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ABSTRACT scheduling related congestion. This is particularly so for networks
with high connectivity (Fig. 1).
Kalman flltel’lng iS a ClaSSical problem Of Signiﬁcant interest in the Consider' for ins’[ance’ random access Schedu”ng Wh|Ch is t|me
context of a distributed application for wireless sensor networks. Iis|otted for simplicity. Each nodgindependently transmits its packet
this paper we consider a specific algorithm for distributed Kalmanyith probabilityp = 0.1 in any slot. A node is deemed active in slot

filtering proposed recently by Olfati-Saber [1] and present a scalt it it transmits in that slot. Neighbgr successfully receives a packet
able wireless communication architecture suited for implementatiofom active nods if-
in sensor networks. The proposed architecture uses a data driven av- R
erage consensus framework. This allows us to explicitly characterize g7 NR,; = - 1(diz) Rz [1]] bl > @)
the delay vs. estimate accuracy tradeoff in filtering. By exploiting T2 Xhemp gy Udiw) [har [1]2
the structure of the distributed filtering computations, we derive an L . .
optimal communication resource allocation policy for minimizing Where F is finite transmit power/(d;;) is the path loss between
the component-wise state estimation error. Furthermore, our archiode Pair(i, j), hi;[1] is the Rayleigh fading channel in slatNo
tecture is scalable in terms of the network sizéWe provide simu- 1S AWGN channel noise variance such that SN®5d B, M, is the
lation results demonstrating the performance of our architecture. S€t Of all nodes active in sldt and is some thresholdb; [I] is

an indicator variable which i$ if node j is active in slotl and0

Index Terms— Kalman filtering, distributed algorithms, aver- otherwise. This accounts for the half-duplex constraint.

age consensus Tossn nodes randomly in a unit square. Nodeand j are
neighbors ifd;; < r wherer is the radius of connectivity. Ignoring
the overhead of acknowledgment packets, we determine the number
of transmission slots required for each node to successfully receive
A fundamental problem in sensor networks is distributed detectioriaCketS from all its neighbors. This constitutes one iteration of the

S . . : L verage consensus algorithm. Fig. 1 shows that the communication
and estimation. A practical solution to this can lead to significant ap;éost in terms of the required slots per consensus iteration increases

1. INTRODUCTION

plications in areas such as the distributed monitoring and control o ramatically with both- andn. Note thatr influences the algebraic

dmyantar;rlr?gtlisgfteerlls.a(n)tn;l cgrittui]r;%srttﬁgr;g‘:?;g?ﬂ?!ﬁg:ggzmnzn connectivity of the network and there is a tradeoff between the con-
ical svstems i}r/1 a c%ntraliged setting. is the Kalman filter The};e ar ectivity and the average number of consensus iterations required for
Y ' 9, ) eonvergence of the algorithm [6].

several works in literature that propose decentralized versions of th
Kalman filter [2, 3, 4, 5]. o

Recently, [1] proposed a promising algorithm for distributed 1-2- Contribution
Kalman filtering (DKF) using average consensus. Specificallyjn this paper we propose a data driven consensus based physical
it showed that the information form of the classical Centralized|ayer cooperative wireless communication architecture for DKF
Kalman filter can be decomposed into a totally distributed versiofyhose communication cost is scalable. Each data driven DKF it-
in which each node in the sensor network can compute the com-eration takes a fixedQ| 8~" time to complete regardless of the
plete system statex(k), using local system observatioas(k) and  network size.|Q| is the cardinality of the set of quantizer centroids
low cost near-neighbor communication. Furthermore, when nealindicating the precision with which nodes communicate #his
neighbor communication occurs with infinite precision, the localthe bandwidth of the node transmissions. It provides an intuitive
state estimatex(k) obtained using the DKF algorithm are the same explanation of the tradeoff between the accuracy achieved in the
as the state estimate(k) obtained using the centralized Kalman state estimate and the communication cost of achieving it. We also
filter. provide a communication resource allocation policy for our filtering
architecture.

The paper is organized as follows. Section 2 describes the sys-
tem model and assumptions. Section 3 summarizes the DKF decom-
Unfortunately, the communication cost of the average consensus ghosition and delineates the data driven consensus architecture for it.
gorithm does not scale well with the network sizewhen point-  In Section 4 we derive a bandwidth allocation policy to minimize the
to-point wireless communication is used because of transmissio@rror in the state estimate. Finally, we present simulation results in
Section 5 showing the performance of our architecture and resource
This work is supported in part by the grant NSF CNS 05-24695. allocation policy.

1.1. Motivation




3. SCALABLE ARCHITECTURE FOR DKF
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First we connect distributed Kalman filtering and average consensus.
Then we outline the physical layer architecture for filtering.
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700 3.1. Distributed Kalman Filter

600 Begin by considering the standard recursions of a centralized
Kalman filter in the information form [7]. These recursions can
be decomposed into a distributed form leading to the following

theorem which gives the DKF algorithm-
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300 Theorem 3.1 [1] Assume that each nodeé solves two average

consensus problemsS, = L5 (H)"(R;) 'Hj. andy, =
%E?:l_y}; = %Z_?:I(H;)T(R};)*lz}; - then each node can
update its state estimatRy,, by computing the following micro
i i i i Kalman filters (-KF) iterations locally-
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Number of slots required per iteration
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Radius of connectivity (r) M, = ((nPk|k—1)7l+Sk)71 (4)

Xilk Kilo—1 + Mr(yr — SeXpjr—1) (5)
Fig. 1. Network congestionincreases rapidly with the network _ T T
sizen and radius of connectivity when average consensus is im- P = Ak{\/[kA’“ + Br(nQi) B ©
plemented using point-to-point wireless communication in a slotted Xeg1e = ArXpk @)
ALOHA-like scheme. wherex, o = xo and Py = In.
While the decomposition in Theorem 3.1 is exact, the accuracy of
its estimates is contingent on the precision with which the consensus

2. SYSTEM MODEL termsyy andS;, are computed.

Consider a linear dynamical system with the following state-spacg , pata Driven Average Consensus
model- o
For simplicity, we consider the case thﬁé‘andR}; are time in-

variant. Then,S = 23" (H*)"(R")"'H' needs to computed

wherex; € R™ is the system state at time stépw, is Gaussian only once at the start_o_f t_he filteringd can be computed using av-
noise such thaE{w,w? } = Qxd[k — ], and A, By, are known €rage consensus. Initialize node state®d49) = S;. Then the

Xpt1 = ArXp + Brwy 2

R™*™ matrices. We assume tha, is such that the norm of, re-  Itérations-
mains within a pre-specified rangé. The problem objective is that Oi(k+1) = 0i(k) + euy(k), (®)
each node in a network ofn nodes should distributedly estimate w; (k) = Z ai; (0, (k) — 0:(k)) (9)
the statexy,. SN

~Each nodei makes noisy observations of the stat: =  ensure thalim ... 8:(k) — S, Vi [6], wheree is a step size
Hyxk + vi, whereH; is a knownR”*™ matrix, v, is Gaussian  parametera;; are entries of the network adjacency matrix, and
noise withE{v}v;" } = Rj6[k — I] andE{v;vi"} = Ri0[i —jl. A is the neighbor set of node Since communications are band-
andzy, € R”,p <m. width and power limited, we cannot have infinite precision. In the

The wireless channel model for inter-node communicationgpacket switched network described before, the precision is at best
assumes the following:(al) the channel is broadcast with flat O(272'°s(F75F) ‘where P is packet duration. Lengthening the
Rayleigh fading. The channel gains for any node pajrat time  packet has an exponential improvement on the precision (which is
slot{ are circularly symmetric samplés; [1] < CA/(0, %) where good); unfortunately, the delay in consensus depends on the conges-
Uz'2j — K(d* + dij)~, o is the path loss exponent;; is the dis- tlon\?vnd is negr;]llglb:]y afftehcted gy thtg packet (:)urf;\tlon.f dinto th
tance between the nodes, atidandx, related by< = (1), are ‘e now show how these iterations can be transformed into the

modeling parameters that take into account the carrier frequenc tﬁjata driven form [8]. Note we will henceforth averageomponent-
ng paral requency, tiice The idea behind the data driven approach is to devote channels
scattering environment and antennae gafng) The additive noise

to data types rather than to nodes. For a givendet {q;, | =

at nodei is #:[1] ¥ CA'(0, No). (a3) The nodes are half-duplex. o, ...|Q| — 1} whereg represent quantizer centroids, the quanti-
Denoting the samples of the discrete-time complex base-band equiyation policy adopted i6; (k) = arg ming, 0:(k) — q|. Rewrite (9)
alent transmit and receive signal models of nodly s;[I] andri[l]  in terms of the quantized state variables-

respectively we have-

w(t) = Y [ asa - 0:0)0 - 6,(0)dg @0
il :{ Sir hall]s; [+ tall], if sifl) = 0; JEN: 7T

| 3)
0 it sill] # 0. to getiis (k) = 2120 (g1 — 6:(k)) Vii (), where

Finally, (a4) we assume that the nodes are synchronized and (a5) all Vii (q) 2 zn: aij(k)S[q — 6,(k)] (11)
nodes have a fixed transmit power constrdtt =



andd(-) andd[-] are the Dirac and Kronecker delta functions respec-n a straightforward manner. The only changes to the data driven

tively. algorithm are- the network information term:
We state a scheme for approximating (11). Parse a generalized
poly-phase component of the transmit signal of ngde[%] into | Q| _ T
slots indexed by = 0,...,|Q| — 1. Let the discrete-time complex Za” [6[(1[ 6; (k)] + Sla: [y’“]]]] (a7
base-band signal transmitted by any néde channel access slot
within iterationk be- and the transmitted discrete-time complex base-band signal:
_ - — %l g[g, _ G b - .

Si [l + (k 1)|QH =€ 5[Ql 01(,’6)], (12) s [l + (k _ 1)‘QH _ 6]%[1] [5[QI _ Gz(k)] + 5[QI _ [yjk]J]:I )
wheree’?[ introduces a uniform random phase offset[in27] (18)
and is picked independently by each node. Then we can approximate
Vii(q:) from the cooperatively generated signal as- 4. RESOURCE ALLOCATION FOR DATA DRIVEN

, ) - DYNAMIC CONSENSUS
Giag) = § I lH1QIG = DI = No, it ar £ 0ik) 15
¢ 0, else. From the structure of equation (5) it is clear that if we avergge

component-wise, errors made in the averaging of one component of

wherer; [l +|Q|(k — 1)] is defined in (3). This leads to- y due to the data driven algorithm will affect the accuracy of the
values of other components &f,,. So how should we select what
. ~ N precision i.e|Q;| to use for averaging each component such that we
ai(k) = Z (@ = 0i(K)) Vii(qr)- (14) get the best estimate,;,?

=0 Let x xk‘ denote the state estimate obtained at a node when fi-
Itis clear from equations (13) and (14) that the nodes do not decodgite precision data driven consensus is used to compitd et us
the signals they receive. They use the magnitude of the receivegefine the error covariance matt,, = E{(%x, — X% ) (Rejx —
signal energy, after subtracting the noise power, to compute the cos;\{)”}. Our objective is to design a resource allocation policy
sensus update directly. based on the criterion-

The main motivation behind this strategy is that the cost of re-
ceiving the update in (14) in terms of channel uses is exaélly
Assuming that each channel use requires a tfne, the delay of
each iteration becomé®|B~", irrespective of the number of nodes
participating which is an improvement from Fig. 1. wherelog, |Qr| andlog, |Q;| indicate the total number of bits

The following lemma provides intuition on why the performance available for representing, and[y}]; respectively. The solution to
of the data driven algorithm is equivalent to that of a quantized averthis is provided by the following lemma.
age consensus scheme of the form (9).

min Tr(Exg,) subj. to |Qr| = i |Qjl (19)

Lemma 4.1 The optimal solution for (19) is-
Lemma 3.2 Under(al) — (a5), E{u(k)} = a(k).

A (i _ DSlQr 20
Proof From (14)E{a:(k)[0(k)} = 125" (q:—0: (k) (u — No) Qs Sy g T e (20)
where\, = Y1, 07;6[q — 6;(k)] + N,. If we choosea;; = J=1\"k
oij, Yi # j and0 otherwise, thenVi;(q) = M — No =  where\! denote the eigenvalues bf;. Therefore this is the optimal

i Uwé[qz — 0;(k)). This gives usE{a;(k)} = (k) by  resource allocation policy.
removing the conditioning. m

Proof See Appendix.
Remark Convergence By modeling the data driven algorithm as
a finite markov chain we have shown [9] that it is guaranteed tol he proof provides intuition on why our chosen optimization prob-
converge to the quantized true average under the conditions thi&m is reasonable. The policy states that greater precision should be
|Q| < oo andN, = 0. used for those componeritg;,]; for which AJ is large.

3.3. Data Driven Dynamic Consensus 5. NUMERICAL RESULTS

OncesS is known to all nodes, they can start the local micro Kalmanye simulate a network wit nodes which track the position of
filter iterations which involve computing;. through dynamic con- g object moving in roughly a planar circle. The parameters of the
sensus using a low pass consensus filter of the form [10]- dynamical system (2) are4 = [1 —A; A 1] whereA = 0.02is the
time-step,B = I, H; = I, Q = 0.1, R; € [0.1,0.45], Py = I,
Oi(k +1) = 0:(k) + eui(k), (15 andzo = [0, —1]T. The initial estimate of ea[ch node:)]'ts.
; i Fig. 2 shows the estimates of the object’s position at all the
wi(k) = Y ai(0;(k) —0:(k)+ D ai(yl—yi) (16) nodes at different time steps as circles. Fig. 3 compares the MSE in
JEN: JeENiLu{i} the state estimates for DFK with equal resource allocation and with
wheref; (k) denotes a node’s estimateyf. the optimal resource allocation policy. It highlights the estimate ac-
Sincey, are vectors irR™, we solvern component-wise scalar curacy gained through the allocation policy. Interestingly, the quality
consensus problems. In th¢h consensus problem; (k) tracks  of nodes’s estimates changes with variations in the original process
[vx]; ¢ = 1,...,m. This can be extended to the data driven formbeing tracked.
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Fig. 2. Node estimates;,;, of the position of the object at different Fig. 3. MSE comparison of filtering with and without resource allo-
times. Network sizev = 200. cation policy. Network size. = 50.

6. CONCLUSION This can be solved using Lagrangian multipliers to get the desired

In this paper, we presented a wireless communication architecturrgsun' "

for distributed Kalman filtering based on average consensus in the

context of sensor networks. In our architecture, nodes schedule their 8. REFERENCES
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