entity’s involvement in the proof process, a randomly-
chosen trusted indirect entity is bound to the proof tree via
a call to the INSERTREMOTE(e, id) function. This func-
tion triggers the execution of the INSERTASSOCIATION

function at the entitye; INSERTASSOCIATION chooses a
fresh nonce and binds this to the pair〈e′, id〉, wheree′ is
the entity who called INSERTREMOTE(e, id). The nonce
is then returned to the entitye′. The initial querier thus
receives both the proof tree constructed by the algorithm
discussed in Section2 and a list of association tuples bind-
ing either leaf entities or indirect leaf entities to the proof
tree. Each of these association tuples is used to construct
fact state tuples in some viewV by using the RCVASSOC

function.
The initial querier can then attempt to establish an in-

terval of consistency through one or more calls to the
RECHECKV IEW(V ) function. For each fact state tuple
s ∈ V , this function uses the ASKREMOTE function to
query the remote entitys.e to see if the fact associated
with s.id is still valid. If the fact associated withs is still
valid, then the validity interval ins is updated. Fuzzy
validity intervals are turned into concrete validity inter-
vals ranging from the end of the fuzzy interval until the
time that the recheck was invoked; concrete validity in-
tervals are just extended. The ASKREMOTE(id , e) func-
tion works by invoking the RECHECKFACT(id) function
at the entitye. This function returnstrue if the fact as-
sociated withid is still in e’s local knowledge base or
in the knowledge base of the entity associated with the
nonceid in e’s remote cache, and returnsfalse other-
wise. The function CHECKINTERVAL(V ) checks to see
thatφinterval(V ) holds, as defined by Equation6.

Theorem 4. If the functionCHECKINTERVAL(V, ts, te)
returnstrue, thenV is interval consistent on the interval
[ts, te] provided thatV was constructed using only calls
to theRCVASSOCandRECHECKV IEW functions.

Proof. The CHECKINTERVAL(V, ts, te) function en-
forces the constraint that all fact state tuples inV encode
concrete validity intervals that include at least the inter-
val [ts, te]. Therefore, CHECKINTERVAL(V, ts, te) ↔
φinterval(V, ts, te) which implies that V is interval
consistent on the interval[ts, te] by Definition 9,
provided that all concrete validity intervals estab-
lished by RCVASSOC and RECHECKV IEW are correct.
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RCVASSOC(〈e, id〉, tiss) inserts a fuzzy validity interval
bounded by the query issue time,tiss, and the association
tuple receipt time for the factf described by identifierid .
This is a legitimate action, as nonces used by the under-
lying proof construction protocol (see [17]) allow us to
causally link the query and its response and therefore es-
tablish that the fact provider assertedf ’s validity at some
time t ≥ tiss. We must now show that RECHECKV IEW

updates these fuzzy intervals correctly.

Assuming that the ASKREMOTE function correctly de-
termines whether a given fact is still true at the pro-
viding entity, RECHECKV IEW extends the validity inter-
val for each fact state tuple whose corresponding fact is
still valid. Assume that the recheck process for a fact
state tuples corresponding to some factf starts when
NOW = tr and succeeds. Ifs encodes the fuzzy validity
interval [s.tα, s.tω], s is updated to encode the concrete
validity interval [s.tω, tr], sincef was true at some time
t ≤ s.tω and was not yet revoked at some later timet′ ≥
tr. If s encodes a concrete validity interval[s.tα, s.tω],
it is extended to encode the concrete validity interval
[s.tα, tr]. We now show that RECHECKFACT(id)—which
is invoked at entitye by the call ASKREMOTE(id , e)—
correctly assesses the validity of the fact associated with
the identifierid .

We must consider both the case in which the factf
associated with the identifierid was originally stored
in e’s local knowledge base and the case in whichid
was an entry ine’s remote cache. In the case wheref
was stored ine’s local knowledge base, line35 of Algo-
rithm 2 returnstrue if e’s knowledge base still contains
the factf associated withid ; we know thatf has not
yet been revoked because the GETFRESHNONCE func-
tion ensures that fact identifiers are not reused. Iff has
since been removed frome’s knowledge base, then the
call to KB .contains(id) will fail. The check on line37
will then fail because the state tuple associated withid
was originally stored locally and thus would not be asso-
ciated by GETFRESHNONCE with an entry ine’s remote
cache. This failure would then cause RECHECKFACT to
returnfalse, which implies that RECHECKFACT performs
correctly in the case in which the factf associated with
identifier id was originally stored ine’s local knowledge
base.

We now consider the case in whichid was originally
associated with an entry ine’s remote cache. Line38first
determines the tuple〈e′, id ′〉 associated with the identi-
fier id in e’s remote cache. If this lookup fails, we know
that the fact that was indirectly associated with the iden-
tifier id has been revoked, as entries ine’s remote cache
are only removed after failed lookups (by line41). By rea-

soning similar to that used above, the call to ASKREMOTE

on line39will cause RECHECKFACT to returntrue in the
event that the factf ′ associated withid ′ in e′’s knowledge
base has not yet been revoked. Again, we know that this
is not a false positive, as GETFRESHNONCE ensures that
fact identifiers are used at most once. Iff ′ has been re-
moved frome′’s knowledge base, but not frome’s remote
cache, this call to ASKREMOTE will return false. This
will cause the entry associated withid to be removed from
e’s remote cache; RECHECKFACT will then returnfalse,
as expected.

The fact that RECHECKFACT behaves as expected im-
plies that ASKREMOTE correctly assesses the contin-
uing validity of remotely store facts. This, in turn,
implies that RECHECKV IEW correctly updates the va-
lidity intervals encoded in the fact state tuples of a
given view initially constructed by one or more calls
to the RCVASSOC function. Since views can be
correctly constructed by calls to the RCVASSOC and
RECHECKV IEW functions and we have shown that
CHECKINTERVAL(V, ts, te) ↔ φinterval(V, ts, te), we
can conclude that CHECKINTERVAL(V, ts, te) returns
true if and only ifV is interval consistent on the interval
[ts, te].

Note that although Algorithm2 is shown to be sound
by Theorem4, it is not ideally complete. That is, an om-
niscient entity may have been able to observe an interval
consistent view even if Algorithm2 fails. This can occur
because the set of rechecks initiated after the timete takes
a non-zero amount of time to complete. As with the com-
pleteness limitations discussed in Section4.2, this is an
artifact of relying on causal orderings to establish validity
intervals, rather than perfectly synchronized clocks. We
now show that Algorithm2 is a policy-safe modification
to the underlying distributed proof construction protocol.

Theorem 5. Algorithm2 is a policy-safe modification to
the Minami-Kotz distributed proof construction protocol.

Proof. As was the case with Algorithm1, Algorithm 2
does not affect the construction of distributed proof trees.
Therefore, the proof given in [17] stating that proof trees
are constructed only if the integrity policies specified by
each participating entity are respected still holds. We
must now show that the confidentiality policies specified
by each entity are still respected. To this end, we must
show that no unauthorized entity along the path from the
querierq to some fact providere can learn both the fact
f provided bye andf ’s validity as reported bye. To ad-
dress the most general case, we will assume that learning
e’s identity is sufficient for an unauthorized entity to infer
f . We then show that (i) each entity participating in the
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construction of the proof tree that is not entitled to know
f cannot learne’s identity, and (ii) entities that do knowf
but should not learnf ’s validity cannot infer it.

We first treat case (i) and show that each unauthorized
entity u in the proof tree that should not learnf does not
learne’s identity. There are two sub-cases:u = q and
u 6= q. Consider the case whereu is anintermediate entity
in the proof tree; that is,u 6= q. In this case,u cannot learn
e’s identity, as the association tuple that might possibly
bind e to the proof tree is encrypted withq’s public key,
Kq. In the case thatu = q, we must show thatu cannot
learne’s identity. In this case,q receives an association
tuple binding an indirect entityie to the fact provided by
e. Sinceie is trusted bye not to reveale’s identity, q
cannot learn the identity ofe and thus cannot infer the
hidden factf provided bye.

Note that case (ii) is handled by the encryption of sensi-
tive query responses as described in Section2.3. Since the
incorporation of association tuples into query responses
does not affect this encryption process, the proof construc-
tion algorithm will correctly enforce the confidentiality
of responses as proven in [17]. As we have shown that
each entity that should not learn the factf provided bye
cannot learnf and that entities that should not learnf ’s
validity cannot learn it, we can conclude thate’s confi-
dentiality policies are correctly enforced. Since bothe’s
confidentiality policies and integrity policies are correctly
enforced, we can conclude that Algorithm2 is a policy-
safe modification to the underlying proof system.

Although Algorithm2 is a policy-safe modification to
the Minami-Kotz distributed proof construction frame-
work, it does nonetheless reveal additional information to
the initial querying entityq. Specifically, in addition to
knowing the portion of the initial proof tree specified by
its integrity policies,q learns a list of association tuples
declaring certain entities to be (possibly indirect) contrib-
utors of atomic facts to the proof tree. We now prove that
this list of association tuples gives theq only minimal in-
formation regarding the structure of the generated proof
tree beyond what is implied by its integrity policies.

Theorem 6. Given the set of association tuplesA =
{〈e1, n1〉, . . . , 〈ei, ni〉} associated with a given proof
tree, the initial querierq learns only the number of enti-
ties contributing facts to the proof tree, and in some cases,
whether the proof tree extends beyond the proof tree im-
plied by their integrity policies.

Proof. Assume without loss of generality that each entity
involved in the construction of a distributed proof makes
at most one inference step. Let the setE contain the leaf
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Figure 5: A diagram illustrating several possible proof
tree structures. Inference nodes are represented by
squares and fact leaves are represented by circles. The
dashed lines indicate the expected leaves of the proof tree
as perceived by the querier.

entities implied byq’s integrity policies, henceforth called
the set ofexpected leavesof the proof tree. To prove
this claim, we must explore two cases:|E| = |A|, and
|E| < |A|. If |E| = |A|, we know that each expected leaf
nodee ∈ E is either a fact provider or the initiator of a
chain of inference forming a linear subproof whose leaf
provides a fact to the proof generated byq’s query. Ife is
mentioned explicitly in an association tuplea ∈ A, then
q cannot conclude whethere contributed directly to the
proof tree or was chosen as an indirect entity for the actual
leaf,e′, of the linear subproof initiated bye. These two in-
distinguishable sub-cases are shown in Figure5 parts (1)
and (2). Note that in Figure5, each inference nodeIk is
associated with a unique entityek by our prior assump-
tion. If e is not explicitly mentioned in any association
tuple inA, thenq cannot differentiate between the case
in which e contributed a fact to the proof tree via an in-
direct entity and the case in whiche initiated a chain of
inference resulting in a linear subproof.

If |E| < |A|, then q knows that the proof tree cer-
tainly extends beyond the proof tree implied by her in-
tegrity policies and that at least onee ∈ E initiated a
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subproof contributing multiple facts to the proof. In the
event that|E| > 1, q cannot infer which entity or enti-
ties inE initiated subproofs contributing multiple facts to
the proof, as the set of association tuplesA encodes no
structural information. If|E| = 1, thenq clearly knows
that the onlye ∈ E initiated a subproof contributing mul-
tiple facts to the proof tree. However,q cannot differ-
entiate between linear and branching chains of inference,
again, as no structural information is encoded in the setA.
This case is illustrated in Figure5 parts (3) and (4). This
shows thatq learns no information beyond the number of
facts used in the proof tree and whether, in some cases,
the proof tree extends beyond the expected leaves of the
proof tree.

5 Evaluation

In this section, we measure the performance impact of
our consistency enforcement algorithms. The environ-
ment in which we ran our tests consisted of a 25 node
cluster connected with 100Mbit Ethernet. Each node has
a 3.2GHz Intel Pentium D 940 dual-core processor and
2GB RAM, and runs RedHat Linux AS 4 and Sun Mi-
crosystem’s Java runtime (v1.4.2). Our system has ap-
proximately 12,500 lines of Java code, of which about
600 lines represent extensions to the core implementation
of the proof construction system described in [18]. We
used the Java Cryptographic Extension (JCE) framework
to implement RSA and Triple-DES (TDES) cryptographic
operations. A 1024-bit public key whose public exponent
is fixed to 65537 was used in all of our experiments and
the RSA signing operation used MD5 [21] to compute the
hash value for each message to be signed. We used Outer-
CBC TDES in EDE mode [12] to perform symmetric key
operations. The length of our DES keys was 192 bits, and
the padding operation in TDES operations conforms to
RFC 1423 [5].

During our experiments, we measured the latency of
constructing distributed proof trees using two different
strategies to ensure interval consistency. These experi-
ments utilized 25 servers, each of which was run by a
different principal. Each query issued during our exper-
iments was of the form?grant(P,R) whereP is a prin-
cipal andR is a resource. The body of each rule in any
knowledge base is of the forma0(c0), . . . , an−1(cn−1)
where eachai is a predicate symbol and eachci is a con-
stant. Our experiments attempted to create proof trees
containing up to 35 nodes. We believe that proof trees of
this size are significantly larger than would be required in
most applications, thus, our results should provide guide-
lines about the worst-case latency for a wide array of prac-
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Figure 6: Latency for handling queries.

tical applications. Authorization, confidentiality, and in-
tegrity policies were generated for each of these principals
automatically and in such a fashion as to ensure that valid
proof trees of the appropriate size could be constructed.
For each size of proof tree analyzed during these experi-
ments, measurements were taken during the construction
of ten different proof trees of varying internal structure.

Figure6 compares the query-handling latencies of three
different proof construction algorithms; each data point
is an average of 50 runs (5 runs for each of the 10 dif-
ferent proof trees generated per proof size). Theproof
constructioncurve illustrates the cost of generating the
proof tree corresponding to some initial query. Note that
unless Algorithm1 is used, no guarantees about the con-
sistency level of the view used to construct these proof
trees can be made. Theleaf exposurecurve illustrates
the cost of using the leaf exposure strategy to guarantee
that proofs are generated using interval consistent views.
In this case, the identities of all leaf nodes in the system
are forwarded to the initial querier, who can then recheck
the validity of each base fact directly. Recall from Sec-
tion 4.3 that, in many ways, this scenario represents a
time-optimal strategy for constructing interval consistent
views. Theleaf indirectioncurve represents the cost of
ensuring that proofs are generated using interval consis-
tent views through the use of the leaf indirection strategy
described in Algorithm2.

Figure 6 shows that these two strategies for enforc-
ing the use of interval consistent views cost little more
than generating the initial distributed proof. Specifically,
the leaf exposure strategy takes only about 10–15% more
time than generating the initial proof tree, while the leaf
indirection strategy takes only 25–30% more time than
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generating the initial proof tree. These results confirm
our earlier conjecture that the leaf indirection strategy is
a close approximation of the time-optimal leaf exposure
strategy. The leaf indirection strategy is also vastly more
efficient than the naive requery strategy which, by def-
inition, would require 100% more time than generating
the initial proof tree. Although these results depend on
our specific implementations of the distributed proof con-
struction and consistency enforcement algorithms, it is
still interesting to note that it is possible to recheck proofs
muchfaster than they can be constructed; this may lead to
the design of more efficient distributed proof engines in
the future. These efficiency results combined with Theo-
rems5 and6 firmly establish the leaf indirection strategy
(as implemented by Algorithm2) as a low-cost, privacy-
preserving method for ensuring the use of interval consis-
tent views during the construction and evaluation of dis-
tributed proofs.

6 Related Work

The problem of sampling consistent system views dur-
ing decentralized authorization protocols was first stud-
ied in [14]. This work focused on certificate-based autho-
rization protocols in which the entity enforcing a given
policy was assumed to have access to all certificates used
during the policy satisfaction process (e.g., [6, 7, 8, 15,
23, 24, 25]). The solutions to the view consistency prob-
lem presented in [14] leveraged the semantics of certifi-
cate issuance and revocation to build consistent views
based on particular orderings of online certificate valid-
ity checks; these checks are facilitated through protocols
such as OCSP [19] and COCA [26]. We extend these pre-
vious results by demonstrating that lightweight view con-
sistency enforcement schemes can also be designed for
more general decentralized authorization frameworks in
which (i) portions of a proof tree may be hidden from
the policy evaluator and (ii) simple assertions authenti-
cated with digital signatures or keyed HMACs are used
as proof atoms, rather than CA-issued certificates. These
more general authorization frameworks are likely candi-
dates for use in pervasive computing systems and sensor
networks.

The Antigone Context Framework (ACF) provides a
general-purpose framework for incorporating contextual
data into authorization policy enforcement systems [16].
ACF allows policy writers to incorporate contextual as-
sertions into policies without requiring that the policy lan-
guage include support for obtaining this data from the ex-
ternal world. Users of the ACF can write plug-ins for the
framework that obtain this contextual information, which

can then be accessed as policies are evaluated. These
plug-ins could be used to enforce consistency constrains
such as those discussed in this paper, although it is un-
clear how one would enforce consistency constraints that
depend onall contextual facts used in a given policy. By
contrast, we show several ways in which the underlying
proof system can be used to enforce these types of con-
straints without requiring any involvement by policy writ-
ers.

Concurrency control and consistency enforcement in
distributed systems [22], distributed databases [9], and
distributed shared memory [1] is another area of closely
related work. In general, solutions to the consistency
problem in these domains assume that multiple entities
will be updating values stored at multiple locations within
the system and as such, maintaining data consistency is
of concern to everyone. Therefore, the solutions pre-
sented typically involve the cooperation of multiple enti-
ties, as every entity has incentive to cooperate. However,
in distributed authorization protocols, there is very little
incentive for each autonomous entity participating in the
proof construction to take part in complicated consistency
preservation protocols, as the consistency of a particular
view is only of concern to the policy evaluator. There-
fore, the solutions developed in the distributed systems,
distributed databases, and distributed shared memory lit-
erature are not suitable for our problem domain; the solu-
tions that we develop in this paper require only the cooper-
ation of a minimal number of participants in the protocol.

A final area of related work is the collection of system
state snapshots in distributed systems. Collecting consis-
tent snapshots that can be used to evaluate stable predi-
cates over the system state is a well-known problem, to
which a solution is presented in [10]. Unfortunately, the
unstable nature of fact statuses prevents the use of this al-
gorithm for solving the view consistency problem. There
exist algorithms for collecting distributed state snapshots
that can be used to evaluate unstable predicates (for a sur-
vey, see [3]), though these algorithms have very high over-
heads and make unreasonable assumptions about process
cooperation for our problem domain.

7 Conclusions and Future Work

In this paper, we explored the problem of enforcing con-
sistency constraints on the system views used during pol-
icy evaluation in an authorization system based on dis-
tributed proof construction. In particular, we focused on
enabling the use of consistent system views when eval-
uating policies within the proof construction framework
presented in [17]. This framework complicates the view
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consistency problem, as the confidentiality and integrity
policies declared by entities in the system may render the
full details of a given proof tree unavailable to the initial
querier. Further, simple signed assertions are used as facts
in the system, rather than CA-issued certificates.

Within this framework, we formally defined the view
consistency problem and several important levels of view
consistency. We then presented efficient algorithms for
enforcing two interesting levels of view consistency,
proved the soundness of each algorithm, commented on
the proximity of these algorithms to ideal completeness,
and proved that both algorithms represent policy-safe
modifications to the underlying proof system. That is, nei-
ther algorithm has any effect on the proper enforcement
of confidentiality or integrity policies defined by entities
in the system. We then quantitatively evaluated the im-
pact of these algorithms on an implementation the proof
system presented in [17]; this impact was found to be min-
imal. Our solutions generalize previous work on the view
consistency problem, which assumed that all assertions
used during the proof construction process were encoded
in CA-issued certificates and that each assertion used dur-
ing the protocol was available to the policy evaluator for
inspection [14].

One interesting area of future work involves the design
of domain-specific view consistency levels. For instance,
in pervasive computing environments with rapid contex-
tual changes, the notion of interval consistency defined in
this paper may be too strong, as fact validity may fluctu-
ate often around some acceptable baseline; this could lead
to situations in which views were repeatedly determined
to be inconsistent and cause numerous service interrup-
tions (e.g., consider a policy that is in some way pred-
icated on the number of occupants in a busy hallway).
Rather than falling back on the notion of query consis-
tency, which provides no continuing validity checks, enti-
ties may wish to enforce a level of view consistency that
provides guarantees somewhere between what is afforded
by the query and interval consistency levels. For instance,
a service provider might wish to enforce the constraint
that at each timet, all facts used to justify resource access
must have been simultaneously valid at some timet′ such
that t − ∆ ≤ t′ ≤ t, where∆ is the length of a sliding
window defined by the service provider. In other cases,
an entity may wish to enforce different consistency con-
straints on different portions of a proof tree. Identifying
these types of consistency levels and designing efficient
algorithms to enforce their constraints while still respect-
ing each node’s autonomy could prove to be an interesting
challenge. A related area of future work entails investigat-
ing methods for rapidly reevaluating policies or attempt-

ing alternate means of policy satisfaction in the event that
certain view consistency constraints are not met, as time-
liness is an important consideration for most authorization
systems.
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