
New Directions for Hardware-assisted

Trusted Computing Policies

(Position Paper)

Sergey Bratus · Michael E. Locasto ·
Ashwin Ramaswamy · Sean W. Smith

Dartmouth College
Hanover, New Hampshire

August 27, 2008

Abstract

The basic technological building blocks of the TCG architecture
seem to be stabilizing. As a result, we believe that the focus of the
Trusted Computing (TC) discipline must naturally shift from the de-
sign and implementation of the hardware root of trust (and the sub-
sequent trust chain) to the higher-level application policies. Such poli-
cies must build on these primitives to express new sets of security
goals. We highlight the relationship between enforcing these types
of policies and debugging, since both activities establish the link be-
tween expected and actual application behavior. We argue that this
new class of policies better fits developers’ mental models of expected
application behaviors, and we suggest a hardware design direction for
enabling the efficient interpretation of such policies.

1 Introduction

There exists an important design specification and engineering gap to fill
before researchers and practitioners can flesh out and experiment with ac-
tual policies. Arguably, this gap represents the greatest current challenge

1



facing TC as a discipline. The gap exists between the hardware elements
of the TCG architecture and meaningful policy specifications (specifically,
the type and structure of the event stream that such policies operate on).
The engineering uncertainly created by this gap has served, in our opinion,
as one of the factors that has stymied the development and acceptance1 of
TC platforms. The gap results from an under-specification; the presence of
this uncertainty discourages development of higher layer solutions precisely
because such solutions have nothing on which to rely.

We claim that the essence of this gap is expressed in the lack of a common
specification for both the system of events that TC-based policies need to
monitor as well as how the event handlers for such policy systems would co-
operate with the basic TCG architecture elements (which are, by definition,
passive, and should remain so2). To close or reduce this gap, we believe
it might be advisable to revisit and enhance the parts of the TC hardware
specification that deal with the post-boot life of TC applications.

The ultimate goal of Trusted Computing is to produce development plat-
forms and environments for more trustworthy software. Notably, Trusted
Computing promises to offer new kinds of security primitives and trust poli-
cies. In contrast, other existing protection initiatives aim to harden software
against known classes of exploits and thus to restore trust into existing devel-
opment models and security primitives3. Consequently, an implicit require-
ment for TC’s success is that the policies we discuss must be flexible and easy
to write, adapt, and maintain. Indeed, the transition from the TCG archi-
tecture fundamentals to high-level policy primitives usable by programmers
and administrators proves to be the core significant challenge we highlight.

This challenge has not gone unaddressed. For example, a substantial
amount of effort has gone into making TC-based architectures more flexible
and expressive, through use of virtualization, on-demand creation of trusted
compartments, etc. [BCG+06, HCF04, SPvD05, SZJvD04]. The gist of this

1We refer to developer acceptance of TCG as a useful engineering platform rather than
acceptance of TCG as a technology by the broader public. In the latter case, concerns
over draconian DRM schemes and Big Brother present obstacles beyond the technical ones
we address in this paper.

2For the discussion of this requirement see [Pro05].
3For example, address space randomization and stack integrity protections do not pre-

vent developers from accidentally creating buffer and heap overrun conditions. Instead,
they just make these vulnerabilities much lower exploitation risks. Thus, the applications’
own security checks (rendered useless by these classes of exploits) once again become
relevant.

2



research is to transform the rather inflexible (but the only known effective)
way of measuring software by hash digest into more flexible security policy
primitives and frameworks. However, we recognize the fundamental problem
as a much broader one, to which virtualization and compartmentalization
are only partial solutions.

We point to [AAH+07] as an excellent example illustrating the problem of
bridging the gap between low-level security primitives as provided by hard-
ware and the OS and the desired application-level security properties such as
decision continuity and attribute mutability. In this example, taken from the
healthcare domain, Agreiter et al. highlight the importance of enforcing an
access control policy throughout the lifetime of an application process and
the ability to change its access privileges based on its observed behavior to
date. Their policy implementation mechanism leverages the SELinux MAC
to restrict privileged information access to the single process that interprets
a dynamic model-based policy and grants or denies access to all other pro-
cesses, acting, in effect, as a userland “reference monitor”, and holding all
the logic and state information needed to enforce a dynamic policy. We
note the two general design aspects that will be highlighted in our later dis-
cussion: (1) reliance on an OS mediation mechanism4 for the applications’
trustworthiness-related access operations and (2) the placement of the policy
logic and the corresponding applications state data.

Another example of dynamic runtime enforcement can be found in [BS05].
Again, the policy mechanism’s design is driven by the analysis of system
events that have the potential of changing the system’s trustworthiness.

In this position paper we consider the problem of engineering security
primitives and enforcement mechanisms from several unusual angles, and at-
tempt to distill the qualities that are shared by primitives and mechanisms
that proved successful and attracted a substantial following among develop-
ers.

In particular, we relate the well-known definition of trust in a comput-
ing system as relying on the system to behave as expected to the common
and familiar developer experience of debugging software to link its expected
behavior to its actual behavior.

We argue that developers’ knowledge of their program’s expected be-
haviors, and, more importantly, of behaviors that they trust to never occur

4The Linux Security Modules (LSM) system that underlies SELinux’s syscall hooks.

3



while the system remains trustworthy, is a great and mostly untapped source
of meaningful application policies. We believe that allowing developers to
express this knowledge in policies will help close the above mentioned engi-
neering gap.

We suggest that in order to tap into this resource, future additions to
the TCG architecture should provide developers with ways to express policy
conditions similar to those used by advanced debugging tools, such as DTrace
and its extensions. These conditions, of course, will need to be efficiently
monitored and enforced without ruining performance; we speculate on how
an appropriate enforcement mechanism can be achieved with some extra
hardware’s help.

2 Policy Engineering

This issue of policy engineering presents a clear and non-trivial challenge to
systems designers who aim to produce strong and usable security primitives
for the use of application developers.

The discipline of software engineering has developed arguments explaining
why some design and programming practices endure better than others. More
importantly, software engineering has developed practices and tools to make
it easier for programmers to produce, debug, analyze, and modify software
aimed at non-trivial objectives.

By contrast, there is yet hardly any comparable analysis to explain why
some proposed security primitives have much better adoption records than
others, let alone tools capable of handling comparably complex behaviors.
We attempted to present an instance of such analysis comparing SELinux
and virtualization-based policy solutions [BFMS07]. We apply similar anal-
ysis [BDSS08] to address the TOCTOU problem in the TCG architecture.

We note that the challenge faced by proponents of novel software engi-
neering primitives is the same as that facing designers of new security prim-
itives: both require adoption by a wider community of developers who must
find the proposed semantics natural and only a minor burden compared to
developers’ current practices.

In particular, we make the following historical observations with regard
to security policy mechanisms. We regard them as fundamental to policy en-
gineering, in much the same way as desirability of code reuse, encapsulation,
polymorphism, etc., are fundamental observations that lead to maturation

4



of the object-oriented programming paradigm in software engineering.

1. Policy design is event-centric. Defining a manageable set of events
for the policy mechanism to monitor and control is crucial to engineer-
ing usable and effective policies, because it ultimately determines which
security goals can and cannot be easily expressed in the policies.

2. Context precision is critical to the processing of event streams.
The common trait of successful policy mechanisms is to limit the amount
of information that needs to be processed at its event-based decision
points to just that relevant to the security goal, and no other. Having
to deal with too many pieces of information weighs heavily on devel-
opers, because, instead of additional flexibility, it likely translates to
having to classify all the combinations of their values as either conform-
ing to or contravening the policy goals, which is serves as a deterrent
to adopting the policy mechanism in question.5

3. A little semantic annotation goes a long way when supported
by OS and hardware. Significant practical advances in improving
trustworthiness of software followed from a combination of a new lower-
level security primitive (e.g., a new OS kernel system call or hardware
trapping capability) and a small additional amount of code annotation
by programmers. This annotation expressed some semantic security-
related properties of resulting binary code or data objects (e.g., “after
this point the process no longer needs these elevated privileges”, or “this
data is not supposed to change within the lifetime of this process” or
even – on the ABI level – “this area of memory does not contain any
executable code”), and was automatically translated to binary code or
data representation by the compiler toolchain.

4. Strength through cross-layer amalgamation. The actual machine
execution of the program’s logical flow becomes a combination of hard-
coded fast immutable logic performing the bulk of the necessary event-
handling tasks and of program code modified to seamlessly integrate
with it. For example, with the introduction of virtual address transla-
tion this flow includes a sizeable component of logic performed inside

5SELinux’s strict policies that require the system administrator to classify an ever-
increasing amount of program’s file accesses are an example of such quandary.

5



the MMU. The use of x86 segmentation in the Linux kernel strength-
ening patches such as OpenWall and PaX provides another example. A
novel, effective event system usually introduces an extra computational
load on the system; however, most of it can be offset by conceptually
simple hardware changes of manageable complexity.

We note that the TCG specification concentrates primarily on load-time
static software measurements as a means of ensuring the trustworthiness of
a process. Consequently, it needs to be complemented by a mechanism that
intercepts and mediates such transitions in the running program’s state that
can render it untrustworthy.

We call such transitions trust events and note that, rather than being ar-
bitrary asynchronous OS-level events or system calls, they should be defined
for each application as changes in its state that the developer “trusts will
not happen” when designing the logic that protects the applications most
valuable and sensitive information, its “crown jewels”. Such assumptions
about the application’s and environment’s behavior may include pure user-
land events not mediated by the syscall mechanism, such as writes to or even
reads from certain data objects.

It should also be noted that not all OS-level events necessarily have the
same impact on the application’s trustworthiness, and thus mediating them
is not equally important for ensuring it. In other words, the concept of
sensitive and trusted data for an application need not necessarily coincide
with being accessed through the OS kernel. SELinux implicitly assumes the
latter, and this implicit assumption (and the resulting need to describe all
allowed accesses by an application in order to get any degree of protection),
in our opinion, leads to severe usability issues.

Once the developer has formulated what constitutes trust events for his
application, these events must be monitored and mediated cheaply and “in-
line”. This brings us to the next crucial component of a policy mechanism:
system traps.

3 Traps and Security

We next highlight the relationship between event trap semantics, the imple-
mentation of a trap system, and policy goal formulation and enforcement. At
first glance, the connection between a trap system for a particular platform

6



and the security properties of that platform may not seem obvious. They
are, however, directly and intimately related.

We believe that it is natural to formulate security properties as those
preserved across normal transitions in the system’s state space, given that
the system starts in a trustworthy state. Abnormal transitions should cause
traps, after which the system’s state may no longer be considered trustworthy
or “secure.” Accordingly, trap handlers contain much of a security system’s
functionality.

For security policies, events that correspond to the system’s transitions
between trusted states play a similar central role in the design and implemen-
tation of the policy mechanism. Namely, the policy mechanism is charged
with allowing only “safe” transitions that preserve the desired security prop-
erties. While such mechanisms can be implemented purely in software, in
practice they rely on hardware-supported traps whenever possible, to let
application code execute at full speed between mediated events, and as to
provide additional assurance of separation between the more and less trusted
parts of the system. In practice, therefore, traps form a core mechanism upon
which to implement security policy interpreters. As such, they directly or in-
directly affect all aspects of the latter. The details of the trap system shapes,
de facto, the capabilities and performance of the policy system.

3.1 Traps and Debugging

Informally speaking, the process of debugging an application has much in
common with the process of enforcing a policy. Instead of “trustworthiness”,
a bug-hunter tries to ensure that the system behaves according to her mental
model of what the code is supposed to do and catch the moment when it
begins to deviate6 from that model. That moment — more precisely, that
event — is assumed to be the manifestation of the hunted bug.

Simply put, debugging is the activity that establishes the link between the
expected application behavior and its actual behavior. But so is the en-
forcement of a security policy!

6We note that behaving as expected is one of the definitions of “trust.” Thus a “bug”
in the program, from the programmer’s point of view, is exactly what breaks the trust.

7



We believe that this connection has deep implications for future policy
design. In our experience, many developers, despite having a reasonably
good idea of what constitutes the “crown jewels” and the “worst nightmare”
of their applications, and indeed expressing it in various ways throughout
the debugging and testing process, cannot easily impart such knowledge to
runtime environments. Yet, this knowledge would be eminently useful for a
security policy intended to preserve the process’ trustworthiness, even as an
“80/20 percent solution” that counters only the more frequent threats.

Of course, the programmer’s mental model of a program’s intended be-
havior can be more complicated than that of its security properties. As a
result, the set of events that the developer needs to monitor to debug the
program can be harder to describe than the set of security-related events
that require mediation. As a result, debugging likely needs much more flex-
ible support than security policy enforcement. Yet, the available hardware
support on commodity platforms remains in its infancy (to put it somewhat
bluntly, in an equivalent of the Stone Age).

We believe that the continued lack of a flexible means to describe events
relevant to debugging is caused by the absence of a more comprehensive
set of hardware primitives. Although software systems can provide this rich
set of primitives (Pin [LCM+05] is a good example), real production software
constantly pushes the limits of computing speed, making the use of software–
level debugging unattractive for such systems. Therefore, we believe that a
flexible hardware trap system (one that allows execution to proceed at the
highest possible CPU speeds until an event of interest occurs) is a neces-
sary condition of increasing trustworthiness — and, therefore, security, of
software.

3.2 Tracing and policy

We point to an interesting use of the OS’s tracing functionality, meant pri-
marily for debugging, to monitor security-related properties of an applica-
tion process. Beauchamp et al. demonstrated7 RE:Trace and RE:Dbg, ex-
tensions of DTrace, that allowed the user to express complex application
logic conditions involving both user-level and kernel objects. Among other
trustworthiness-related conditions, they were able to catch exploitation of

7See [BW08], also http://blog.poppopret.org/?m=200806 for the updated version
of their results and presentation.

8



   

Trusted boot

TPMbased 
chain of trust

Semantics
of trust for

 applications

Application
policies   

DTrace/
RE::Trace?

Pin?
...

Loadtime S/W
measurements

PCR extension

Decision continuity

 Attribute  
mutability

Figure 1: Bridging the Trust Policy Engineering Gap. Since the requirements
for dynamic, application-level trust assessments outstrip the available capa-
bilities of standard TCG hardware, we propose debugging-like primitives to
help reason about trust and store related state.

vulnerabilities via stack and head overflows and suspend the compromised
processes.

We note that DTrace itself can be a powerful tool for expressing auditing
policies that enforce application logic-level conditions. In particular, a de-
veloper can use it to specify conditions that are trusted to never happen in
the application’s trustworthy state, and register the loss of trustworthiness
should the respective probe “fire”.

Of course, due to the fundamental architectural properties of DTrace,
this approach would work only for auditing, since the probes are processed
asynchronously, and cannot be used to mediate the respective trust events
that triggered them (moreover, there are no specific guarantees as to how soon
after the event a specific probe would fire). These properties of the DTrace
architecture are quite deliberate and are due to performance considerations –
they recognize the fact that full debugger-style mediation of a process, even

9



in the OS kernel, cannot currently be fast enough to be compatible with
acceptable performance expectations.

Still, we recognize the great potential of specifying policies on such higher
level, which is also a much better match for developers’ mental models of
their applications’ expected (and explicitly not expected) behaviors. Thus
we propose to turn to hardware for help in enforcing such policies.

4 Proposed Hardware Features

Changing the way systems trap and service memory events requires both
programmability and speed. In essence, we need an architecture that simul-
taneously allows more complex analysis and a faster overall (amortized) trap
service speed. We propose an architecture that contains two primary com-
ponents. First, an FPGA configured to act as a memory event stream parser
interacts with the CPU and MMU to obtain a stream of memory events
and a series of interrupts. Second, a memory event analysis policy is loaded
into the memory of the FPGA to direct the actions of the FPGA. With the
architecture in Figure 2, we hope to satisfy the twin demands of flexible
analysis and better trap performance. We point to successful uses of FPGA
implementations of application-aware policies to improve trustworthiness of
special purpose applications [IKP+07].

The capabilities of FPGA logic enables the TC community to define a
richer set of events and their contexts — contexts that previously could
only be defined and handled by debuggers (e.g., watchpoints that “fire” only
under particular circumstances or that depend on the state of the process
context). While policy designers could express many security goals quite
naturally as conditions for a tracing debugger to check, the overhead of doing
so makes efficient policy enforcement entirely infeasible. The introduction of
the FPGA, however, makes it possible to trace a limited set of such conditions
efficiently, since the FPGA provides both the place to store necessary state
information and fast logic to update and check such information.

5 Self-healing Perspective

We believe that one of the important considerations in designing the TCG-
compatible event systems and policy mechanisms should be leaving room

10



   

FPGA

Kernel   

Modified
page 
fault

handler

MMU

Memory event
stream

Memory event 
analysis policy

Page fault

Fast
analysis

Slower
analysis
path

Process
context 

Figure 2: An Architecture for Efficient Trust Policy Enforcement. We pro-
pose an architecture aimed at servicing most basic policy events at machine
speed (rather than serviced by a software interrupt) by trapping and inter-
preting policy events within an FPGA.

for self-healing. In production environments, security goals tend to compete
with availability requirements in that security mechanisms can represent a
negative impact on performance. Availability, however, is itself a cornerstone
security requirement. In our opinion, it would be disadvantageous for TC to
settle on policy mechanisms that exclude self-healing as a way of providing
availability.

6 Conclusion

We believe that the current capabilities of TCG infrastructure exhibits a gap
between the needs of security policy writers and the existing TC hardware
specification. We argue that specifying a system of events, trapped and
monitored by a mechanism compatible with the fundamental passive elements
of the TCG architecture is necessary for development of flexible and usable

11



Trusted Computing policies.
Further, we point to the basic similarities between debugging, trust and

policy enforcement. We argue that allowing developers to express their ap-
plications’ trustworthiness assumptions in forms such as might be used for
debugging with DTrace or Pin could become a useful source of dynamic poli-
cies, connecting expected behavior of a running applications and its trust-
worthiness. We note that the role and knowledge of a developer in achieving
the latter is crucial, but to date has received little attention in the design of
policy mechanisms.

Finally, we propose the use of FPGAs as a basic primitive to efficiently
handle memory and process-related trust events that would play a central
role in the proposed class of policies.

7 Acknowledgements

This work was supported in part by the National Science Foundation, under
grant CNS-0524695, the U.S. Department of Homeland Security under Grant
Award Number 2006-CS-001-000001, and the Institute for Security Technol-
ogy Studies, under Grant number 2005-DD-BX-1091 awarded by the Bureau
of Justice Assistance. The views and conclusions do not necessarily represent
those of the sponsors.

References

[AAH+07] B. Agreiter, M. Alam, M. Hafner, J.-P. Seifert, and X. Zhang. Model
Driven Configuration of Secure Operating Systems for Mobile Appli-
cations in Healthcare. In In Proceedings of the 1st International Work-
shop on Model-Based Trustworthy Health Information Systems, 2007.

[BCG+06] Stefan Berger, Ramon Caceres, Kenneth Goldman, Ronald Perez,
Reiner Sailer, and Leendert van Doorn. vTPM – Virtualizing the
Trusted Platform Module. In 15th Usenix Security Symposium, pages
305–320, 2006.

[BDSS08] Sergey Bratus, Nihal D’Cunha, Evan Sparks, and Sean Smith. TOC-
TOU, Traps, and Trusted Computing. In Proceedings of the TRUST
2008 Conference, March 2008. Villach, Austria.

12



[BFMS07] Sergey Bratus, Alex Ferguson, Doug McIlroy, and Sean Smith. Pas-
tures: Towards Usable Security Policy Engineering. In ARES ’07:
Proceedings of the The Second International Conference on Availabil-
ity, Reliability and Security, pages 1052–1059, Washington, DC, USA,
2007. IEEE Computer Society.

[BS05] Kwang-Hyun Baek and Sean W. Smith. Preventing theft of quality of
service on open platforms. Technical Report TR2005-539, Dartmouth
College, Computer Science, Hanover, NH, May 2005.

[BW08] Tiller Beauchamp and David Weston. DTrace: The Reverse Engineer’s
Unexpected Swiss Army Knife. Blackhat Europe, 2008.

[HCF04] V. Haldar, D. Chandra, and M. Franz. Semantic Remote Attesta-
tion: A Virtual Machine Directed Approach to Trusted Computing. In
USENIX Virtual Machine Research and Technology Symposium, 2004.

[IKP+07] Ravishankar K. Iyer, Zbigniew Kalbarczyk, Karthik Pattabiraman,
William Healey, Wen-Mei W. Hwu, Peter Klemperer, and Reza Fari-
var. Toward Application-Aware Security and Reliability. IEEE Security
and Privacy, 5(1):57–62, 2007.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of Programming Language
Design and Implementation (PLDI), June 2005.

[Pro05] G.J. Proudler. Concepts of Trusted Computing. In Chris Mitchell,
editor, Trusted Computing, pages 11–27. IET, 2005.

[SPvD05] Elaine Shi, Adrian Perrig, and Leendert van Doorn. BIND: A Fine-
Grained Attestation Service for Secure Distributed Systems. In IEEE
Symposium on Security and Privacy, pages 154–168, 2005.

[SZJvD04] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn.
Design and Implementation of a TCG-based Integrity Measurement
Architecture. In USENIX Security Symposium, pages 223–238, 2004.

13


