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ABSTRACT

Kalman filtering is a classical problem of significant interest in the
context of a distributed application for wireless sensor networks. In
this paper we consider a specific algorithm for distributed Kalman
filtering proposed recently by Olfati-Saber [1] and present a scal-
able wireless communication architecture suited for implementation
in sensor networks. The proposed architecture uses a data driven av-
erage consensus framework. This allows us to explicitly characterize
the delay vs. estimate accuracy tradeoff in filtering. By exploiting
the structure of the distributed filtering computations, we derive an
optimal communication resource allocation policy for minimizing
the component-wise state estimation error. Furthermore, our archi-
tecture is scalable in terms of the network sizen. We provide simu-
lation results demonstrating the performance of our architecture.

Index Terms— Kalman filtering, distributed algorithms, aver-
age consensus

1. INTRODUCTION

A fundamental problem in sensor networks is distributed detection
and estimation. A practical solution to this can lead to significant ap-
plications in areas such as the distributed monitoring and control of
dynamical systems. One of the most computationally efficient and
mathematically elegant algorithms for the state estimation of dynam-
ical systems, in a centralized setting, is the Kalman filter. There are
several works in literature that propose decentralized versions of the
Kalman filter [2, 3, 4, 5].

Recently, [1] proposed a promising algorithm for distributed
Kalman filtering (DKF) using average consensus. Specifically,
it showed that the information form of the classical centralized
Kalman filter can be decomposed into a totally distributed version
in which each nodei in the sensor network can compute the com-
plete system state,x(k), using local system observationszi(k) and
low cost near-neighbor communication. Furthermore, when near-
neighbor communication occurs with infinite precision, the local
state estimateŝx(k) obtained using the DKF algorithm are the same
as the state estimatêx(k) obtained using the centralized Kalman
filter.

1.1. Motivation

Unfortunately, the communication cost of the average consensus al-
gorithm does not scale well with the network sizen when point-
to-point wireless communication is used because of transmission
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scheduling related congestion. This is particularly so for networks
with high connectivity (Fig. 1).

Consider, for instance, random access scheduling which is time
slotted for simplicity. Each nodei independently transmits its packet
with probabilityp = 0.1 in any slot. A node is deemed active in slot
l if it transmits in that slot. Neighborj successfully receives a packet
from active nodei if-

SINRij =
l(dij)|hij [l]|2

No
Pt

+
P

k∈Ml\{i} l(dik)|hik[l]|2 · bj [l] > τ (1)

wherePt is finite transmit power,l(dij) is the path loss between
node pair(i, j), hij [l] is the Rayleigh fading channel in slotl, No

is AWGN channel noise variance such that SNR =15dB,Ml is the
set of all nodes active in slotl, andτ is some threshold.bj [l] is
an indicator variable which is1 if node j is active in slotl and0
otherwise. This accounts for the half-duplex constraint.

Tossn nodes randomly in a unit square. Nodesi and j are
neighbors ifdij < r wherer is the radius of connectivity. Ignoring
the overhead of acknowledgment packets, we determine the number
of transmission slots required for each node to successfully receive
packets from all its neighbors. This constitutes one iteration of the
average consensus algorithm. Fig. 1 shows that the communication
cost in terms of the required slots per consensus iteration increases
dramatically with bothr andn. Note thatr influences the algebraic
connectivity of the network and there is a tradeoff between the con-
nectivity and the average number of consensus iterations required for
convergence of the algorithm [6].

1.2. Contribution

In this paper we propose a data driven consensus based physical
layer cooperative wireless communication architecture for DKF
whose communication cost is scalable. Each data driven DKF it-
eration takes a fixed|Q| B−1 time to complete regardless of the
network size.|Q| is the cardinality of the set of quantizer centroids
indicating the precision with which nodes communicate andB is
the bandwidth of the node transmissions. It provides an intuitive
explanation of the tradeoff between the accuracy achieved in the
state estimate and the communication cost of achieving it. We also
provide a communication resource allocation policy for our filtering
architecture.

The paper is organized as follows. Section 2 describes the sys-
tem model and assumptions. Section 3 summarizes the DKF decom-
position and delineates the data driven consensus architecture for it.
In Section 4 we derive a bandwidth allocation policy to minimize the
error in the state estimate. Finally, we present simulation results in
Section 5 showing the performance of our architecture and resource
allocation policy.
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Fig. 1. Network congestion increases rapidly with the network
sizen and radius of connectivityr when average consensus is im-
plemented using point-to-point wireless communication in a slotted
ALOHA-like scheme.

2. SYSTEM MODEL

Consider a linear dynamical system with the following state-space
model-

xk+1 = Akxk + Bkwk (2)

wherexk ∈ Rm is the system state at time stepk, wk is Gaussian
noise such thatE{wkw

T
l } = Qkδ[k − l], andAk, Bk are known

Rm×m matrices. We assume thatAk is such that the norm ofxk re-
mains within a pre-specified range∀k. The problem objective is that
each nodei in a network ofn nodes should distributedly estimate
the statêxk.

Each nodei makes noisy observations of the state-zi
k =

Hi
kxk + vi

k, whereHi
k is a knownRp×m matrix, vi

k is Gaussian
noise withE{vi

kv
iT
l } = Ri

kδ[k − l] andE{vi
kv

jT
k } = Ri

kδ[i− j],
andzi

k ∈ Rp, p ≤ m.

The wireless channel model for inter-node communications
assumes the following:(a1) the channel is broadcast with flat
Rayleigh fading. The channel gains for any node pairi, j at time

slot l are circularly symmetric sampleshij [l]
iid∼ CN (0, σ2

ij) where
σ2

ij = K(d∗ + dij)
−α, α is the path loss exponent,dij is the dis-

tance between the nodes, andd∗ andK, related byK = ( 1
d∗ )−α, are

modeling parameters that take into account the carrier frequency, the
scattering environment and antennae gains.(a2) The additive noise

at nodei is ti[l]
iid∼ CN (0, N0). (a3) The nodes are half-duplex.

Denoting the samples of the discrete-time complex base-band equiv-
alent transmit and receive signal models of nodei by si[l] andri[l]
respectively we have-

ri[l] =

� Pn
j=1 hij [l]sj [l] + ti[l], if si[l] = 0;

0, if si[l] 6= 0.
(3)

Finally, (a4) we assume that the nodes are synchronized and (a5) all
nodes have a fixed transmit power constraintPt.

3. SCALABLE ARCHITECTURE FOR DKF

First we connect distributed Kalman filtering and average consensus.
Then we outline the physical layer architecture for filtering.

3.1. Distributed Kalman Filter

Begin by considering the standard recursions of a centralized
Kalman filter in the information form [7]. These recursions can
be decomposed into a distributed form leading to the following
theorem which gives the DKF algorithm-

Theorem 3.1 [1] Assume that each nodei solves two average
consensus problems -Sk = 1

n

Pn
i=1(H

i
k)T (Ri

k)−1Hi
k andyk =

1
n

Pn
i=1 yi

k = 1
n

Pn
i=1(H

i
k)T (Ri

k)−1zi
k - then each node can

update its state estimatêxk|k by computing the following micro
Kalman filters (µ-KF) iterations locally-

Mk = ((nPk|k−1)
−1 + Sk)−1 (4)

x̂k|k = x̂k|k−1 + Mk(yk − Skx̂k|k−1) (5)

Pk+1|k = AkMkAT
k + Bk(nQk)BT

k (6)

x̂k+1|k = Akx̂k|k (7)

wherex̂1|0 = x0 andP0 = Im.

While the decomposition in Theorem 3.1 is exact, the accuracy of
its estimates is contingent on the precision with which the consensus
termsyk andSk are computed.

3.2. Data Driven Average Consensus

For simplicity, we consider the case whereHi
k andRi

k are time in-
variant. Then,S = 1

n

Pn
i=1(H

i)T (Ri)−1Hi needs to computed
only once at the start of the filtering.S can be computed using av-
erage consensus. Initialize node states asθi(0) = Si. Then the
iterations-

θi(k + 1) = θi(k) + εui(k), (8)

ui(k) =
X

j∈Ni

aij(θj(k)− θi(k)) (9)

ensure thatlimk→∞ θi(k) → S, ∀i [6], where ε is a step size
parameter,aij are entries of the network adjacency matrix, and
Ni is the neighbor set of nodei. Since communications are band-
width and power limited, we cannot have infinite precision. In the
packet switched network described before, the precision is at best
O(2−2 log(1+τ)BP ), whereP is packet duration. Lengthening the
packet has an exponential improvement on the precision (which is
good); unfortunately, the delay in consensus depends on the conges-
tion and is negligibly affected by the packet duration.

We now show how these iterations can be transformed into the
data driven form [8]. Note we will henceforth averageS component-
wise. The idea behind the data driven approach is to devote channels
to data types rather than to nodes. For a given setQ = {ql, l =
0, . . . , |Q| − 1} whereql represent quantizer centroids, the quanti-
zation policy adopted is̃θi(k) = arg minql |θi(k)−ql|. Rewrite (9)
in terms of the quantized state variables-

ui(k) =
X

j∈Ni

Z ∞

−∞
aij(k)(q − θi(k))δ(q − θj(k))dq (10)

to getũi(k) =
P|Q|−1

l=0 (ql − θi(k))Vki(ql), where

Vki(ql) ,
nX

j=1

aij(k)δ[ql − θ̃j(k)] (11)



andδ(·) andδ[·] are the Dirac and Kronecker delta functions respec-
tively.

We state a scheme for approximating (11). Parse a generalized
poly-phase component of the transmit signal of nodei, si[k] into |Q|
slots indexed byl = 0, . . . , |Q| − 1. Let the discrete-time complex
base-band signal transmitted by any nodei in channel access slotl
within iterationk be-

si [l + (k − 1)|Q|] = ejφi[l]δ[ql − θ̃i(k)], (12)

whereejφi[l] introduces a uniform random phase offset in[0, 2π]
and is picked independently by each node. Then we can approximate
Vki(ql) from the cooperatively generated signal as-

V̂ki(ql) =

�
|ri [l + |Q|(k − 1)]|2 −N0, if ql 6= θ̃i(k)
0, else.

(13)

whereri [l + |Q|(k − 1)] is defined in (3). This leads to-

ûi(k) =

|Q|−1X
l=0

(ql − θ̃i(k))V̂ki(ql). (14)

It is clear from equations (13) and (14) that the nodes do not decode
the signals they receive. They use the magnitude of the received
signal energy, after subtracting the noise power, to compute the con-
sensus update directly.

The main motivation behind this strategy is that the cost of re-
ceiving the update in (14) in terms of channel uses is exactly|Q|.
Assuming that each channel use requires a timeB−1, the delay of
each iteration becomes|Q|B−1, irrespective of the number of nodes
participating which is an improvement from Fig. 1.

The following lemma provides intuition on why the performance
of the data driven algorithm is equivalent to that of a quantized aver-
age consensus scheme of the form (9).

Lemma 3.2 Under(a1)− (a5), E{û(k)} = ũ(k).

Proof From (14),E{ûi(k)|θ(k)} =
P|Q|−1

l=0 (ql− θ̃i(k))(λl−No)

whereλl =
Pn

j=1 σ2
ijδ[ql − θ̃j(k)] + No. If we chooseaij =

σ2
ij , ∀i 6= j and 0 otherwise, thenVki(ql) = λl − No =Pn

j=1 σ2
ijδ[ql − θ̃j(k)]. This gives usE{ûi(k)} = ũi(k) by

removing the conditioning.

Remark Convergence: By modeling the data driven algorithm as
a finite markov chain we have shown [9] that it is guaranteed to
converge to the quantized true average under the conditions that
|Q| < ∞ andNo = 0.

3.3. Data Driven Dynamic Consensus

OnceS is known to all nodes, they can start the local micro Kalman
filter iterations which involve computingyk through dynamic con-
sensus using a low pass consensus filter of the form [10]-

θi(k + 1) = θi(k) + εui(k), (15)

ui(k) =
X

j∈Ni

aij(θj(k)− θi(k)) +
X

j∈Ni∪{i}
aij(y

j
k − yi

k) (16)

whereθi(k) denotes a node’s estimate ofyk.
Sinceyi

k are vectors inRm, we solvem component-wise scalar
consensus problems. In thejth consensus problemθi(k) tracks
[yk]j i = 1, . . . , m. This can be extended to the data driven form

in a straightforward manner. The only changes to the data driven
algorithm are- the network information term:

Vki(ql) ,
nX

j=1

aij(k)
h
δ[ql − θ̃j(k)] + δ[ql − [ỹj

k]j ]
i

(17)

and the transmitted discrete-time complex base-band signal:

si [l + (k − 1)|Q|] = ejφi[l]
h
δ[ql − θ̃i(k)] + δ[ql − [ỹj

k]j ]
i
.

(18)

4. RESOURCE ALLOCATION FOR DATA DRIVEN
DYNAMIC CONSENSUS

From the structure of equation (5) it is clear that if we averageyk

component-wise, errors made in the averaging of one component of
yk due to the data driven algorithm will affect the accuracy of the
values of other components ofx̂k|k. So how should we select what
precision i.e.|Qj | to use for averaging each component such that we
get the best estimatêxk|k?

Let x̂AC
k|k denote the state estimate obtained at a node when fi-

nite precision data driven consensus is used to computeyk. Let us
define the error covariance matrixEx̂k

= E{(x̂k|k − x̂AC
k|k )(x̂k|k −

x̂AC
k|k )T }. Our objective is to design a resource allocation policy

based on the criterion-

min Tr(Ex̂k
) subj. to |QT | =

mX
j=1

|Qj | (19)

where log2 |QT | and log2 |Qj | indicate the total number of bits
available for representingyi

k and[yi
k]j respectively. The solution to

this is provided by the following lemma.

Lemma 4.1 The optimal solution for (19) is-

|Qj | = (λj
k)

2
3 |QT |Pm

j=1(λ
j
k)

2
3

, j = 1, . . . , m (20)

whereλj
k denote the eigenvalues ofMk. Therefore this is the optimal

resource allocation policy.

Proof See Appendix.

The proof provides intuition on why our chosen optimization prob-
lem is reasonable. The policy states that greater precision should be
used for those components[yi

k]j for whichλj
k is large.

5. NUMERICAL RESULTS

We simulate a network withn nodes which track the position of
an object moving in roughly a planar circle. The parameters of the
dynamical system (2) are -A = [1 −∆;∆ 1] where∆ = 0.02 is the
time-step,B = I2, Hi = I2, Q = 0.1, Ri ∈ [0.1, 0.45], P0 = I2,
andx0 = [0,−1]T . The initial estimate of each node isx0.

Fig. 2 shows the estimates of the object’s position at all the
nodes at different time steps as circles. Fig. 3 compares the MSE in
the state estimates for DFK with equal resource allocation and with
the optimal resource allocation policy. It highlights the estimate ac-
curacy gained through the allocation policy. Interestingly, the quality
of nodes’s estimates changes with variations in the original process
being tracked.
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Fig. 2. Node estimateŝxk|k of the position of the object at different
times. Network sizen = 200.

6. CONCLUSION

In this paper, we presented a wireless communication architecture
for distributed Kalman filtering based on average consensus in the
context of sensor networks. In our architecture, nodes schedule their
transmissions according to the data they possess. This leads to a
fixed communication cost independent of the network sizen. We
provided a strategy for allocating communication resources for data
driven dynamic consensus which minimizes the error across compo-
nents in the state estimatêxk|k.

7. APPENDIX

Proof of Lemma 4.1- Pk|k−1 andRi are symmetric since they are
covariance matrices. Consequently,S andMk are symmetric. The
eigenvalue decompositionMk = UkΛkUT

k whereUk is some uni-
tary matrix andΛk = diag(λ1

k, . . . , λm
k ) is then guaranteed to exist.

Let ξk|k−1 = UT
k x̂k|k−1. Then we can rewrite (5) as adecoupled

system of equations-

ξk|k = ξk|k−1 + Λk(UT
k yk − UT

k Skx̂k|k−1). (21)

Since we solve the consensus problem component-wise, (21) ensures
that errors in thejth consensus problem do not affect theith compo-
nent ofx̂k|k, i 6= j. Let Eξk = E{(ξk|k − ξAC

k|k )(ξk|k − ξAC
k|k )T }.

By substituting (21) intoEξk we getEξk = ΛkΦΛT
k where

Φ = E{(UT
k yk − UT

k yAC
k )(UT

k yk − UT
k yAC

k )T } (22)

since the only source of error isyk which is computed through
consensus.Φ is diagonal because each of them components of
UT

k yi
k, i = 1, . . . , n, are averaged independently. Furthermore,

over anormalizedrange, a bound on the error due to imprecision
in consensus is[UT

k yk]j − [UT
k yAC

k ]j ≤ 1/(2|Qj |), giving us that
Φ ≤ diag(1/(2|Q1|), . . . , 1/(2|Qm|)). By the definition ofξk|k
we must have thatEx̂k

= UkEξkUT
k . SinceTr(·) is invariant un-

der a similarity transform,Tr(Ex̂k
) = Tr(Eξk ). Therefore, (19)

can be written as-

min
1

4

mX
j=1

 
λj

k

|Qj |

!2

subj. to |QT | =
mX

j=1

|Qj |. (23)
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Fig. 3. MSE comparison of filtering with and without resource allo-
cation policy. Network sizen = 50.

This can be solved using Lagrangian multipliers to get the desired
result.
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